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Reachability for Continuous-Time Markov Chains
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Reachability - The Stochastic Case

“Is it ever more likely to be a Bear market than a Bull market?”

∃t (P(t)Bear ≥ P(t)Bull)

Reduce to the time-bounded case by computing the
stationary distribution:

π = (0.885, 0.071, 0.044)

Require that π not be on boundary of the target set.
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Cyber-Physical Systems

“To analyze a cyber-physical system, such as a
pacemaker, we need to consider the discrete
software controller interacting with the
physical world, which is typically modelled by
differential equations”

Rajeev Alur (CACM, 2013)



Hybrid Automata: Various Continuous Dynamics

Hybrid automaton = states + variables x ∈ Rk

• ẋ = 1 ⇒ timed automata

• ẋ = c ⇒ rectangular hybrid automata

• ẋ = Ax ⇒ linear hybrid automata

• . . .

Is this location a trap?

ẋ = 3x − y
ẏ = x − 5y

x := 2
y := 4

x ≥ 10
∧ y ≤ 2?
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• ẋ = c ⇒ rectangular hybrid automata
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• ẋ = c ⇒ rectangular hybrid automata
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• ẋ = 1 ⇒ timed automata
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Reachability for Continuous Linear Dynamical Systems

Is this location a trap?
ẋ = 3x − y
ẏ = x − 5y

x := 2
y := 4

x ≥ 10
∧ y ≤ 2?
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Reachability for Continuous Linear Dynamical Systems

x : R≥0 → Rk

ẋ = Ax
⇒ x(t) = exp(At)x(0)

f (t) = uTx(t)

f (k)(t) + ak−1f
(k−1)(t) + . . .+ a1f

′(t) + a0f (t) = 0

f (t) =
m∑
j=1

Pj(t)eλj t

Note – the λj are complex in general.
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Reachability for Continuous Linear Dynamical Systems

Let f : R≥0 → R be given as above, with all coefficients algebraic.

BOUNDED-ZERO Problem

Instance: f and bounded interval [a, b]
Question: Is there t ∈ [a, b] such that f (t) = 0?

ZERO Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?

• Decidability open! [Bell, Delvenne, Jungers, Blondel 2010]
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Related Work

A lot of work since 1920s on the zeros of exponential polynomials

f (z) =
m∑
j=1

Pj(z)eλjz

(Polya, Ritt, Tamarkin, Kac, Voorhoeve, van der Poorten, . . . )
but mostly on distribution of complex zeros.

CONTINUOUS-ORBIT Problem

The problem of whether the trajectory x(t) = eAtx(0) reaches a
given target point was shown to be decidable by Hainry (2008)
and in PTIME by Chen, Han and Yu (2015).
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at all orders.
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Theorem (Chonev, Ouaknine, W. 2015)

At order 9, if ZERO is decidable then the Diophantine
approximation type of any real algebraic number α is a computable
number.

It turns out that decidability in the bounded case follows from a
much more general result, discovered (but not published) in the
early 1990s by Macintyre and Wilkie.

[Angus Macintyre, personal communication, July 2015]
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Schanuel’s Conjecture

Theorem (Lindemann-Weierstrass)

If a1, . . . , an are algebraic numbers linearly independent over Q,
then ea1 , . . . , ean are algebraically independent.

Schanuel’s Conjecture

If z1, . . . , zn are complex numbers linearly
independent over Q then some n-element
subset of {z1, . . . , zn, ez1 , . . . , ezn} is
algebraically independent.
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{1, πi , e1, eπi} is algebraically independent.



Schanuel’s Conjecture

Theorem (Lindemann-Weierstrass)

If a1, . . . , an are algebraic numbers linearly independent over Q,
then ea1 , . . . , ean are algebraically independent.

Schanuel’s Conjecture

If z1, . . . , zn are complex numbers linearly
independent over Q then some n-element
subset of {z1, . . . , zn, ez1 , . . . , ezn} is
algebraically independent.

Theorem (Macintyre and Wilkie 1996)

The first-order theory of (R,+, ·, ex) is decidable, assuming
Schanuel’s conjecture.
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The BOUNDED-ZERO Problem

Real-valued exponential polynomial f (t) =
m∑
j=1

Pj(t)eλj t

t*

f(t)

t
a b

Easily! For example, f (t) = 2 + e it + e−it .



Laurent Polynomials and Factorisation

Example

Write f (t) = 2 + e it + e−it in the form f (t) = P(e it) for the
Laurent polynomial

P(z) = 2 + z + z−1 .

Factorisation P(z) = (1 + z)(1 + z−1) induces a factorisation

f (t) = (1 + e it)︸ ︷︷ ︸
f1(t)

(1− e it)︸ ︷︷ ︸
f2(t)

Common zeros of f1 and f2 are tangential zeros of f

Idea: factorise f . Noting that factors may be complex-valued!
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Laurent Polynomials and Factorisation

Any exponential polynomial f (t) can be written

f (t) = P(t, ea1t , . . . , eamt)

with
P ∈ C[x , x±11 , . . . , x±1m ]

and {a1, . . . , am} a set of complex algebraic numbers linearly
independent over Q.

Proof Strategy

Factorisation of P into irreducible factors induces factorisation of
f . Assuming Schanuel’s conjecture, we can decide the existence of
zeros of real-valued and complex-valued irreducible factors.
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The Unbounded Case

ZERO Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?



Diophantine Approximation

How well can one approximate a real number x with rationals?∣∣∣∣x − p

q
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Theorem (Dirichlet 1842)

There are infinitely many integers p, q such that
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q
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q2
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Diophantine Approximation

How well can one approximate a real number x with rationals?∣∣∣∣x − p

q

∣∣∣∣
Theorem (Dirichlet 1842)

There are infinitely many integers p, q such that

∣∣∣∣x − p

q

∣∣∣∣ < 1

q2
.

Definition

Let x ∈ R. The Diophantine-approximation type L(x) is:

L(x) = inf

{
c :

∣∣∣∣x − p

q

∣∣∣∣ < c

q2
for some p, q ∈ Z

}
.
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Real Algebraic Numbers

Theorem

The continued fraction expansion of a real quadratic irrational
number is periodic.

√
389 = [19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, . . .]

What about numbers of degree ≥ 3?

3
√

2 = [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1

3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, . . .]

Lang and Trotter: “no significant departure from random
behaviour”
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Lang and Trotter: “no significant departure from random
behaviour”
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An Open Problem

“ [. . . ] no continued fraction development
of an algebraic number of higher degree
than the second is known. It is not even
known if such a development has bounded
elements.”

A. Khinchin. 1949.

“Is there an algebraic number of degree higher
than two whose simple continued fraction has
unbounded partial quotients? Does every such
number have unbounded partial quotients?”

R. K. Guy, 2004
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A Mathematical Obstacle at Order 9

Fact. The simple continued fraction expansion of x ∈ R is
unbounded iff L(x) = 0.

Theorem (Chonev, Ouaknine, W., 2015)

If the ZERO PROBLEM is decidable at order 9 then there is an
algorithm that given a real algebraic number α computes L(α) to
arbitrary precision. In particular, the set

{α ∈ Q : α has bounded partial quotients}

would be recursively enumerable.
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The ZERO Problem at Low Orders

ZERO Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?

Theorem

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

In the limit f is either never zero or infinitely often zero, and we
can decide which is the case.

Diophantine-approximation bounds play a key
role in the proof—specifically Baker’s theorem
on linear forms in logarithms of algebraic
numbers.



The ZERO Problem at Low Orders

ZERO Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?

Theorem

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

In the limit f is either never zero or infinitely often zero, and we
can decide which is the case.

Diophantine-approximation bounds play a key
role in the proof—specifically Baker’s theorem
on linear forms in logarithms of algebraic
numbers.



The ZERO Problem at Low Orders

ZERO Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?

Theorem

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

In the limit f is either never zero or infinitely often zero, and we
can decide which is the case.

Diophantine-approximation bounds play a key
role in the proof—specifically Baker’s theorem
on linear forms in logarithms of algebraic
numbers.



The ZERO Problem at Low Orders

ZERO Problem

Instance: f
Question: Is there t ∈ R≥0 such that f (t) = 0?

Theorem

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

In the limit f is either never zero or infinitely often zero, and we
can decide which is the case.

Diophantine-approximation bounds play a key
role in the proof—specifically Baker’s theorem
on linear forms in logarithms of algebraic
numbers.



Illustrative Example

Consider the exponential polynomial

f (t) = 2 + cos(t + ϕ1) + cos(
√

2t + ϕ2)− e−t

Orbit {(t + ϕ1,
√

2t + ϕ2) mod 2π : t ∈ R≥0} is dense in [0, 2π]2

Baker’s Theorem:∣∣∣∣∣∣(t + ϕ1,
√

2t + ϕ2

)
− (π, π)

∣∣∣∣∣∣ ≥ 1

poly(t)
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Conclusion and Perspectives



The Discrete Case

A linear recurrence sequence is a sequence 〈u0, u1, u2, . . .〉 of
integers such that there exist constants a1, . . . , ak , such that

un+k = a1un+k−1 + a2un+k−2 + . . .+ akun

for all n ≥ 0.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

{n : un = 0} = F ∪ A1 ∪ . . . ∪ A`

where F is finite and each Ai is a full arithmetic progression.

Theorem (Berstel and Mignotte 1976)

In Skolem-Mahler-Lech, the infinite part (arithmetic progressions
A1, . . . , A`) is fully constructive.
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The Skolem Problem

Skolem Problem

Does ∃n such that un = 0 ?

“It is faintly outrageous that this
problem is still open; it is saying that we
do not know how to decide the Halting

Problem even for ‘linear’ automata!”

Terence Tao

“. . . a mathematical embarrassment . . . ”

Richard Lipton
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Wrapping Things Up

Continuous Skolem Problem

Does ∃t such that f (t) = 0 ?

Even the bounded problem is hard.

Formidable “mathematical obstacle” at dimension 9 in the
unbounded case.

Similar obstacles for the Infinite-Zeros Problem.

Diophantine-approximation techniques unavoidable.
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