Reachability Problems for Continuous Linear Dynamical Systems

James Worrell
Department of Computer Science, Oxford University
(Joint work with Ventsislav Chonev and Joël Ouaknine)

FSTTCS 2015
December 16th, 2015

Reachability for Continuous-Time Markov Chains

Reachability for Continuous-Time Markov Chains

Distribution $P(t)$ at time t satisfies $P^{\prime}(t)=P(t) Q$, where

$$
Q=\left(\begin{array}{ccc}
-0.025 & 0.02 & 0.005 \\
0.3 & -0.5 & 0.2 \\
0.02 & 0.4 & -0.42
\end{array}\right)
$$

is the rate matrix.

Reachability for Continuous-Time Markov Chains

Distribution $P(t)$ at time t satisfies $P^{\prime}(t)=P(t) Q$, where

$$
Q=\left(\begin{array}{ccc}
-0.025 & 0.02 & 0.005 \\
0.3 & -0.5 & 0.2 \\
0.02 & 0.4 & -0.42
\end{array}\right)
$$

is the rate matrix.
"Is it ever more likely to be a Bear market than a Bull market?"

$$
\exists t\left(P(t)_{\text {Bear }} \geq P(t)_{\text {Bull }}\right)
$$

Reachability - The Stochastic Case

"Is it ever more likely to be a Bear market than a Bull market?"

$$
\exists t\left(P(t)_{\text {Bear }} \geq P(t)_{\text {Bull }}\right)
$$

Reachability - The Stochastic Case

"Is it ever more likely to be a Bear market than a Bull market?"

$$
\exists t\left(P(t)_{\text {Bear }} \geq P(t)_{\text {Bull }}\right)
$$

- Reduce to the time-bounded case by computing the stationary distribution:

$$
\pi=(0.885,0.071,0.044)
$$

Reachability - The Stochastic Case

"Is it ever more likely to be a Bear market than a Bull market?"

$$
\exists t\left(P(t)_{\text {Bear }} \geq P(t)_{\text {Bull }}\right)
$$

- Reduce to the time-bounded case by computing the stationary distribution:

$$
\pi=(0.885,0.071,0.044)
$$

- Require that π not be on boundary of the target set.

Cyber-Physical Systems

"To analyze a cyber-physical system, such as a pacemaker, we need to consider the discrete software controller interacting with the physical world, which is typically modelled by differential equations"

Rajeev Alur (CACM, 2013)

Hybrid Automata: Various Continuous Dynamics

- Hybrid automaton $=$ states + variables $\mathbf{x} \in \mathbb{R}^{k}$
- Hybrid automaton $=$ states + variables $\mathbf{x} \in \mathbb{R}^{k}$
- $\dot{\mathbf{x}}=\mathbf{1} \Rightarrow$ timed automata
- Hybrid automaton $=$ states + variables $\mathbf{x} \in \mathbb{R}^{k}$
- $\dot{\mathbf{x}}=\mathbf{1} \quad \Rightarrow \quad$ timed automata
- $\dot{\mathbf{x}}=\mathbf{c} \quad \Rightarrow$ rectangular hybrid automata
- Hybrid automaton $=$ states + variables $\mathbf{x} \in \mathbb{R}^{k}$
- $\dot{\mathbf{x}}=1 \quad \Rightarrow \quad$ timed automata
- $\dot{\mathbf{x}}=\mathbf{c} \quad \Rightarrow$ rectangular hybrid automata
- $\dot{\mathbf{x}}=\mathbf{A x} \Rightarrow$ linear hybrid automata
- Hybrid automaton $=$ states + variables $\mathbf{x} \in \mathbb{R}^{k}$
- $\dot{\mathbf{x}}=1 \quad \Rightarrow \quad$ timed automata
- $\dot{\mathbf{x}}=\mathbf{c} \quad \Rightarrow$ rectangular hybrid automata
- $\dot{\mathbf{x}}=\mathbf{A x} \Rightarrow$ linear hybrid automata
- Hybrid automaton $=$ states + variables $\mathbf{x} \in \mathbb{R}^{k}$
- $\dot{\mathbf{x}}=1 \Rightarrow$ timed automata
- $\dot{\mathbf{x}}=\mathbf{c} \quad \Rightarrow$ rectangular hybrid automata
- $\dot{\mathbf{x}}=\mathbf{A x} \Rightarrow$ linear hybrid automata

Is this location a trap?

$$
\left.\xrightarrow{x:=2} \begin{array}{l}
y:=4 \\
\dot{x}=3 x-y \\
\dot{y}=x-5 y
\end{array}\right) \begin{aligned}
& x \geq 10 \\
& \wedge y \leq 2 ?
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

Is this location a trap?

Is ever more likely to be a Bear market than a Bull market:

$$
\exists t\left(P(t)_{\text {Bear }} \geq P(t)_{\text {Bull }}\right) ?
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x}
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

$$
f(t)=\mathbf{u}^{\top} \mathbf{x}(t)
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

$$
f(t)=\mathbf{u}^{\top} \mathbf{x}(t)
$$

$$
f^{(k)}(t)+a_{k-1} f^{(k-1)}(t)+\ldots+a_{1} f^{\prime}(t)+a_{0} f(t)=0
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

$$
f(t)=\mathbf{u}^{\top} \mathbf{x}(t)
$$

$$
\begin{gathered}
f^{(k)}(t)+a_{k-1} f^{(k-1)}(t)+\ldots+a_{1} f^{\prime}(t)+a_{0} f(t)=0 \\
f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}
\end{gathered}
$$

Reachability for Continuous Linear Dynamical Systems

$$
\begin{aligned}
& \mathbf{x}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{k} \\
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x} \\
& \Rightarrow \quad \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
\end{aligned}
$$

$$
f(t)=\mathbf{u}^{\top} \mathbf{x}(t)
$$

$$
\begin{gathered}
f^{(k)}(t)+a_{k-1} f^{(k-1)}(t)+\ldots+a_{1} f^{\prime}(t)+a_{0} f(t)=0 \\
f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}
\end{gathered}
$$

Note - the λ_{j} are complex in general.

Reachability for Continuous Linear Dynamical Systems

Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be given as above, with all coefficients algebraic.

Reachability for Continuous Linear Dynamical Systems

Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be given as above, with all coefficients algebraic.

BOUNDED-ZERO Problem

Instance: f and bounded interval $[a, b]$
Question: Is there $t \in[a, b]$ such that $f(t)=0$?

Reachability for Continuous Linear Dynamical Systems

Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be given as above, with all coefficients algebraic.

BOUNDED-ZERO Problem

Instance: f and bounded interval $[a, b]$
Question: Is there $t \in[a, b]$ such that $f(t)=0$?

ZERO Problem
Instance: f
Question: Is there $t \in \mathbb{R}_{\geq 0}$ such that $f(t)=0$?

Reachability for Continuous Linear Dynamical Systems

Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be given as above, with all coefficients algebraic.

BOUNDED-ZERO Problem

Instance: f and bounded interval $[a, b]$
Question: Is there $t \in[a, b]$ such that $f(t)=0$?

ZERO Problem

Instance: f
Question: Is there $t \in \mathbb{R}_{\geq 0}$ such that $f(t)=0$?

- Decidability open! [Bell, Delvenne, Jungers, Blondel 2010]

Related Work

A lot of work since 1920s on the zeros of exponential polynomials

$$
f(z)=\sum_{j=1}^{m} P_{j}(z) e^{\lambda_{j} z}
$$

(Polya, Ritt, Tamarkin, Kac, Voorhoeve, van der Poorten, ...) but mostly on distribution of complex zeros.

Related Work

A lot of work since 1920s on the zeros of exponential polynomials

$$
f(z)=\sum_{j=1}^{m} P_{j}(z) e^{\lambda_{j} z}
$$

(Polya, Ritt, Tamarkin, Kac, Voorhoeve, van der Poorten, ...) but mostly on distribution of complex zeros.

CONTINUOUS-ORBIT Problem

The problem of whether the trajectory $\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)$ reaches a given target point was shown to be decidable by Hainry (2008) and in PTIME by Chen, Han and Yu (2015).

Our Results

Theorem (Chonev, Ouaknine, W. 2015)
Assuming Schanuel's Conjecture, BOUNDED-ZERO is decidable at all orders.

Our Results

Theorem (Chonev, Ouaknine, W. 2015)
Assuming Schanuel's Conjecture, BOUNDED-ZERO is decidable at all orders.

Theorem (Chonev, Ouaknine, W. 2015)
At order ≤ 8, ZERO reduces to BOUNDED-ZERO.

Our Results

Theorem (Chonev, Ouaknine, W. 2015)Assuming Schanuel's Conjecture, BOUNDED-ZERO is decidableat all orders.
Theorem (Chonev, Ouaknine, W. 2015)
At order $\leq 8, Z E R O$ reduces to BOUNDED-ZERO.
Theorem (Chonev, Ouaknine, W. 2015)At order 9, if ZERO is decidable then the Diophantineapproximation type of any real algebraic number α is a computablenumber.

Our Results

Theorem (Chonev, Ouaknine, W. 2015)

Assuming Schanuel's Conjecture, BOUNDED-ZERO is decidable at all orders.

Theorem (Chonev, Ouaknine, W. 2015)

At order $\leq 8, Z E R O$ reduces to BOUNDED-ZERO.

Theorem (Chonev, Ouaknine, W. 2015)

At order 9, if ZERO is decidable then the Diophantine approximation type of any real algebraic number α is a computable number.

It turns out that decidability in the bounded case follows from a much more general result, discovered (but not published) in the early 1990s by Macintyre and Wilkie.
[Angus Macintyre, personal communication, July 2015]

Schanuel's Conjecture

Theorem (Lindemann-Weierstrass)
 If a_{1}, \ldots, a_{n} are algebraic numbers linearly independent over \mathbb{Q}, then $e^{a_{1}}, \ldots, e^{a_{n}}$ are algebraically independent.

Schanuel's Conjecture

Theorem (Lindemann-Weierstrass)

If a_{1}, \ldots, a_{n} are algebraic numbers linearly independent over \mathbb{Q}, then $e^{a_{1}}, \ldots, e^{a_{n}}$ are algebraically independent.

Schanuel's Conjecture

If z_{1}, \ldots, z_{n} are complex numbers linearly independent over \mathbb{Q} then some n-element subset of $\left\{z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right\}$ is algebraically independent.

Schanuel's Conjecture

Theorem (Lindemann-Weierstrass)

If a_{1}, \ldots, a_{n} are algebraic numbers linearly independent over \mathbb{Q}, then $e^{a_{1}}, \ldots, e^{a_{n}}$ are algebraically independent.

Schanuel's Conjecture

If z_{1}, \ldots, z_{n} are complex numbers linearly independent over \mathbb{Q} then some n-element subset of $\left\{z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right\}$ is algebraically independent.

Easy Consequence

By Schanuel's conjecture, some two-element subset of $\left\{1, \pi i, e^{1}, e^{\pi i}\right\}$ is algebraically independent.

Schanuel's Conjecture

Theorem (Lindemann-Weierstrass)

If a_{1}, \ldots, a_{n} are algebraic numbers linearly independent over \mathbb{Q}, then $e^{a_{1}}, \ldots, e^{a_{n}}$ are algebraically independent.

Schanuel's Conjecture

If z_{1}, \ldots, z_{n} are complex numbers linearly independent over \mathbb{Q} then some n-element subset of $\left\{z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right\}$ is algebraically independent.

Theorem (Macintyre and Wilkie 1996)

The first-order theory of $\left(\mathbb{R},+, \cdot, e^{x}\right)$ is decidable, assuming Schanuel's conjecture.

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

The BOUNDED-ZERO Problem

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

'non-trivial' zero $\Rightarrow t^{*}$ transcendental

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

'non-trivial' zero $\Rightarrow t^{*}$ transcendental

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

'non-trivial' zero $\Rightarrow t^{*}$ transcendental

The BOUNDED-ZERO Problem

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

The BOUNDED-ZERO Problem

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

Can this situation arise?

Real-valued exponential polynomial $f(t)=\sum_{j=1}^{m} P_{j}(t) e^{\lambda_{j} t}$

Easily! For example, $f(t)=2+e^{i t}+e^{-i t}$.

Laurent Polynomials and Factorisation

Example

- Write $f(t)=2+e^{i t}+e^{-i t}$ in the form $f(t)=P\left(e^{i t}\right)$ for the Laurent polynomial

$$
P(z)=2+z+z^{-1} .
$$

Laurent Polynomials and Factorisation

Example

- Write $f(t)=2+e^{i t}+e^{-i t}$ in the form $f(t)=P\left(e^{i t}\right)$ for the Laurent polynomial

$$
P(z)=2+z+z^{-1}
$$

- Factorisation $P(z)=(1+z)\left(1+z^{-1}\right)$ induces a factorisation

$$
f(t)=\underbrace{\left(1+e^{i t}\right)}_{f_{1}(t)} \underbrace{\left(1-e^{i t}\right)}_{f_{2}(t)}
$$

Laurent Polynomials and Factorisation

Example

- Write $f(t)=2+e^{i t}+e^{-i t}$ in the form $f(t)=P\left(e^{i t}\right)$ for the Laurent polynomial

$$
P(z)=2+z+z^{-1} .
$$

- Factorisation $P(z)=(1+z)\left(1+z^{-1}\right)$ induces a factorisation

$$
f(t)=\underbrace{\left(1+e^{i t}\right)}_{f_{1}(t)} \underbrace{\left(1-e^{i t}\right)}_{f_{2}(t)}
$$

- Common zeros of f_{1} and f_{2} are tangential zeros of f

Laurent Polynomials and Factorisation

Example

- Write $f(t)=2+e^{i t}+e^{-i t}$ in the form $f(t)=P\left(e^{i t}\right)$ for the Laurent polynomial

$$
P(z)=2+z+z^{-1} .
$$

- Factorisation $P(z)=(1+z)\left(1+z^{-1}\right)$ induces a factorisation

$$
f(t)=\underbrace{\left(1+e^{i t}\right)}_{f_{1}(t)} \underbrace{\left(1-e^{i t}\right)}_{f_{2}(t)}
$$

- Common zeros of f_{1} and f_{2} are tangential zeros of f

Idea: factorise f.

Laurent Polynomials and Factorisation

Example

- Write $f(t)=2+e^{i t}+e^{-i t}$ in the form $f(t)=P\left(e^{i t}\right)$ for the Laurent polynomial

$$
P(z)=2+z+z^{-1}
$$

- Factorisation $P(z)=(1+z)\left(1+z^{-1}\right)$ induces a factorisation

$$
f(t)=\underbrace{\left(1+e^{i t}\right)}_{f_{1}(t)} \underbrace{\left(1-e^{i t}\right)}_{f_{2}(t)}
$$

- Common zeros of f_{1} and f_{2} are tangential zeros of f

Idea: factorise f. Noting that factors may be complex-valued!

Laurent Polynomials and Factorisation

Any exponential polynomial $f(t)$ can be written

$$
f(t)=P\left(t, e^{a_{1} t}, \ldots, e^{a_{m} t}\right)
$$

with

$$
P \in \mathbb{C}\left[x, x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}\right]
$$

and $\left\{a_{1}, \ldots, a_{m}\right\}$ a set of complex algebraic numbers linearly independent over \mathbb{Q}.

Laurent Polynomials and Factorisation

Any exponential polynomial $f(t)$ can be written

$$
f(t)=P\left(t, e^{a_{1} t}, \ldots, e^{a_{m} t}\right)
$$

with

$$
P \in \mathbb{C}\left[x, x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}\right]
$$

and $\left\{a_{1}, \ldots, a_{m}\right\}$ a set of complex algebraic numbers linearly independent over \mathbb{Q}.

Proof Strategy

Factorisation of P into irreducible factors induces factorisation of f. Assuming Schanuel's conjecture, we can decide the existence of zeros of real-valued and complex-valued irreducible factors.

ZERO Problem

Instance: f
Question: Is there $t \in \mathbb{R}_{\geq 0}$ such that $f(t)=0$?

Diophantine Approximation

How well can one approximate a real number x with rationals?

$$
\left|x-\frac{p}{q}\right|
$$

Diophantine Approximation

How well can one approximate a real number x with rationals?

$$
\left|x-\frac{p}{q}\right|
$$

Theorem (Dirichlet 1842)

There are infinitely many integers p, q such that $\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}}$.

Diophantine Approximation

How well can one approximate a real number x with rationals?

$$
\left|x-\frac{p}{q}\right|
$$

Theorem (Dirichlet 1842)

There are infinitely many integers p, q such that $\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}}$.

Theorem (Roth 1955)

Let $x \in \mathbb{R}$ be algebraic. Then for any $\varepsilon>0$ there are finitely many integers p, q such that

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q^{2+\varepsilon}} .
$$

Diophantine Approximation

How well can one approximate a real number x with rationals?

$$
\left|x-\frac{p}{q}\right|
$$

Theorem (Dirichlet 1842)

There are infinitely many integers p, q such that $\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}}$.

Definition

Let $x \in \mathbb{R}$. The Diophantine-approximation type $L(x)$ is:

$$
L(x)=\inf \left\{c:\left|x-\frac{p}{q}\right|<\frac{c}{q^{2}} \text { for some } p, q \in \mathbb{Z}\right\} .
$$

Continued Fractions

Finite continued fractions:

$$
[3,7,15,1,292]=3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292}}}}
$$

Continued Fractions

Finite continued fractions:

$$
\begin{aligned}
{[3,7,15,1,292] } & =3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292}}}} \\
& =3.141592653 \ldots
\end{aligned}
$$

Continued Fractions

Finite continued fractions:

$$
\begin{aligned}
{[3,7,15,1,292] } & =3+\frac{1}{7+\frac{1}{15+\frac{1}{1+\frac{1}{292}}}} \\
& =3.141592653 \ldots
\end{aligned}
$$

Infinite continued fractions:

$$
\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

Real Algebraic Numbers

Theorem
The continued fraction expansion of a real quadratic irrational number is periodic.

Real Algebraic Numbers

Theorem
The continued fraction expansion of a real quadratic irrational number is periodic.

$$
\sqrt{389}=[19,1,2,1,1,1,1,2,1,38,1,2,1,1,1,1,2,1,38, \ldots]
$$

Real Algebraic Numbers

Theorem
The continued fraction expansion of a real quadratic irrational number is periodic.

$$
\sqrt{389}=[19,1,2,1,1,1,1,2,1,38,1,2,1,1,1,1,2,1,38, \ldots]
$$

What about numbers of degree ≥ 3 ?

Real Algebraic Numbers

Theorem

The continued fraction expansion of a real quadratic irrational number is periodic.

$$
\sqrt{389}=[19,1,2,1,1,1,1,2,1,38,1,2,1,1,1,1,2,1,38, \ldots]
$$

What about numbers of degree ≥ 3 ?

$$
\begin{aligned}
\sqrt[3]{2}= & {[1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2,1} \\
& 3,4,1,1,2,14,3,12,1,15,3,1,4,534,1,1,5,1,1, \ldots]
\end{aligned}
$$

Real Algebraic Numbers

Theorem

The continued fraction expansion of a real quadratic irrational number is periodic.

$$
\sqrt{389}=[19,1,2,1,1,1,1,2,1,38,1,2,1,1,1,1,2,1,38, \ldots]
$$

What about numbers of degree ≥ 3 ?

$$
\begin{aligned}
\sqrt[3]{2}= & {[1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2,1} \\
& 3,4,1,1,2,14,3,12,1,15,3,1,4,534,1,1,5,1,1, \ldots]
\end{aligned}
$$

Lang and Trotter: "no significant departure from random behaviour'

An Open Problem

" [...] no continued fraction development of an algebraic number of higher degree than the second is known. It is not even known if such a development has bounded elements."

A. Khinchin. 1949.

An Open Problem

" [...] no continued fraction development of an algebraic number of higher degree than the second is known. It is not even known if such a development has bounded elements."
A. Khinchin. 1949.
"Is there an algebraic number of degree higher than two whose simple continued fraction has unbounded partial quotients? Does every such number have unbounded partial quotients?"
R. K. Guy, 2004

A Mathematical Obstacle at Order 9

Fact. The simple continued fraction expansion of $x \in \mathbb{R}$ is unbounded iff $L(x)=0$.

A Mathematical Obstacle at Order 9

Fact. The simple continued fraction expansion of $x \in \mathbb{R}$ is unbounded iff $L(x)=0$.

Theorem (Chonev, Ouaknine, W., 2015)

If the ZERO PROBLEM is decidable at order 9 then there is an algorithm that given a real algebraic number α computes $L(\alpha)$ to arbitrary precision. In particular, the set

$$
\{\alpha \in \bar{Q}: \alpha \text { has bounded partial quotients }\}
$$

would be recursively enumerable.

The ZERO Problem at Low Orders

ZERO Problem

Instance: f
Question: Is there $t \in \mathbb{R}_{\geq 0}$ such that $f(t)=0$?

The ZERO Problem at Low Orders

ZERO Problem

Instance: f
Question: Is there $t \in \mathbb{R}_{\geq 0}$ such that $f(t)=0$?

Theorem

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

ZERO Problem

Instance: f
Question: Is there $t \in \mathbb{R}_{\geq 0}$ such that $f(t)=0$?

Theorem

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

In the limit f is either never zero or infinitely often zero, and we can decide which is the case.

The ZERO Problem at Low Orders

ZERO Problem

Instance: f
Question: Is there $t \in \mathbb{R}_{\geq 0}$ such that $f(t)=0$?

Theorem

In dimension 8 or less, ZERO reduces to BOUNDED-ZERO.

In the limit f is either never zero or infinitely often zero, and we can decide which is the case.

Diophantine-approximation bounds play a key role in the proof-specifically Baker's theorem on linear forms in logarithms of algebraic numbers.

Illustrative Example

Consider the exponential polynomial

$$
f(t)=2+\cos \left(t+\varphi_{1}\right)+\cos \left(\sqrt{2} t+\varphi_{2}\right)-e^{-t}
$$

Illustrative Example

Consider the exponential polynomial

$$
f(t)=2+\cos \left(t+\varphi_{1}\right)+\cos \left(\sqrt{2} t+\varphi_{2}\right)-e^{-t}
$$

Orbit $\left\{\left(t+\varphi_{1}, \sqrt{2} t+\varphi_{2}\right) \bmod 2 \pi: t \in \mathbb{R}_{\geq 0}\right\}$ is dense in $[0,2 \pi]^{2}$

Illustrative Example

Consider the exponential polynomial

$$
f(t)=2+\cos \left(t+\varphi_{1}\right)+\cos \left(\sqrt{2} t+\varphi_{2}\right)-e^{-t}
$$

Orbit $\left\{\left(t+\varphi_{1}, \sqrt{2} t+\varphi_{2}\right) \bmod 2 \pi: t \in \mathbb{R}_{\geq 0}\right\}$ is dense in $[0,2 \pi]^{2}$

Illustrative Example

Consider the exponential polynomial

$$
f(t)=2+\cos \left(t+\varphi_{1}\right)+\cos \left(\sqrt{2} t+\varphi_{2}\right)-e^{-t}
$$

Orbit $\left\{\left(t+\varphi_{1}, \sqrt{2} t+\varphi_{2}\right) \bmod 2 \pi: t \in \mathbb{R}_{\geq 0}\right\}$ is dense in $[0,2 \pi]^{2}$

Illustrative Example

Consider the exponential polynomial

$$
f(t)=2+\cos \left(t+\varphi_{1}\right)+\cos \left(\sqrt{2} t+\varphi_{2}\right)-e^{-t}
$$

Orbit $\left\{\left(t+\varphi_{1}, \sqrt{2} t+\varphi_{2}\right) \bmod 2 \pi: t \in \mathbb{R}_{\geq 0}\right\}$ is dense in $[0,2 \pi]^{2}$

Illustrative Example

Consider the exponential polynomial

$$
f(t)=2+\cos \left(t+\varphi_{1}\right)+\cos \left(\sqrt{2} t+\varphi_{2}\right)-e^{-t}
$$

Orbit $\left\{\left(t+\varphi_{1}, \sqrt{2} t+\varphi_{2}\right) \bmod 2 \pi: t \in \mathbb{R}_{\geq 0}\right\}$ is dense in $[0,2 \pi]^{2}$

Illustrative Example

Consider the exponential polynomial

$$
f(t)=2+\cos \left(t+\varphi_{1}\right)+\cos \left(\sqrt{2} t+\varphi_{2}\right)-e^{-t}
$$

Orbit $\left\{\left(t+\varphi_{1}, \sqrt{2} t+\varphi_{2}\right) \bmod 2 \pi: t \in \mathbb{R}_{\geq 0}\right\}$ is dense in $[0,2 \pi]^{2}$

Illustrative Example

Consider the exponential polynomial

$$
f(t)=2+\cos \left(t+\varphi_{1}\right)+\cos \left(\sqrt{2} t+\varphi_{2}\right)-e^{-t}
$$

Orbit $\left\{\left(t+\varphi_{1}, \sqrt{2} t+\varphi_{2}\right) \bmod 2 \pi: t \in \mathbb{R}_{\geq 0}\right\}$ is dense in $[0,2 \pi]^{2}$

Baker's Theorem:

$$
\left\|\left(t+\varphi_{1}, \sqrt{2} t+\varphi_{2}\right)-(\pi, \pi)\right\| \geq \frac{1}{\operatorname{poly}(t)}
$$

Conclusion and Perspectives

A linear recurrence sequence is a sequence $\left\langle u_{0}, u_{1}, u_{2}, \ldots\right\rangle$ of integers such that there exist constants a_{1}, \ldots, a_{k}, such that

$$
u_{n+k}=a_{1} u_{n+k-1}+a_{2} u_{n+k-2}+\ldots+a_{k} u_{n}
$$

for all $n \geq 0$.

A linear recurrence sequence is a sequence $\left\langle u_{0}, u_{1}, u_{2}, \ldots\right\rangle$ of integers such that there exist constants a_{1}, \ldots, a_{k}, such that

$$
u_{n+k}=a_{1} u_{n+k-1}+a_{2} u_{n+k-2}+\ldots+a_{k} u_{n}
$$

for all $n \geq 0$.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

$$
\left\{n: u_{n}=0\right\}=F \cup A_{1} \cup \ldots \cup A_{\ell}
$$

where F is finite and each A_{i} is a full arithmetic progression.

The Discrete Case

A linear recurrence sequence is a sequence $\left\langle u_{0}, u_{1}, u_{2}, \ldots\right\rangle$ of integers such that there exist constants a_{1}, \ldots, a_{k}, such that

$$
u_{n+k}=a_{1} u_{n+k-1}+a_{2} u_{n+k-2}+\ldots+a_{k} u_{n}
$$

for all $n \geq 0$.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros of a linear recurrence sequence is semi-linear:

$$
\left\{n: u_{n}=0\right\}=F \cup A_{1} \cup \ldots \cup A_{\ell}
$$

where F is finite and each A_{i} is a full arithmetic progression.

Theorem (Berstel and Mignotte 1976)

In Skolem-Mahler-Lech, the infinite part (arithmetic progressions A_{1}, \ldots, A_{ℓ}) is fully constructive.

The Skolem Problem

Skolem Problem
Does $\exists n$ such that $u_{n}=0$?

The Skolem Problem

Skolem Problem

Does $\exists n$ such that $u_{n}=0$?
"It is faintly outrageous that this problem is still open; it is saying that we do not know how to decide the Halting Problem even for 'linear' automata!"

Terence Tao

Skolem Problem

Does $\exists n$ such that $u_{n}=0$?
"It is faintly outrageous that this problem is still open; it is saying that we do not know how to decide the Halting Problem even for 'linear' automata!"

Terence Tao

". . . a mathematical embarrassment ..."
Richard Lipton

Wrapping Things Up

Continuous Skolem Problem
Does $\exists t$ such that $f(t)=0$?

Wrapping Things Up

Continuous Skolem Problem
Does $\exists t$ such that $f(t)=0$?

- Even the bounded problem is hard.

Wrapping Things Up

Continuous Skolem Problem

Does $\exists t$ such that $f(t)=0$?

- Even the bounded problem is hard.
- Formidable "mathematical obstacle" at dimension 9 in the unbounded case.

Wrapping Things Up

Continuous Skolem Problem

Does $\exists t$ such that $f(t)=0$?

- Even the bounded problem is hard.
- Formidable "mathematical obstacle" at dimension 9 in the unbounded case.
- Similar obstacles for the Infinite-Zeros Problem.

Wrapping Things Up

Continuous Skolem Problem

Does $\exists t$ such that $f(t)=0$?

- Even the bounded problem is hard.
- Formidable "mathematical obstacle" at dimension 9 in the unbounded case.
- Similar obstacles for the Infinite-Zeros Problem.
- Diophantine-approximation techniques unavoidable.

