
Checking Correctness of 
Concurrents Objects:  

Tractable Reductions to Reachability

Ahmed Bouajjani 
LIAFA, Univ Paris Diderot - Paris 7

Joint work with  

Michael Emmi        Constantin Enea       Jad Hamza

FSTTCS, Bangalore, December 16, 2015

IMDEA LIAFA, U Paris Diderot - P7



Concurrent Systems

• Concurrency at all levels of computer systems 

  Hardware (Multicores), OS (device drivers, …), Applications 

• Concurrent systems are complex 

  Huge number of interleavings/action orders, intricate behaviours   

• Need of abstractions 

  Atomicity, synchrony, … 



Concurrent Data Structures

Push(0) Push(1)
Pop(1) Pop(0)

Push Pop Empty

Empty(true)

…T1 Tn

Low Level Representation

Methods 
Implementation



Abstract (Client) View
• Operations are considered to be atomic 
• Thread executions are interleaved 
• Executions satisfy sequential specifications
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Abstract (Client) View
• Operations are considered to be atomic 
• Thread executions are interleaved 
• Executions satisfy sequential specifications

Push(1) Pop(0)Push(0) Pop(1) Empty(true)

A “simple” implementation:
• Take a sequential implementation 
• Lock at the beginning, unlock at the end of each method 
• + Reference Implementation: simple to understand 
• -  Low performances in case of contention



Efficient Concurrent Implementations

• Avoid the use of locks 
• Maximise parallelisation of operations 

• Check for interferences, and retry  
• Use lower level synchronisation primitives (CAS)
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Efficient Concurrent Implementations

• Avoid the use of locks 
• Maximise parallelisation of operations 

• Check for interferences, and retry  
• Use lower level synchronisation primitives (CAS)

Push(0)

Push(1) Pop(0)

Pop(1)

Empty(true)

• ==> Complex behaviours! 

• ==> Need to ensure the atomic view to the user!



Observational Refinement

Client Client

For every Client,  
Client x Impl is included in Client x Spec 

Implementation Specification: 
Atomic Operations



         Linearizability

• Reorder call/return events, while preserving returns —> calls 
• Find “linearization points” within execution time intervals 
• s.t. match some sequential execution

Push(1)

Push(0)

Pop(0)

Push(0)Push(1) Pop(0)
Valid sequence in the sequential specification

[Herlihy, Wing, 1990]

Linearizability <=> Observational Refinement  
[Filipovic, O’Hearn, Rinetzky, Yang, 2009], [B., Enea, Emmi, Hamza, 2015]



Checking Linearizability: Complexity 

• NP-complete for a single computation [Gibbons, Korach, 1997] 
• In EXSPACE for a fixed number of threads, finite-state 
methods and specifications [Alur et al., 1996]

Existing results

• EXPSPACE-hard for FS impl.’s and spec’s [Hamza 2015] 
• Undecidable for unbounded number of threads, FS 
methods and spec.’s [B., Enea, Emmi, Hamza, 2013]

Recent contributions



• Enumerate executions and linearisation orders (bug detect.) 

• Fixed linearisation points in the code (correctness)
e.g. Line-up [Burckhardt et al. PLDI’10 ] 

Checking linearizability —> Reachability problem/Invariant checking

Checking Linearizability: Main Existing Approaches 

e.g., [Vafeiadis, CAV’10], 
[Abdulla et al., TACAS 2013]



Checking Linearizability: Main Existing Approaches 

• Scalability issues 
• Fixing linearisation points is not always possible
e.g., time-stamping based stack [Dodds, Haas, Kirsch, POPL’15]

• Enumerate executions and linearisation orders (bug detect.) 

• Fixed linearisation points in the code (correctness)
e.g. Line-up [Burckhardt et al. PLDI’10 ] 

Checking linearizability —> Reachability problem/Invariant checking
e.g., [Vafeiadis, CAV’10], 

[Abdulla et al., TACAS 2013]



Reductions Linearizability to State Reachability?

• Reuse existing tools for State reachability   
• Lower complexity, decidability

Why?
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define a monitor M (+ designated bad states) s.t.  
L is linearisable wrt S iff 

L x M does not reach a bad state



Reductions Linearizability to State Reachability?

• Reuse existing tools for State reachability   
• Lower complexity, decidability

Why?

General Approach:
Given a library L and a specification S,  

define a monitor M (+ designated bad states) s.t.  
L is linearisable wrt S iff 

L x M does not reach a bad state
Issue:

• The computational power of M? 
• Ideally, M should be a finite state machine 
• M should be “simple” (low overhead)



Option 1: Under-approximate Analysis

• Bounded information about computations 
• Useful for efficient bug detection

[B, Emmi, Enea, Hamza, POPL’15]



Option 1: Under-approximate Analysis

• Bounding concept for detecting linearizability violations? 
• Should offer good coverage, and scalability

[B, Emmi, Enea, Hamza, POPL’15]

• Bounded information about computations 
• Useful for efficient bug detection



Option 1: Under-approximate Analysis

• Bounding concept for detecting linearizability violations? 
• Should offer good coverage, and scalability

• Interval-length bounded analysis 
• Based on characterising linearizability as history inclusion 
• Monitor uses counters 
• Allows for symbolic encodings  
• Efficient static and dynamic analysis

[B, Emmi, Enea, Hamza, POPL’15]

• Bounded information about computations 
• Useful for efficient bug detection



Option 2: Particular classes of Objects

What is the situation for usual objects? 
stacks, queues, etc.

• Violations: Finite number of bad patterns
• They can be captured with small finite-state automata 
• Linear reduction to state reachability 
• Decidability for unbounded number of threads

[B, Emmi, Enea, Hamza, ICALP’15]



Histories
History of an execution e :  

O1 < O2   iff   Return(O1)  is before  Call(O2) in e 

H(e) = (O, label, <) 
where 

• O = Operations(e) 
• label: O —> M x V x V  
• < is a partial order s.t.

c(push,1) r(push,tt) c(pop,-) c(pop,-) r(pop,1) c(push,2) r(push,tt) r(pop,2) 

push(1)
pop(2)

pop(1) push(2)



Linearizability as a History Inclusion

Consider an abstract data structure,  
let S be its sequential specification,  

and let LS be a sequential implementation of S,  
i.e., LS satisfies S

LC reference concurrent implementation  = 
LS + lock/unlock at beginning/end of each method



Linearizability as a History Inclusion

Thm: L is linearisable wrt S  iff  H(L) is included in H(LC) 

Consider an abstract data structure,  
let S be its sequential specification,  

and let LS be a sequential implementation of S,  
i.e., LS satisfies S

LC reference concurrent implementation  = 
LS + lock/unlock at beginning/end of each method

Lemma:  
H(LC) is the set histories that are linearised to a sequence in S



Abstracting Histories

h1 ≤ h2  (h1 is weaker than h2)  
iff   

h1  has less constraints than  h2 

(h1 ≤ h2 and h2 is in H(L))  ==>  h1 is in H(L)
Lemma:

Weakening relation



• Ak(h) ≤ h 
• A0(h) ≤ A1(h) ≤ A2(h) ≤ … ≤ h 
• There is a k s.t. h = Ak(h)

Weakening function Ak, for any given k≥0,  s.t.

Approximation Schema



• Ak(h) ≤ h 
• A0(h) ≤ A1(h) ≤ A2(h) ≤ … ≤ h 
• There is a k s.t. h = Ak(h)

• Given a library L and a specification S  

• Check: Is there an h in H(L) s.t. Ak(h) is not in H(S)? 
• Ak(h) is not in H(S) => h is not in H(S) — Violation!

Approximate History Inclusion Checking, for fixed k≥0

Weakening function Ak, for any given k≥0,  s.t.

Approximation Schema



Prop: For every execution e, H(e) is an interval order

Interval Orders = partial order (O, <) such that
(o1 < o1’  and o2 < o2’)  implies  (o1 < o2’  or  o2 < o1’)

Histories are Interval Orders



Notion of Length

Let h = (O,<) be an Interval Order (history in our case) 

• Past of an operation: past(o) = {o’ : o’ < o} 
• Lemma [Rabinovitch’78]: 
  The set {past(o) : o in O} is linearly ordered 

• The length of the order = number of pasts - 1



• Mapping I : O —> [n]2 where n = length(h) [Greenough ’76] 
• I(o) = [i, j], with i, j ≤ n, such that

i = |{past(o’) : o’ < o}|  and   
j = |{past(o’) : not (o < o’)}| - 1 

Canonical Representation of Interval Orders

push(1)

pop(1) push(2) push(3)

pop(3)

pop(2)
I(push(1)) = [0, 0] 
I(pop(1)) = [1, 1] 
I(push(2)) = [2, 2]
I(push(3) = [3, 3] 
I(pop(3)) = [1, 3] 
I(pop(2)) = [4, 4]

0 1 2 3 4
length = 4



Let Ak maps each h to some h’ ≤ h of length k
=> Keep precise the information about the k last intervals

Bounded Interval-length Approximation

push(1)

pop(1) push(2) push(3)

pop(3)

pop(2)

push(3) pop(2)
push(2)
pop(1)

pop(3)
push(1)

K=2

I(push(1)) = [0, 0] 
I(pop(1)) = [0, 0] 
I(push(2)) = [0, 0]
I(push(3) = [1, 1] 
I(pop(3)) = [0, 1] 
I(pop(2)) = [2, 2]



Counting Representation of Interval Orders

Count the number of occurrences 
of each operation type in each interval

• h = (O, <) an IO with canonical representation I:O—>[k]2 
• Associate a counter with each operation type and interval   
• ∏(h) is the Parikh image of h 
• It represents the multi-set  { [label(o), I(o)] : o in O }

Prop:  Hk(e) is in Hk(L)  iff  ∏(Hk(e)) is in ∏(Hk(L)) 



Reduction to Reachability with Counters

Hk(L) subset of Hk(S) 
iff

∏(Hk(L)) subset of ∏(Hk(S))

• Consider k-bounded-length abstract histories  

• Track histories of L using a finite number of counters

• Use an arithmetic-based representation of  ∏(Hk(S)) 

• ∏(Hk(S)) can be either computed, or given manually 

• Check that ∏(Hk(S)) is an invariant 



Experimental Results: Coverage

 1

 10

 100

 1000

 10000

 100000
Histoires

Violations
Covered w/ k=4
Covered w/ k=3
Covered w/ k=2
Covered w/ k=1
Covered w/ k=0

• Data point: Counts in logarithmic scale over all executions (up to 5 preemptions) on 
Scal’s nonblocking bounded-reordering queue with ≤4 enqueue and ≤4 dequeue

• x-axis: increasing number of executions (1023-2359292)
• White: total number of unique histories over a given set of executions
• Black: violations detected by traditional linearizability checker (e.g., Line-up)

Comparison of violations covered with k ≤ 4



Experimental Results: Runtime Monitoring

 1

 10

 100

 1000
Linearization

Operation Counting

Comparison of runtime overhead  
between Linearization-based monitoring and Operation counting

• Data point: runtime on logarithmic scale, normalised on unmonitored execution time
• Scal’s nonblocking Michael-Scott queue, 10 enqueue and 10 dequeue operations.
• x-axis is ordered by increasing number of operations



Experimental Results: Static Analysis

Library Bug P k m n Time
Michael-Scott Queue B1 (head) 2x2 1 2 2 24.76s
Michael-Scott Queue B1 (tail) 3x1 1 2 3 45.44s
Treiber Stack B2 3x4 1 1 2 52.59s
Treiber Stack B3 (push) 2x2 1 1 2 24.46s
Treiber Stack B3 (pop) 2x2 1 1 2 15.16s
Elimination Stack B4 4x1 0 1 4 317.79s
Elimination Stack B5 3x1 1 1 4 222.04s
Elimination Stack B2 3x4 0 1 2 434.84s
Lock-coupling Set B6 1x2 0 2 2 11.27s
LFDS Queue B7 2x2 1 1 2 77.00s

• Static detection of injected refinement violations with CSeq & CBMC. 
• Program Pij with i and j invocations to the push and pop methods, explore n-round 

round-robin schedules with m loop iterations unrolled, with monitor for Ak.
• Bugs: (B1) non-atomic lock, (B2) ABA bug, (B3) non-atomic CAS operation, (B4) 

misplaced brace, (B5) forgotten assignment, (B6) misplaced



Focusing on Special Classes of Objects 
[B., Emmi, Enea, Hamza, ICALP 2015]

• Inductive definition of sequential objects (restricted 
language based on constrained rewrite rules) 

• Characterizing concurrent violations using a finite 
number of “bad patterns”, one per rule 

• Defining finite-state automata recognising each of the 
“bad patterns” (using data independence assumption) 

• Reducing linearizability to checking the emptiness of the 
intersection with these automata.



Specifying queues and stacks

• u . v : Q  &  u : ENQ*  —>  Enq(x) . u . Deq(x) . v : Q 

• u . v : Q  &  no unmatched Enq in u  —>  u . Emp . v : Q

• u . v : S  &  no unmatched Push in u  —>  
Push(x) . u . Pop(x) . v : S 

• u . v : S  &  no unmatched Push in u  —>      
u . Emp . v : S

Queue

Stack



Order Violation

Enq(1)

Deq(1)Enq(2)

Deq(2)

ret(Enq(1)) < call(Enq(2))   &   ret(Deq(2)) < call(Deq(1))

FIFO violation:



Empty Violation

EMP

Push1

Pop1



Empty ViolationIntroduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

EMP

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0 q1 q2

q3

q4

⌃2 ⌃2 ⌃2

⌃2

⌃2

call Push(1)

ret Push(1) call EMP() ret EMP()

ret Push(1)call Pop(1)

14 / 17



Order Violation cont.Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

Push2 Pop2

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0q

i

q1 q2

q3

q4

⌃3 ⌃3 ⌃3 ⌃3

⌃3

⌃3

call Push(1)

call Push(2)·
ret Push(2) ret Push(1) call Pop(2) ret Pop(2)

ret Push(1)call Pop(1)

15 / 17



Automaton for Empty Violation
Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

EMP

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0 q1 q2

q3

q4

⌃2 ⌃2 ⌃2

⌃2

⌃2

call Push(1)

ret Push(1) call EMP() ret EMP()

ret Push(1)call Pop(1)

14 / 17



Automaton for Push-Pop Order Violation
Introduction Reducing Linearizability to State Reachability Future Work

Recognizing Bad Patterns using Regular Automata

Push2 Pop2

Push1

Push1

Push1

Push1

Pop1

Pop1

Pop1

Pop1

Recognized by:

q0q

i

q1 q2

q3

q4

⌃3 ⌃3 ⌃3 ⌃3

⌃3

⌃3

call Push(1)

call Push(2)·
ret Push(2) ret Push(1) call Pop(2) ret Pop(2)

ret Push(1)call Pop(1)

15 / 17



Linearizability to State Reachability

For each S in {Stack, Queue, Mutex, Register},  
there is an automaton A(S) s.t.  

for every data independent concurrent implementation L,  
L is linearisable wrt S  iff  L intersected with A(S) is empty

Thm:

Same complexity as state reachability



Conclusion

• Linearizability checking is hard/undecidable in general 

• But tractable reductions to state reachability are possible 

• Abstracting histories using Interval-length Bounding: 

•  Consider relevant classes of concurrent objects: 

•  Monitor uses counters: simple encoding of order constraints 
•  Use symbolic techniques 
•  Static and Dynamic Analysis 
•  Good coverage, scalable monitoring

•  Covers common structures such as stacks and queues 
•  Finite-state monitor: Linear reduction to state reachability 
•  Decidability for unbounded number of threads



Future work

• Extend the 2nd approach to other structures, e.g., sets 
• Combine with providing linearisation policies 

• Distributed (replicated) data structures  
Weaker consistency notions are needed: 

Eventual consistency, causal consistency, etc.

[Abdulla et al., TACAS’13]

[B., Enea, Hamza, POPL’14]
•  Eventual consistency —> Model-checking, Decidability 

•  Causal consistency undecidable [Hamza, 2015]



METIS/NETYS 2016
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4th International Conference on Networked Systems
18-20 May, Rabat, Morocco

http://netys.net/
PC chairs: Parosh Aziz Abdulla (U. Uppsala), Carole Delporte (U. Paris 7)

+ Workshops


