
34th International Conference on
Foundation of Software
Technology and Theoretical
Computer Science

FSTTCS 2014, December 15–17, 2014, New Delhi, India

Edited by

Venkatesh Raman
S. P. Suresh

LIPIcs – Vo l . 29 – FSTTCS 2014 www.dagstuh l .de/ l ip i c s

Editors
Venkatesh Raman S. P. Suresh
The Institute of Mathematical Sciences Chennai Mathematical Institute
Chennai 600113 Chennai 603103
India India
vraman@imsc.res.in spsuresh@cmi.ac.in

ACM Classification 1998
D.2.4 Software/Program Verification, F.1.1 Models of Computation, F.1.2 Modes of Computation, F.1.3
Complexity Measures and Classes, F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specifying and
Verifying and Reasoning about Programs, F.4.1 Mathematical Logic, F.4.3 Formal Languages

ISBN 978-3-939897-77-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-77-4.

Publication date
December, 2014

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2014.i

ISBN 978-3-939897-77-4 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-77-4
http://www.dagstuhl.de/dagpub/978-3-939897-77-4
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.i
http://www.dagstuhl.de/dagpub/978-3-939897-77-4
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (RWTH Aachen)
Pascal Weil (Chair, CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

www.dagstuhl.de/lipics

http://drops.dagstuhl.de/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface ix

Conference Organization xi

External Reviewers xiii

Invited Talks

New Developments in Iterated Rounding
Nikhil Bansal . 1

Reasoning about distributed systems: WYSIWYG
C. Aiswarya and Paul Gastin . 11

Colour Refinement: A Simple Partitioning Algorithm with Applications From Graph
Isomorphism Testing to Machine Learning

Martin Grohe . 31

Properties and Utilization of Capacitated Automata
Orna Kupferman and Tami Tamir . 33

Algorithms, Games, and Evolution
Erick Chastain, Adi Livnat, Christos H. Papadimitriou, and Umesh V. Vazirani . 45

The Polynomial Method in Circuit Complexity Applied to Algorithm Design
Richard Ryan Williams . 47

Contributed Papers
Session 1A

Vertex Exponential Algorithms for Connected f -Factors
Geevarghese Philip and M. S. Ramanujan . 61

Connecting Vertices by Independent Trees
Manu Basavaraju, Fedor V. Fomin, Petr A. Golovach, and Saket Saurabh 73

Tree Deletion Set Has a Polynomial Kernel (but no OPTO(1) Approximation)
Archontia C. Giannopoulou . 85

Editing to Eulerian Graphs
Konrad K. Dabrowski, Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma . 97

Parameterized Complexity of Fixed-Variable Logics
Christoph Berkholz and Michael Elberfeld . 109

Session 1B

Synchronizing Words for Weighted and Timed Automata
Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey,
and Mahsa Shirmohammadi . 121

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Contents

Finite-Valued Weighted Automata
Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin 133

First-order Definable String Transformations
Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi 147

Regular Sensing
Shaull Almagor, Denis Kuperberg, and Orna Kupferman . 161

Symbolic Solving of Extended Regular Expression Inequalities
Matthias Keil and Peter Thiemann . 175

Session 2A

Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number
Adrian Bock, Yuri Faenza, Carsten Moldenhauer, and Andres Jacinto Ruiz-Vargas 187

Lift & Project Systems Performing on the Partial Vertex Cover Polytope
Konstantions Georgiou and Edward Lee . 199

Replica Placement on Directed Acyclic Graphs
Sonika Arora, Venkatesan T. Chakaravarthy, Kanika Gupta, Neelima Gupta,
and Yogish Sabharwal . 213

Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph in
Polylogarithmic Update Time

Manoj Gupta . 227

Session 2B

The Complexity of Counting Models of Linear-time Temporal Logic
Hazem Torfah and Martin Zimmermann . 241

Extending Temporal Logics with Data Variable Quantifications
Fu Song and Zhilin Wu . 253

Generalized Data Automata and Fixpoint Logic
Thomas Colcombet and Amaldev Manuel . 267

Consistency of Injective Tree Patterns
Claire David, Nadime Francis, and Filip Murlak . 279

Session 3A

Asymptotically Optimal Encodings for Range Selection
Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti . 291

Output-Sensitive Pattern Extraction in Sequences
Roberto Grossi, Giulia Menconi, Nadia Pisanti, Roberto Trani, and Søren Vind . . 303

Robust Proximity Search for Balls Using Sublinear Space
Sariel Har-Peled and Nirman Kumar . 315

Contents vii

The Benes Network is q(q−1)/2n-Almost q-set-wise Independent
Efraim Gelman and Amnon Ta-Shma . 327

Notes on Counting with Finite Machines
Dmitry Chistikov . 339

Session 3B

Mixed Nash Equilibria in Concurrent Terminal-Reward Games
Patricia Bouyer, Nicolas Markey, and Daniel Stan . 351

Quantitative Games with Interval Objectives
Paul Hunter and Jean-François Raskin . 365

Playing Safe
Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn . 379

Metaconfluence of Calculi with Explicit Substitutions at a Distance
Flávio L.C. de Moura, Delia Kesner, and Mauricio Ayala-Rincón 391

Behavioral Metrics via Functor Lifting
Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König 403

Session 4

Foundation of Diagnosis and Predictability in Probabilistic Systems
Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux . 417

Lipschitz Robustness of Finite-state Transducers
Thomas A. Henzinger, Jan Otop and Roopsha Samanta . 431

Session 5A

Separating Cook Completeness from Karp-Levin Completeness Under a Worst-Case
Hardness Hypothesis

Debasis Mandal, A. Pavan, and Rajeswari Venugopalan . 445

Constructing Small Tree Grammars and Small Circuits for Formulas
Danny Hucke, Markus Lohrey, and Eric Noeth . 457

One Time-traveling Bit is as Good as Logarithmically Many
Ryan O’Donnell and A.C.Cem Say . 469

New Bounds for the Garden-Hose Model
Hartmut Klauck and Supartha Podder . 481

Homomorphism Polynomials Complete for VP
Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre,
and Nitin Saurabh . 493

FSTTCS 2014

viii Contents

Session 5B

Computing Information Flow Using Symbolic Model-Checking
Rohit Chadha, Umang Mathur, and Stefan Schwoon . 505

Information Leakage of Non-Terminating Processes
Fabrizio Biondi, Axel Legay, Bo Friis Nielsen, Pasquale Malacaria,
and Andrzej Wąsowski . 517

Multiple-Environment Markov Decision Processes
Jean-François Raskin and Ocan Sankur . 531

Summary-Based Inter-Procedural Analysis via Modular Trace Refinement
Franck Cassez, Christian Müller, and Karla Burnett . 545

A Two-Level Logic Approach to Reasoning about Typed Specification Languages
Mary Southern and Kaustuv Chaudhuri . 557

Session 6A

On the Complexity of Computing Maximum Entropy for Markovian Models
Taolue Chen and Tingting Han . 571

New Time-Space Upperbounds for Directed Reachability in High-genus and H-minor-free
Graphs

Diptarka Chakraborty, A. Pavan, Raghunath Tewari, N.V. Vinodchandran,
and Lin Forrest Yang . 585

Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space
Anant Dhayal, Jayalal Sarma, and Saurabh Sawlani . 597

Session 6B

On Bounded Reachability Analysis of Shared Memory Systems
Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar,
and Prakash Saivasan . 611

Parameterized Communicating Automata: Complementation and Model Checking
Benedikt Bollig, Paul Gastin, and Akshay Kumar . 625

Distributed Synthesis for Acyclic Architectures
Anca Muscholl and Igor Walukiewicz . 639

Verification of Dynamic Register Automata
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmet Kara, and Othmane Rezine . . 653

Preface

The 34th International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2014) was held at the India International Centre, New Delhi,
from December 15 to December 17, 2014.

The program consisted of 6 invited talks and 47 contributed papers. This proceedings
volume contains the contributed papers and abstracts of invited talks presented at the
conference. The proceedings of FSTTCS 2014 is published as a volume in the LIPIcs series
under a Creative Commons license, with free online access to all, and with authors retaining
rights over their contributions.

The 47 contributed papers were selected from a total of 162 submissions. We thank the
program committee for its efforts in carefully evaluating and making these selections. We
thank all those who submitted their papers to FSTTCS 2014. We also thank the external
reviewers for sending their informative and timely reviews.

We are particularly grateful to the invited speakers: Nikhil Bansal (TU Eindhoven), Paul
Gastin (LSV, ENS Cachan), Martin Grohe (RWTH Aachen), Orna Kupferman (Hebrew
University), Umesh Vazirani (UC Berkeley) and Ryan Williams (Stanford University), who
readily accepted our invitation to speak at the conference.

There was one pre-conference workshop, New Developments in Exact Algorithms and
Lower Bounds, and two post-conference workshops, INFINITY 2014 and Recent Advances in
Cryptography, all held at IIT Delhi. We thank the organisers of the workshops.

On the administrative side, we thank the organizing committee led by Prof. Ragesh
Jaiswal (IIT Delhi), who put in many months of effort in ensuring excellent conference
arrangements at India International Centre and arrangements for the workshops at the IIT
Delhi campus. We also thank the Easychair team whose software has made it very convenient
to do many conference related tasks. Finally, we thank the Dagstuhl LIPIcs staff for their
coordination in the production of this proceedings, particularly Marc Herbstritt who was
very prompt and helpful in answering our questions.

Venkatesh Raman and S. P. Suresh
December 2014

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

Programme Chairs

Venkatesh Raman(IMSc, Chennai)
S. P. Suresh (CMI, Chennai)

Programme Committee

Deeparnab Chakrabarty (MSR, India)
Timothy Chan (Univ. Waterloo)
Anirban Dasgupta (IIT Gandhinagar)
Amit Kumar (IIT Delhi)
Neeldhara Misra (IISc, Bangalore)
Subhas Nandy (ISI Kolkata)
Patrick Nicholson (MPI Saarbrücken)
Michał Pilipczuk (Univ. Bergen)
Jaikumar Radhakrishnan (TIFR, Mumbai)
Rajmohan Rajaraman (Northeastern Univ.)
Rahul Santhanam (Univ. Edinburgh)
Jayalal Sarma (IIT Madras)
Srikanth Srinivasan (IIT Bombay)
Kavitha Telikepalli (TIFR, Mumbai)
Suresh Venkatasubramanian (Univ. Utah)

Dietmar Berwanger (LSV, ENS Cachan)
Ahmed Bouajjani (LIAFA Paris)
Supratik Chakraborty (IIT Bombay)
Radha Jagadeesan (DePaul University)
Aditya Kanade (IISc, Bangalore)
Dietrich Kuske (TU Ilmenau)
Ralf Küsters (Univ. Trier)
Kamal Lodaya (IMSc, Chennai)
Madhavan Mukund (CMI, Chennai)
Shaz Qadeer (MSR, Redmond)
Arnaud Sangnier (LIAFA Paris)
Alexis Saurin (CNRS, Univ. Paris-Diderot)
Sunil Simon (IIT Kanpur)
Ashutosh Trivedi (IIT Bombay)
Mahesh Viswanathan (Univ. Illinois)

Organizing Committee

Shweta Agrawal (IIT Delhi)
Naveen Garg (IIT Delhi)
Ragesh Jaiswal (IIT Delhi), chair
Amit Kumar (IIT Delhi)
Sanjiva Prasad (IIT Delhi)
Sandeep Sen (IIT Delhi)

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xii Conference Organization

External Reviewers

Accattoli, Beniamino Akshay, S.
Antoniadis, Antonios Apt, Krzysztof
Arun-Kumar, S. Asarin, Eugene
Atig, Mohamed Faouzi Baelde, David
Basavaraju, Manu Baskar, A.
Basset, Nicolas Batra, Jatin
Bauer, Matthew S. Bhattacharya, Bhaswar
Bhattacharya, Sayan Biondi, Fabrizio
Bollig, Benedikt Brenguier, Romain
Brunet, Paul Böhm, Stanislav
Chadha, Rohit Chandran, Nishanth
Chatterjee, Krishnendu Chen, Taolue
Chroboczek, Juliusz Curticapean, Radu
D’Souza, Deepak Darbari, Ashish
Das, Bireswar Das, Gautam
Dawar, Anuj de Keijzer, Bart
De Rougemont, Michel de Souza, Rodrigo
De, Minati Decker, Normann
Dinesh, Krishnammorthy Dragoi, Cezara
Drange, Paal Groenaas Duggirala, Parasara Sridhar
Durand-Gasselin, Antoine Dzhafarov, Damir
Díaz-Caro, Alejandro Eisentraut, Christian
Elberfeld, Michael Enduri, Murali
Fearnley, John Forejt, Vojtech
Fournier, Hervé Gagie, Travis
Garg, Ankit Gawrychowski, Pawel
Geeraerts, Gilles Genest, Blaise
Goswami, Mayank Grädel, Erich
Gupta, Manoj Gupta, Rahul
Gutierrez, Julian Gutin, Gregory
Habermehl, Peter Hague, Matthew
Hansen, Thomas Dueholm Harsha, Prahladh
Herbreteau, Frédéric Hlineny, Petr
Holzer, Markus Huschenbett, Martin
Jain, Rahul Kaleeswaran, Shalini
Karandikar, Prateek Karmarkar, Hrishikesh
Kartzow, Alexander Kasiviswanathan, Shiva
Kini, Dileep Klaedtke, Felix
Klimann, Ines Knapik, Teodor
Knight, Sophia Kobayashi, Yusuke
Kociumaka, Tomasz Koepf, Boris
Komarath, Balagopal Koroth, Sajin
Kratsch, Stefan Krithivasan, Kamala
Krivine, Jean Kulkarni, Janardhan
Kumar, Ravi Kupferman, Orna
Kurur, Piyush Künnemann, Marvin

Conference Organization xiii

Löding, Christof Le Roux, Stephane
Lee, Min-Joong Li, Shi
Limaye, Nutan Lohrey, Markus
Lombardy, Sylvain M. S., Ramanujan
Madnani, Khushraj Maiya, Pallavi
Manthey, Bodo Manuel, Amaldev
Mardare, Radu Mathur, Umang
Mazowiecki, Filip Mennicke, Roy
Meyer, Antoine Mihalák, Matúš
Mikučionis, Marius Milanic, Martin
Monmege, Benjamin Montes, Pablo
Morgan, Carroll Mount, David
Mueller, Moritz Mukherjee, Suvam
Mukhopadhyay, Sagnik Murawski, Andrzej
Müller-Olm, Markus Narayan Kumar, K.
Narayanaswamy, N. S. Nasre, Meghana
Nickovic, Dejan Nimbhorkar, Prajakta
Nori, Aditya Norman, Gethin
Novotný, Petr Pandya, Paritosh
Papanikolaou, Nick Park, Sungwoo
Parlato, Gennaro Parthasarathy, Madhusudan
Parys, Pawel Paul, Soumya
Peressotti, Marco Pettie, Seth
Philip, Geevarghese Pilipczuk, Marcin
Podelski, Andreas Prabhakaran, Vinod M.
Prasad, Sanjiva Praveen, M.
Pédrot, Pierre-Marie Raghothaman, Mukund
Ramanujam, R. Ramesh, S.
Rao B.V., Raghavendra Reddy, Vinod
Reidl, Felix Roohi, Nima
Rosa-Velardo, Fernando Rossman, Benjamin
Roy, Sambuddha Rubin, Sasha
S., Krishna Salinger, Alejandro
Sankur, Ocan Santhiar, Anirudh
Santocanale, Luigi Saptharishi, Ramprasad
Sarpatwar, Kanthi Satti, Srinivasa Rao
Saurabh, Nitin Saurabh, Saket
Scapin, Enrico Schlotter, Ildikó
Schmitz, Sylvain Schnoor, Henning
Sen, Pranab Sen, Sagnik
Seth, Anil Shah, Simoni
Sharma, Roohani Sherkhonov, Evgeny
Shpilka, Amir Sreejith, A.V.
Srivathsan, B. Steinberger, John
Straubing, Howard Sundararajan, Vaishnavi
Sunil, K. S. Swamy, Nikhil
Thinniyam, Ramanathan Torán, Jacobo
Trivedi, Ashutosh Truderung, Tomasz

FSTTCS 2014

xiv Conference Organization

Tulsiani, Madhur Tzameret, Iddo
Tzevelekos, Nikos Vaish, Rohit
Valiron, Benoît Varacca, Daniele
Venkat, Rakesh Volkov, Mikhail
Walukiewicz, Igor Watrous, John
Wilke, Thomas Wojtczak, Dominik
Wolf, Karsten Worrell, James
Wu, Bang Ye Yehudayoff, Amir
Zehavi, Meirav Zetzsche, Georg
Zeume, Thomas Živný, Stanislav

New Developments in Iterated Rounding∗

Nikhil Bansal

Eindhoven University of Technology
Eindhoven, The Netherlands
n.bansal@tue.nl

Abstract
Iterated rounding is a relatively recent technique in algorithm design, that despite its simplicity
has led to several remarkable new results and also simpler proofs of many previous results. We
will briefly survey some applications of the method, including some recent developments and
giving a high level overview of the ideas.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Algorithms, Approximation, Rounding

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.1

Category Invited Talk

1 Introduction

A natural and very general approach to designing approximation algorithms for NP-Hard
problems is the following: Write an exact integer programming formulation for the problem,
and then relax the integer constraints to be continuous, giving rise to a convex optimization
problem such as a linear program or a semidefinite program that can be solved efficient
in polynomial time. The goal then is to design a good rounding procedure that converts
this fractional solution back to an integral solution without much loss in the value of the
objective.

In the last few decades various ingenious rounding techniques have been developed, with
several surprising connections to probability, geometry and so on. For an overview of these
methods and approximation algorithms in general, we refer the reader to [10]. In recent years,
a powerful new approach for rounding, referred to as iterated rounding has emerged. Here
the variables are rounded one by one, or in small steps over time, while crucially leveraging
the information gained from previous steps. While this idea is not new by itself, many
interesting and surprising applications have emerged recently. An excellent description of
iterated rounding and its applications can be found in [5].

Here we give a brief introduction to the method. We start with some classic results to
demonstrate its versatility and power, and then discuss some more recent developments and
incarnations based on techniques such as discrepancy and Lovász Local Lemma.

2 The Basic Approach

Consider a linear programming relaxation of the form

min cTx s. t. Ax ≤ c and x ∈ [0, 1]n,

∗ Supported by NWO grant 639.022.211 and ERC consolidator grant 617951.

© Nikhil Bansal;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 1–10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 New Developments in Iterated Rounding

with variables x1, . . . , xn. Here x denotes the vector (x1, . . . , xn) and A is some m×n matrix,
and c is a non-negative cost vector in Rn.

We will refer to the m constraints given by rows of Ax ≤ c as the non-trivial constraints,
and the remaining constraints given by x ∈ [0, 1]n as the trivial constraints.

Recall that for any linear program, there is always some optimum solution that lies at
the vertex of the polytope formed by the constraints. Such a solution is referred to as a
basic feasible solution. The key idea behind much of iterated rounding is the following easy
observation.

I Lemma 1. For any linear program of the form above with m < n non-trivial constraints,
there is an optimum solution with at least n−m variables set to 0 or 1.

Proof. Given a solution x, We say that a constraint is tight at x if it is satisfied by equality
by at x. As the polytope in n-dimensional, every vertex x of the polytope is determined
uniquely by some n linear independent constraints that are tight at x.

Consider some basic feasible optimal solution. As there are m non-trivial constraints, at
least n−m of the tight constraints at x must be trivial ones. If a trivial constraint involving
xi is tight, this means that xi = 0 or xi = 1. J

The algorithm proceeds as follows:
1. Start with the initial LP, and compute some basic feasible solution x∗.
2. Permanently fix the value of any variable that is set to 0 or 1, and then consider the

residual LP (obtained by drop this fixed variable and updating the right hand of each
constraint accordingly).

3. Find a linearly independent set of tight constraints at x∗, and choose one (or more) of
these constraints in some suitable problem specific manner (this is where the ingenuity
lies) and drop it from the residual LP. Recompute a basic feasible solution of this reduced
LP and iterate the process until an integer solution is obtained.

The key observation is that dropping one of the constraints that determines x∗ allows
the LP to get unstuck at x∗ and move to some another vertex solution. Note that since
we drop at least one constraint at each iteration, the procedure will eventually terminate.
Moreover, it is easy to verify that objective value of the LP can only go down during the
various iterations of the algorithm (as permanently fixing a variable that is already 0 or 1
does not affect the objective value, and dropping a constraint can only reduce the objective).

We begin with a simple example.

2.1 Makespan Minimization on Unrelated Machines

The unrelated machine setting is the following. There are m machines and n jobs. Each job
j must be processed on some machine, and it has arbitrary machine dependent processing
time pij on machine i. The goal is to assign jobs to the machines to minimize the makespan
(or the maximum load over all machines). In a classic result, Lenstra, Shmoys and Tardos
[6] gave a 2-approximation for the problem, and also show that no 1.5− ε approximation
exists unless P=NP. It is a major open question in approximation algorithms to improve the
approximation ratio of 2. Here we give a simple iterated rounding based proof of their result,
as described in [5].

N. Bansal 3

2.1.1 Algorithm
By doing a binary search we can assume that we know the value T of the optimum makespan.
We will write a LP with variables xij with the intended solution that xij = 1 if j is assigned
to machine i and 0 otherwise.

We do an initial preprocessing step where we set xij = 0 if pij > T (as j can never be
assigned to i in a solution with makespan T). Let us assume that we are given a feasible
solution to the following LP.∑

j

pijxij ≤ T ∀i ∈ [m] (1)

∑
i

xij = 1 ∀j ∈ [n] (2)

xij ≥ 0 ∀i, j (3)

Note that while the number of variables can be nm, the number of non-trivial constraints
(1) and (2) is n + m. Also note that we do not impose the constraint xij ≤ 1 as this is
implied by (2).

The algorithm proceeds via the iterated rounding framework. Recall that all we need to
do is to design a procedure that given a basic feasible solution as input, determines which
constraint to drop in the current round.

Consider some basic feasible solution to the LP in the current round. We fix the variables
that are already 0 or 1, and consider the residual solution on variables xij with 0 < xij < 1.
We say that j appears on i if xij > 0. We will show the following.

I Lemma 2. There exists a machine i such that (i) exactly one job j appears on i, or (ii)
exactly two jobs j and j′ appear on i and satisfy xij + xij′ ≥ 1.

Given Lemma 2, the dropping rule will be to drop the load constraint (1) corresponding to
this machine i. Lemma 2 ensures that no matter how the variables are rounded in subsequent
iterations the additional load assigned to machine i can be at most pmax. Indeed, in case (i)
either job j can be assigned to i, which can increase the load by at most (1− xij)pij ≤ pij ,
and in case (ii) both j and j′ can be assigned to i, and the load can increase by at most
pij(1− xij) + pij′(1− xij′) ≤ pmax(2− xij − xij′) ≤ pmax.

It remains to show Lemma 2. This is done by a counting argument (which is typical in
most iterated rounding proofs).

Proof. Let p (resp. f) denote the number of variables xij with 0 < xij (resp. 0 < xij < 1).
As the number of non-trivial constraints is at most n+m (and as the trivial constraints are
of the form xij ≥ 0), there is a basic feasible solution with p ≤ n+m. Note that each job
contributes 1 to p if it is assigned integrally to some machine, and least 2 if it is assigned
fractionally to two or more machines. So we obtain that

n ≤ (p− f) + (f/2) = p− f/2 ≤ (n+m)− f/2. (4)

The first inequality follows as p − f is the number of variables with xij = 1 and the last
inequality follows as p ≤ n+m. This gives that f ≤ 2m. If f ≤ 2m− 1, then we are already
done as there must exist some machine i with at most one fractional variable appearing on it.

On the other hand, if exactly two fractional variables appear on each machine, then
f = 2m, which implies that equality must hold throughout in (4), and hence p− f = n−m.
This implies that exactly m jobs are split fractionally, and each of them appears on exactly
two machines. Thus, there must be some machine i with two jobs j and j′ with xij +xij′ ≥ 1,
as claimed. J

FSTTCS 2014

4 New Developments in Iterated Rounding

2.2 Degree-bounded Spanning Trees
Our next example is one where on first glance it would seem that iterated rounding should
not work, as the number of non-trivial constraints m is substantially larger than the number
of variables n, and the conditions of Lemma 1 do not seem to apply.

The minimum cost degree bounded spanning tree problem is defined as follows. Given a
graph G = (V,E) with non-negative edge costs ce, and degree bounds bv on the vertices, find
a minimum cost spanning tree of G satisfying the degree bounds. Even though the minimum
spanning tree problem is efficiently solvable, adding the degree bounds makes the problem
NP-complete. In particular, if bv = 2 for all v, the problem reduces to Hamiltonian Path.

We will show the following result of Singh and Lau [9] which gives essentially the best
possible guarantee.

I Theorem 3. There is an efficient algorithm that finds a spanning tree with degree bounds
violated by at most +1, and with cost at most the cost of optimum spanning tree (that satisfies
the degree bounds exactly).

2.2.1 Algorithm
The starting point is the following natural LP relaxation for the problem with variables xe
that are supposed to indicate whether edge e is chosen or not.

min cexe (5)
s. t.

∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊂ V (6)

∑
e

xe = n− 1 (7)∑
e∈δ(v)

xe ≤ bv ∀v ∈ v (8)

0 ≤ xe ≤ 1 ∀e ∈ E (9)

Here E[S] is the set of edges in the subgraph induced by S ⊂ V , and δ(v) is the set of
edges incident to v. Recall that the constraints (6), (7) and (9) completely characterize the
spanning tree polytope.

Observe that the number of variables is O(n2) (one for each edge) while the number of
constraints (6) are exponentially many. Still it turns out that the iterated framework can be
applied very effectively.

The crucial observation is that even though exponentially many constraints (6) may be
tight at a given vertex of the polytope, all these tight constraints are spanned by a small
set of at most n− 1 linearly independently constraints. More precisely, the supermodularity
of the function χE[S] implies that the tight constraints given by (6) can be uncrossed, and
hence spanned by constraints corresponding to sets forming a laminar family. Thus the
fractional part of the basic feasible solution is completely determined by these (at most)
n− 1 constraints together with some other tight degree constraints. As the number of degree
constraints can be at most n, essentially the number of relevant constraints (and hence the
number of fractional variables) is at most (n− 1) + n. We remark later in later iterations, a
slightly more careful argument is needed.

A counting argument now allows one to show that there is some vertex v such that∑
e∈δ(v):xe>0(1 − xe) < 2. The details are quite simple, and we refer the reader to [5] for

details.

N. Bansal 5

This implies that if we drop the degree constraint on vertex v, then even if all the variables
are rounded to 1 is subsequent iterations, the degree violation can be at most strictly less
than 2. This specifies the dropping rule for the algorithm. The algorithm keeps iterating
until it has found an integral solution, or until all degree bounds have been dropped in which
case the LP reduces to the spanning tree LP which is integral. Finally, we observe that since
the degrees and integral, a violation of strictly less than 2 implies a violation of at most 1.

2.3 Bin Packing
Our next example gives an application of iterated rounding where we drop a constant fraction
of constraints at each iteration, and the algorithm terminates in a logarithmic number of
rounds.

The classical bin packing problem is the following. Given a collection of items with sizes
s1, . . . , sn where each 0 < si ≤ 1, pack these items feasibly into the fewest number of unit
size bins. The problem is NP-Complete, as the Partition problem implies that it is hard to
distinguish if the optimum packing requires 2 bins or 3 bins. In fact, this is the best known
hardness for the problem, and it is a major open question to determine whether there exists
a polynomial time algorithm achieving an Opt +O(1) or even Opt + 1 guarantee.

In 1981, Karmarkar and Karp [4] gave a remarkable algorithm that achieves a guarantee
of Opt +O(log2 Opt). This result is one of the first applications of iterated rounding.

2.3.1 Algorithm
The starting point is a very strong relaxation known as the configuration LP. Suppose we
have an instance that contains ni items of size si. Let k denote the number of distinct sizes.
By simple arguments, we can ignore items of size ≤ 1/Opt (as these items are easy to fill
in later). A valid configuration C is any multiset of sizes in the collection {s1, . . . , sk} with
total size at most 1. Let C denote the collection, possibly exponentially large, of all valid
configurations.

Consider the following LP formulation with a variable xC for each configuration C ∈ C,
that is supposed to indicate the number of bins packed using configuration C.

min
∑
C

xC s. t.
∑
C

ai,CxC ≥ ni ∀i = 1, . . . , k, and xC ≥ 0 ∀C ∈ C.

Here ai,C denotes the number of items of size si in C. Even though the number of
variables is exponential, this LP can be solved to any desired accuracy by considering the
dual (and moreover a basic feasible solution can be computed using standard techniques).
As this LP has only k ≤ n constraints, at most k configurations C have non-zero xC values.

The crucial observation of [4] was the following.

I Lemma 4. Given a bin packing instance I with total size of items s(I), there is a procedure
to round up the size of each item sizes to obtain another instance Ĩ with at most s(I)/2
distinct item sizes, and Opt(Ĩ) ≤ Opt(I) +O(log s(I)).

The proof of Lemma 4 is quite simple and we refer the reader to [5] for a proof.
Let us see how this gives the claimed algorithm. Consider an instance with k item sizes.

The algorithm solves the configuration LP to obtain a solution with at most k non-zero
configurations. For each C with xC > 0, pack bxCc bins with configuration C and remove
these items. Consider the instance consisting of the remaining unpacked items. As these fit
fractionally in at most k configurations, the total size of these items is at most k, and by

FSTTCS 2014

6 New Developments in Iterated Rounding

Lemma 4 we can round these to k/2 sizes, while losing at most O(log k) in the objective. We
now iterate the algorithm on this rounded instance.

Observe that at each iteration the number of distinct sizes decreases by at least half,
and thus there are logarithmically many iterations, each adding at most log(Opt) to the
objective. This implies the claimed result.

2.4 Flow Time Minimization
Usually when designing a LP based approximation, one tries to add as many valid constraints
as possible to make the relaxation tighter. However, sometimes it is beneficial to reduce the
number of constraints so that iterated rounding can be used. We next give an example of a
problem for which strong LP relaxations are known but they key is to consider a different
(weaker) formulation with much fewer constraints.

The problem is that of minimizing the total flow time on unrelated machines. Given a
collection on n jobs and m machines, where job j has size pij on machine i and release time
rj , find a feasible schedule to minimize the total flow time. Here the flow time of a job is the
amount of time it spends in the system; i. e., its completion time minus its arrival time. We
assume that the schedule is non-migratory and preemptive, i. e., a job can only be executed
on a single machine and can be preempted and resumed later without any penalty.

Recently, Bansal and Kulkarni [2] gave the first poly-logarithmic approximation for the
problem based on iterated rounding.

2.4.1 Standard LP formulation
We first describe the widely used standard time indexed LP relaxation for our problem.
There is a variable xijt for each machine i ∈ [m], each job j ∈ [n] and each unit time slot
t ≥ rj . The xijt variables indicate the amount to which a job j is processed on machine i
during the time slot t. The first set of constraints (10) says that every job must be completely
processed. The second set of constraints (11) says that a machine cannot process more than
one unit of job during any time slot. The objective function is referred to as the fractional
flow time and will be irrelevant to our discussion here.

min
∑
i,j,t

(
t− rj
pij

+ 1
2

)
· xijt

s. t.
∑
i

∑
t≥rj

xijt
pij

≥ 1 ∀j (10)

∑
j : t≥rj

xijt ≤ 1 ∀i, t (11)

xijt ≥ 0 ∀i, j, t ≥ 0

2.4.2 New LP formulation
We now describe a new LP relaxation for the problem, where we do not enforce the capacity
constraints (11) for each time slot, but instead only enforce these constraints over carefully
chosen intervals of time.

Let P = maxi,j pij/mini,j pij and assume that mini,j pij = 1. For k = 0, 1, . . . , logP , we
say that a job j belongs to class k on machine i if pij ∈ (2k−1, 2k]. Note that the class of a
job depends on the machine.

N. Bansal 7

There is a variable yijt (similar to xijt before) that denotes the total units of job j

processed on machine i at time t. However, unlike the time indexed relaxation, yijt is allowed
to take values greater than one.

For each class k and each machine i, we partition the time horizon [0, T] into intervals of
size 4 · 2k. For a = 1, 2, . . ., let I(i, a, k) = ((4 · 2k)(a− 1), (4 · 2k)a] denote the a-th interval
of class k on machine i. The new relaxation is the following.∑

i

∑
t≥rj

∑
k

∑
j∈(2k−1,2k]

(
t− rj
pij

+ 1
2

)
· yijt

s. t.
∑
i

∑
t≥rj

yijt
pij

≥ 1 ∀j (12)

∑
j : pij≤2k

∑
t∈I(i,a,k)

yijt ≤ Size(I(i, a, k)) ∀i, k, a (13)

yijt ≥ 0 ∀i, j, t : t ≥ rj

Here, Size(I(i, a, k)) denotes the size of the interval I(i, a, k) which is 4 · 2k (but would
change in later iterations of the LP when we apply iterated rounding). Observe that in
(13) only jobs of class ≤ k contribute to the left hand side of constraints corresponding to
intervals of class k.

The main idea why this LP is useful is the following. For simplicity assume that all jobs
belong to a single class k. Some some basic feasible solution and suppose that h constraints
given by (13) are tight. As there are n constraints 12, at most n+ h non-trivial constraints
can be tight and hence at most n+ h variables are non-zero. If h constraints (13) are tight,
this also means that the total size of jobs is at least h · (4 · 2k). As these are class k-jobs, this
means that n ≥ 4h, and hence the number of non-zero variables is at most n+ h ≤ 5/4n. So
a constant fraction of the jobs j must be assigned integrally to a single machine. Thus after
logarithmic iterations, this produces a reasonable pseudo-schedule, that can be converted to
a proper schedule without much additional loss. We refer the reader to [2] for details.

3 A Generalization based on Discrepancy

Recently a very powerful generalization of iterated rounding was developed, based on
discrepancy theory. The examples of iterated rounding that we have seen thus far are based
on Lemma 1 which requires that m < n, and to maintain this invariant, in each the algorithm
drops certain constraints in each iteration. Observe that when a constraint ajx ≤ bj is
dropped, we have no control on how much this constraint could be violated in future iterations.
In particular the violation could be as large as ‖aj‖1 (e. g. if all the variables xi are very
close to 0 when the constraint was dropped, and eventually they all get rounded to 1).

Recently, Lovett and Meka [7] gave the following rounding result.

I Theorem 5. Let x ∈ [0, 1]n be some fractional solution to a linear system Ax = b, where
A is an m× n matrix. For j = 1, . . . ,m, let λj be such that∑

j

exp(−λ2
j/16) ≤ n/16. (14)

Then there is an efficient algorithm to find a solution x̃ with the following properties:
(i) at most n/2 variables fractional (that is strictly between 0 and 1),
(ii) |aj x̃− ajx| ≤ λj

√
‖aj‖2 for each j = 1, . . . ,m, where aj denotes the j-th row of A.

FSTTCS 2014

8 New Developments in Iterated Rounding

Let us parse what theorem 5 gives us. First observe that if m ≤ n/16, then setting
each λj = 0 for j = 1, . . . ,m satisfies (14), and gives a solution x̃ that does not violate any
constraint and has n/2 variables integral.

In this setting Lemma 1 would give a solution with n − m = (15/16)n variables set
integrally and no constraint violated. Thus ignoring constants (which can be modified if
needed by the application at hand, see for example [1]) this can be viewed as an analog of
Lemma 1.

However, theorem 5 also holds when m � n provided the error parameters λj are
chosen to satisfy condition (14). The fact that one has complete flexibility in how to choose
λj (provided (14) holds) can make this variant extremely powerful. For example suppose
m = 10n. Then, standard iterated does not give anything until m− n = 9n more constraints
are dropped, potentially incurring ‖aj‖1 error on these dropped constraints . On the other
hand one can set each λj to be O(1) in theorem 5 to obtain error O(‖aj‖2) for each row j.
The crucial point is that the `2 norm ‖aj‖2 of a constraint can be substantially smaller than
its `1 norm ‖aj‖1 (e. g.

√
n vs n), and hence theorem 5 can give much less error. Moreover,

by setting λ′js non-uniformly one can enforce smaller error on more critical constraints.

3.1 Improvement for Bin Packing
Recently, based on these ideas, Rothvoss [8] improved the long-standing bound of Opt +
O(log2(Opt)) for bin packing that we saw in Section 2.3 to Opt + O(logOpt log logOpt).
The main observation was that if most of the configurations are “well-spread", that is, they
do not consist of only few item types that appear many times, then the `2 norm of the vector
corresponding to such a configuration (i. e. the vector indicating how many times each item
type appears) is much smaller than its `1 norm. However, there is no apriori reason why
such configurations should be used by a basic feasible solution to the LP. To get around this
problem, Rothvoss introduces the crucial idea of a creating new items by grouping together
various small items of the same size that appear in a configuration. These ideas together with
the framework of Karmarkar Karp then give the improved bound. The details are somewhat
technical and we refer the reader to [8] for details.

4 Iterated rounding via the Lovász Local Lemma

Our final example illustrates how other powerful tools such as the Lovász Local Lemma can
fit nicely into the iterative approach for rounding.

The problem we consider is that of minimizing makespan on unrelated machines in the
multi-dimensional setting. There are m machines and n jobs. Each machine has d resources
and each job needs some quantities of these resources. For example, the machines could
correspond to computers and the d = 2 resources could be CPU and memory. In the unrelated
machines setting, the load of job j on machine i is specified by an arbitrary non-negative
number pijk for each k ∈ [d]. In typical scenarios d is a fixed small constant, and n and m
are much larger.

As in Section 2.1, we can guess the optimum makespan T , and write an LP with variables
xij . We set xij = 0 if pijk > T for some k, and find a feasible solution to the following.∑

j

pijkxij ≤ T ∀i ∈ [m], k ∈ [d] (15)

∑
i

xij ≥ 1 ∀j ∈ [n] (16)

N. Bansal 9

Let us first observe what the natural approaches give. As the LP has n+md constraints,
each machine could potentially have Ω(d) jobs fractionally assigned to it in a basic feasible
solution. So applying the approach in Section 2.1 only gives an O(d) approximation.

On the other hand if we do randomized rounding (i. e. independently assign each job j to
machine i with probability xij), then by a standard balls in bins argument, the makespan
could be as high as Θ(T log dm/ log log dm), which has an undesirable dependence on m.

It turns out that one can show the following substantially stronger result.

I Theorem 6 ([3]). There is an O(log d/ log log d) approximation for the problem.

Before we sketch the idea behind theorem 6, we recall the Lovász Local Lemma.

I Lemma 7. Let B1, B2, . . . , Bk be a collection of (bad) events such that each Bi occurs
with probability at most p and is independent of all the other events except for at most d of
them. If epd < 1, then there is a nonzero probability that none of the events occurs.

The idea of the algorithm is to start with an arbitrary solution x, and gradually make
the variables xij closer to integral in each iteration, without substantially deteriorating the
quality of the solution. In particular, in iteration `, the values xij will be integral multiples
of ε`, where ε` increases exponentially with `, until ε` = Ω(log log d/ log d). At this point
that algorithm can arbitrarily assign a job j to any machine i where xij > 0.

Let ε0 = 1/(log dm). Given an initial solution x, we can assume that each xij is an
integral multiple of ε0 by rounding each xij independently to either ε0bxij/ε0c or ε0dxij/ε0e,
with the right probability such that its expectation remains the same. By standard Chernoff
bounds the makespan remains O(T) with high probability, and we can further scale the
solution by an O(1) factor to ensure that

∑
i xij ≥ 1 for each job j. Let us also assume here

(to avoid some technical details), that each job j is large on every machine i in the sense
that the `1 norm of its load vector satisfies

∑
k pijk ≥ 1/d.

Consider round `, where we round the values of x`−1
ij (as previously) at the end of iteration

`− 1, to multiples of some suitably chosen ε` � ε`−1. The following observation is crucial.

I Lemma 8. Consider round ` and apply the rounding to x`−1
ij mentioned above to obtain

x`ij. Let Bi be the event that the load on machine i increases by more than T for some
coordinate k, and let Aj denote the event that for a job

∑
i x

`
ij ≤ 1/2. Then each of these

events depends on at most poly(d, ε`−1) other events.

Proof. Two events Bi and Bi′ are dependent if and only if x`−1
ij > 0 and x`−1

i′j > 0 for some
job j. Similarly, two events Aj and Bi are dependent if and only if some x`−1

ij > 0. As each
x`−1
ij is an integral multiple of ε`−1 and each job is large, the total number of jobs assigned to

a machine can be at most O(d2 · (1/ε`−1)). Moreover, for a job j at most O(1/ε`) variables
x`−1
ij can be non-zero. Together this implies the claim. J

Thus by Lemma 7, we can choose ε` = Θ(log log(d/ε`−1)/ log(d/ε`)) and ensure that
none of the bad event happens. Thus crucial observation is that as we iterate the algorithm,
the dependence on m in ε` becomes like log(`) m (i. e. log iterated ` times) and eventually
disappears1, while the dependence on d converges to Ω(log log d/ log d).

1 Strictly speaking, this gives an exp(O(log∗ m)) guarantee. But a more gradual rounding with a slightly
more careful of parameters gives theorem 6. We refer to [3] for details.

FSTTCS 2014

10 New Developments in Iterated Rounding

References
1 Nikhil Bansal, Moses Charikar, Ravishankar Krishnaswamy, and Shi Li. Better algorithms

and hardness for broadcast scheduling via a discrepancy approach. In SODA, pages 55–71,
2014.

2 Nikhil Bansal and Janardhan Kulkarni. Minimizing flow-time on unrelated machines.
CoRR, abs/1401.7284, 2014.

3 David G. Harris and Aravind Srinivasan. The moser-tardos framework with partial res-
ampling. In FOCS, pages 469–478, 2013.

4 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In FOCS, pages 312–320, 1982.

5 Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, 2011.

6 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990.

7 Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on
the edges. In FOCS, pages 61–67, 2012.

8 Thomas Rothvoss. Approximating bin packing within o(log OPT * log log OPT) bins. In
FOCS, pages 20–29, 2013.

9 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees
to within one of optimal. In STOC, pages 661–670, 2007.

10 David Williamson and David Shmoys. The design of Approximation Algorithms. Cambridge
University Press, 2011.

Reasoning About Distributed Systems: WYSIWYG∗

Aiswarya Cyriac1 and Paul Gastin2

1 Uppsala University, Sweden
aiswarya.cyriac@it.uu.se

2 LSV, ENS Cachan, CNRS, INRIA, France
paul.gastin@lsv.ens-cachan.fr

Abstract
There are two schools of thought on reasoning about distributed systems: one following inter-
leaving-based semantics, and one following partial-order/graph-based semantics. This paper
compares these two approaches and argues in favour of the latter. An introductory treatment of
the split-width technique is also provided.

1998 ACM Subject Classification F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation, F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords and phrases Verification of distributed systems, Communicating recursive programs,
Partial order/graph semantics, Split-width and tree interpretation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.11

Category Invited Talk

1 Introduction

Distributed systems form a crucially important but particularly challenging domain. Design-
ing correct distributed systems is demanding, and verifying its correctness is even more so.
The main cause of difficulty here is concurrency and interaction (or communication) between
various distributed components. Hence it is important to provide a framework that makes
easy the design of systems as well as their analysis. In this paper we argue in favour of
(visual) graph-based techniques towards this end.

The behaviour of a distributed system is often understood by means of an interleaving-
based semantics. People are guided by this understanding when designing a system, and also
when formally expressing properties for system verification. But interleavings obfuscate the
interactions between components. This inherent complication of interleaving-based semantics
makes the design and verification vulnerable to many (human) errors. Moreover, expressing
distributed properties on interleavings is non-trivial and sometimes also impossible to achieve.
In contrast, a visual understanding of behaviours of distributed systems would make it less
prone to errors – in the understanding of the semantics, in the statement of properties and in
verification algorithms. Not only does the visual approach help in providing right intuitions,
but, we will demonstrate that, it is also very powerful and efficient.

∗ Supported by LIA InForMel.

© Aiswarya Cyriac and Paul Gastin;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 11–30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12 Reasoning About Distributed Systems: WYSIWYG

What you see is what you understand. A good example of the visual representation of
behaviours is the ITU standard message sequence charts (MSCs) [20] which describe protocols
involving message exchanges. The events executed by a local process are linearly ordered,
see e. g., Figure 3. The transmission of the messages is also depicted. This visual description
reveals not only the interactions between components but also the concurrency and the
causality relations. The causality relation corresponds to the transitive closure of the linear
orders on processes and of the message relation. Events that are not causally ordered are
concurrent.

Another example which illustrates the power of visual representations is nested words
[5] for the behaviours of recursive programs. The binary relation matching push-pop pairs,
which is very fundamental for reasoning about recursive (or pushdown) systems, is explicitly
provided in a nested word.

What you see is what you state. One main advantage of such a visual representation is the
ease and power of specification. The underlying graph structure provides a richer framework
for formal specification. For example, monadic second order logic (MSO) may have causality
relation, concurrency relation, process ordering, message transmissions, push-pop matching
relation etc. as basic predicates. Many of these fundamental relations are very difficult (or
even impossible) to recover if we settle for an interleaving-based understanding. For example,
the monadic second order logic over words cannot express a matching push-pop relation even
when we assume a visible alphabet (one in which letter dictates whether it is a push position
or a pop position). This is because such a relation requires some implicit counting for which
MSO over words is too weak.

What about LTL? Temporal logics and navigation logics have been studied over the
intuitive visual descriptions, for instance over nested words [4, 3], MSCs [8], nested traces [7],
multiply nested words [24], etc. Such logics allow us to express the fundamental relations
(causality, concurrency, message matching, push-pop matching, etc.) as basic modalities.
Thus, properties of distributed systems can be easily and naturally expressed. On the other
hand, if the behaviour of a distributed system is understood in terms of linear sequences of
events, one is tempted to use LTL over words for specifications. But the classical modalities of
LTL are not suited to the distributed setting. For example, the temporal next modality of LTL
over words is nonsensical in the actual distributed behaviour since concurrent/independent
events can be ordered arbitrarily by the operational semantics. So, LTL is sometimes deformed
by removing the next modality [28].

When does a specification over linearizations make sense? In fact, a specification of
distributed systems given over linearisations (by means of MSO or LTL) is meaningful only if
it is satisfied by all or none of the equivalent linearisations of any given distributed behaviour.
We say a distributed specification is closed if it satisfies this inevitable semantic closure
condition. In some particular cases, it is decidable to check whether a given specification,
e. g., in LTL over words, is closed [29, 27]. But this does not provide a convenient specification
language, which would syntactically ensure that all specifications are closed. On the other
hand, logics over graph-based representations naturally eliminate this problem since the
semantics is independent of the linearisations.

Why care beyond reachability? Very often people care only about reachability, and not
beyond it. One of the main reasons is that, in the case of sequential non-recursive systems,

A. Cyriac and P. Gastin 13

the model-checking and satisfiability problems reduce to reachability. Most of the decision
procedures proceed by building a machine which accepts the models of the specification.
This is then followed by boolean operations on the machine model and finally performing
an emptiness checking on the resulting machine which is nothing but a reachability test.
However, for distributed systems, such translations from specifications to machine models
do not exist. Closure under boolean operations also does not hold in general. Hence the
model checking and satisfiability problems in the distributed setting cannot be reduced
to reachability. Thus, while it is necessary and important to study the basic reachability
problem, it is not sufficient. We need to devise techniques / verification procedures for
specifications given in logical languages.

But we have techniques and tools available for words. What about graphs? In fact,
graph theory is a very well-studied and mature discipline. We may use the insights and
results from graph theory to our advantage. For example, generic logics on graphs serve
as a good specification formalism. Graph measures such as tree-width (or clique-width or
split-width) could offer good under-approximation parameters towards regaining decidability
of our Turing powerful systems. The generic proof technique via tree interpretations helps
us in obtaining efficient algorithms. We explore these directions in this paper with the help
of split-width.

Split-width? Tree-interpretations? Split-width [16, 15, 2] offers an intuitive visual tech-
nique to decompose our behaviour graphs such as MSCs and nested words. The decomposition
is mainly a divide-and-conquer technique which naturally results in a tree decomposition.
Every behaviour can now be interpreted over its decomposition tree. Properties over the
behaviour naturally transfer into properties over the decomposition tree. This allows us to
use tree-automata techniques to obtain uniform and efficient decision procedures for a range
of problems such as reachability, model checking against logical formalisms etc. Furthermore,
the simple visual mechanism of split-width is as powerful as yardstick graph measures such
as tree-width or clique-width. Hence it captures any class of distributed behaviours with a
decidable MSO theory.

How efficient are the decision preocedures? Since graphs have a richer structure, and
allow richer specifications, the verification problems are more challenging in the case of
graphs as compared to words. However, our decision procedures for visual behaviours
via split-width match the same time complexity as the decision procedures based on the
interleaving semantics. In short, the visual technique solves more for the same price.

What you see in Table 1 is what you get. The rest of this article illustrates this.

2 Communicating Recursive Programs

We aim at analysing complex distributed systems consisting of several multithreaded recursive
programs communicating via channels. In this section, we introduce the abstract model for
such systems and we give its operational semantics resulting in linear behaviours. We also
recall some undecidability results on these systems.

The overall structure of a system is given by its architecture, consisting of a finite set of
processes, and a finite set of data structures. We are mainly interested in stack and queue
data structures, though we also handle bags.

FSTTCS 2014

14 Reasoning About Distributed Systems: WYSIWYG

Table 1 Comparing interleavings and graphs: WYSIWYG.

WYS

WYG
Understanding
(Behaviours)

Expressiveness
(Specifications)

Efficiency
(Complexity of algorithms)

Words – interleaved sequence of
events. Interactions are
obfuscated and very diffi-
cult to recover.

– combinatorial explosion
(single distributed beha-
viour results in a huge
number of interleaved
traces)

– too weak for many nat-
ural specifications

– requires semantical clos-
ure to be meaningful:
equivalent linear traces
should agree on a specific-
ation

– undecidable in general
– decidable under restric-

tions
– reductions to sequential

word automata
– many tools available on

the shelf
– good space complexity

Graphs – visual description of
events

– interactions are visible /
self-explained

– no combinatorial explo-
sion

– powerful specifications.
trivial to express interac-
tions

– independent of particular
linearisation (i. e., natur-
ally meaningful)

– undecidable in general
– decidable under (more le-

nient) restrictions
– reductions to tree

automata via tree-
interpretations

– good time complexity

Stack d1 Queue d2 Queue d3 Bag d4

Process p Process q

Figure 1 An Architecture. It has four data structures and two processes. Writer and Reader of
the data structures are depicted by the incoming and outgoing arrows respectively.

An architecture. A is a tuple (Procs,DS,Writer,Reader) consisting of a finite set Procs of
processes, a finite set DS = Bags] Stacks] Queues of data structures and functions Writer
and Reader which assign to each data structure the process that will write into it and the
process that will read from it respectively. In the special case of communicating recursive
programs, we use stacks for recursion and queues for FIFO message passing. Bags are
useful when no specific order is imposed on the message delivery. Since stacks are used to
model recursion, we assume that Writer(s) = Reader(s) for all s ∈ Stacks. An architecture is
depicted in Figure 1.

Each process is described as a finite state machine in which transitions may either be
internal, only modifying the local state of the machine, or access a data structure. In the
latter case, it is executing either a write event, adding a value to the data structure, or a
read event, removing a value from the data structure.

Since these data structures permit only destructive reads, they induce a binary matching
relation between write events and read events of a behaviour.

A. Cyriac and P. Gastin 15

I Definition 1. A system of concurrent processes with data structures (CPDS) over an archi-
tecture A and an alphabet Σ of action names is a tuple S = (Locs,Val, (Transp)p∈Procs, `in,Fin)
where Locs is a finite set of locations, Val is a finite set of values that can be stored in the
data structures, `in ∈ Locs is the initial location, Fin ⊆ LocsProcs is the set of global final
locations, and Transp is the set of transitions of process p. Transp may have write (resp. read)
transitions on data structure d only if Writer(d) = p (resp. Reader(p) = d). For `, `′ ∈ Locs,
a ∈ Σ, d ∈ DS and v ∈ Val, Transp has

internal transitions of the form `
a−→ `′,

write transitions of the form `
a,d!v−−−→ `′ with Writer(d) = p, and

read transitions of the form `
a,d?v−−−→ `′ with Reader(d) = p.

The operational semantics of a CPDS S may be given as an infinite state transition
system T S. The infinite set of states of T S is LocsProcs × (Val∗)DS. In the following, a state
of T S is a pair (`, z) where ` = (`p)p∈Procs and z = (zd)d∈DS. Such a state is initial if `p = `in
for all p ∈ Procs and zd = ε for all d ∈ DS. It is final if ` ∈ Fin and zd = ε for all d ∈ DS.
The transitions of the CPDS S induce the transitions of T S as follows.

(`, z) p,a==⇒ (`′, z) if `p
a−→ `′p in Transp and `′q = `q for all q 6= p,

(`, z) p,a,d!===⇒ (`′, z′) if `p
a,d!v−−−→ `′p in Transp for some value v ∈ Val and `′q = `q for all

q 6= p, and z′d = zdv, and z′c = zc for all c 6= d,
(`, z) p,a,d?====⇒ (`′, z′) if `p

a,d?v−−−→ `′p in Transp for some value v ∈ Val and `′q = `q for all
q 6= p, and z′c = zc for all c 6= d, and zd = uvw and z′d = uw for some u,w ∈ Val∗. If
d ∈ Queues (resp. d ∈ Stacks) we require in addition that u = ε (resp. w = ε).

A run of T S is a sequence of consecutive transitions, it is accepting if it starts in the
initial state and ends in some final state of T S. The linear trace of the run is the word
obtained by concatenating the sequence of transition labels. It is a word over the alphabet
Γ = (Procs × Σ) ∪ (Procs × Σ× DS× {!, ?}). We denote by Llin(S) the set of linear traces
accepted by the operational semantics of S.

Keeping the data structure access in the linear traces allows us to recover the matching
relation between write actions and corresponding read actions for stacks or queues (but not
for bags). This requires some counting, hence it is not a regular relation (an MSO definable
relation) on the linear traces.

Undecidability. Since the operational semantics is an infinite state system, we cannot
analyse it directly. The most basic problem, reachability, is already undecidable. This is
in particular the case for a single process with a self queue, or a single process with two
stacks, or two processes with two queues between them (the direction of the queues does
not matter), or two processes having a stack each and linked with a queue (see, e. g., [15]).
Characterizations of decidable topologies have been studied in the case of reliable and lossy
channels [12] or in the case of FIFO channels and bags [13].

Since decidable architectures are much too restrictive, under-approximation techniques
have been developped. Decidability is recovered by putting some restrictions on the possible
behaviours of the system. For instance, a very natural restriction is to put a bound on the
data structure capacities. The operational semantics described above becomes a finite state
transition system. The analysis in this case is restricted to so-called existentially bounded
behaviours [18]. Many other under-approximation classes have been studied, e. g., bounded
context [30], bounded phase [21], bounded scope [23], etc.

FSTTCS 2014

16 Reasoning About Distributed Systems: WYSIWYG

p

q

a b

a

b

a b a a a b

b a

a b b a a b a b a b b a

d2 d2 d2d3

d1

d1 d1

d4

d4

d4

d4

Figure 2 A CBM over the architecture given in Figure 1 and alphabet {a, b}.

3 Distributed Behaviours

In this section, we introduce the distributed semantics of CPDSs. We relate the distributed
semantics and the operational semantics by showing that the linear traces arising from the
latter are exactly the linearisations of the graphs defined by the former. We illustrate the
benefits of considering the distributed semantics in the rest of this paper.

As a first example, the graph on Figure 2 provides a visual description of the behaviour of
a CPDS. On such a graph, called concurrent behaviour with matching (CBM), the horizontal
lines describe the linear behaviour of each process of the system, the other edges describe
the matching relations between writes and corresponding reads. The CBM in Figure 2, is
over the architecture of Figure 1. The curved arrows on process p and process q form the
matching relations of stack d1 and bag d4 respectively. The matching relations induced by
queues are shown by the arrows between the processes. As a comparison, the operational
semantics generates linearisations of this behaviour such as

Lin1 = (p, a)(p, b, d1, !)(p, a, d3, !)(p, b, d1, !)(q, a, d4, !)(q, b, d2, !)(q, b, d4, !)
(q, a, d4, !)(q, a, d2, !)(q, b, d4, ?)(q, a, d3, ?)(q, b, d4, ?)(q, a, d2, !)
(q, b, d4, !)(q, b, d4, ?)(q, a, d4, ?)(p, a, d2, ?)(p, b, d1, ?)(p, a, d1, !)
(p, a, d2, ?)(p, a, d1, ?)(p, b, d1, ?)(p, b, d2, ?)(p, a)

Lin2 = (p, a)(q, a, d4, !)(p, b, d1, !)(q, b, d2, !)(p, a, d3, !)(q, b, d4, !)(p, b, d1, !)
(q, a, d4, !)(p, b, d1, ?)(q, a, d2, !)(p, a, d2, ?)(q, b, d4, ?)(p, a, d1, !)
(q, a, d3, ?)(p, a, d2, ?)(q, b, d4, ?)(p, a, d1, ?)(q, a, d2, !)
(p, b, d1, ?)(q, b, d4, !)(p, b, d2, ?)(q, b, d4, ?)(p, a)(q, a, d4, ?)

from which it is much harder to get an intuition of the interactions going on in this behaviour.
Actually, when we have bags, we cannot uniquely reconstruct a CBM from a linearisation.
Hence, for distributed systems, graphs provide a visual and intuitive description of behaviours
well-suited for human beings.

In the next sections, we discuss further the benefits of describing behaviours as directed
graphs. Here, we define these CBMs. The intuition is easy, we have one linear trace for each
process and in addition binary matching relations relating write events to corresponding
reads. The formal definition has to state additional properties so that the matching relations
comply with the access policies of data structures.

I Definition 2. A concurrent behaviour with matching (CBM) over architecture A and
alphabet Σ is a tupleM = ((wp)p∈Procs, (Bd)d∈DS) where wp ∈ Σ∗ is the sequence of events

A. Cyriac and P. Gastin 17

on process p and Bd is the binary relation matching write events on data structure d with their
corresponding read events. We let Ep = {(p, i) | 1 ≤ i ≤ |wp|} be the set of events on process
p ∈ Procs and E =

⋃
p∈Procs Ep. For an event e = (p, i) ∈ Ep, we set pid(e) = p and λ(e) be

the ith letter of wp. We write → for the successor relation on processes: (p, i)→ (p, i+ 1) if
1 ≤ i < |wp|.

The matching relations should comply with the architecture: Bd ⊆ EWriter(d) × EReader(d)
for all d ∈ DS and data structure accesses are disjoint: if e1 Bd e2 and e3 Bd

′
e4 are different

edges (d 6= d′ or (e1, e2) 6= (e3, e4)) then they are disjoint (|{e1, e2, e3, e4}| = 4). Finally,
writes should precede reads, so we require the relation < = (→∪B)+ to be a strict partial
order on the set E of events, where B =

⋃
d∈DS B

d is the set of all matching edges. There are
no additional constraints for bags, but for stacks or queues we have to impose in addition
∀d ∈ Stacks, Bd conforms to LIFO: if e1 Bd f1, e2 Bd f2 and e1 < e2 < f1 then f2 < f1,
∀d ∈ Queues, Bd conforms to FIFO: if e1 Bd f1, e2 Bd f2 and e1 < e2 then f1 < f2.

We let CBM(A,Σ) be the set of CBMs over A and Σ.

A run of a CPDS S on a CBM M is simply a labelling ρ : E → Locs of events by states
which is compatible with the transition relation. We denote by ρ− : E → Locs the map that
associates with each event the state which labels its predecessor: ρ−(e) = ρ(e′) if e′ → e and
ρ−(e) = `in if e is minimal on its process. Then, the map ρ is a run if

(T1) for all eBd f , there exists some value v ∈ Val such that ρ−(e) λ(e),d!v−−−−−→ ρ(e) in Transpid(e)

and ρ−(f) λ(f),d?v−−−−−→ ρ(f) in Transpid(f),

(T2) for all internal events e we have ρ−(e) λ(e)−−−→ ρ(e) in Transpid(e).

A run ρ is accepting if lastρ ∈ Fin where lastρ ∈ LocsProcs gives the final location of the run for
each process: lastρp = `in if Ep = ∅ and lastρp = ρ(max(Ep)) otherwise. We denote by Lcbm(S)
the set of CBMs accepted by S.

We explain now the relationship between the distributed semantics and the sequential
operational semantics. Intuitively, the linear traces of the operational semantics are precisely
the linearisations of the CBMs accepted by the distributed semantics. Let us make this
statement more precise. Consider a CBM M and define the labelling γ : E → Γ where
Γ = (Procs× Σ) ∪ (Procs× Σ× DS× {!, ?}) by γ(e) = (pid(e), λ(e)) if e is an internal event,
and if eBd f then γ(e) = (pid(e), λ(e), d!) and γ(f) = (pid(f), λ(f), d?). A linearisation of
M is given by a total order vlin on the set E of events which is compatible with the causality
relation: < ⊆ vlin. It defines the word γ(e1)γ(e2) · · · γ(en) ∈ Γ∗ if the linear order on E is
e1 @lin e2 @lin · · · @lin en. We denote by Lin(M) ⊆ Γ∗ the set of linearisations ofM.

I Theorem 3. We have Lin(Lcbm(S)) = Llin(S).

However, there are also subtle differences between these two semantics. As seen above,
it is possible to derive the linear traces from the CBMs, but the converse is not pos-
sible in general. For instance, if the data structure d is a bag, then the linear trace
(p, a1, d!)(p, a2, d!)(p, a3, d?)(p, a4, d?) is both a linearisation of the CBM M1 which matches
a1 with a3 and the CBMM2 which matches a1 with a4. Hence, some specifications involving
the matching relations may not be expressible on the linearisations.

If we only have stacks and queues, then we can unambiguously reconstruct a CBM from
a linear trace w ∈ Llin(S). This is achieved as follows. For each p ∈ Procs, the sequence of
actions executed by process p is the word wp ∈ Σ∗ obtained as the projection on Σ of the
subword of w consisting of the letters whose first component is process p. This yields the

FSTTCS 2014

18 Reasoning About Distributed Systems: WYSIWYG

first component (wp)p∈Procs of the CBM M associated with w. Notice that there is a natural
bijection between the set of positions of w and the set E of events of M. To define the
matching relations, consider two events e, f associated with positions i, j of w. Then, eBd f
iff the letters of w at positions i and j are w(i) ∈ Procs×Σ×{d!} and w(j) ∈ Procs×Σ×{d?}
and

if d ∈ Queues then the number of writes to d before i equals the number of reads from d

before j,
if d ∈ Stacks then j is the minimal position after i such that between i and j, the number
of writes to d equals the number of reads from d.

Notice that, even in the case of stacks and queues for which the matching relations can
be unambiguously recovered from linear traces, these relations are not MSO definable on
the linear traces. Hence, even with the powerful MSO logic, we cannot specify properties
involving matching relations on linear traces. We will discuss this more precisely in the next
section.

4 Specifications

The simplest specifications consist of local state reachability or global state reachability:
is there a run of S which reaches a given local state ` ∈ Locs on some process p ∈ Procs
or a given global state ` ∈ LocsProcs. To express more elaborate properties, we need some
specification languages, such as first-order logic, monadic second-order logic, temporal logic,
propositional dynamic logic, etc. Here it makes a big difference whether we work with the
sequential operational semantics or the distributed semantics. In the first case, traces are
words and the logics will refer to the linear order vlin, whereas in the latter case, behaviours
are graphs and the logic will have direct access to the causal ordering < as well as to the
process successor relation → and the matching relations Bd. The process successor relation
→ can be easily recovered from the linear order vlin. This is not the case for Bd, hence also
for the causal ordering <, in the logics mentioned above. Actually, recovering a relation Bd

is possible if d is a stack or a queue but it requires some counting as explained above. This
counting is not possible, even in the powerful MSO logic, unless the capacity of the data
structure d is bounded by some fixed value B. In this case, it is possible to express Bd in
MSO, though the formula is non-trivial and depends on the bound B. Hence, we favour
specification logics on CBMs rather than on linear traces.

The partial order < = (→∪B)+ that comes with a CBM M = ((wp)p∈Procs, (Bd)d∈DS)
describes the causality relation between events. Some specifications rely on this causality
relation. For instance, a distributed system may receive requests on some process p, do some
internal computation involving several other processes, and finally deliver an answer on some
other process q. A natural specification is that every request should be answered. Indeed,
the answer to a request should be in its causal future. Such a specification is easy to write
on CBMs where the causal ordering is available. For instance, it corresponds to the first
order formula ϕ = ∀x (request(x) =⇒ ∃y (x < y ∧ response(y))) or to the local LTL formula
G(request =⇒ F response) (where G means for all events in the causal future and F means
for some event in the causal future). The CBM M depicted in Figure 3 does not satisfy this
specification as Request 2 is not responded. Request 1 has Response 2 in its future, though
not Response 1. Recall that, by Theorem 3, linear traces are linear extensions of CBMs
and events that are concurent inM may be ordered arbitrarily in a linear trace. Therefore,
Lin(M) includes many linearisations in which the responses follow the requests and from
which it is not easy to see whether the specification is satisfied or not.

A. Cyriac and P. Gastin 19

q

p4

p3

p2

p1

p
req1 req2

resp1 resp2

2 5

21 23

1 3 4 7 86

9

19

11 12 13 1410

15 16 17

18 20 22 y

Figure 3 A request/response scenario.

As explained above, recovering the causal order < from the total order vlin is not possible,
even with very expressive specification languages such as MSO over words. As a conclusion, a
simple and natural specification such as the request/response property, cannot be reduced to
a reachability problem on the operational semantics in general. Such a reduction is possible
when the data structures are restricted to bounded stacks and bounded queues (no bags),
but it is non-trivial.

The same argument holds for specifications that involve the matching relation associated
with a stack. For instance, we may specify that after receiving a request, the process calls a
recursive procedure and when this call returns it immediately delivers the response. Again,
matching a call with the corresponding return requires counting which is not a regular
property unless the call depth is bounded.

As another example, a specification may require that when an access to some critical
section is denied, there is a good reason for that, say some concurrent event is accessing the
critical section. Again, concurrency – which is the absence of causal ordering – cannot be
expressed on the linear traces in general.

We introduce below two powerful specification languages on CBMs. First, monadic
second-order logic over CBM(A,Σ) is denoted MSO(A,Σ). It follows the syntax:

ϕ ::= false | a(x) | p(x) | x ≤ y | xBd y | x→ y | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ

where p ∈ Procs, d ∈ DS and a ∈ Σ. The semantics is as expected. Every sentence ϕ in MSO
defines a language Lcbm(ϕ) ⊆ CBM(A,Σ) consisting of all CBMs that satisfy that sentence. A
language L ⊆ CBM(A,Σ) is MSO definable if L = Lcbm(ϕ) for some sentence ϕ ∈ MSO(A,Σ).
I Remark. The set CBM(A,Σ) is MSO definable in the class of graphs over the signature
associated with (A,Σ). More precisely, there is an MSO(A,Σ) sentence Φcbm such that a
graph G = (E ,→, (Bd)d∈DS, pid, λ) satisfies Φcbm iff it is a CBM over (A,Σ). It is easy to
obtain the formula Φcbm from Definition 2, including the LIFO and FIFO conditions for
stacks and queues.
I Remark. The language Lcbm(S) of a CPDS S is definable with an existential MSO sentence
ΦS . Intuitively, with an existential prefix ∃(Xp,τ)p∈Procs,τ∈Transp

the formula guesses for each
transition τ ∈ Transp the set of events from process p ∈ Procs that will execute this transition,
and then checks with a first-order formula that this guess defines an accepting run of S.
I Remark. Notice that CBM-graphs have degree bounded by 3 since any event may take
part in at most one matching relation. Therefore, on CBMs, the logic MSO2 in which we
may also quantify over edges (individual variables or set variables) has the same expressive
power as MSO.

FSTTCS 2014

20 Reasoning About Distributed Systems: WYSIWYG

We are interested in two decision problems: satisfiability of a specification and model
checking of a system against a specification. Given an architecture A, an alphabet Σ and
an MSO sentence ϕ ∈ MSO(A,Σ), the satisfiability problem asks whetherM |= ϕ for some
M∈ CBM(A,Σ). For the model checking problem, we are also given a CPDS S and we ask
whether the specification is satisfied for all (or for some) behaviours of the system: M |= ϕ

for allM∈ Lcbm(S).
Since reachability (or equivalently emptiness) is undecidable in general for CPDSs, both

satisfiability and model checking are undecidable for any specification language that can
express reachability, in particular MSO. This is trivial for model checking: the specification
false is satisfied iff the language of S is empty, i. e., if the final states are not reachable. For
satisfiability, it follows from the remark above since ΦS is satisfiable iff the set of final states
is reachable in S.

I Remark. We have seen above that reachability reduces to model-checking or to satisfiability.
In the case of finite sequential systems, the converse holds since, for any MSO formula ϕ, we
can compute an automaton Aϕ which accepts exactly the models of ϕ [11, 17, 32]. Then,
the model-checking problem reduces to the emptiness problem for the intersection of the
system and the negation of the formula. But this approach fails for distributed systems
because it is not possible in general to compute an automaton equivalent to a given formula.
Indeed, we have already seen that the matching relation, hence also the partial order, cannot
be computed by an automaton on the linearisations. Even if we stay in the distributed
semantics, an MSO formula cannot be translated to a CPDS in general. This is because even
the simpler class of message passing automata (i. e., when DS = Queues) is not closed under
complementation [9]. Therefore the model-checking problem for CPDSs and MSO does not
reduce to reachability in general.

Is MSO the ultimate logic? MSO is a very expressive logic for specifications. Its drawback
is that, even when we recover decidability by restricting to some under-approximation class,
the complexity of the decision procedure in non-elementary. This is already the case for
words or trees. To get better complexity, one should use other formalisms such as Temporal
Logics or Propositional Dynamic Logic (PDL). Towards expressing properties of CBMs, the
classical LTL over words has been extended to visible behaviours such as nested words [4, 3],
MSCs [8], nested traces [7], multiply nested words [24], etc. These temporal logics have
explicit modalities that allow one to retrieve matching edges or to follow the partial order.
Below, we describe propositional dynamic logic which embeds all these logics and provides
powerful navigational abilities.

In PDL, there are two types of formulas. State formulas (σ) describe the properties of
events in a behaviours, hence they have an implicit first-order free variable assigned to the
current event. Atomic propositions such as p or a assert that the current event is on process
p ∈ Procs or is labelled a ∈ Σ. In addition to boolean connectives, we have a path modality
〈π〉σ claiming the existence of a path following π from the current node to an event satisfying
σ. A path formula π has two implicit first-order free variables assigned to the end points of
the path. They are built from basic moves following edges of the graph (in our case → and
Bd), either forwards or backwards, using rational expressions that may use intersection in
addition to the classical union, concatenation and iteration. In addition, we may check a
state formula σ along a path. Formally, the syntax of ICPDL(A,Σ) is given by

σ ::= false | p | a | σ ∨ σ | ¬σ | 〈π〉σ
π ::= test(σ) | → | Bd | π−1 | π + π | π ∩ π | π · π | π∗

A. Cyriac and P. Gastin 21

where p ∈ Procs, d ∈ DS and a ∈ Σ. If intersection π ∩ π is not allowed, the fragment is PDL
with converse (CPDL)1.

5 Graph theoretic approach to verification

In this section, we show how results from graph theory may help in designing decidable
under-approximation techniques for the verification of CPDSs. The distributed semantics
defines the behaviours as graphs, hence we are interested in checking properties of the set of
graphs Lcbm(S) accepted by a CPDS. More precisely, our aim is to solve the model checking
problem: given a system S and a specification ϕ ∈ MSO(A,Σ), does S |= ϕ, i. e., is the
formula ϕ valid on Lcbm(S)?

Let us fix some architecture A and the set Σ of action labels. Decidability of the model-
checking problem is equivalent to decidability of the MSO theory of the set CBM(A,Σ) of
CBM-graphs. Indeed, we have seen in Remark 4 that from a CPDS S we can compute a
formula ΦS which defines Lcbm(S). Therefore, S |= ϕ iff ¬ΦS ∨ ϕ is valid on CBM(A,Σ).
Hence, decidability of model-checking reduces to decidability of the MSO theory of CBM(A,Σ).
For the converse, it suffices to consider a universal CPDS S with Lcbm(S) = CBM(A,Σ).

We have seen in Section 2 that reachability, the most basic model-checking problem, is
undecidable for CPDS, even for very simple architectures such as two processes communicating
via FIFO channels (with no stacks) or a single process with two stacks. Hence, the MSO
theory of CBM(A,Σ) is undecidable in general, which can be seen also directly since CBMs
have unbounded tree-width (or clique-width) in general. Still, it is extremely challenging to
develop correct programs for distributed multi-threaded recursive systems. Hence, techniques
for approximate verification have been extensively developed recently. We will not discuss
over-approximation techniques in the present paper.

An under-approximation technique restricts the problems (reachability, satisfiability or
model-checking) to a decidable subclass C ⊆ CBM(A,Σ) of behaviours. Often the subclass Cm
is parametrised with some integer m. We cover more behaviours by increasing the parameter
m. The approximation family (Cm)m≥0 is complete or exhaustive if CBM(A,Σ) =

⋃
m Cm.

Hence, the aim of under-approximate verification is to define and study meaningful classes
C ⊆ CBM(A,Σ) with a decidable MSO theory.

Decidability of the MSO theory (or equivalently decidability of the MSO satisfiabiliy
problem) for classes C of graphs has been extensively studied. We recall now some important
results that will be useful for our purpose (see [14, Chapter 1] for a survey). Recall that
CBM-graphs have degree bounded by 3 since any event may take part in at most one matching
relation. Hence, we restrict our attention to results for classes C of bounded degree graphs.
The following fact summarizes some of the main results (see Theorem 4).

An MSO definable class C of bounded degree graphs has a decidable MSO theory iff it
can be interpreted2 in the class of binary (labelled) trees.

1 If backward paths π−1 are not allowed the fragment is called PDL with intersection (IPDL). In simple
PDL neither backwards paths nor intersection is allowed.

2 There are several equivalent ways to define an interpretation of a graph G = (V,E) in a labelled tree
T . We describe the MSO-transductions of Courcelle, but one may, for example, also use the regular
path descriptions of Engelfriet and van Oostrom. An MSO-interpretation is given by a tuple of MSO
formulas. We will give a concrete example in Section 6. Intuitively, not all labelled trees admit a valid
graph interpretation, hence, we use a sentence Φvalid to select the “good” trees. The vertices of the graph
are some nodes of the tree, and we use a formula Φvertex(x) to select those nodes of T which should
be interpreted as vertices of G: V = {u ∈ T | T |= Φvertex(u)}. Finally, a formula Φedge(x, y) encodes

FSTTCS 2014

22 Reasoning About Distributed Systems: WYSIWYG

In the light of this fact, under-approximation classes are obtained by MSO definitions
together with tree interpretations. Then, verification problems are reduced to problems on
tree automata, yielding efficient algorithms.

Such tree interpretations can be defined specifically for some class C ⊆ CBM(A,Σ).
This is for instance the case for bounded phase behaviours of multi-pushdown automata
[21] where multiply nested words of bounded phase are interpreted in binary trees called
stack-trees. Another example is given by the interpretation of some classes of multiply nested
words in visibly (k-)path trees in order to prove decidability of emptiness and closure under
complement of multi-pushdown automata when restricted to some classes of behaviours that
can be interpreted in these path-trees [25] .

A higher level approach is to prove some combinatorial property on the class C which
ensures the existence of a tree interpretation. For instance, one may show that the class C
has bounded tree-width (and is MSO definable). This is the approach taken in [26], where
decidability of several under-approximation classes is established by proving that they are
MSO definable and have bounded tree-width. For most of the classes considered in [26] the
decidability had been already proved directly. Hence, [26] provides a unifying approach as
well as efficient algorithms based on tree interpretations.

Alternative combinatorial properties may be more convenient, for instance bounded
clique-width, which is equivalent to bounded tree-width on classes of bounded degree graphs.
In [16, 2] another decomposition technique, called split-width, is defined specifically for CBMs
(see Section 6). On classes of CBMs, bounded tree-width, bounded clique-width and bounded
split-width are all equivalent. We believe that, for a class of CBMs, establishing a bound on
split-width is easier than the other measures. Also, we will see in Section 6 that split-width
gives an easy and natural interpretation of CBMs in binary trees. Hence, split-width provides
a convenient, necessary and sufficient condition, to establish decidability of the MSO theory
of an under-approximation class.

The following theorem summarizes some of the relevant results. For more details, the
reader is referred to [14, Chapter 1] and [16, 15].

I Theorem 4. Let C be a class of bounded degree graphs which is MSO definable. TFAE
1. C has a decidable MSO theory,
2. C can be interpreted in binary trees,
3. C has bounded tree-width,
4. C has bounded clique-width,
5. C has bounded split-width (if C ⊆ CBM(A,Σ) is a class of CBMs).

In order to define a good under-approximation class, one may show that it is MSO
definable and that it satisfies one of the conditions of Theorem 4. We will introduce split-
width in the next section and show that it is a convenient tools for CBMs. Proving MSO
definability is often easy. This is the case for many under-approximation classes, like bounded
context, bounded phase, bounded scope, ordered etc. for multi-pushdown systems. Also, for
distributed systems, it is easy to give an MSO definition for universally bounded MSCs, or
the bounded context and well-queuing assumption of [22, 19].

the edge relation of G: T |= Φedge(u, v) iff (u, v) ∈ E. We may also interpret vertex-labelled graphs
by refining Φvertex in a tuple of formulæ Φa(x) which selects those vertices/nodes that are labelled a.
Finally, in case of edge-labelled graphs, the formula Φedge(x, y) is refined in a tuple of formulæ Φd(x, y)
one for each edge-label d.

A. Cyriac and P. Gastin 23

6 Split-width

In this section, we introduce split-width. We explain the associated tree-interpretations
and infer the decidability and complexity of a collection of verification problems when
parametrised by split-width. We also discuss how to use split-width in order to obtain similar
results for various under-approximation classes.

With K. Narayan Kumar, we introduced split-width in [16] for multiply nested words.
The technique was later extended to CBMs in [15, 2].

The idea is to decompose a graph in atomic pieces consisting of matching write/read
pairs, see Figure 4. This can be seen as a two-player turn-based game with a fixed budget k
which will be the width of the decomposition. The existential player (Eve), trying to prove
the existence of a decomposition of width at most k, has to disconnect the CBM graph by
splitting at most k process edges. For instance, the root of Figure 4 is labelled with a CBM
M over the architecture A of Figure 1. The graphM cannot be disconnected by splitting
only one or two process edges. So Eve splits three process edges that are shown as dashed
red edges in the split-CBM M′. The universal player (Adam) will now choose one of the
connected components ofM′ and the game continues. M′ has two connected components
M1 andM2, providing two choices for Adam.

IfM2 is chosen, Eve splits the two process edges and the resulting graphM′2 has now
two connected components. Whichever is chosen by Adam is an atomic write/read edge,
which is a winning position for Eve.

Assume now thatM1 is chosen. Note thatM1 has two blocks of events on process q with
one hole between them. The first block consists of a single event labelled b and the second
one consists of three events labelled cdc. A block of events in a split-CBM is a maximal
sequence of events on a single process. For instance,M′ has two blocks on process p and
three blocks on process q. Clearly, the number of holes on some process is the maximum of
zero and the number of blocks minus one on that process. The budget k of Eve is reduced
by the number of holes. For instance, M1 has one hole (on process q) hence Eve is only
allowed two (3− 1) more splits to disconnectM1 without exceeding her budget. Her choice
is depicted inM′1. One connected component ofM′1 is a matching edge which is winning for
Eve. So Adam should chooseM3 lest he lose immediately. Eve splits the remaining process
edge and wins regardless of Adam’s choice.

To summarize, Eve wins a play if it ends in an atomic CBM, i. e., a single internal event or
a matching write/read edge. She loses if she cannot disconnect a non-atomic graph without
introducing more than k split-edges (holes). The split-width of a CBM is the minimum budget
k for which Eve has a winning strategy. A winning strategy for Eve with budget 3 is depicted
in Figure 4 for the CBM M at the root. As explained above, M cannot be disconnected
with only two splits, hence its split-width is exactly 3. We denote by CBMk

split(A,Σ) the set
of CBMs over A and Σ with split-width bounded by k.

I Example 5. Nested words have split-width at most 2. Nested words [5] are CBMs over an
architecture with a single process and a single stack. The bound on split-width can be seen
easily since a nested word w is (a) either the concatenation of two nested words in which
case Eve splits the edge between the two nested words, (b) or is of the form a w b where
w is a nested word, in which case Eve splits the first and last process edges, (c) or is an
atomic CBM.

I Example 6. Existentially k-bounded CBMs have split-width at most k + 1. A CBM M
is existentially k-bounded if it admits a linearization such that the number of unmatched

FSTTCS 2014

24 Reasoning About Distributed Systems: WYSIWYG

M

p

q

a a b c d

b a c d c

M′

p

q

a a b c d

b a c d c

M1

p

q

a a

b c d c

M′

1

p

q

a a

b c d c

M3

a

b c d

M′

3

a

b c d

a

c b d

a

c

M2

b c d

a

M′

2

b c d

a

c

a

b d

Figure 4 A split decomposition of width 3.

writes at any point is bounded by k. For instance, the CBM M at the root of Figure 4 is
existentially 3-bounded. Let the linear order witnessing the existential bound be vlin. The
strategy of Eve is to detach the first k + 1 events ofM with respect to vlin by splitting the
corresponding outgoing process edges. The resulting split-CBM M′ must be disconnected.
Indeed, the detached events cannot all be write events, otherwise the bound k is exceeded.
If a read event is detached, then the corresponding write is also detached since it must
come earlier in any linearization. Therefore, the split-CBM M′ contains some connected
components which are atomic CBMs and at most one connected componentM1 which is
non-atomic. Adam must choose the componentM1 to avoid losing the game immediately.
Then, Eve proceeds by splitting some more process edges until k + 1 events are detached in
the vlin order. As above, the resulting split-CBM must be disconnected and at most one of
its connected component is non-atomic. Eve applies the same strategy as long as there is a
non-atomic connected component.

I Example 7. Multiply nested words with at most m phases have split-width at most 2m.
Multiply nested words (MNWs) are CBMs over an architecture with a single process and
several stacks. A phase in a MNW is a factor in which all read events are from the same stack.

A. Cyriac and P. Gastin 25

split-!

div-tt

split-!

div-tt

split-!

div-tt

Bd2

a c

Bd3

b d

Bd2

a c

split-!

div-tt

Bd4

a c

Bd1

b d

(n) split-!
(m,mm)

(n′) div-tt
(`r, `r`)

(n1) split-!
(m, im)

(n′1) div-tt
(`r, ``r)

(n3) split-!
(ε, im)

(n′3) div-tt
(`, r`r)

Bd2

(`, r)

(n4) a, p c, q

Bd3

(ε, `r)

b, q d, q

Bd2

(`, r)

(n5) a, p c, q

(n2) split-!
(mm, ε)

(n′2) div-tt
(r`r, `)

Bd4

(r, `)

a, q c, p

Bd1

(`r, ε)

b, p d, p

Figure 5 A split term s (left) and a labelled term t (right) corresponding to Figure 4.

M

p

q

a a b c d

b a c d c
M′′

p

q

a b c a d

a c b c d

Figure 6 Two CBMs that can be decomposed with the split-term s of Figure 4.

A MNW is m-phase bounded if it is the concatenation of at most m phases [21]. All m-phase
bounded MNWs have split-width at most 2m [16]. The bounded phase under-approximation
has been extended to distributed systems in [15, 1].

In fact, an upper bound on split-width has been established for many under-approximation
classes. See [16] for many classes of multi-pushdown systems such as bounded scope [23],
ordered [10, 6], etc. For many classes of communicating (multi-pushdown) systems, see
[15, 1, 2].

Split-algebra. The split-game introduced above gives the decomposition view (top-down)
which is useful to establish a bound on split-width. A winning strategy of Eve for some CBM
M can be represented with a tree as in Figure 4. Dually, there is also a split-algebra which
constructs CBMs in a bottom-up fashion starting from atomic ones using two operations:
shuffle (opposite of divide) and merge (opposite of split). The terms of the split-algebra over
A and Σ follow the syntax:

s ::= a | aBd b | !(s) | s tt s

with a, b ∈ Σ and d ∈ DS. The split-term s corresponding to Figure 4 is given on the left of
Figure 5 (recall that the architecture is taken from Figure 1).

FSTTCS 2014

26 Reasoning About Distributed Systems: WYSIWYG

Several CBMs may admit a decomposition via the same split-term. For instance, the
split-term s on the left of Figure 5 allows us to decompose both the CBMs M andM′′ of
Figure 6. The main reason is that a shuffle node does not specify how the blocks of the two
children are shuffled, and a merge node does not specify which holes of the child are mended
into process edges. This ambiguity can be removed with an extra labelling as shown on
tree t on the right of Figure 5 corresponding to the decomposition of Figure 4. At a shuffle
node, the labelling consists of a tuple of words (wp)p∈Procs, where wp ∈ {`, r}∗ describes how
the blocks on process p of the children are shuffled. For instance, the shuffle node (n′) of t
is labelled (wp, wq) = (`r, `r`) which means that the first block ofM′ – corresponding to
node (n′) – on process p comes from the left childM1 – corresponding to (n1) – and the
second block comes from the right childM2 – corresponding to (n2). On process q there are
3 blocks, first and third coming fromM1 and second coming fromM2. The same kind of
labelling is used at B-nodes. Now, for a merge node, the labelling is also a tuple of words
(wp)p∈Procs, but now a word wp ∈ {i,m}∗ tells whether the holes (split edges) of the child are
kept as such (i for inherited) or are turned into process edges (m for mended). For instance,
node (n1) – corresponding toM1 – is labelled (m, im) which means that from its childM′1 –
corresponding to (n′1) – the hole of process p is mended, the first split edge of q is inherited
and the second one is mended. Also, each leaf is labelled with its corresponding process.

Note that, the width of a decomposition can be recovered from the labelled split-term
(but not from the unlabelled split-term). Indeed, the labelling of a merge node directly gives
the number of holes of its child, and the labelling of a shuffle node, or a B-node, gives the
number of blocks from which we can infer the number of holes.

Tree-interpretations. Each CBM that can be decomposed with a split-term s admits an
MSO-interpretation (cf. Footnote 2) in the tree s, which is defined by a tuple of formulas over
binary trees (Φvalid, (Φa)a∈Σ, (Φp)p∈Procs, (Φd)d∈DS,Φ→). The interpretation guesses (with
set variables) a labelling to disambiguate the split term as explained above. Not all labelled
split-terms allow an interpretation, so we use a formula Φvalid to check the validity of the
labelling. Essentially, we have to check that, for each process p, the number of blocks at a
node is compatible with that of the children. For instance, a label wp ∈ {`, r}∗ at a shuffle
node assumes |wp|` (resp. |wp|r) blocks on process p from the left (resp. right) child. A label
wp ∈ {i,m}∗ at a merge node assumes |wp| holes on process p from the child. For a Bd node
with p = Writer(d) and q = Reader(d), we request that the children are leaves labelled p (left)
and q (right), and if p = q then we request wp = `r and ws = ε for s 6= p, and if p 6= q then
we request wp = `, wq = r and ws = ε for p 6= s 6= q. In addition, for stack or queue data
structures, the formula Φvalid has to check that the LIFO or FIFO conditions are respected.
To do so, we need to enrich further the labelling. If d ∈ Stacks then we maintain the Bd

relation between blocks of process p = Reader(d) = Writer(d): iBd j if eBd f for some e in
the ith block of process p and some f in the jth block of process p. This information can be
easily computed by a deterministic bottom-up tree automaton. At a shuffle node, we make
sure that the LIFO condition is respected by rejecting shuffles that would result in a Bd

relation between blocks that is not well-nested. Hence we obtain an EMSO formula to check
the LIFO condition for data structure d. We proceed similarly for queues.

We denote by DSTkvalid the set of split-terms disambiguated by a valid labelling of width
at most k. Each tree t ∈ DSTkvalid encodes a unique CBM of split-width at most k, denoted
cbm(t). Conversely, everyM∈ CBMk

split is encoded by some, often many, trees t ∈ DSTkvalid.
Vertices of cbm(t) are leaves of t hence we let Φvertex(x) = leaf(x). The vertex labelling in

cbm(t) is the corresponding leaf labelling in t. Hence, formulæ Φa(x) and Φp(x) state that

A. Cyriac and P. Gastin 27

leaf x is labelled a and p in t. The matching relation also admits a trivial interpretation: for
d ∈ DS, Φd(x, y) states that x and y are leaves with a comon father labelled Bd.

The process relation is slightly harder to recover. This is where the additional labelling
is needed. Intuitively, Φ→(x, y) states that from leaf x it is possible to walk up the tree to
some merge node m, then walk down the tree to leaf y, and that the split edge from x to y
has been mended at node m. It is easy to check this property with a tree automaton and
to deduce the (EMSO) formula Φ→(x, y). More precisely, the deterministic bottom-up tree
automaton keeps in its states the block Bx of which x is the right-most event, and the block
By of which y is the left-most event. It goes to an accepting state only if the hole between
Bx and By is mended into a process edge at some merge node. For instance, the process
edge from leaf (n4) to leaf (n5) is established at merge node (n1).

Tree-width, clique-width and split-width. On CBMs, split-width is a measure that is very
similar to clique-width or tree-width. It is shown in [16, 15] that for CBMs, a bound on
split-width implies a (linear) bound on clique-width or tree-width and vice versa. More
precisely, if a CBM has split-width k then it has clique-width at most 2(k + |Procs|) + 1 and
tree-width at most 2(k + |Procs|)− 1. Conversely, if a CBM has clique-width c or tree-width
t then it has split-width bounded by 2c− 3 or 120(t+ 1).

Verification procedures for bounded split-width. Most verification problems become de-
cidable with reasonable complexity when parametrised by a bound on split-width. Intuitively,
the tree-interpretation provided by split-width allows us to uniformly reduce a collection of
problems on CBMs of bounded split-width to problems on trees, which are then solved with
tree automata techniques.

More precisely, let S be a CPDS over (A,Σ) and ϕ ∈ MSO(A,Σ) be a specification. The
model checking problem restricted to the class CBMk

split of CBMs with split-width bounded by
k asks whether Lcbm(S) ∩ CBMk

split ⊆ Lcbm(ϕ). Similarly, the emptiness problem for S (resp.
the satisfiability problem for ϕ) restricted to CBMk

split asks whether Lcbm(S) ∩ CBMk
split = ∅

(resp. Lcbm(ϕ) ∩ CBMk
split 6= ∅). We reduce these problems to the emptiness problem for tree

automata as follows.
First, we can build a tree automaton Akvalid of size 2O(k2|A|) which accepts DSTkvalid. Next,

we can build a tree automaton AkS of size |S|O(k+|Procs|) which accepts a tree t ∈ DSTkvalid if
and only if cbm(t) ∈ Lcbm(S). Therefore, the emptiness problem for the CPDS S restricted
to CBMk

split reduces to the emptiness problem of the tree automaton Akvalid ∩ AkS .
Now, let ϕ be a sentence in MSO(A,Σ). Using the MSO interpretation (Φvalid,Φvertex,

(Φa)a∈Σ, (Φp)p∈Procs, (Φd)d∈DS,Φ→) for k-bounded split-width, we can construct a formula ϕk
from ϕ such that for all trees t ∈ DSTkvalid, we have t |= ϕk if and only if cbm(t) |= ϕ. By [31],
from the MSO formula ϕk we can construct an equivalent tree automaton Akϕ. Therefore, the
satisfiability problem for the MSO formula ϕ restricted to CBMk

split reduces to the emptiness
problem of the tree automaton Akvalid ∩ Akϕ.

Finally, we deduce easily that Lcbm(S) ∩ CBMk
split ⊆ Lcbm(ϕ) if and only if t |= ϕk for all

trees t accepted by Akvalid ∩ AkS . Therefore, the model checking problem S |= ϕ restricted to
CBMk

split reduces to the emptiness problem for the tree automaton Akvalid ∩ AkS ∩ Ak¬ϕ.
We have described above uniform decision procedures for an array of verification problems.

We refer to [16, 15, 2] for more details and we summarise the computational complexities of
these procedures in Table 2.

FSTTCS 2014

28 Reasoning About Distributed Systems: WYSIWYG

Table 2 Summary of the complexities for bounded split-width verification.

Problem
Complexity

Architecture A, alphabet Σ, bound k on split-width
being part of the input
(k in unary)

being fixed

CPDS emptiness ExpTime-Complete PTime-Complete
CPDS inclusion or universality 2ExpTime ExpTime-Complete
LTL/CPDL satisfiability, model checking ExpTime-Complete
ICPDL satisfiability or model checking 2ExpTime -Complete
MSO satisfiability or model checking Non-elementary

Verification procedures for other under-approximation classes. Our approach is generic
in yet another sense. Under-approximation classes which admit a bound on split-width also
may benefit from the uniform decision procedures described above, provided these classes
correspond to regular sets of split-terms.

More precisely, let Cm be an under-approximation class with Cm ⊆ CBMk
split. For instance,

we have seen that existentially m-bounded CBMs have split-width at most k = m+ 1 (Ex. 6)
and m-bounded phase MNWs have split-width at most k = 2m (Ex. 7). Assume that we can
construct3 a tree automaton AkCm

which accepts a tree t ∈ DSTkvalid if and only if cbm(t) ∈ Cm.
Then, the decision procedures can be restricted to the class Cm with a further intersection
with the tree automaton AkCm

. For instance, the emptiness problem for S restricted to Cm
reduces to the emptiness problem of Akvalid ∩AkCm

∩AkS . The model checking problem S |= ϕ

restricted to Cm reduces to the emptiness problem of Akvalid ∩ AkCm
∩ AkS ∩ Ak¬ϕ.

Clearly, the bound k on split-width in terms of m as well as the size of AkCm
will impact

on the complexity of the decision procedures. We give below several examples.
First, nested words have split-width bounded by a constant 2, and the set of nested words

can be recognised by a trivial 1-state CPDS. Hence the complexities of various problems
follow the right-most column of Table 2. Notice that already for this simple case, the
complexities match the corresponding lower bounds for all problems.

Next, suppose a class Cm admits a bound on split-width k = poly(m) and AkCm
is of size4

bounded by 2poly(m). Then the decision procedures for various problems with respect to the
under-approximation class Cm follow the complexities given in Table 2.

This can be extended as follows. Assume the bound k on split-width of the under-
approximation class Cm is n-fold exponential in m and that the size of the tree automaton
AkCm

is bounded by (n + 1)-fold exponential in m (e. g., if we have a CPDS Sm of size
2poly(k)), then the complexities given in Table 2 (left column) will be augmented by a n-fold
exponentiation. For instance, the class Cm of m-bounded phase MNWs has split-width
bounded by 2m (Ex. 7). Also, it is trivial to get a CPDS Sm for Cm of size poly(m). Hence,
the size of AkCm

= AkSm
is 2poly(m). We deduce that the complexities given in Table 2 (left

column) are augmented by one exponentiation for m-bounded phase MNWs.
Thus the verification method via split-width is uniform not only for a wide range of

3 One way to obtain Ak
Cm

is to provide a CPDS Sm which accepts the class Cm, then the automaton Ak
Sm

serves as Ak
Cm

. Similarly, if there is a formula ϕm in MSO(A,Σ) characterising the under-approximation
then the automaton Ak

ϕm
serves as Ak

Cm
.

4 If Cm is recognised by a CPDS Sm of size 2poly(k), then the automaton Ak
Cm

= Ak
Sm

is of size 2poly(k).

A. Cyriac and P. Gastin 29

problems but also for a wide range of classes. The complexities stated in Table 2 match the
lower-bounds for many known under-approximation classes, thus asserting the optimality of
the uniform decision procedures. For details we refer to [15, Section 4.4].

Word-like. A split-decomposition is said to be word-like if for every binary node in the
decomposition tree, one of its subtrees has depth bounded by a constant. In this case,
we could employ word automata instead of tree automata. All behaviours of some under-
approximation classes, like existentially m-bounded, admit a word-like split decomposition.
For many problems, the complexity upper bounds fall to the maximal space-complexity
classes contained in the time-complexity classes. For example, emptiness checking of a CPDS
parametrised by (word-like) split-width k can be done in PSpace instead of ExpTime, and
if k is fixed, in NLogSpace instead of PTime.

Acknowledgement. The authors thank Benedikt Bollig for many fruitful discussions and
constructive comments.

References

1 C. Aiswarya, P. Gastin, and K. Narayan Kumar. Controllers for the verification of commu-
nicating multi-pushdown systems. In CONCUR’14, volume 8704 of LNCS, pages 297–311.
Springer, 2014.

2 C. Aiswarya, P. Gastin, and K. Narayan Kumar. Verifying communicating multi-pushdown
systems via split-width. In ATVA’14, volume 8837 of LNCS. Springer, 2014. To appear.

3 R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin. First-order
and temporal logics for nested words. Log. Meth. Comput. Sci., 4(4:11), 2008.

4 R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns.
In TACAS’04, volume 2988 of LNCS, pages 467–481. Springer, 2004.

5 R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3:16), 2009.
6 M.F. Atig, B. Bollig, and P. Habermehl. Emptiness of multi-pushdown automata is

2ETIME-Complete. In DLT’08, volume 5257 of LNCS, pages 121–133. Springer, 2008.
7 B. Bollig, A. Cyriac, P. Gastin, and M. Zeitoun. Temporal logics for concurrent recursive

programs: Satisfiability and model checking. Journal of Applied Logic, 2014. To appear.
8 B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-passing

systems. Logical Methods in Computer Science, 6(3:16), 2010.
9 B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO

logic. Theoretical Computer Science, 358(2):150–172, 2006.
10 L. Breveglieri, A. Cherubini, Cl. Citrini, and S. Crespi-Reghizzi. Multi-pushdown languages

and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996.
11 J. Büchi. Weak second order logic and finite automata. Z. Math. Logik, Grundlag. Math.,

5:66–62, 1960.
12 P. Chambart and Ph. Schnoebelen. Mixing lossy and perfect FIFO channels. In CON-

CUR’08, volume 5201 of LNCS, pages 340–355. Springer, 2008.
13 L. Clemente, F. Herbreteau, and G. Sutre. Decidable topologies for communicating auto-

mata with FIFO and bag channels. In CONCUR’14, volume 8704 of LNCS, pages 281–296.
Springer, 2014.

14 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applica-
tions. Cambridge University Press, 2012.

FSTTCS 2014

30 Reasoning About Distributed Systems: WYSIWYG

15 A. Cyriac. Verification of Communicating Recursive Programs via Split-width. PhD
thesis, ENS Cachan, 2014. http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_
Aiswarya_Cyriac.pdf.

16 A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown systems
via split-width. In CONCUR’12, volume 7454 of LNCS, pages 547–561. Springer, 2012.

17 C.C. Elgot. Decision problems of finite automata design and related arithmetics. Trans.
Amer. Math. Soc., 98:21–52, 1961.

18 B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking algorithms
for existentially bounded communicating automata. Inf. Comput., 204(6):920–956, 2006.

19 A. Heußner, J. Leroux, A. Muscholl, and G. Sutre. Reachability analysis of communicating
pushdown systems. In FOSSACS’10, volume 6014 of LNCS, pages 267–281. Springer, 2010.

20 ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva, February 2011.

21 S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive languages.
In LICS’07, pages 161–170. IEEE Computer Society Press, 2007.

22 S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concurrent
queue systems. In TACAS’08, volume 4963 of LNCS, pages 299–314. Springer, 2008.

23 S. La Torre and M. Napoli. Reachability of multistack pushdown systems with scope-
bounded matching relations. In CONCUR’11, volume 6901 of LNCS, pages 203–218.
Springer, 2011.

24 S. La Torre and M. Napoli. A temporal logic for multi-threaded programs. In IFIP TCS,
volume 7604 of LNCS, pages 225–239. Springer, 2012.

25 S. La Torre, M. Napoli, and G. Parlato. A unifying approach for multistack pushdown
automata. In MFCS’14, volume 8634 of LNCS, pages 377–389. Springer, 2014.

26 P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In Thomas Ball and
Mooly Sagiv, editors, POPL, pages 283–294. ACM, 2011.

27 A. Muscholl. Über die Erkennbarkeit unendlicher Spuren. Teubner, 1996.
28 D. Peled and Th. Wilke. Stutter-invariant temporal properties are expressible without the

next-time operator. Information Processing Letters, 63(5):243–246, 1997.
29 D. Peled, Th. Wilke, and P. Wolper. An algorithmic approach for checking closure proper-

ties of temporal logic specifications and ω-regular languages. Theoretical Computer Science,
195(2):183–203, 1998.

30 Sh. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS’05, volume 3440 of LNCS, pages 93–107. Springer, 2005.

31 J.W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to
a decision problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968.

32 B.A. Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady Akademii
Nauk SSSR, 149:326–329, 1961.

http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_Aiswarya_Cyriac.pdf
http://www.lsv.ens-cachan.fr/~cyriac/download/Thesis_Aiswarya_Cyriac.pdf

Colour Refinement: A Simple Partitioning
Algorithm with Applications From Graph
Isomorphism Testing to Machine Learning
Martin Grohe

RWTH Aachen University
Aachen, Germany
grohe@informatik.rwth-aachen.de

Abstract
Colour refinement is a simple algorithm that partitions the vertices of a graph according their
“iterated degree sequence.” It has very efficient implementations, running in quasilinear time,
and a surprisingly wide range of applications. The algorithm has been designed in the context of
graph isomorphism testing, and it is used an important subroutine in almost all practical graph
isomorphism tools. Somewhat surprisingly, other applications in machine learning, probabilistic
inference, and linear programming have surfaced recently.

In the first part of my talk, I will introduce the basic algorithm as well as higher dimensional
extensions known as the k-dimensional Weisfeiler-Lehman algorithm. I will also discuss an un-
expected connection between colour refinement and a natural linear programming approach to
graph isomorphism testing. In the second part of my talk, I will discuss various applications of
colour refinement.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Color Refinement, Graph Isomorphism, Machine Learning

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.31

Category Invited Talk

© Martin Grohe;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 31–31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Properties and Utilization of Capacitated
Automata
Orna Kupferman1 and Tami Tamir2

1 School of Engineering and Computer Science, Hebrew University, Israel
orna@cs.huji.ac.il

2 School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
tami@idc.ac.il

Abstract
We study capacitated automata (CAs), where transitions correspond to resources and may have
bounded capacities. Each transition in a CA is associated with a (possibly infinite) bound on
the number of times it may be traversed. We study CAs from two points of view. The first
is that of traditional automata theory, where we view CAs as recognizers of formal languages
and examine their expressive power, succinctness, and determinization. The second is that of
resource-allocation theory, where we view CAs as a rich description of a flow network and study
their utilization.

1998 ACM Subject Classification F.4.3 Formal Languages, B.8.2 Performance Analysis and
Design Aids, F.1.1 Models of Computation

Keywords and phrases Automata, Capacitated transitions, Determinization, Maximum utiliza-
tion

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.33

Category Invited Talk

1 Introduction

Finite state automata are used in the modeling and design of finite-state systems and their
behaviors, with applications in engineering, databases, linguistics, biology, and many more.
The traditional definition of an automaton does not refer to its transitions as consumable
resources. Indeed, a run of an automaton is a sequence of successive transitions, and there
is no bound whatsoever on the number of times that a transition may be traversed. In
practice, the use of a transition may correspond to the use of some resource. For example, it
may be associated with the usage of some energy-consuming machine, application of some
material, or consumption of bandwidth. We study capacitated automata (CAs). In this
model, transitions correspond to resources and may have bounded capacities. Formally, each
transition is associated with a (possibly infinite) integral bound on the number of times
it may be traversed. A word w is accepted by a nondeterministic capacitated automaton
(NCA) A if A has an accepting run on w; one that reaches an accepting state and respects
the bounds on the transitions.

We examine CAs from two points of view. The first, more related to traditional automata
theory, views CAs as recognizers of formal languages. The interesting questions that arise
in this view are similar to classical questions about automata: their expressive power,
succinctness, determinization, decision problems, etc. The second view, more related to

© Orna Kupferman and Tami Tamir;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 33–44

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34 Properties and Utilization of Capacitated Automata

traditional resource-allocation theory, views CAs as labeled flow networks. The interesting
questions then have to do with optimal utilization of the system modeled by the CA.

Let us start with the first view. In terms of expressive power, we show that capacities
can be removed. Thus, NCAs are not more expressive than nondeterministic finite automata
(NFAs), and can recognize exactly all regular languages. The main questions that arise, then,
refer to the succinctness of the capacitated model with respect to the standard one, as well
as the blow-up involved in their determinization. Consider, for example, the language Ln,m
over the alphabet Σn = {1, . . . , n} that contains exactly all words in which each letter in Σn
appears at most m times. It is not hard to see that a traditional, possibly nondeterministic,
automaton for Ln,m needs at least mn states. On the other hand, a deterministic capacitated
automaton (DCA) for Ln consists of a single state with n self-loops, each labeled by a different
letter from Σn and has capacity m. Hence, both NCAs and DCAs may be exponentially
more succinct than NFAs. The nondeterministic model, however, is much stronger, and
determinization involves a blow-up that is not only exponential in the state space but also
linear in the product of the capacities. Note that the latter is at least exponential in the
number of transitions. This is surprising, as we do allow the obtained DCA to have capacities.
As we show, there are languages, in particular strongly liveness languages [1], for which the
power of capacities is significant in the nondeterministic model but is not realized in the
deterministic one.

We then turn to solve decision problems about CAs. Two classical problems are the
nonemptiness (does A accept at least one word?) and the membership (does A accept a
given word w?) problem. In the traditional model, the problems are essentially the same:
checking whether A accepts w can be reduced to checking the emptiness of the product of
A with w. Accordingly, both problems can be reduced to reachability. In the capacitated
model, taking the product of a word with an automaton may require tracing the history of
traversals, and indeed we prove that while the nonemptiness problem is not more difficult
than in the traditional model, membership becomes NP-complete for NCAs. Moreover, if we
augment the nonemptiness problem to consider words from a given language (that is, given
a CA A and a regular language L, decide whether A accepts some word from L), it becomes
NP-complete already for DCAs, even when L is given by a DFA.

We continue to the second view, where CAs model labeled flow networks. In order to
motivate this view, let us first demonstrate the different ways in which we consider CAs in
the two views. Consider the containment problem for CAs, asking whether a given set S of
words is contained in the language of a CA A. We can think of two variants of the problem.
In the first, which corresponds to our first view, we ask whether A accepts w for each word
w ∈ S. In the second, which corresponds to our second view, we ask whether A mutually
accepts all words in S. That is, whether A has enough capacity to process all the words in S
mutually. It is not surprising that a CA may contain S in the first view but not in the second.
Consider for example the NCA A described in Figure 1. Let S = {ab, abc, ac, abb, abcb}.
Clearly, all the words in S are accepted by A, thus A contains S in the first view. On the
other hand, there is no way for A to mutually accept all the words in S. Indeed, it is not
hard to see that A can make only a single use of the edge 〈q1, c, q2〉 even though its capacity
is 2, whereas S contains three words with the letter c. Note that A can mutually accept the
set S′ = {ab, ac, abb, abcb}, but one has to carefully resolve nondeterminism in order to do it.
For example, once A processes abb via q1, it can no longer process both ac and abcb. Thus,
in the second view, the challenge is to find ways to mutually accept in a given NCA as many
words as possible, as we formally define below.

A natural problem that arises when reasoning about systems that consist of resources

O. Kupferman and T. Tamir 35

q0

q2q1

a, 4a, 1

c, 1

c, 2 b, 5b, 2

Figure 1 An NCA that contains S = {ab, abc, ac, abb, abcb} in the traditional view but does not
contain S mutually.

with limited capacities is to utilize these resources in the best way. In our model, the
max-utilization problem is defined as follows. Given a CA A, return a multiset W of words,
such that A mutually accepts all the words in W , and |W | is maximal. The max-utilization
problem can be viewed as a generalization of the max-flow problem in networks [11]. In the
max-flow problem, the network is utilized by units of flow, each routed from the source to
the target. The CA model enables a rich description of the feasible routes. The labels along
a path correspond to a sequence of applications of resources. In particular, paths from an
initial state to a final state correspond to feasible such sequences, and the goal is to mutually
process as many of them as possible.

Sometimes, not all the sequences feasible in the NCA are desirable. Accordingly, we also
consider the max restricted-utilization problem, where the input to the problem also includes
a language specifying the desirable sequences. Then, the words in the multiset W must
belong to this language. For example, the language may restrict the length of the sequences,
preventing long sequences from consuming the system (see [17] for an analogous restriction
in flow networks), it may restrict the number of different resources applied in a sequence, it
may require an application of specific resources, it may require a specific event to trigger
another specific event, and so on. Thus, while in traditional flow problems the specification
of desired routes is given by means of a source and a target, the max restricted utilization
problem enables specifications that are much richer than reachability. A similar lifting of
reachability was studied in [3], where network formation games were extended to automata
formation games. We study the complexity of the max utilization problems and show that
while the unrestricted variant can be solved in polynomial time by a simple reduction to a
network maximum-flow problem, even simple restrictions on the desirable routes make the
problem hard to approximate. Essentially, this follows from the fact that the basic idea of
an augmenting path in a network cannot be adopted to NCAs. Indeed, in NCAs every path
corresponds to a sequence of applications of recourses, and the augmenting path need not
correspond to a desired such sequence.

Related Work

Many extensions of automata in which transitions are augmented by numerical values
have been studied. Most notable are probabilistic automata [19], where the values form a
distribution on the successor state, and weighted automata [10], where weights are used in
order to model costs, rewards, certainty, and many more. The semantics of these models
is multi-valued: each traversal of a transition updates some accumulated value, and the
language of the automaton maps words into some domain. In particular, the B and S

automata of [8] count traversals on transitions. Our semantics, on the other hand, maintains

FSTTCS 2014

36 Properties and Utilization of Capacitated Automata

the Boolean nature of regular languages, and only augments the way in which acceptance is
defined.

More related to our work are extensions of automata that stay in the Boolean domain, in
particular ones whose semantics involves counting. Parikh automata were introduced and
studied by Klaedtke and Rueß in [16]. Their semantics involves counting of the number
of occurrences of each letter in Σ in the word. Essentially, a Parikh automaton is a pair
〈A, C〉, where A is an NFA over Σ, and C ⊆ INΣ is a set of “allowed occurrences”. A word
w is accepted by 〈A, C〉 if both A accepts w and the Parakh’s commutative image of w,
which maps each letter in Σ to its number of occurrences in w, is in C. It is easy to see
that the expressive power of Parikh automata goes beyond regular language. For example,
Parikh automata can recognize the language {aibi : i ≥ 1} by defining A to recognize a∗b∗
and defining C to contain all pairs 〈i, i〉, for i ≥ 1. In fact, by [15], Parikh automata are as
expressive as reversal-bounded counter machines [13].

Several variants of Parikh automata have seen studied. In particular, [7] studied con-
strained automata, a variant that counts traversals of transitions and requires the vector of
counters to belong to C, now a semilinear set of allowed vectors. NCAs can be viewed as
a special case of constrained automata in which C is downwards closed. This significantly
restricts the expressive power of constrained automata, and indeed the types of questions we
consider are different than these studied for Parikh automata and their variants.

Additional strictly more expressive models include multiple counters automata [9], where
transitions can be taken only if guards referring to traversals so far are satisfied, and queue-
content decision diagrams, which are used to represent queue content of FIFO-channel
systems [5, 6]. Finally, a model with the same name – finite capacity automata is used in
[18] in order to model the control of an automated manufacturing system. This model is
different from our CAs and is more related to Petri nets.

The above works take the first view on automata, namely study them as recognizers of
languages. As for the second view, a lot of research has been done on optimal utilization of
limited resources. In particular, as discussed above, max-utilization of a CA corresponds to a
maximum flow in a network [11]. By restricting the domain from which accepted words can
be chosen, we get an intractable problem. This resemble the intractability of some variants
of the max-flow problem, such as k-bounded flow [4], or max-flow with bounded-length
paths [17].

2 Preliminaries

A nondeterministic finite automaton (NFA, for short) is a tuple A = 〈Σ, Q,Q0,∆, F 〉, where
Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, ∆ ⊆ Q×Σ×Q
is a transition relation, and F ⊆ Q is a set of final states. Given a word w = σ1 · σ2 · · ·σl,
a run of A on w is a sequence r of successive transitions in ∆ that reads w and starts in
a transition from the set of initial states. Thus, r = 〈q0, σ1, q1〉, 〈q1, σ2, q2〉, . . . , 〈ql−1, σl, ql〉,
for q0 ∈ Q0. The run is accepting if ql ∈ F . We sometimes refer to the transitions function
δ : Q× Σ→ Q induced by ∆, thus q′ ∈ δ(q, σ) iff ∆(q, σ, q′). The NFA A accepts the word
w iff it has an accepting run on it. Otherwise, A rejects w. The language of A, denoted
L(A) is the set of words that A accepts. If |Q0| = 1 and for all q ∈ Q and σ ∈ Σ there is at
most one q′ ∈ Q with ∆(q, σ, q′), then A is deterministic. Note that a deterministic finite
automaton (DFA) has at most one run on each word.

A nondeterministic capacitated automaton (NCA, for short) is an NFA in which each
transition has a capacity, bounding the number of times it may be traversed. A transition

O. Kupferman and T. Tamir 37

may not be bounded, in which case its capacity is∞. Let IN∞ = IN∪{∞} and IN+ = IN\{0}.
Formally, an NCA is a pair 〈A, c〉, where A is an NFA and c : ∆→ IN∞ is a capacity function
that maps each transition in ∆ to its capacity. A run of 〈A, c〉 is a run of A in which the
number of occurrences of each transition e ∈ ∆ is at most c(e). When A is deterministic,
then so is 〈A, c〉. For a CA A and a set of words S, we say that A mutually accepts S if
there are |S| accepting runs, one for each word in S, such that for each transition e ∈ ∆, the
total number of occurrences of e in all these runs is at most c(e).

For a capacity function c : ∆→ IN∞, let c↓ be the set of capacity functions obtained by
closing c downwards. Formally, a function c′ : ∆→ IN∞ is in c↓ if for all transitions e ∈ ∆
with c(e) = ∞, we have c′(e) = ∞, and for all transitions e ∈ ∆ with c(e) ∈ IN, we have
0 ≤ c′(e) ≤ c(e). It is easy to see that the size of c↓, denoted |c↓|, is Πe:c(e)∈IN+(c(e) + 1).
Thus, |c↓| is exponential in the number of transitions with bounded capacities.

3 Theoretical Properties of NCAs

In this section we study the expressive power and succinctness of NCAs with respect to
NFAs, as well as their determinization.

3.1 Capacities Removal
I Theorem 1. NCAs accept regular languages: Every NCA 〈A, c〉 has an equivalent NFA
A′. The size of A′ is linear in the size of A and |c↓|.

Proof. Given an NCA 〈A, c〉 with A = 〈Σ, Q,Q0,∆, F 〉, we define an equivalent NFA
A′ = 〈Σ, Q′, Q′0,∆′, F ′〉 as follows.

Q′ = Q × c↓ and Q′0 = Q0 × {c↓}. That is, each state in A′ maintains both the
corresponding state in A and the capacities that are left to be consumed.
For q, q′ ∈ Q, d, d′ ∈ c↓, and σ ∈ Σ, we have that ∆′(〈q, d〉, σ, 〈q′, d′〉) iff ∆(q, σ, q′),
d(〈q, σ, q′〉) > 0, d′(e) = d(e) for all e 6= 〈q, σ, q′〉, and d′(〈q, σ, q′〉) = d(〈q, σ, q′〉)−1. That
is, d′ is updated to take the traversal of 〈q, σ, q′〉 into an account by reducing its capacity
by 1.
F ′ = F × c↓.

Note that the construction preserves determinism, thus if A is a DCA, the obtained A′ is
a DFA. It is not hard to prove that each run r of A corresponds to a run of A′, obtained by
pairing each state in r by the capacity function that reflects the updates to c according to
the transitions traversed so far. Dually, each run r′ of A′ corresponds to a run of A, obtained
by projecting r′ on the Q-elements of its states. By the definition of A′, the obtained run
respects the bounds on the transitions.

We prove that the blow-up in |c↓| cannot be avoided. We prove it already for single-
state DCAs. Given two parameters n,m ∈ IN, consider the DCA 〈An,m, cn,m〉, where
An,m = 〈{1, . . . , n}, {q}, {q},∆,{q}〉 is such that each letter i ∈ {1, . . . , n} contributes to ∆
the transition 〈q, i, q〉. That is, An,m consists of a single state with one self-loop transition
for each of the n letters. The capacity of all transitions is m. Thus, cn,m(〈q, i, q〉) = m for
all i ∈ {1, . . . , n}. It is easy to see that the language Ln,m of 〈An,m, cn,m〉 is the set of all
words in which each of the letters {1, . . . , n} appears at most m times, and that every NFA
that recognizes Ln,m needs at least nm states. J

Theorem 1 implies that, like regular languages, NCAs and DCAs are closed under union,
intersection, and complementation, and that NCAs can be determinized. The question is

FSTTCS 2014

38 Properties and Utilization of Capacitated Automata

q0 q1
0, ∞

n, m

2, m1, m

n, ∞

1, ∞0, ∞

...
...

Figure 2 An NCA for L′
n,m.

the blow-up involved in the corresponding constructions, in particular whether they need to
involve removal of capacities.

3.2 Determinization

In this section we study the succinctness of NCAs with respect to DCAs. We show that
NCAs are exponentially more succinct not only in the number of states but also in the
number of transitions. More precisely, determination may involve a blow-up linear in c↓.
This is surprising, as we do allow the obtained deterministic automaton to be capacitated.
We first prove that there are languages for which capacities are not useful in the deterministic
setting. A language L ⊆ Σ∗ is strongly liveness if L = Σ∗ · L [1]. Thus, in terms of temporal
logic, strongly liveness languages correspond to properties if the form “eventually ψ” for
some behavior ψ.

I Lemma 2. A DCA for a strongly liveness language L is not smaller than a DFA for L.

Proof. Consider a DCA 〈A, c〉 that recognizes L. We say that a word w ∈ Σ∗ consumes
〈A, c〉 if, after reading w, a run of A can proceed only along transitions with infinite capacity
(or cannot proceed at all). It is easy to see that there exists at least one word w that consumes
〈A, c〉. Let q be the state that A reaches by reading w. Since L = Σ∗ · L, we have that
w · L ⊆ L. Hence, since A is deterministic, the language of the DFA A′ obtained from A by
making q its initial state and by removing all transitions that do not have infinite capacity is
L. The size of A′ is at most the size of A, and we are done. J

I Theorem 3. Determinization of NCAs involves a blow-up exponential in Q and linear
in c↓.

Proof. The exponential blow-up with respect to Q follows from the known exponential
blow-up in determinization of NFAs [20]. In order to prove the blow-up in c↓, we describe a
family L′n,m, for n,m ≥ 1 of strongly liveness languages such that L′n,m is over the alphabet
Σn = {0, . . . , n}, it can be recognized by a two-state NCA with n transitions with capacity
m. By Lemma 2, the size of a DCA for L′n,m is equal to the size of a DFA for it, which is at
least mn.

Let Ln,m be the language of all words w over {1, . . . , n} such that each letter in {1, . . . , n}
appears in w at most m times (the same language as in the proof of Theorem 1). We define
L′n,m = Σ∗n · 0 · Ln,m, Clearly, L′n,m is a strongly liveness language, and it can be recognized
by the two-state NCA described in Figure 2. J

O. Kupferman and T. Tamir 39

4 Decision Problems

In this section we study the following decision problems for NCAs and DCAs. Below we also
state their known complexity in the traditional setting (see, for example [12]).

The nonemptiness problem: given an automaton A, decides whether L(A) 6= ∅. For both
NFA and DFA, the nonemptiness problem is NLOGSPACE-complete.
The membership problem: given an automaton A and a finite word w, decide whether
w ∈ L(A). For NFA and DFA, the membership problem is NLOGSPACE-complete and
LOGSPACE-complete, respectively.
The relative nonemptiness problem: given an automaton A and a language L, decide
whether A accepts at least one word from L. The relative nonemptiness problem for an
NFA or a DFA A and a language L given by an NFA or a DFA is NLOGSPACE-complete.

I Theorem 4. The nonemptiness problem for NCAs and DCAs is NLOGSPACE-complete.

Proof. An NCA is nonempty iff there is a simple path from some initial state to some
accepting state. Since the path is simple, capacities do not play a role (beyond exclusion of
transitions with capacity 0). Thus, nonemptiness can be reduced to reachability, implying
membership in NLOGSPACE. The lower bound follows from NLOGSPACE hardness for
DFA emptiness. J

I Theorem 5. The membership problem can be solved in linear time for DCAs and is
NP-complete for NCAs.

Proof. We start with the upper bounds. Given a DCA 〈A, c〉 and a word w, we can trace
the single run of 〈A, c〉 on w and check that it ends in an accepting state and respects c.
When 〈A, c〉 is an NCA, a witness to the membership of w in 〈A, c〉 is an accepting run of
〈A, c〉 on w. As above, it can be checked in linear time.

For NCAs, we prove hardness in NP already for the case |Σ| = 1. We describe a
reduction from the problem of deciding whether a given directed graph has a Hamiltonian
cycle – one that visits all vertices of the graph exactly once. Given a graph G = 〈V,E〉,
we construct the NCA 〈A, c〉 as follows (see an example in Figure 3. The graph G is
on the left, the NCA A is in the middle). Let v1 be some vertex in V . Then, A =
〈{σ}, V × {in,out}, {〈v1, out〉},∆, {〈v1, out〉}〉 is such that each vertex v ∈ V contributes to
∆ the transition 〈〈v, in〉, σ, 〈v, out〉〉 with capacity 1, and each edge 〈u, v〉 in E contributes
to ∆ the transition 〈〈u, out〉, σ, 〈v, in〉〉, again with capacity 1. It is not hard to see that G
has a Hamiltonian cycle iff 〈A, c〉 accepts the word σ2|V |. Indeed, having capacity 1 on the
transitions that correspond to vertices in V guarantees that each vertex is visited at most
once, thus a word of length 2|V | must close a cycle and visits exactly all vertices in G. J

I Theorem 6. The relative nonemptiness problem for NCAs and DCAs relative to languages
given by NCAs, DCAs, NFAs, or DFAs is NP-complete.

Proof. Consider a capacitated automaton 〈A, c〉 and an automaton U such that we want to
check the nonemptiness of A with respect to L(U). Note that we have eight cases to consider,
reflecting whether A is an NCA or a DCA and whether U is an NCA, DCA, NFA, or DFA.
We prove that all eight cases are NP-complete.

We start with membership in NP for the most general case, where both 〈A, c〉 and
U = 〈A′, c′〉 are NCAs. A witness to the relative nonemptiness is a word w and accepting
runs of 〈A, c〉 and 〈A′, c′〉 on it. The word w does not traverse cycles in the product of A

FSTTCS 2014

40 Properties and Utilization of Capacitated Automata

A B

CD

AinAout BinBout

CinCoutDinDout

σ,1 σ,1

σ,1σ,1

σ,1

σ,1

σ,1

σ,1

σ,1

AinAout BinBout

CinCoutDinDout

A,1 B,1

C,1D,1

C,1

A,1

D,1

B,1

C,1

Figure 3 Two reductions from the Hamiltonian cycle problem.

and A′. It is thus of polynomial length in the product, which is of size |A| · |A′|. Checking
that the runs respect c and c′ can also be done in polynomial time.

We prove hardness in NP for the most restricted case, where 〈A, c〉 is a DCA and U
is a DFA. We describe a reduction from the problem of deciding whether a given directed
graph has a Hamiltonian cycle (see an example in Figure 3. The graph G is on the left,
the NCA A is on the right). Given G = 〈V,E〉 with V = {v1, . . . , vn}, we construct
A = 〈V, V × {in,out}, {〈v1, out〉},∆, {〈v1, out〉}〉, where v1 is an arbitrary vertex in V . Each
vertex v ∈ V contributes to ∆ the transition 〈〈v, in〉, v, 〈v, out〉〉 with capacity 1, and each
edge 〈u, v〉 in E contributes to ∆ the transition 〈〈u, out〉, v, 〈v, in〉〉 with capacity 1. It is easy
to see that A is indeed a DCA and that G has a Hamiltonian cycle iff A accepts a word in
the language [(v1 ·v1) + · · ·+ (vn ·vn)]n, which can be recognized by a DFA with O(n2) states.
In the example, the Hamiltonian cycle ABDCA corresponds to the word BBDDCCAA. J

5 The Maximum Utilization Problem

A natural problem that arises when reasoning about systems that consist of resources with
limited capacities is to utilize these resources in the best way. In our model, the maximum
utilization problem is defined as follows. Given a CA 〈A, c〉, return a multiset W of words,
such that 〈A, c〉 has enough capacity to mutually accept all the words in W , and |W | is
maximal. We refer to W as an optimal utilization mutiset for 〈A, c〉.

As discussed in Section 1, the max-utilization problem can be viewed as a generalization of
the max-flow problem in a network. The CA model enables a rich description of the feasible
routes. Sometimes, not all the sequences allowed by the CA are desirable. Accordingly,
we also consider the max restricted utilization problem, where the input to the problem
also includes a language L, specifying the desirable sequences. Then, the words in the
optimal utilization multiset must belong to L. In Section 5.1, we show that the unrestricted
max-utilization problem can be solved in polynomial time by a reduction to the classical
network-flow problem [11]. In section 5.2 we study the restricted case and show that adding
restrictions makes the problem much more complex.

5.1 Maximum Unrestricted Utilization
We present an optimal algorithm for the max-utilization problem. The algorithm is based on
a reduction to a max-flow problem in a network. Recall that a max-flow problem is defined
over a flow-network given by a directed graph G = 〈V,E〉, two vertices s, t ∈ V designated as
the source and the target vertices, and a capacity function c that maps each edge e ∈ E to a

O. Kupferman and T. Tamir 41

positive integral capacity c(e). For a vertex v, let in(v) and out(v) denote the set of edges
into and out of v, respectively. A legal flow is a function f : E → IR such that for every
edge e ∈ E, it holds that 0 ≤ f(e) ≤ c(e), and for every vertex v ∈ V \ {s, t}, it holds that∑
e∈in(v) f(e) =

∑
e∈out(v) f(e). A max-flow is a legal flow that maximizes the flow leaving

the source, given by
∑
e∈out(s) f(e)−

∑
e∈in(s) f(e).

I Theorem 7. The max-utilization problem for NCAs and DCAs can be solved in polynomial
time.

Proof. Let 〈A, c〉 be an NCA, with A = 〈Σ, Q,Q0,∆, F 〉. If A has a path from Q0 to F all
whose transitions have infinite capacity (in particular, if Q0 ∩ F 6= ∅), then, as the optimal
utilization multiset is not restricted, so is the max-flow, and we return as a witness the
(possibly empty) word along the above accepting run.

Otherwise, the optimal utilization multiset must be finite and we proceed as follows. Given
〈A, c〉, we construct a flow-network G = 〈Q ∪ {s, t}, E〉, where every transition 〈p, σ, q〉 ∈ ∆
induces an edge 〈p, q〉 in E with capacity c(〈p, σ, q〉). The set E includes also the set of edges
{s}×Q0 and F ×{t}, all with an unbounded capacity. It is easy to see that a max-flow in G
corresponds to a maximal multiset of words that can be mutually processed by 〈A, c〉. The
optimal utilization multiset W can be obtained by tracking the (s, t)-paths in the max-flow.
Note that since there are no restriction on the words in W , the alphabet in 〈A, c〉 plays no
role. J

5.2 Maximum Restricted Utilization
In the max restricted-utilization problem, we are given, in addition to a CA 〈A, c〉, also a
regular language L. The optimal utilization multi set W then has to contain only words
from L. We refer to L as the restricting language.

We present a polynomial-time optimal algorithm for the max restricted-utilization problem
for the case the restricting language consists of words of length at most 2. This is indeed a
very limited class of languages. Yet, it is tight, as we provide an APX-hardness proof already
for the case that 〈A, c〉 is a DCA with c ≡ 1 and the restricting language consists of words of
length 3.

I Theorem 8. When all the words in the restricting language are of length at most 2, the
max restricted-utilization problem can be solved in polynomial time.

Proof. Let 〈A, c〉 be an NCA and L a restricting language all of whose words are of length
at most 2. First, if ε ∈ L(〈A, c〉) ∩L, then the optimal utilization multiset is infinite, and we
are done. Hence, we assume that all words in L are of length 1 or 2. We present an optimal
algorithm that is based on reducing the problem to a maximum b-matching problem. An
instance of b-matching consists of an undirected graph G = 〈V,E〉 and a budget function
b : V → IN. A b-matching is an assignment of a non-negative integer weight xe to every edge
e ∈ E, such that for every vertex v ∈ V , the sum of weights on edges incident with v is at
most b(v). The maximum b-matching problem is to find a matching of maximum profit; that
is, max

∑
e xe. The graph G need not be simple. That is, self-loops and parallel edges are

allowed. By [2], the maximum b-matching problem can be solved in time polynomial in |V |
and |E|.

Let A = 〈Σ, Q,Q0,∆, F 〉, and let W1(L) and W2(L) denote the words of length 1 and
2 in L, respectively. For every σ ∈ W1(L), let Aσ ⊆ ∆ be the set of transitions that form
an accepting run on σ in 〈A, c〉. Formally, e ∈ Aσ iff e = 〈q0, σ, p〉 for q0 ∈ Q0, p ∈ F , and
c(e) ≥ 1. For every w = σ1 ·σ2 ∈W2(L), let Aw ⊆ ∆×∆ be the set of pairs of transitions that

FSTTCS 2014

42 Properties and Utilization of Capacitated Automata

a, 3
e1 b, 2

e2

e3

a, 1

b, 2
e4

c, 1
e5

v0, 5
e4, 2

e1, 3

e3, 1

e2, 2

e5, 1
a aa

ab

a ab

ac

bc

aa

Figure 4 An NCA and the b-matching instance constructed for L = {a, aa, ab, ac, ba, bc, cc}.

form an accepting run on w in A. Formally, 〈e1, e2〉 ∈ Aw iff e1 = 〈q1, σ1, p1〉, e2 = 〈q2, σ2, p2〉
for q1 ∈ Q0, p1 = q2, p2 ∈ F , c(e1) ≥ 1, and c(e2) ≥ 1. If e1 = e2, then we also require
c(e1) ≥ 2. Note that if w 6∈ L(A), then Ew is empty. Also, if w has several accepting runs in
A, then |Ew| > 1. It is possible to compute the above sets in time O(|Q|2).

We construct an undirected graph G = 〈∆ ∪ {v0}, E〉, where E consists of edges of two
types, defined as follows.
1. 〈ei, v0〉 ∈ E iff there exists a word σ ∈W1(L) such that ei ∈ Aσ.
2. 〈ei, ej〉 ∈ E iff there exists a word w ∈W2(L) such that 〈ei, ej〉 ∈ Aw.
Every edge of type (ei, v0) corresponds to a 1-letter word. Every edge of type (ei, ej)
corresponds to at least one 2-letter word. Since Q0 may include several initial states, it is
possible that both 〈ei, ej〉 and 〈ej , ei〉 form accepting runs in 〈A, c〉. It is also possible to
have a self-loop in G if A includes a self-loop from the initial state.

An example of the reduction is given in Figure 4. The CA 〈A, c〉 is on the left and the
b-matching instance constructed for L = {a, aa, ab, ac, ba, bc, cc} is on the right. Note that
each of the words a, aa, and ab has two possible accepting runs in 〈A, c〉. Thus, each of these
words induces two edges in G. Words that belong to L \ L(〈A, c〉), like ba and cc, as well as
words that belong to L(〈A, c〉) \ L, like b or bb, do not induce an edge in G.

To complete the definition of the b-matching instance, we set the vertex budgets as follows.
For every ei ∈ ∆, we set b(ei) = ci. For v0, we set b(v0) =∞.

Consider a feasible b-matching in G. By the construction of G, every edge in E corresponds
to a word in L(〈A, c〉) ∩ L. The budget constraints on the vertices correspond to the edge-
capacities. Thus, every set of words from L that can be mutually accepted by 〈A, c〉
corresponds to a feasible b-matching in G and vice-versa. In particular, a maximum b-
matching corresponds to an optimal utilization multiset that is contained in L. J

Next, we show that the above is the most positive result we can achieve for the max
restricted-utilization problem. That is, when L may include three-letter words, the max-
utilization problem becomes APX-hard. That is, there exists a constant c such that it is
NP-hard to find an approximation algorithm with approximation ratio better than c.

I Theorem 9. The max restricted-utilization problem is APX-hard. This is valid already
when the restricting language consists only of words of length 3 and a unit capacity DCA.

Proof. We show an approximation-preserving reduction from the maximum 3-bounded 3-
dimensional matching problem (3DM-3). The input to the 3DM-3 problem is a set of triplets
T ⊆ X × Y × Z, where |X| = |Y | = |Z| = n. The number of occurrences of every element of

O. Kupferman and T. Tamir 43

X ∪ Y ∪ Z in T is at most 3. The number of triplets is |T | ≥ n. The desired output is a
3-dimensional matching in T of maximal cardinality; i.e., a subset T ′ ⊆ T , such that every
element in X ∪ Y ∪ Z appears at most once in T ′, and |T ′| is maximal. Kann showed in [14]
that 3DM-3 is APX-hard.

Given an instance of 3DM-3, we construct a DCA 〈A, c〉, with A = 〈Σ, Q,Q0,∆, F 〉, as
follows. First, Σ = X ∪ Y ∪ Z,Q = {q0, q1, q2, q3}, Q0 = {q0}, F = {q3}. The transition
relation ∆ consists of 3n transitions all having capacity 1. There are n parallel transitions
〈q0, xi, q1〉 for all 1 ≤ i ≤ n, n parallel transitions 〈q1, yj , q2〉 for all 1 ≤ j ≤ n, and n parallel
transitions 〈q2, zk, q3〉 for all 1 ≤ k ≤ n. The capacity of all transitions is 1.

To complete the reduction, we define the restricting language L = {xi ·yj ·zk : 〈xi, yj , zk〉 ∈
T}. Note that the reduction is polynomial. Also, since the 3DM instance is 3-bounded, we
have that |L| = O(n).

Let W ⊆ L be a set of words that can be mutually accepted by A. The unit capacities
imply that every element in X ∪ Y ∪ Z appears in at most one word in W . Thus, every
matching in T corresponds to a possible utilization multiset W . In particular, a maximum
matching corresponds to an optimal utilization multiset for 〈A, c〉, contained in L. J

I Remark. In the weighted max (possibly restricted) utilization problem, there is a profit
function p : Σ∗ → IR that associates profit with each word. The profit function can be given,
for example, by a weighted automaton. The optimal utilization set is now a set W ⊆ Σ∗ that
can be mutually accepted by 〈A, c〉 and for which

∑
w∈W p(w) is maximal. In the restricted

variant, we require W ⊆ L.
Clearly, the lower bounds we prove apply also to the weighted version. As we now show,

the polynomial upper bound for the case of a restricting language that consists only of
words of length at most 2 can be extended to the weighted setting. For that, we also need
a weighted version of the b-matching problem. There, every edge e ∈ E is associated with
a profit p(e), and the maximum b-matching problem is to find a matching that maximizes∑
e p(e)xe. The algorithm in [2] applies also to the weighted variant.
Now, in the algorithm described in the proof of Theorem 8, we define the profits as

follows. For every edge e ∈ E, we set p(e) to be the profit p(w) of the corresponding word.
If e corresponds to two words, w1, w2, then set p(w) = max{p(w1, p(w2)}. J

References
1 B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters, 21:181–

185, 1985.
2 R.P. Anstee. A polynomial algorithm for b-matching: An alternative approach. Informa-

tion Processing Letters, 24:153–157, 1987.
3 G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular objectives.

In Proc. 17th Int. Conf. on Foundations of Software Science and Computation Structures,
LNCS 8412, pages 119–133. Springer, 2014.

4 G. Baier, E. Köhler, and M. Skutella. The k-splittable flow problem. Algorithmica, 42(3-
4):231–248, 2005.

5 B. Boigelot and P. Godefroid. Symbolic verification of communication protocols with infin-
ite state spaces using qdds. In Proc. 8th Int. Conf. on Computer Aided Verification, LNCS
1102, pages 1–12. Springer, 1996.

6 A. Bouajjani, P. Habermehl, and T. Vojnar. Verification of parametric concurrent systems
with prioritised FIFO resource management. Formal Methods in System Design, 32(2):129–
172, 2008.

FSTTCS 2014

44 Properties and Utilization of Capacitated Automata

7 M. Cadilhac, A. Finkel, and P. McKenzie. On the expressiveness of Parikh automata and
related models. In 3rd Workshop on Non-Classical Models for Automata and Applications,
pages 103–119, 2011.

8 T. Colcombet, D. Kuperberg, and S. Lombardy. Regular temporal cost functions. In Proc.
37th Int. Colloq. on Automata, Languages, and Programming, LNCS 6199, pages 563–574,
2010.

9 H. Comon and Y. Jurski. Multiple counters automata, safety analysis and presburger
arithmetic. In Proc. 10th Int. Conf. on Computer Aided Verification, LNCS 1427, pages
268–279. Springer, 1998.

10 M. Droste, W. Kuich, and H. Vogler (eds.). Handbook of Weighted Automata. Springer,
2009.

11 L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton Univ. Press, Princeton, 1962.
12 J. E. Hopcroft and R. Motwani and J.D. Ullman, Introduction to Automata Theory, Lan-

guages, and Computation (2nd Edition). Addison-Wesley, 2000.
13 O.H. Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal

of the ACM, 25(1):116–133, 1978.
14 V. Kann. Maximum bounded 3-dimensional matching is max-snp-complete. Information

Processing Letters, 37(1):27–35, 1991.
15 F. Klaedtke and H. Rueß. Parikh automata and monadic second-order logics with linear

cardinality constraints. Technical Report 177, Universität Freiburg, 2002.
16 F. Klaedtke and H. Rueß. Monadic second-order logics with cardinalities. In Proc. 30th Int.

Colloq. on Automata, Languages, and Programming, LNCS 2719, pages 681–696. Springer,
2003.

17 A.R. Mahjoub and S.T. McCormick. Max flow and min cut with bounded-length paths:
complexity, algorithms, and approximation. Mathematical Programming, 124(1-2):271–284,
2010.

18 R.G. Qiu and S.B. Joshi. Deterministic finite capacity automata: a solution to reduce the
complexity of modeling and control of automated manufacturing systems. In Proc. Symp.
on Computer-Aided Control System Design, pages 218 –223, 1996.

19 M.O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.
20 M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of

Research and Development, 3:115–125, 1959.

Algorithms, Games, and Evolution∗

Erick Chastain1, Adi Livnat2, Christos H. Papadimitriou3, and
Umesh V. Vazirani4

1 Computer Science Department, Rutgers University
erick@cs.rutgers.edu

2 Department of Biological Sciences, Virginia Tech
Blacksburg, VA 24061, USA
adi@vt.edu

3 Computer Science Division, University of California, Berkeley
Berkeley, CA, 94720, USA
christos@cs.berkeley.edu

4 Computer Science Division, University of California, Berkeley
Berkeley, CA, 94720, USA
vazirani@cs.berkeley.edu

Abstract
Even the most seasoned students of evolution, starting with Darwin himself [1], have occasionally
expressed amazement at the fact that the mechanism of natural selection has produced the whole
of Life as we see it around us. From a computational perspective, it is natural to marvel at
evolution’s solution to the problems of robotics, vision and theorem proving! What, then, is the
complexity of evolution, viewed as an algorithm? One answer to this question is 1012, roughly
the number of sequential steps or generations from the earliest single celled creatures to today’s
Homo Sapiens. To put this into perspective, the processor of a modern cell phone can perform
1012 steps in less than an hour. Another answer is 1030, the degree of parallelism, roughly the
maximum number of organisms living on the Earth at any time. Perhaps the answer should be
the product of the two numbers, roughly 1042, to reflect the total work done by evolution, viewed
as a parallel algorithm.

Here we argue, interpreting our recently published paper [2], that none of the above answers
is really correct. Viewing evolution as an algorithm poses an additional challenge: recombination.
Even if evolution succeeds in producing a particularly good solution (a highly fit individual), its
offspring would only inherit half its genes, and therefore appear unlikely to be a good solution.
This is the core of the problem of explaining the role of sex in evolution, known as the “queen of
problems in evolutionary biology” [3].

The starting point of [2] is the diffusion-equation-based approach of theoretical population
geneticists [4], who analyze the changing allele frequencies (over the generations) in the gene
pool, consisting of the aggregate of the genetic variants (or “alleles”) over all genes (or “loci”)
and over all individuals in a species. Taking this viewpoint to its logical conclusion, rather than
acting on individuals or species or genes, evolution acts on this gene pool, or genetic soup, by
making it more “potent”, in the sense that it increases the expected fitness of genotype drawn
randomly from this soup. Moreover, for much genetic variation [5], this soup may be assumed
to be in the regime of weak selection, a regime where the probability of occurrence of a certain
genotype involving various alleles at different loci is simply the product of the probabilities of
each of its alleles. In this regime, we show in [2] that evolution in the regime of weak selection
can be formulated as a game, where the recombining loci are the players, the alleles in those
loci are possible moves or actions of each player, and the expected payoff of each player-locus is

∗ This work was partially supported by National Science Foundation Grant CCF-1064785, National
Science Foundation Grant CCF-0964033, Templeton Foundation Grant 39966, and National Science
Foundation Grant CCR-0905626.

© Erick Chastain, Adi Livnat, Christos H. Papadimitriou and Umesh V. Vazirani;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 45–46

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46 Algorithms, Games, and Evolution

precisely the organism’s expected fitness across the genotypes that are present in the population.
Moreover, the dynamics specified by the diffusion equations of theoretical population geneticists
is closely approximated by the dynamics of multiplicative weight updates (MWUA) [6].

The algorithmic connection to MWUA brings with it new insights for evolutionary biology,
specifically, into the question of how genetic diversity is maintained in the presence of natural
selection. For this it is useful to consider a dual view of MWUA [7], which expresses “what each
gene is optimizing” as it plays the game. Remarkably this turns out to be a particular convex
combination of the entropy of its distribution over alleles and cumulative expected fitness. This
sheds new light on the maintenance of diversity in evolution.

All of this suggests that the complexity of evolution should indeed be viewed as 1012, but
for a subtle reason. It is the number of steps of multiplicative weight updates carried out on
allele frequencies in the genetic soup. A closer examination of this reveals further that the
accurate tracking of allele frequencies over the generations requires the simulation of a quadratic
dynamical system (two parents for each offspring). Moreover the simulation of even simple
quadratic dynamical systems is known to be PSPACE-hard [8]. This suggests that the tracking
of allele frequencies might require large population sizes for each species, putting into perspective
the number 1030. Finally, it is worth noting that in this view there is a primacy to recombination
or sex, which serve to provide robustness to the mechanism of evolution, as well as the framework
within which MWUA operates.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases evolution, recombination, coordination games, multiplicative weight up-
dates

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.45

Category Invited Talk

References
1 Darwin, F. ed. 1887. The life and letters of Charles Darwin, including an autobiographical

chapter. Vol. 2. London: John Murray.
2 Chastain, E., Livnat, A., Papadimitriou, C., Vazirani, U. “Algorithms, Games, and Evolu-

tion,” PNAS, vol. 111, no. 29, 10620–10623, 2014.
3 Bell, G. 1982. The Masterpiece of Nature: the Evolution and Genetics of Sexuality. Uni-

versity of California Press, Berkeley.
4 Kimura, M. 1985. The Neutral Theory of Molecular Evolution. Cambridge University Press.
5 Nei, M. 2005. “Selectionism and neutralism in molecular evolution,” Mol. Biol. Evol.,

22:2318–2342.
6 Arora, S., Hazan E., Kale S. “The Multiplicative Weights Update Method: A Meta-

Algorithm and Applications,” Theory of Computing, 8(1): 121–164, 2012.
7 Orecchia L., Mahoney M. “Implementing Regularization Implicitly Via Approximate Ei-

genvector Computation,” Proc. 28th Int’l Conf. Machine Learning, pp. 121–128, 2011.
8 Arora, S., Rabani, Y., Vazirani, U., “Simulating quadratic dynamical systems is PSPACE-

complete,” Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pp. 459–467, 1994.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.45

The Polynomial Method in Circuit Complexity
Applied to Algorithm Design∗

Richard Ryan Williams

Computer Science Department, Stanford University
353 Serra Mall, Stanford, CA 94305, USA
rrw@cs.stanford.edu

Abstract
In circuit complexity, the polynomial method is a general approach to proving circuit lower bounds
in restricted settings. One shows that functions computed by sufficiently restricted circuits are
“correlated” in some way with a low-complexity polynomial, where complexity may be meas-
ured by the degree of the polynomial or the number of monomials. Then, results limiting the
capabilities of low-complexity polynomials are extended to the restricted circuits.

Old theorems proved by this method have recently found interesting applications to the design
of algorithms for basic problems in the theory of computing. This paper surveys some of these
applications, and gives a few new ones.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases algorithm design, circuit complexity, polynomial method

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.47

Category Invited Talk

1 Introduction

The polynomial method was developed for proving impossibility results on the capabilities of
“low-complexity” circuits. (The usual measures of “low-complexity” for circuits are either
low size, or low depth, or both.) The idea of the polynomial method, at a high level, is
to show that functions computable by low-complexity circuits can be also be computed
(approximately or exactly) by a “low-complexity” polynomial over some algebraic structure.
Typically, the complexity of a polynomial is measured by its degree, but the complexity
could also be the number of monomials. The survey by Beigel [8] contains many references
to papers in which low-complexity circuits are represented via low-complexity polynomials,
resulting in lower bounds against those circuits.

While the method was initially conceived to show the limitations of computational devices,
the intermediate theorems proved via the method turn out to also be rather useful in the
design of algorithms for certain problems – positive results about computational devices. Over
the last few years, we have found some unexpected applications of the polynomial method
to developing more efficient algorithms for several fundamental computational problems.
Sometimes it is natural to see how the polynomial method might help; in other cases, it is
not at all obvious, and some ingenuity is required. An intuitive outline of the approach is:
1. Find a “hard part” of one’s computational problem that can be modeled by low-complexity

circuits.

∗ This work was partially supported by the National Science Foundation Grant CCF 1212372.

© Richard Ryan Williams;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 47–60

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

2. Apply the polynomial method to convert the low-complexity circuits into an algebraic,
polynomial form.

3. Use other algebraic algorithms to efficiently manipulate or evaluate these polynomials,
thereby solving the original “hard part” more efficiently.

This article outlines several instances of this approach. Some of the algorithms in this paper
are new to the literature; they are included to illustrate the versatility of the polynomial
method in algorithm design. Many proofs of the known results are omitted from this article;
however, some results stated here are new, and we shall describe their proofs in detail.

1.1 What This Survey is NOT
We make no claims to be the “first” to apply the polynomial method in positive algorithmic
ways. There are many theorems in mathematics and theoretical computer science regarding
the modeling of efficient functions with polynomials; discussing all of them is neither wise nor
possible in this space. Nevertheless, it’s important to note that there are more interesting
theorems related to the polynomial method, in the hopes that future work will make use of
them. To give three examples from different angles:
1. Many theorems from approximation theory (which is effectively the study of point-

wise approximating functions via “simple” expressions, such as polynomials over the
reals) have seen applications in areas such as communication complexity and quantum
computing [31, 7, 1]. We haven’t yet personally found algorithmic applications of these
polynomials for our problems of interest, but that is probably our own failing, and not
that of the polynomials.

2. Another example is the collection of lemmas in the literature informally known as the
Schwartz-Zippel-DeMillo-Lipton Lemma [35, 50, 16] concerning the (low) number of
zeroes in low-degree polynomials that are not identically zero. These lemmas are already
a staple of randomized algorithms [30].

3. The polynomial method has found a large number of applications in computational learning
theory, such as in algorithms for learning DNFs and low-depth circuits (e.g., [26, 27, 24, 19])
and learning functions with a small number of relevant variables (a.k.a. juntas) [29].

2 The Circuits

We assume the reader is familiar with the usual notion of Boolean circuits as directed acyclic
graphs, where n input gates are represented by 2n source nodes (the n input bits and their
negations), the output gate is represented by a single sink node, and each node (or “gate”)
is labeled with a boolean function. We shall consider two well-studied restrictions of this
general notion. Let d,m ∈ N.

An AC circuit of depth d is such that the longest path from any source to sink is at most
d, and each gate computes either the OR (of its inputs) or the AND (of its inputs).
An ACC circuit of depth d and modulus m is such that the longest path from any source
to sink is at most d, and each gate computes one of OR, AND, or MODm, where
MODm(y1, . . . , yt) = 1 if and only if

∑
i yi is divisible by m.

More background can be found in the textbooks [5, 42].

3 The Tools

In this survey, we shall focus on just a few polynomial constructions from the literature
which have recently been helpful. Again, we have made no attempt to be comprehensive.

R. R. Williams 49

Three notions of representation by polynomials will be considered in this article: exact
representations, probabilistic representations over finite fields and the integers,

In the following, let f : {0, 1}n → {0, 1} be a Boolean function with 0 representing
false and 1 representing true, and let R be a ring containing 0 and 1. We shall always be
evaluating polynomials over the values 0, 1, or −1. Since xa ∈ {x,−x} for all a ∈ N+ and
all x ∈ {0, 1,−1}, it suffices for us to consider multilinear polynomials, of the form

p(x1, . . . , xn) =
∑
S⊆[n]

cS
∏
i∈S

xi,

where cS ∈ R for all S. The degree of p is therefore the maximum cardinality of a subset S
such that cS 6= 0, and the sparsity of a polynomial is the number of S such that cS 6= 0.

3.1 Exact Representations
I Definition 1. An n-variate polynomial p(x1, . . . , xn) over R exactly represents f if for all
(a1, . . . , an) ∈ {0, 1}n, p(a1, . . . , an) = f(a1, . . . , an).

When R is a field, every Boolean function f has a unique exact representation as a
(multilinear) polynomial p. To give two simple examples, the function AND : {0, 1}2 → {0, 1}
is exactly represented by the polynomial p(x1, x2) = x1x2, and OR : {0, 1}2 → {0, 1} is
represented by p(x1, x2) = x1 + x2 − x1x2, over any field.

Exact representations are often implicitly used in algorithms, but their influence can
be somewhat hidden. For example, the inclusion-exclusion principle from combinatorics
can be applied to solve several hard problems more efficiently, e.g., counting the number of
Hamiltonian Paths in n-node graphs in 2n ·nO(1) time and nO(1) space [23]. This principle is
a consequence of the fact that the OR function on n variables can be exactly represented as:

OR(x1, . . . , xn) = 1−
n∏
i=1

(1− xi) =
∑

S⊆[n],|S|>0

(−1)|S|+1
∏
i∈S

xi.

In many situations, it is preferable to think of the Boolean function f with domain {−1, 1}
and codomain {−1, 1} instead, where −1 corresponds to true and 1 corresponds to false.
Then, a monomial x1x2 · · ·xn represents the PARITY of n bits rather than the AND of n
bits. Studying Boolean functions via this representation is often called the Fourier analysis
of Boolean functions and is a world unto itself; we recommend O’Donnell’s comprehensive
textbook on the subject [32].

3.2 Probabilistic Representations
The next representation we consider is a “randomized” notion of polynomial, which is
surprisingly powerful.

I Definition 2. Let D be a finite distribution of polynomials on n variables over R. The
distribution D is a probabilistic polynomial over R representing f with error δ if for all
(a1, . . . , an) ∈ {0, 1}n, Prp∼D[p(a1, . . . , an) = f(a1, . . . , an)] > 1− δ.

The degree of D is the maximum degree over all polynomials in D.

One may also define a probabilistic polynomial as a single polynomial with n “input”
variables and r “random” variables over a finite domain. Then, the distribution D in the
above definition is obtained by assigning the r variables to uniform random values. However,

FSTTCS 2014

50 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

it’s not hard to see that, for every finite distribution D of s polynomials of maximum degree
d and maximum sparsity m, one can recover a single probabilistic polynomial of degree d (in
the input variables) with only O(log s) random variables and sparsity O(m · s), by simple
interpolation (see also Tarui [40]).

Another important fact is that, (essentially) without loss of generality, the distribution
D contains only O(n) polynomials. Given any D for a function f and a parameter ε > 0,
uniformly sample t = O(n/ε2) polynomials p1, . . . , pt ∼ D, and form the distribution D′ over
{p1, . . . , pt} (as a multiset). By a standard Chernoff bound and union bound argument, the
distribution D′ is also a probabilistic polynomial for f , with essentially the same error (to
within ±ε).

Probabilistic polynomials were first utilized by Razborov [33] and Smolensky [36] in their
proofs that the MAJORITY function and MOD3 functions cannot be computed efficiently
with ACC circuits of constant depth and modulus 2, respectively. In particular, they showed
that every low-depth circuit with modulus 2 has a low-degree probabilistic representation
over the field F2. Here, we cite a strengthened version by Kopparty and Srinivasan:

I Theorem 3 ([36, 25]). For every ACC circuit C of depth d, size s, modulus 2, and n inputs,
and ε > 0, there is a probabilistic polynomial DC over F2 representing C with error ε, and
degree at most (4 log s)d−1 · (log 1/ε), such that a polynomial p can be sampled from DC in
nO(log s)d−1(log 1/ε) time.

The basic idea of the proof is to randomly replace each gate in the circuit with very
low-degree polynomials over F2, such that their composition leads to a low-degree polynomial
for the entire circuit C. (The proof of Theorem 3 gives a clever way of composing these
polynomials so as to keep the degree low, as a function of ε.) How do we construct these
very low-degree polynomials? Gates which are MOD2 functions are simply additions over F2.
A gate g which is a NOT of a gate h can be written as g = 1 + h over F2. Gates which are
ANDs can be expressed with NOTs and ORs by DeMorgan’s law. Finally, gates which are
ORs can be simulated probabilistically by multiplying a few sums of random subsets of the
inputs, modulo 2. For example, if the OR of x1, . . . , xn is 1, then

Pr
r1,...,rn∈{0,1}

[
n∑
i=1

rixi = 1 mod 2
]

= 1
2 .

On the other hand, if x1 = · · · = xn = 0, then no random sum of the xi’s will evaluate to 1.
In this way, a MOD2 can simulate an OR; multiplying several copies of such a probabilistic
polynomial (carefully) will allow us to reduce the probability of error.

The above ideas can be extended to any finite field; however, the degrees of the probabilistic
polynomials obtained may increase as a function of the field characteristic. (In particular,
sums of variables will need to be raised to their (p−1)th powers, to keep the output Boolean.)
It is natural to then ask how probabilistic polynomials over Z fare in computing AC circuits.

Beigel, Reingold, and Spielman [9] addressed this question, finding an O(log2 n)-degree
probabilistic polynomial for OR. The following improvement is due to Aspnes, Beigel, Furst,
and Rudich [6]:

I Theorem 4. For all ε > 0, there is a probabilistic polynomial over Z for the OR of n
variables with error ε, and degree O(logn · log 1/ε). Furthermore, for every AC circuit C
of depth d and size s, there is a probabilistic polynomial for C with error ε having degree
O(logd s · logd s/ε).

Let us sketch the proof. To compute the OR of x1, . . . , xn, choose progressively smaller
random subsets S0, . . . , Slogn+1 ⊆ {1, . . . , n}, where S0 = [n], and Si is a uniform random

R. R. Williams 51

subset of Si−1. The key claim is that, if the OR of x1, . . . , xn is 1, then with probability at
least 1/3, some Si contains exactly one j such that xj = 1. In that case, the polynomial

p(x1, . . . , xn) =
logn+1∏
i=0

1−
∑
j∈Si

xj


correctly computes the negation of OR (so, 1 − p computes OR). To reduce the error to
arbitrarily small ε, one can take O(log 1/ε) products of independent copies of p.

To get probabilistic polynomials for AC circuits of depth d and size s with error ε, apply
this randomized construction of p (and an analogous construction for AND) independently
to every gate in the AC circuit, with error parameter set to ε/s. Then, a union bound over
all s gates guarantees the result.

3.3 Symmetric Representation
Finally, we consider a polynomial representation of functions which may look somewhat
unusual: we try to represent functions by low-complexity polynomials h whose outputs are
“filtered” through another function g which gives {0, 1} output.

I Definition 5. Let h(x1, . . . , xn) be a polynomial over R, construed as a function h :
{0, 1}n → R. Let g : Im(h) → {0, 1} be arbitrary. We say that (g, h) is a symmetric
representation of f if for all (a1, . . . , an) ∈ {0, 1}n, g(h(a1, . . . , an)) = f(a1, . . . , an).

Why do we call this a “symmetric” representation? Suppose R = Z. If all coefficients of h
are in {0, 1} and h has s monomials, we have Im(h) ⊆ {0, 1, . . . , s}, and the “filter function”
g may then be viewed as a function on s variables which only depends on the number of
inputs which are true. That is, we may think of g as a symmetric Boolean function. To put
it another way, in this situation we can represent g ◦ h as a depth-two Boolean circuit with
s+ 1 gates, where the output gate computes a symmetric function and the layer of gates
nearest the inputs compute ANDs. (The function h counts up the number of ANDs which
output true, and the function g determines the output of the symmetric function.)

Symmetric representations are not as unusual as one might think. The class of polynomial
threshold functions refer to a particular type of symmetric representation, where the symmetric
function is a threshold function (checking whether the sum of all inputs exceeds a fixed value
T). Polynomial threshold functions have been studied for a rather long time, especially in
the context of neural networks ([28]).

We will use a particularly strong result on symmetric representations of functions com-
putable with ACC circuits, first proved by Beigel and Tarui, building on work of Yao:

I Theorem 6 (Yao [49], Beigel and Tarui [10]). There is a function α : N×N→ N such that
every Boolean function computable by an ACC circuit with size s, depth d, and modulus m
has a symmetric representation (g, h) with deg(h) ≤ (log s)α(d,m).

That is, every constant-depth and constant-modulus circuit can be symmetrically repres-
ented with a polynomial of degree that is polylogarithmic in the circuit size. It is widely
believed that this sort of representation should severely restrict the kinds of functions com-
putable with constant depth and modulus. It is believed that the MAJORITY of n bits
cannot be computed with polynomial-size ACC circuits of any constant depth or constant
modulus.

FSTTCS 2014

52 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

4 The Applications

Now we discuss how these tools have been recently applied in algorithm design.

4.1 All-Pairs Shortest Paths (APSP)
We first study the dense case of the All-Pairs Shortest Paths problem (APSP) on general
weighted graphs.

I Definition 7 (All-Pairs Shortest Paths (APSP)). In APSP, the input is a weighted
adjacency matrix, and the goal is to output a data structure S encoding all shortest paths
between any pair of nodes: when a pair of nodes (s, t) are fed to S, it must reply with the
shortest distance from s to t in Õ(1) time, and an actual shortest path from s to t in Õ(`)
time, where ` is the number of edges on the path.

The O(n3) time algorithms for APSP on n-node graphs [17, 43] are in the canon of
undergraduate computer science. But these algorithms could be suboptimal, as the input
graph can be encoded in Θ(n2 · logm) bits, where m ∈ N upper bounds the edge weights.
Indeed, in the real RAM model of computation (where additions and comparisons on “real-
valued” registers are allowed, and arbitrary bit operations on “word registers” of O(logn)
bits), Fredman [18] showed in 1975 that APSP is solvable in o(n3) time.

Since then, many papers on the dense case of APSP have been published, steadily
decreasing the running time of O(n3) [37, 38, 51, 20, 39, 21, 13, 14]. All of them obtained
only O(n3/ logc n) time algorithms for constants c ≤ 2. A major open problem is whether
APSP is solvable in truly subcubic time, i.e., O(n3−ε) time for some fixed ε > 0. A
recently developed hardness theory for APSP shows that such an algorithm would have many
consequences [34, 41, 3, 2].

Recently, the author gave new algorithms for APSP that run faster than O(n3/ logc n)
time, for every constant c [45]. In fact, the randomized version runs in n3/2Ω(

√
logn) time and

the deterministic version runs in n3/2Ω((logn)δ) time for some δ > 0; these are asymptotically
much better bounds. The algorithms crucially rely on the tools of the previous section: the
problem of efficiently computing APSP is reduced to efficiently computing a particular circuit
evaluation problem, and it is shown how to evaluate such circuits more efficiently than the
obvious approach.

Let us jump directly to the kind of circuit that arises from the proof. Implicit in the
APSP paper [45] is the following theorem, which we isolate for the reader’s convenience. For
d, n ∈ N, define the Boolean function OR-AND-COMP on 2d2 logn inputs as follows:

OR-AND-COMP(a1,1, a1,2, . . . , ad,d, b1,1, b1,2, . . . , bd,d) :=
d∨
i=1

d∧
j=1

[ai,j ≤ bi,j],

where the ai,j , bi,j are construed as logn-bit numbers and [A ≤ B] is true if and only if
A ≤ B.

I Theorem 8 (Implicit in [45]). Let A,B be two sets of n vectors, where each vector is
of length d2 and each vector component has logn bits. Suppose the function OR-AND-
COMP(a1, . . . , ad2 , b1, . . . , bd2) is computable in Õ(n2) time, for all n2 pairs (a1, . . . , ad2) ∈ A
and (b1, . . . , bd2) ∈ B simultaneously. Then APSP is solvable in Õ(n3/d) time.

Why is this theorem true? Here’s a little intuition. APSP involves comparing the sums
of weights on different paths, and determining which sums of weights are minimal among a

R. R. Williams 53

collection of sums. The OR-AND-COMP circuit is effectively finding a minimum sum among
a particular set of paths of length two. The ability to compute this minimum sum for all n2

pairs of vectors roughly corresponds to computing APSP in a tripartite graph with n nodes
in the first part, d nodes in a middle part, and n nodes in the third part, with first and third
part disconnected. Of course this is extremely handwavy, and the reader should consult the
paper for more details.

As the circuit OR-AND-COMP has 2d2 logn inputs, such an evaluation would naively
take O(n2d2 logn) time. Presumably, it is easier to get an Õ(n2) time algorithm when d is
small. The APSP paper [45] shows that for d = 2c

√
logn where c > 0 is some constant, the

Õ(n2) time evaluation required by Theorem 8 is actually possible. Here’s a high-level outline
of the algorithm.
1. First, computing [a ≤ b] for (logn)-bit strings a and b can be done with constant-depth

O((logn)2)-size circuits over AND and OR; that is, OR-AND-COMP is computable with
AC circuits of constant depth and polynomial size. So the first idea is to apply Razborov
and Smolensky (Theorem 3) (or Beigel-Tarui, Theorem 6) to the AC circuit for OR-AND-
COMP, reducing this circuit to a probabilistic polynomial (or a symmetric representation,
respectively). Given that this AC circuit has size O(d2 log2 n) on O(d2 logn) variables, we
find that OR-AND-COMP has a probabilistic polynomial over F2 with 2poly(log d,log logn)

monomials and < 1/n3 error, and there is a symmetric representation of OR-AND-COMP
with a similar monomial upper bound.

2. Second, given two sets A,B of n vectors as in the theorem statement, we show how to
efficiently evaluate polynomials with at most n.1 monomials on all pairs of vectors (one
from A and one from B). This step uses a special rectangular matrix multiplication
algorithm of Coppersmith [15], and runs in Õ(n2) time.

3. Thirdly, we combine 1 and 2. We use part 1 to generate a polynomial representation
for OR-AND-COMP with m = 2poly(log d,log logn) monomials. Choose d = 2(logn)δ , so
that δ > 0 is small enough to make m ≤ n.1. Now we can apply part 2 and compute
this OR-AND-COMP (with some probability of error) in Õ(n2) time. If our polynomials
are probabilistic, each evaluation may have some errors. However, if we take O(logn)
independent constructions and evaluations of these probabilistic polynomials for OR-
AND-COMP, the MAJORITY values of these O(logn) evaluations will yield the correct
values for OR-AND-COMP on all n2 pairs of points, with high probability. Finally,
applying Theorem 8, we thereby compute APSP in n3/2Ω((logn)δ) time.
With a few pages of technical work, the δ > 0 in the algorithm can be tuned down to

1/2 in the randomized case. The big question is whether we can set δ = 1, and yield a
truly-subcubic APSP algorithm. This looks difficult, and not just because it is a thorny
circuit evaluation problem.

If we try to use Theorem 8 to get truly-subcubic APSP, we would need a fast algorithm for
evaluating OR-AND-COMP with d ≥ nδ for some δ < 1. However, such an algorithm would
also resolve another major open problem: we’d be able to solve CNF-SAT in 2δn time for
some δ < 1, contradicting the so-called Strong Exponential Time Hypothesis (SETH) [22, 12].
In the following section, we shall explain why.

4.2 Orthogonal Vectors (OV)
We consider a slightly simpler function than the one needed for solving APSP. Define

OR-AND-OR2d1,d2(x1,1, x1,2, . . . , xd1,d2 , y1,1, y1,2, . . . , yd1,d2) =
d1∨
i=1

d2∧
j=1

(xi,j ∨ yi,j).

FSTTCS 2014

54 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

That is, OR-AND-OR2d1,d2 takes 2d1d2 bits of input. Note that we can easily simulate
OR-AND-OR2d,d with a call to OR-AND-COMP: (xi,j ∨ yi,j) = 1 if and only if [¬xi,j ≤ yi,j].
Therefore, evaluating OR-AND-OR2d,d is only easier than evaluating OR-AND-COMP.
However, quick evaluation of OR-AND-OR2 would yield faster algorithms for other problems
than just APSP. Here is the canonical example of such a problem:

I Definition 9 (Orthogonal Vectors (OV)). In OV, the input is a set S ⊆ {0, 1}d, and
the goal is to output whether there are vectors a, b ∈ S such that 〈a, b〉 = 0.

That is, we wish to know if S contains an orthogonal pair of vectors. There are two
obvious algorithms: one takes O(|S|2d) time, and one takes O(2d|S|) time. So the interesting
case is when we have “high dimensionality”, and d ≥ logn. It is an open question whether
O(|S|2−ε2o(d)) time is possible for some fixed ε > 0. By adding two more dimensions to the
vectors, the following version of OV is equivalent to the above:

I Definition 10 (Orthogonal Vectors’ (OV’)). In OV’, the input is two sets A,B ⊆
{0, 1}d, and the goal is to output whether there are vectors a ∈ A, b ∈ B such that 〈a, b〉 = 0.

OV captures the difficulty of several problems. Consider the partial match problem from
string searching:

I Definition 11 (Batch Partial Match (BPM)). In BPM, the input is a database
D ⊆ {0, 1}d, and queries Q ⊆ {0, 1, ?}d, where |D| = |Q|. The goal is to output, for every
q ∈ Q, whether or not there is an x ∈ D such that for all i = 1, . . . , d, q[i] 6= ? implies
q[i] = x[i].

That is, we wish to know which queries have a “partial match” in the given database.
Recent work with Abboud and Yu [4] proved that BPM is sub-quadratic equivalent to OV:
roughly speaking, an |S|2−εf(d) time algorithm for OV implies an |Q|2−δf(d) time algorithm
for the BPM, and the converse also holds.

Another string problem related to OV is a generalization of the longest common substring
problem to handle wildcard symbols:

I Definition 12 (Longest Common Substring With Don’t Cares (LCS*)). In LCS*,
the input is two strings S, T ∈ Σn of length n, and the goal is to output the length of the
longest string that appears in both S and T as a contiguous substring.

In the same paper with Abboud and Yu, it is proven that LCS* has a faster-than-quadratic
time algorithm, given that OV has one. The importance of solving OV in sub-quadratic
time is further reinforced by the following connection with exponential-time algorithms for
satisfiability.
I Conjecture 4.1 (Strong Exponential Time Hypothesis (SETH) [22, 12]). For every
δ < 1, there is a k ≥ 3 such that satisfiability of k-CNF formulas on n variables requires
more than 2δn time.

I Theorem 13 ([44, 48]). Suppose there is an ε > 0 such that for all c ≥ 1, OV can be
solved in O(|S|2−ε) time on instances with c log |S| dimensions. Then SETH is false.

Proof. We prove the contrapositive. Calabro, Impagliazzo, and Paturi [11] show that refuting
SETH is equivalent to giving a δ < 1 such that, for all c ≥ 1, CNF-SAT on instances with n
variables and cn clauses can be solved in O(2δn) time.

We reduce this variant of CNF-SAT to OV. Given a formula F on n variables and
cn clauses C1, . . . , Ccn, divide the variables into two sets V1 and V2 with at most n/2 + 1

R. R. Williams 55

variables each. Enumerate all O(2n/2) partial assignments to the variables in V1 and all
partial assignments to the variables in V2. For each such partial assignment A, define a
vector vA with cn+ 2 dimensions as follows. For i = 1, . . . , cn, set vA[i] = 0 iff the clause Ci
is satisfied by A. Then, set vA[cn+ 1] = 1 iff the partial assignment A is on the variables of
set V1, and set vA[cn+ 2] = 1 iff A is from set V2. Put all vA’s in the OV instance S.

Suppose F is satisfiable; let A be a satisfying assignment. For i = 1, 2, let the partial
assignment Ai be the assignment A restricted to variables from Vi. By construction, vA1 [cn+
1] · vA2 [cn+ 1] = vA1 [cn+ 2] · vA2 [cn+ 2] = 0, and for every clause Ci, at least one of A1 or
A2 satisfies Ci, so vA1 [i] · vA2 [i] = 0. It follows that 〈vA1 , vA2〉 = 0. Similarly, 〈vA, vA′〉 = 0
implies that A and A′ come from different sets and jointly satisfy F .

Finally, if OV is in O(|S|2−ε) time for c log |S| dimensional vectors, then we can determine
satisfiability of F in O(2n(1−ε/2)) time. J

Now we can formally illustrate the importance of evaluating OR-AND-OR2 efficiently:

I Theorem 14 (Implicit in [4]). Let A,B be two sets of n bit vectors, where each vector
has t = d1 · d2 bits. Suppose OR-AND-OR2d1,d2(a1, . . . , at, b1, . . . , bt) is computable in Õ(n2)
time, for all n2 pairs (a1, . . . , at) ∈ A and (b1, . . . , bt) ∈ B simultaneously. Then OV with n
vectors in d2 dimensions can be solved in Õ(n2/d1) time.

Proof. For convenience, we work with OV’ (Definition 10) in which we get two sets of vectors
A,B and wish to find a ∈ A and b ∈ B that are orthogonal.

Partition both A and B into
√
d1-size subsets A1, . . . , AO(n/

√
d1) and B1, . . . , BO(n/

√
d1),

respectively. The idea is that with a single OR-AND-OR2d1,d2 computation on 2d1d2 bits,
we can check whether the sub-instance (Ai, Bj) contains an orthogonal pair of vectors, for
all i, j = 1, . . . ,

√
d1.

The function OR-AND-OR2d1,d2 takes the OR over d1 pairs of vectors of the complement
of the Boolean inner product of d2-dimensional vectors. That is, the AND-OR2 parts of the
function output 1 if the two relevant d2-dimensional vectors are orthogonal, and 0 otherwise.
By arranging the

√
d1 vectors of Ai into one d1d2-dimensional vector, and doing the same for

Bj , we can check whether the
√
d1-size set Ai and the

√
d2-size set Bj contain an orthogonal

pair with one call to OR-AND-OR2d1,d2 . There are several ways to do this. For example, if
the vectors of Ai are a1, . . . , a√d1

and the vectors of Bj are b1, . . . , b√d1
, then we may define

the (d1d2)-dimensional vectors

vAi := (a1, . . . , a1, a2, . . . , a2, · · · , a√d1
, . . . , a√d1

),

vBi := (b1, b2, . . . , b√d1
, b1, b2, . . . , b√d1

, · · · , b1, b2, . . . , b√d1
),

where the ‘. . .’ in the vAi denote
√
d1 repetitions of the same vector. Then,

OR-AND-OR2d1,d2(vAi , vBj) = 0 ⇐⇒ there is no orthogonal pair in (Ai, Bj).

Constructing the sets of vectorsA′ = {vA1 , . . . , vAO(n/
√
d1)
} andB′ = {vB1 , . . . , vBO(n/

√
d1)
},

we conclude that computing OR-AND-OR2d1,d2 on all pairs of vectors in A′ and B′ will
determine whether A,B has an orthogonal vector. By assumption, this computation can be
done in Õ((n/

√
d1)2) ≤ Õ(n2/d1) time, which finishes the proof. J

I Corollary 15. If there is an ε > 0 such that for all c ≥ 1 the hypothesis of Theorem 14 is
true with d1 ≥ nε and d2 ≥ c logn, then SETH is false.

Proof. Follows from combining Theorem 13 and Theorem 14. J

FSTTCS 2014

56 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

The above relations between OV and other problems show that finding orthogonal pairs
of vectors is of importance. Recently, fast evaluation algorithms for OR-AND-OR2 have
been developed, tailored to run faster than what’s known for OR-AND-COMP (used to solve
APSP in the previous section):

I Theorem 16 (Implicit in Abboud, Williams, Yu [4]). The function OR-AND-OR2s,d can be
evaluated on two sets of n vectors in Õ(n2) time, provided that

s2 ·
(
d+ 1
3 log s

)2
≤ n0.1.

The algorithm of Theorem 16 is obtained by converting OR-AND-OR2 into a probabilistic
polynomial over F2 (via Theorem 3) and carefully counting the monomials that arise in the
construction of the polynomial. In particular, each AND is converted into a 3 log s-degree
probabilistic polynomial with error less than 1/s3, and the topmost OR on s variables
is converted into a product of two random MOD2s. After O(logn) evaluations of these
probabilistic polynomials for OR-AND-OR2, we settle on the correct values for OR-AND-OR2
on all n2 pairs of points. The fast Õ(n2) time evaluation is again done using Coppersmith’s
fast rectangular matrix multiplication [15].

The inequality of Theorem 16 holds for s ≤ nε/ log(d/ logn) where ε > 0 is sufficiently
small. From this and the above theorems, we derive:

I Corollary 17.
OV on n vectors in d dimensions is in n2−1/O(log(d/ logn)) time.
BPM on n strings of length d each is in n2−1/O(log(d/ logn)) time.
LCS* on two strings of length n is in n2/2Ω(

√
logn) time.

CNF-SAT on n variables and m clauses is solvable in 2n(1−1/O(log(m/n)) time.

For the first three problems, these running times significantly improve upon prior work.
The running time stated for CNF-SAT is not new, but it does match (up to constant factors
in the big-O) the best known CNF-SAT algorithms, which is fairly surprising given the
generality of this approach.

4.3 Counting Solutions to OV and CNF-SAT
Applying probabilistic polynomials over Z instead of F2, we can count the number of solutions
to an OV instance or a CNF formula. Let us remark that these results have not appeared in
print before; while they are not significant extensions of the previous section, they should
still give the reader a sense of what else is possible.

Define the function SUM-AND-OR2d1,d2 : {0, 1}d1·d2 → N as:

SUM-AND-OR2d1,d2(x1,1, x1,2, . . . , xd1,d2 , y1,1, y1,2, . . . , yd1,d2) =
d1∑
i=1

d2∧
j=1

(xi,j ∨ yi,j).

That is, this function outputs the total sum (over the integers) of the true AND-OR2s.

I Theorem 18. There is a probabilistic polynomial for SUM-AND-OR2d1,d2 over Z with
error at most 1/3 and at most (d1)O(log2 d2) monomials.

Proof. Think of the SUM-AND-OR2d1,d2 as a circuit. Replace each of the d1 ANDs of
fan-in d2 in this circuit with a probabilistic polynomial over Z with error set to ε = 1/(3d1).
By Theorem 4, these polynomials have degree O(log d2 · log d1), and therefore they have at

R. R. Williams 57

most (d2)O(log d2·log d1) monomials, assuming the output of each OR2 gate is a variable in the
polynomial. Now, each OR2 can be represented exactly as a sum of three monomials in the
original variables, which means we obtain a polynomial with at most (3d2)O(log d2·log d1) ≤
(d1)O(log2 d2) monomials in the original variables. Since each AND had error at most 1/(3d1),
their total sum is correct with probability at least 2/3, by the union bound. J

Now, provided that d1 and d2 satisfy

(d1)O(log2 d2) ≤ n0.1,

the number of monomials is low, and we can apply the same strategy used in Theorem 14 to
solve OV. Since we are taking a SUM instead of an OR, we can now compute the number
of all orthogonal pairs in a set of d2-vectors of size O(

√
d1), in Õ(n2) time. The above

inequality is certainly achieved when d1 ≤ n1/O(log2 d2). Following the proof of Theorem 14
and computing the number of orthogonal pairs for all O(n2/d1) pairs of sets, we obtain:

I Theorem 19. The number of orthogonal pairs among n vectors in d dimensions is comput-
able in n2−1/O(log2 d) time, with high probability. Consequently, one can count the number of
matches in the database on a set of n BPM queries of length d in the same running time, and
we can count the number of satisfying assignments to a CNF on n variables and m clauses
in 2n(1−1/O(log2 m)) time.

For counting OV pairs, the above running time is still much faster than O(n2/poly(logn))
when d = poly(logn). Indeed, it follows that counting the satisfying assignments of a CNF
with n variables and nlogn clauses can be done in 2n−n/poly(logn) time.

5 Conclusion

We have seen several ways in which polynomial tools originally developed in circuit complexity
have recently led to many new algorithms. We have not discussed all recent applications
of the polynomial method: we’ve mostly ignored the (more obvious) application of the
polynomial method for circuit lower bounds to solving circuit satisfiability. For example,
the polynomial method tools discussed here also can be used to give faster algorithms for
satisfiability of ACC circuits [47], as well as 0-1 linear programming [46] and satisfiability of
symmetric Boolean CSPs [4].

We cannot help but point out a discrepancy between the usage of polynomials in circuit
complexity and our algorithmic applications thus far. The majority of circuit lower bound
results using polynomials focus on minimizing the degree of the polynomial representing
the low-complexity function. However, for our applications, the number of monomials, or
the sparsity, is the most important measure for our algorithmic applications. Certainly, a
degree-d polynomial in n variables has nO(d) monomials, but this may be an undesirable
representation for super-constant d. This survey shows that finding sparse polynomial
representations for low-complexity functions like OR-AND-OR2 would entail significant
algorithmic consequences.

Acknowledgements. I am grateful to Venkatesh Raman for suggesting the topic of this
article, and his subsequent patience with me while I was finishing it.

FSTTCS 2014

58 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

References
1 Scott Aaronson. The polynomial method in quantum and classical computing. In FOCS,

pages 3–3. IEEE, 2008.
2 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equival-

ences between graph centrality problems, APSP and diameter. In SODA, 2015.
3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In FOCS, 2014.
4 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial

method to algorithm design. In SODA, page to appear, 2015.
5 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.
6 James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive power of

voting polynomials. Combinatorica, 14(2):135–148, 1994.
7 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf.

Quantum lower bounds by polynomials. J. ACM, 48(4):778–797, 2001.
8 Richard Beigel. The polynomial method in circuit complexity. In In Proceedings of the 8th

IEEE Structure in Complexity Theory Conference, pages 82–95. IEEE Computer Society
Press, 1995.

9 Richard Beigel, Nick Reingold, and Daniel Spielman. The perceptron strikes back. In
Structure in Complexity Theory Conference, pages 286–291. IEEE, 1991.

10 Richard Beigel and Jun Tarui. On ACC. Computational Complexity, pages 350–366, 1994.
11 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause

width and clause density for SAT. In IEEE Conf. Computational Complexity, pages 252–
260, 2006.

12 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In Parameterized and Exact Computation, pages 75–85. Springer,
2009.

13 Timothy M. Chan. All-pairs shortest paths with real weights in O(n3/ logn) time. Al-
gorithmica, 50(2):236–243, 2008. See also WADS’05.

14 Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM
J. Comput., 39(5):2075–2089, 2010. See also STOC’07.

15 Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput.,
11(3):467–471, 1982.

16 Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978.

17 Robert W. Floyd. Algorithm 97. Comm. ACM, 5-6:345, 1962.
18 Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM

J. Comput., 5(1):49–60, 1976. See also FOCS’75.
19 Parikshit Gopalan and Rocco A. Servedio. Learning and lower bounds for AC0 with

threshold gates. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, pages 588–601. Springer, 2010.

20 Yijie Han. Improved algorithm for all pairs shortest paths. Information Processing Letters,
91(5):245–250, 2004.

21 Yijie Han. An O(n3(log logn/ logn)5/4) time algorithm for all pairs shortest path. Algorith-
mica, 51(4):428–434, 2008. See also ESA’06.

22 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

23 Richard M. Karp. Dynamic programming meets the principle of inclusion and exclusion.
Operations Research Letters, 1(2):49–51, 1982.

R. R. Williams 59

24 Adam R. Klivans and Rocco Servedio. Learning DNF in time 2O(n1/3). In STOC, pages
258–265. ACM, 2001.

25 Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0(parity) circuits,
with applications. In FSTTCS, pages 36–47, 2012.

26 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier trans-
form, and learnability. J. ACM, 40(3):607–620, 1993.

27 Yishay Mansour. An o(nlog logn) learning algorithm for dnf under the uniform distribution.
Journal of Computer and System Sciences, 50(3):543–550, 1995.

28 Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, 1969.
29 Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning functions of k relevant

variables. Journal of Computer and System Sciences, 69(3):421–434, 2004.
30 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University

Press, 1995.
31 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.

Computational Complexity, 4(4):301–313, 1994.
32 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
33 A. A. Razborov. Lower bounds on the size of bounded depth circuits over a complete

basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

34 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Algorithms–ESA
2004, pages 580–591. Springer, 2004.

35 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

36 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In STOC, pages 77–82, 1987.

37 Tadao Takaoka. A new upper bound on the complexity of the all pairs shortest path
problem. Information Processing Letters, 43(4):195–199, 1992. See also WG’91.

38 Tadao Takaoka. Subcubic cost algorithms for the all pairs shortest path problem. Algorith-
mica, 20(3):309–318, 1998. See also WG’95.

39 Tadao Takaoka. An O(n3 log logn/ logn) time algorithm for the all-pairs shortest path
problem. Information Processing Letters, 96(5):155–161, 2005.

40 Jun Tarui. Probabilistic polynomials, AC0 functions and the polynomial-time hierarchy.
Theoretical computer science, 113(1):167–183, 1993.

41 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In FOCS, pages 645–654. IEEE, 2010.

42 Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer, 1999.
43 Stephen Warshall. A theorem on Boolean matrices. J. ACM, 9:11–12, 1962.
44 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005. See also ICALP’04.
45 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In STOC, pages

664–673, 2014.
46 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.

In STOC, pages 194–202, 2014.
47 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014.
48 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In

SODA, pages 1867–1877. SIAM, 2014.
49 Andrew Chi-Chih Yao. On ACC and threshold circuits. In FOCS, pages 619–627, 1990.
50 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Lecture Notes in Com-

puter Science, volume 72, pages 216–226. Springer, 1979.

FSTTCS 2014

60 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

51 Uri Zwick. A slightly improved sub-cubic algorithm for the all pairs shortest paths problem
with real edge lengths. In ISAAC 2004, volume 3341 of Springer LNCS, pages 921–932,
2004.

Vertex Exponential Algorithms for Connected
f -Factors
Geevarghese Philip1 and M. S. Ramanujan2

1 Max-Planck-Institut für Informatik
gphilip@mpi-inf.mpg.de

2 University of Bergen
ramanujan.sridharan@ii.uib.no

Abstract
Given a graph G and a function f : V (G) → [|V (G)|], an f -factor is a subgraph H of G such
that degH(v) = f(v) for every vertex v ∈ V (G); we say that H is a connected f -factor if, in
addition, the subgraph H is connected. Tutte (1954) showed that one can check whether a given
graph has a specified f -factor in polynomial time. However, detecting a connected f -factor is
NP-complete, even when f is a constant function – a foremost example is the problem of checking
whether a graph has a Hamiltonian cycle; here f is a function which maps every vertex to 2. The
current best algorithm for this latter problem is due to Björklund (FOCS 2010), and runs in
randomized O∗(1.657n) time (The O∗() notation hides polynomial factors). This was the first
superpolynomial improvement, in nearly fifty years, over the previous best algorithm of Bellman,
Held and Karp (1962) which checks for a Hamiltonian cycle in deterministic O(2nn2) time.

In this paper we present the first vertex-exponential algorithms for the more general problem
of finding a connected f -factor. Our first result is a randomized algorithm which, given a graph
G on n vertices and a function f : V (G) → [n], checks whether G has a connected f -factor in
O∗(2n) time. We then extend our result to the case when f is a mapping from V (G) to {0, 1} and
the degree of every vertex v in the subgraph H is required to be f(v)(mod 2). This generalizes
the problem of checking whether a graph has an Eulerian subgraph; this is a connected subgraph
whose degrees are all even (f(v) ≡ 0). Furthermore, we show that the min-cost editing and
edge-weighted versions of these problems can be solved in randomized O∗(2n) time as long as the
costs/weights are bounded polynomially in n.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases Exact Exponential Time Algorithms, f-Factors

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.61

1 Introduction

The problem of testing whether an input graph has a Hamiltonian cycle – a simple cycle which
passes through all vertices of the graph – is one of Karp’s original list of 21 NP-complete
problems [13], and is one of the most fundamental and well-studied problems in computational
complexity. The current best algorithm for this problem is due to Björklund (FOCS 2010),
and runs in randomized O∗(1.657n) time(The O∗() notation hides polynomial factors.) [2].
This was the first superpolynomial improvement in nearly fifty years, over the previous best
algorithm of Bellman [1], and Held and Karp [12] which checks for a Hamiltonian cycle in
deterministic O(2nn2) time.

Another fundamental graph problem is that of deciding whether a given graph contains
a regular subgraph. This problem was first stated by Garey and Johnson [9] who asked if

© Geevarghese Philip and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 61–71

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62 Vertex Exponential Algorithms for Connected f-Factors

testing the presence of a 3-regular subgraph in a given graph is NP-complete. This was shown
to be NP-complete in a proof atrributed to Chvátal [9]. However, testing if a graph has a
spanning r-regular subgraph is known to be polynomial time solvable by an application of
Tutte’s f -factor theorem [20], although testing for a connected spanning r-regular subgraph
clearly generalizes Hamiltonicity.

Given a graph G and a function f : V (G) → [|V (G)|], an f -factor of G is a subgraph
H of G such that degH(v) = f(v) for every vertex v ∈ V (G); we say that H is a connected
f -factor if, in addition, the subgraph H is connected. Tutte [20] showed that one can check
whether a given graph has a specified f -factor in polynomial time. Lovász [14, 15] extended
this result to general f -factors, where the function f maps each vertex to a list of numbers.
Lovász and Cournéjols [4] gave a complete characterization of the complexity of the general
f -factor problem.

In this paper we study the problem of finding connected f -factors in a given graph. Our
main motivation in investigating this problem is the fact that it generalizes the problem of
testing for a Hamiltonian cycle in a graph, and also the more general problem of testing for
regular connected spanning subgraphs.

Our results and techniques. Although the existence of a connected f -factor in a graph
withm m edges can trivially be tested in time O∗(2m), it was not known whether it is possible
to solve this problem in time which is single-exponential in the number of vertices (a vertex-
exponential algorithm) of the graph. In this paper we present the first vertex-exponential
algorithms to find a connected f -factor in a given graph. In fact, we give a vertex-exponential
algorithm for the editing version of this problem, which is much more general than the
problem of simply finding a connected f -factor. More formally, in this problem, which we
call Min-Cost Edge Editing to f-factor (Min-Cost EFF), the input consists of a
graph G, a function f : V (G)→ [n], a cost function c on the edges and non-edges of G, and a
target cost c?. The objective is to check if there is a sequence of non-edge additions and edge
deletions with a total cost at most c? such that the resulting graph is a connected f -factor.
This problem generalizes the problem of finding a connected f -factor in a graph, even with
the additional restriction that the edge costs are bounded polynomially in the size of V (G).

Our main result is a randomized algorithm which, given an instance (G, f, c, c?) of Min-
Cost EFF where c({v, w}) is bounded by a polynomial in |V (G)| for every v, w ∈ E(G),
solves it in time O∗(2n).

I Theorem 1. There is a randomized algorithm that, given an instance (G, c, c?) of Min-
Cost Edge Editing to f-factor with the cost function c being bounded by a polynomial
in |V (G)|, runs in time O∗(2|V (G)|) and either returns a solution or correctly (with high
probability) concludes that one does not exist.

We then extend this result to a “parity version” Connected parity f-factor of the
problem where, given a graph G and a function f where where f is a mapping from V (G) to
{0, 1}, the objective is to check if G has a connected spanning subgraph H where the degree
of every vertex v in the subgraph H is f(v) (mod 2).

I Theorem 2. There is a randomized algorithm that, given an instance (G, f) of Connected
parity f-factor where |V (G)| = n, runs in time O∗(2n) and either returns a solution or
correctly (with high probability) concludes that one does not exist.

This generalizes the problem of checking whether a graph has an Eulerian subgraph; this
is a connected subgraph whose degrees are all even (f(v) ≡ 0). As our third major result

G. Philip and M. S. Ramanujan 63

we show that the edge-weighted versions of finding connected (parity) f -factors can also be
solved in randomized O∗(2n) time as long as the weights are bounded polynomially in n.

The main technical ingredients in our solutions for each of these problems have the same
flavour: For each problem, we transform the input graph into an auxiliary graph in such a
way that the connected solutions which we seek correspond, in a certain sense, to the set of
perfect matchings of the auxiliary graph. Our algorithms rely on the notion of Tutte matrices
of graphs and related algebraic techniques – introduced by Lovász [16] and recently used
in [2, 6, 21, 11] – to phrase our problems in terms of looking for “non-zero” monomials of
certain polynomials. To solve these latter problems we test whether the polynomials are
identically zero over certain fields. The randomization in our algorithm arises from this final
step of polynomial identity testing.

Related work. Moser and Thilikos [18] and Mathieson and Szeider [17] initiated the study of
the parameterized complexity of editing a given graph to obtain a graph that satisfies certain
specified degree constraints. Mathieson and Szeider in particular described an auxiliary graph
where perfect matchings captured the editing solutions in the same flavor of Tutte’s auxiliary
graph capturing f -factors via perfect matchings. More recently Golovach has studied the
parameterized complexity of editing to connected graphs under degree constraints [10]. Cai
and Yang [3], Cygan et al. [5] and Fomin and Golovach [8] have all studied the parameterized
complexity of deleting edges to obtain subgraphs with parity constraints on the degrees.

Organization of the rest of the paper. In Section 2 we describe our notation and some
preliminary results. In Section 3 we take up the edge-editing version of our problem, Min-
Cost Edge Editing to f-factor, and prove Theorem 1. In Section 4 we take up the parity
version Connected parity f-factor and prove Theorem 2. We conclude in Section 5.

2 Preliminaries

We follow the graph notation and terminology of Diestel [7]. For a positive integer n we
use [n] to denote the set {1, 2, . . . , n}. We use Aij to denote the element in the ith row
and jth column of a matrix A. A subgraph H of a graph G is a spanning subgraph of G if
V (G) = V (H). We use degG(v) to denote the degree of a vertex v in graph G and NG(v)
to denote the neighbourhood of v in G; we omit the subscript when there is no scope for
ambiguity. For a subset S ⊆ V (G) of the vertex set of a graph G we use G[S] to denote the
subgraph induced by the set S and G− S to denote the subgraph G[V (G) \ S]. For a subset
S of vertices, we denote by E(G)[S, V (G) \ S] the edges of G with an end point each in S
and V (G) \ S. If F is a set of edges in a graph G, then we use V (F) to denote the set of all
vertices which form end-points of the edges in F . A matching in a graph G is any set M of
edges in G such that no two edges of M have an end-point in common, and a matching M
of G is a perfect matching if V (M) = V (G). Let w : E(G)→ Z be function which assigns
integer weights to the edges of a graph G. The weight of a subgraph H of G is then the sum∑
e∈E(H) w(e).
When we refer to expanded forms of succinct representations (such as summations and

determinants) of polynomials, we use the term naïve expansion (or summation) to denote
that expanded form of the polynomial which is obtained by merely writing out the operations
indicated by the succinct representation. We use the term simplified expansion to denote the
expanded form of the polynomial which results after we apply all possible simplifications
(such as cancellations) to a naïve expansion. We call a monomial m which has a non-zero

FSTTCS 2014

64 Vertex Exponential Algorithms for Connected f-Factors

coefficient in a simplified expansion of a polynomial P , a surviving monomial of P in the
simplified expansion.

I Definition 3. (Tutte matrix) The Tutte matrix of a graph G with n vertices is an n× n
skew-symmetric matrix T over the set {xij |1 ≤ i < j ≤ |V (G)|} of indeterminates whose
(i, j)th element is defined to be

T (i, j) =


xij if {i, j} ∈ E(G) and i < j

−xji if {i, j} ∈ E(G) and i > j

0 otherwise

We use T (G) to denote the Tutte matrix of graph G. We say that the variable xij is the
label of edge {i, j} ∈ E(G).

The following basic facts about the Tutte matrix T (G) of a graph G are well-known.
When evaluated over any field of characteristic two, the determinant and the permanent of
the matrix T (G) (indeed, of any matrix) coincide:

det T (G) = perm(T (G)) =
∑
σ∈Sn

n∏
i=1
T (G)(i, σ(i)), (1)

where Sn is the set of all permutations of [n]. Moreover, there is a one-to-one correspond-
ence between the set of all perfect matchings of the graph G and the surviving monomials in
the above expression for det T (G) when its simplified expansion is computed over any field
of characteristic two:

I Proposition 1. [16] If M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of a graph
G, then the product

∏
(ik,jk)∈M xikjk

appears as a surviving monomial in the sum on the
right-hand side of Equation 1 when this sum is expanded and simplified over any field
of characteristic two. Conversely, each surviving monomial in a simplified expansion of
this sum over a field of characteristic two is of the form

∏
(ik,jk)∈M xikjk

where M =
{(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of G. In particular, det T (G) is identically
zero when expanded and simplified over a field of characteristic two if and only if graph G
does not have a perfect matching.

I Lemma 4. (Schwartz-Zippel)[19, 22] Let P (x1, . . . , xn) be a multivariate polynomial of
degree at most d over a field F such that P is not identically zero. Furthermore, let r1, . . . , rn
be chosen uniformly at random from F. Then, Prob[P (r1, . . . , rn) = 0] ≤ d

|F| .

We also require the following well-known interpolation lemma.

I Lemma 5. Let P (x) be a univariate polynomial of degree r over a field of size at least
r + 1. Then, given r + 1 evaluations of P (x), the polynomial can be determined in time
polynomial in r.

3 Editing to f-factors

The problem we study in this section is Edge Editing to f-factor. The formal definition
of this problem is as follows.

Edge Editing to f-factor
Input: Graph G = (V,E), function f : V → N, k.
Question: Can G be converted to a connected f -factor with at most k edge deletions

and additions?

G. Philip and M. S. Ramanujan 65

A set of k edge additions and deletions is referred to as a k-editing. For a given graph G,
if G−S1 +S2 is an f -factor where S1 is a set of edges of G and S2 is a set of non-edges, then
we refer to (S1, S2) as an `-editing of G to an f -factor, where ` = |S1 ∪S2|. It is easy to show
that Editing to Connected f-factor where f = 2 is a generalization of Hamiltonicity
(see for example [10]).

We begin with the following observation which relates local editing of subgraphs of G to
f -factors on the one hand and the global editing of G to an f -factor on the other. We then
subsequently define an auxiliary graph where perfect matchings capture editings to f -factors
(see [17]).

I Observation 1. Let G be a graph, let f : V → N, and let S ⊆ V (G). Suppose the subgraphs
G[S] and G− S have `1 and `2-editing to f -factors (S, F1) and ((V (G) \ S), F2) respectively
and let `3 be the number of edges in the set E(G)[S, V (G) \ S]. Then, the union of the two
editings along with the deletion of the edges in E(G)[S, V (G) \ S] is an (`1 + `2 + `3)-editing
to the disconnected f-factor (V (G), F1] F2). Similarly, let (S1, S2) be an editing of G to
an f-factor H = (V (G), F) and C be the union of some connected components of H. Let
S′1 = S1 ∩

(
V (C)

2
)
and S′2 = S2 ∩

(
V (C)

2
)
. Then, (S′1, S′2) is an editing to the f -factor C of the

induced subgraph G[V (C)].

I Definition 6 (Editing f -Blowup). Let G be a graph and let f : V (G) → N be such that
f(v) ≤ deg(v) for each v ∈ V (G). Let H be a graph and w be a weight function on the edges
of H defined as follows
1. For each vertex v of G, we add a vertex set A(v) of size f(v) to H.
2. For each edge e = {v, w} of G we add to H vertices ve and we and edges (u, ve) for every

u ∈ A(v) and (we, u) for every u ∈ A(w). We assign weight 0 to all these edges. Finally,
we add the edge (ve, we) and set w(ve, we) = 2.

3. For each non-edge ē = {v, w} of G we add to H vertices vē and wē and edges (u, vē) for
every u ∈ A(v) and (wē, u) for every u ∈ A(w). We assign weight 1 to each of these edges.
Finally, we add the edge (vē, wē) and set w(vē, wē) = 0.

This completes the construction. The graph H along with the weight function w : E(H)→
{0, 1, 2} is called the editing f-blowup of graph G. We use Ef (G) to denote the editing
f -blowup of G. We omit the subscript when there is no scope for ambiguity.

I Definition 7 (Induced Editing f -blowup). For a subset S ⊆ V (G), we define the editing
f -blowup of G induced by S as follows. Let the editing f -blowup of G be (H,w). Begin
with the graph H and for every edge e = (v, w) ∈ E(G) such that v ∈ S and w /∈ S, delete
the vertices ve and we. Similarly, for every non-edge ē = (v, w) /∈ E(G) such that v ∈ S and
w /∈ S, delete the vertices vē and wē. Let the graph H ′ be the union of those connected
components of the resulting graph which contain the vertex sets A(v) for vertices v ∈ S.
Then, the pair (H ′, w) is called the editing f -blowup of G induced by the set S and is denoted
by Ef (G)[S].

The construction of the editing f -blowup of G can be informally described as taking
the complete graph on V (G), making f(v) “equivalent copies” of every vertex v ∈ V (G),
replacing every edge and non-edge of G by a path of length 3, and assigning weight 2 to
the “middle” edge of the paths corresponding to an edge of G, assigning weight 1 to the
“end” edges of the path corresponding to a non-edge of G and weight 0 to all other edges.
Similarly, the construction of the editing f -blowup of G induced by a subset S ⊆ V (G) can
be described analogously starting with the graph G[S].

We now prove a lemma (see also [17]) which gives an equivalence between editings to
f -factors and perfect matchings in the editing f -blowup.

FSTTCS 2014

66 Vertex Exponential Algorithms for Connected f-Factors

I Lemma 8. A graph G has an `-editing to an f -factor with ` ≤ k if and only if the editing
f -blowup of G, (H,w), has a perfect matching of weight at most 2k.

Proof. Let (Sx, Sy) be an editing to an f -factor (V (G), F) of G such that |Sx ∪ Sy| ≤ k,
where F = (E(G) \ Sx) ∪ Sy. We now define the following matching M in H. For every
pair (v, w) ∈

(
V
2
)
\ F , if e = (v, w) ∈ E(G) then we add the edge (ve, we) to M and if

ē = (v, w) /∈ E(G) then we add the edge (vē, wē) to M . For every edge (v, w) ∈ F , if
e = (v, w) ∈ E(G) then we add the edges (u, ve) and (u′, we) to M where u and u′ are two
vertices in A(v) and A(w) respectively such that they are as yet unsaturated by M . Similarly,
for every edge (v, w) ∈ F , if ē = (v, w) /∈ E(G) then we add the edges (u, vē) and (u′, wē)
to M where u and u′ are two vertices in A(v) and A(w) respectively such that they are as
yet unsaturated by M . Since |A(v)| = f(v) for every v ∈ V (G), M indeed saturates the
sets A(v) for every v ∈ V (G) and therefore is a perfect matching. We now consider the
weight of M . Clearly, E(G) \ F = Sx and the weight contributed to M by the edges of H
corresponding these edges is 2|Sx|. Similarly, the weight contributed to M by the edges of H
corresponding to those in Sy = F \ E(G) is 2|Sy|. Therefore, w(M) ≤ 2k. This completes
the proof of the forward direction.

Conversely, suppose thatH has a perfect matchingM of weight at most 2k. Let Sx = {e =
(v, w)|(v, w) ∈ E(G) ∧ (ve, we) ∈ M} and Sy = {ē = (v, w)|(v, w) /∈ E(G) ∧ (vē, wē) /∈ M}.
Observe that for every ē = (v, w) ∈ Sy, there is a vertex u ∈ A(v) and u′ ∈ A(w) such that
(u, vē),(u′, wē) ∈ M . This is because the vertex vē (wē) has exactly one neighbor disjoint
from A(v) (respectively A(w)) and by assumption, (vē, wē) /∈ M . Since each edge of the
form (u, vē) (where u ∈ A(v)) has weight 1 and occurs in M along with an edge (u′, wē)
of weight 1 (with ē = (v, w)), we conclude that 2|Sx ∪ Sy| = w(M) ≤ 2k. We now claim
that (V (G), F) is an f -factor, where F = (E(G) \ Sx) ∪ Sy. Let MA be all those edges of M
incident on

⋃
v∈V (G)A(v). Starting from H, we define a subgraph H ′ of G as follows. For

each v ∈ V (G), we identify all vertices A(v) in H. We then contract every edge in MA. It is
easy to see that the resulting graph is indeed an f -factor of G. Furthermore, by definition,
the edges in MA are precisely those corresponding to the edges in F . This completes the
proof of the lemma. J

Having established the relation between perfect matchings in the f -blowup and editings
to f -factors, we now recall the definition of a “weighted” Tutte matrix (see for example [11])
which allows us to handle edge weights as this will be crucially required to encode the size of
the editings.

I Definition 9. (Weighted Tutte matrix) The Weighted Tutte matrix of a graph G with n
vertices and a weight function w : E(G)→ Z is an n× n skew-symmetric matrix T over the
set {xij |1 ≤ i < j ≤ |V (G)|} ∪ {z} of indeterminates whose (i, j)th element is defined to be

T (i, j) =


xijz

w(i,j) if (i, j) ∈ E(G) and i < j

−xjizw(i,j) if (i, j) ∈ E(G) and i > j

0 otherwise

We use Tz(G) to denote the Weighted Tutte matrix of graph G.

The following proposition is analogous to Proposition 1 and the proof is identical.

I Proposition 2. If M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of a graph G
with a weight function w on its edges, then the product (

∏
(ik,jk)∈M xikjk

) · zΣ(ik,jk)∈Mw(ik,jk)

appears as a surviving monomial in the sum on the right-hand side of Equation 1 when

G. Philip and M. S. Ramanujan 67

applied to Tz(G) (instead of T (G)) and the sum is expanded and simplified over any field of
characteristic two. Conversely, each surviving monomial in a simplified expansion of this
sum over a field of characteristic two is of the form (

∏
(ik,jk)∈M xikjk

) · zΣ(ik,jk)∈Mw(ik,jk)

where M = {(i1, j1), (i2, j2), . . . , (i`, j`)} is a perfect matching of G. In particular, det Tz(G)
is identically zero when expanded and simplified over a field of characteristic two if and only
if graph G does not have a perfect matching.

I Definition 10. With every set S ⊆ V (G), we associate a specific monomial mS which is
defined to be the product taken over all e = (v, w) ∈ E(G)[S, V (G)\S] of the terms xijzw(i,j)

where {i, j} = {ve, we} and over all ē = (v, w) ∈ E(Ḡ)[S, V (G) \ S] of the terms xijzw(i,j)

where {i, j} = {vē, wē}, where the terms ve, we, vē, wē are as in Definition 6 of the editing
f -blowup E(G) of G. If S = V (G), then we set mS = 1.

In the spirit of [6], we now fix an arbitrary vertex v? of G and define a polynomial P (x̄, z)
over the indeterminates from the weighted Tutte matrix Tz(E(G)) of the f -blowup of G, as
follows:

P (x̄, z) =
∑

S⊆V (G) ; v?∈S

(det Tz(E(G)[S])) · (det Tz(E(G)[V (G) \ S])) ·mS , (2)

where if a graph H has no vertices or edges then we set det T (H) = 1. In the sequel we use
F to denote an arbitrary field of characteristic two. Observe that P (x̄, z) can be rewritten as∑r
i=0Qi(x̄) · zi where r is an upper bound on the degree of z in any term of the polynomial

P (x̄, z). We refer to the polynomial Qi(x̄) as the coefficient of zi in P (x̄, z). Furthermore,
every monomial m in the naïve expansion of Qi(x̄) is also referred to as a coefficient of zi.

I Definition 11. We say that an editing (S1, S2) of G to an f -factor (V (G), F) contributes
a monomial xi1j1 . . . xirjr

to the naïve expansion of the right-hand side of Equation 2 if and
only if the following conditions hold.

For every e = (v, w) ∈ F ∩ E(G) (ē = (v, w) ∈ F \ E(G)), there is a u ∈ A(v), u′ ∈ A(w)
and 1 ≤ p, q ≤ r such that {u, ve} = {ip, jp} and {u′, we} = {iq, jq} (respectively
{u, vē} = {ip, jp} and {u′, wē} = {iq, jq}).
For every e = (v, w) ∈ E(G) \ F (ē = (v, w) /∈ E(G) ∩ F), there is a 1 ≤ p ≤ r such that
{ve, we} = {ip, jp} (respectively {vē, wē} = {ip, jp}).
For every 1 ≤ p, q ≤ r, if {u, ve} = {ip, jp} and {u′, we} = {iq, jq} for some e ∈
F ∩ E(G)(respectively {u, vē} = {ip, jp} and {u′, wē} = {iq, jq} for some ē ∈ F \ E(G)),
then e (respectively ē) is in F .
For every 1 ≤ p ≤ r, if {ip, jp} = {ve, we} for some e ∈ E(G) ({ip, jp} = {vē, wē} for
some ē /∈ E(G)), then e (respectively ē) is not in F .
For every S ⊆ V (G) containing v?, such that S is a union of the vertex sets of (some)
connected components of (V (G), F), there is a pair of monomials m1 and m2 such that m1
is a surviving monomial in the simplified expansion of det T (E(G)[S]), m2 is a surviving
monomial in the simplified expansion of det T (E(G)[V (G) \ S]), and m1 · m2 · mS =
xi1j1 . . . xirjr

· zΣr
k=1w(ik,jk).

Having set up the required notation, we now state the main lemma which allows us to
show that monomials contributed by “undesirable editings” do not survive in the simplified
expansion of the right hand side of Equation 2.

I Lemma 12. Let G be a graph and (S1, S2) be an `-editing of G to an f -factor (V (G), F).
Then,

FSTTCS 2014

68 Vertex Exponential Algorithms for Connected f-Factors

1. All monomials contributed by (S1, S2) are coefficients of z2` in the naïve expansion of the
right-hand side of Equation 2.

2. If (V (G), F) is a disconnected f -factor of G then every monomial contributed by (S1, S2)
occurs an even number of times in the polynomial Q2`(x̄) in the naïve expansion of the
right-hand side of Equation 2.

3. If (V (G), F) is a connected f-factor of G, then every monomial contributed by (S1, S2)
occurs exactly once in the polynomial Q2`(x̄) in the naïve expansion of the right-hand side
of Equation 2.

As a consequence of the above lemma, we prove the following.

I Lemma 13. The coefficient of z2` in the naïve expansion of P (x̄, z) is not identically zero
over F if and only if G has an `-editing to a connected f -factor.

Proof. Observe that as a consequence of Proposition 2 combined with the proof of Lemma
8, we have that each surviving monomial in the naïve expansion of the right-hand side of
Equation 2 is contributed by some editing to an f -factor of the graph G.

By this observation, every monomial which is a coefficient of z2` is contributed by an
`-editing to an f -factor and by Lemma 12, we have that every monomial contributed by this
editing occurs an even number of times if and only if the resulting f -factor is disconnected.
This completes the proof of the lemma. J

We now prove the main result of this section by giving an algorithm for editing to
connected f -factors.

I Theorem 14. There is a randomized algorithm that, given an instance (G, k) of Editing
to f-factor, runs in time O∗(2|V (G)|) and either returns a solution or correctly (with high
probability) concludes that one does not exist.

Proof. Observe that the total degree of the polynomial P (x̄, z) is bounded by n2 + 2
(
n
2
)

+
2
(
n
2
)
≤ 3n2, where the sum of the first two terms is an upper bound on the number of vertices

in the editing f -blowup which gives a bound on the degree of a monomial in P (x̄, z) due to
x̄ and the third term is a bound on the degree of a monomial due to z. We select values for
the variables in x̄ uniformly at random from a field F of characteristic 2 and size at least
3nd for some fixed d ≥ 5. Having fixed this instantiation of the variables in x̄, we select
r = 2

(
n
2
)

+ 1 values for z from the field F and evaluate the polynomial P (x̄, z) for each of
these r instantiations and return Yes if and only if for some ` ≤ 2k, the coefficient of z` is
non-zero in the univariate polynomial R(z) obtained by evaluating P (x̄, z) at the randomly
selected points for x̄. The r evaluations of the polynomial can be done in time O∗(2n) by
determinant computation and testing for a z` with non-zero coefficient in R(z) can be done
in polynomial time by interpolation (Lemma 5). This proves the stated bound on the running
time of the algorithm. Therefore, it only remains to prove the correctness of the algorithm.

Suppose that (S1, S2) is a p-editing to a connected f -factor for some p ≤ k. Then, by
Lemma 13, we have that the coefficient of z2p, Q2p(x̄), is not identically zero over F . By
the Schwartz-Zippel Lemma, we have that since Q2p(x̄) is not identically zero, then with
probability at least 1− 1

n3 the evaluation of Q2p(x̄) at the randomly chosen points results in
a non-zero value, implying that the coefficient of z2p is non-zero in the polynomial R(z). By
the union bound, the probability that the coefficient of z` is “erroneously” zero in R(z) for
every 1 ≤ ` ≤ 2k is at most 2k

n3 ≤ 1
n . Therefore, if G has a p-editing to a connected f -factor

with p ≤ k, then with probability at least 1 − 1
n , we will detect the presence of such an

editing. This completes the proof of the theorem. J

G. Philip and M. S. Ramanujan 69

Finally, we note that if we are also given costs on the edges of the graph that are bounded
polynomially in n, then we can also solve the version of the problem where costs are placed on
the editing operations, in the same asymptotic running time with the only change appearing
in the choice of the field from which x̄ is instantiated at random. More precisely, we have
the following theorem.

I Theorem 1. There is a randomized algorithm that, given an instance (G, c, c?) of Min-
Cost Edge Editing to f-factor with the cost function c being bounded by a polynomial
in V (G), runs in time O∗(2|V (G)|) and either returns a solution or correctly (with high
probability) concludes that one does not exist.

The problem of finding a connected f -factor in a given graph is special case of Min-Cost
Edge Editing to f-factor and hence we have the following corollary.

I Corollary 15. There is a randomized algorithm that, given an instance (G, f) of Con-
nected f-factor where |V (G)| = n, runs in time O∗(2n) and either returns a solution or
correctly (with high probability) concludes that one does not exist.

4 Parity f-factors

In this section we extend our approach to handle the parity version. Most of the proof is
identical to the arguments in the previous section, and so we focus on defining the new kind of
f -blowup which we need, and a description of the corresponding matching characterization.

I Definition 16. Given a graph G and a function f : V (G) → {0, 1}, a parity f-factor
of graph G is a spanning subgraph H of G in which every vertex v has degree exactly
f(v) (mod 2). A connected parity f -factor of G is such a connected subgraph H of G.

I Definition 17 (Parity f -Blowup). Let G be a graph and let f : V (G)→ {0, 1}. Let H be
a graph defined as follows
1. For each vertex v of G, we add a vertex set A(v) which has size deg(v) if deg(v) ≡

f(v) (mod 2) and size deg(v)− 1 otherwise.
2. For each edge e = {v, w} of G we add vertices ve and we and edges (u, ve) for every

u ∈ A(v) and (we, u) for every u ∈ A(w). Finally, we add the edge (ve, we).
3. For each v such that f(v) = 0, we choose an arbitrary pair of vertices av and a′v in A(v)

and make a clique on the rest of the vertices of A(v). For each v such that f(v) = 1, we
choose an arbitrary vertex av in A(v) and make a clique on the rest of the vertices of
A(v).

This completes the construction. The graph H is called the parity f -blowup of graph G. We
use Pf (G) to denote the parity f -blowup of G . We omit the subscript when there is no
scope for ambiguity.

I Definition 18 (Induced Parity f -blowup). For a subset S ⊆ V (G), we define the parity
f -blowup of G induced by S as follows. Let the parity f -blowup of G be H. Begin with
the graph H and for every edge e = (v, w) ∈ E(G) such that v ∈ S and w /∈ S, delete the
vertices ve and we. Let the union of connected components of the resulting graph containing
the vertices of the set S be the graph H ′. Then, the graph H ′ is called the parity f -blowup
of G induced by the set S and is denoted by Pf (G)[S].

I Lemma 19. A graph G has a parity f -factor if and only if the parity f -blowup of G has a
perfect matching.

FSTTCS 2014

70 Vertex Exponential Algorithms for Connected f-Factors

Proof. Suppose that G has a parity f -factor (V (G), F). We now define a matching M in
the parity f -blowup of G as follows. For every e ∈ E(G) \ F , we add the edge (ve, we) to
M . For every edge (v, w) ∈ F , we add the edges (u, ve) and (u′, we) to M where u and u′
are two vertices in A(v) and A(w) respectively such that they are as yet unsaturated by M .
However, if either of av or a′v is unsaturated at this point, we chose to saturate one of these
and similarly for aw and a′w.

Since |A(v)| ≡ f(v) (mod 2) and |A(v)| ≥ deg(v)−1 for every v ∈ V (G), we conclude that
M saturates B(v) vertices from the set A(v) for every v ∈ V (G), where B(v) ≡ f(v) (mod 2).
Furthermore, since (V (G), F) is a parity f -factor, {av, a′v} ⊆ B(v) for every v. The only
unsaturated vertices in H at this point are the vertices in A(v) \B(v) for every v ∈ V (G).
However, since B(v) ≡ f(v) (mod 2), we have that B(v) ≡ |A(v)| (mod 2), implying that
|A(v) \B(v)| ≡ 0 (mod 2). Since {av, a′v} ⊆ B(v) for every v, the subgraph H[A(v) \B(v)]
is an even-sized clique and therefore we pick an arbitrary perfect matching in this clique and
add it to M to get a perfect matching.

Conversely, suppose that M is a perfect matching of H. We define the set F as follows.
For every e = (v, w) ∈ E(G) such that (ve, we) /∈M , we add the edge (v, w) to F . It can be
argued along similar lines as before that (V (G), F) is indeed a parity f -factor of G. This
completes the proof of the lemma. J

Given the above definition of f -blowups and the structural lemma “equating” parity
f -factors to perfect matchings in the f -blowup, the proof of the following theorem is identical
to the proof of Theorem 14.

I Theorem 2. There is a randomized algorithm that, given an instance (G, f) of Connected
parity f-factor where |V (G)| = n, runs in time O∗(2n) and either returns a solution or
correctly (with high probability) concludes that one does not exist.

I Corollary 20. There is a randomized algorithm that, given a graph G, |V (G)| = n, runs
in time O∗(2n) and either returns a connected Eulerian subgraph of G with the maximum
(or minimum) number of edges, or correctly (with high probability) concludes that one does
not exist.

5 Conclusion

In this paper we studied certain generalizations of the well-studied NP-hard problems
Hamiltonicity and Max/Min-Eulerian Subgraph. We gaveO∗(2n) time randomized algorithms
for the problems of finding connected f -factors in a graph, minimum editing to obtain a
connected f -factor and finding a connected parity f -factor. The most natural direction
forward in this line of research would be towards obtaining a deterministic vertex exponential
algorithm as well as algorithms that handle super-polynomial weights.

References
1 Richard Bellman. Dynamic programming treatment of the travelling salesman problem.

Journal of the Association of Computing Machinery, 9(1):61–63, 1962.
2 Andreas Björklund. Determinant sums for undirected hamiltonicity. In FOCS, pages 173–

182, 2010.
3 Leizhen Cai and Boting Yang. Parameterized complexity of even/odd subgraph problems.

J. Discrete Algorithms, 9(3):231–240, 2011.
4 Gérard Cornuéjols. General factors of graphs. J. Comb. Theory, Ser. B, 45(2):185–198,

1988.

G. Philip and M. S. Ramanujan 71

5 Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó Schlotter. Para-
meterized complexity of eulerian deletion problems. Algorithmica, 68(1):41–61, 2014.

6 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M.M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS, pages 150–159, 2011.

7 Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg, 3rd edition, 2005.
8 Fedor V. Fomin and Petr A. Golovach. Parameterized complexity of connected even/odd

subgraph problems. J. Comput. Syst. Sci., 80(1):157–179, 2014.
9 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman & Co., New York, NY, USA, 1979.
10 Petr A. Golovach. Editing to a connected graph of given degrees. CoRR, abs/1308.1802,

2013.
11 Gregory Gutin, Magnus Wahlström, and Anders Yeo. Parameterized rural postman and

conjoining bipartite matching problems. CoRR, abs/1308.2599, 2013.
12 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing

problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210,
1962.

13 Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20–22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, The IBM Research Sym-
posia Series, pages 85–103. Plenum Press, New York, 1972.

14 László Lovász. The factorization of graphs. Combinatorial Structures and Their Applica-
tions, pages 243–246, 1970.

15 László Lovász. The factorization of graphs. ii. Acta Mathematica Academiae Scientiarum
Hungarica, 23(1–2):223–246, 1972.

16 László Lovász. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computation Theory FCT’79, pages 565–574, Berlin, 1979. Akademie-
Verlag.

17 Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree constraints: A para-
meterized approach. J. Comput. Syst. Sci., 78(1):179–191, 2012.

18 Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular
induced subgraphs. J. Discrete Algorithms, pages 181–190, 2009.

19 J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, October 1980.

20 William Thomas Tutte. A short proof of the factor theorem for finite graphs. Canadian
Journal of Mathematics, 6:347–352, 1954.

21 Magnus Wahlström. Abusing the tutte matrix: An algebraic instance compression for the
k-set-cycle problem. In STACS, pages 341–352, 2013.

22 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algebraic
Computation, volume 72, pages 216–226, 1979.

FSTTCS 2014

Connecting Vertices by Independent Trees∗

Manu Basavaraju1, Fedor V. Fomin1, Petr A. Golovach1, and
Saket Saurabh1,2

1 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen,
Norway
{manu.basavaraju,fedor.fomin,petr.golovach}@ii.uib.no

2 Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

Abstract
We study the paramereteized complexity of the following connectivity problem. For a vertex
subset U of a graph G, trees T1, . . . , Ts of G are completely independent spanning trees of U if
each of them contains U , and for every two distinct vertices u, v ∈ U , the paths from u to v in
T1, . . . , Ts are pairwise vertex disjoint except for end-vertices u and v. Then for a given s ≥ 2
and a parameter k, the task is to decide if a given n-vertex graph G contains a set U of size at
least k such that there are s completely independent spanning trees of U . The problem is known
to be NP-complete already for s = 2. We prove the following results:

For s = 2 the problem is solvable in time 2O(k)nO(1).
For s = 2 the problem does not admit a polynomial kernel unless NP ⊆ coNP /poly.
For arbitrary s, we show that the problem is solvable in time f(s, k)nO(1) for some function
f of s and k only.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases Parameterized complexity, FPT-algorithms, completely independent
spanning trees

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.73

1 Introduction

Two spanning trees T1 and T2 of a graph G are independent if they are rooted in the same
vertex r and for every vertex v 6= r of G, the two (v, r)-paths, one in T1 and one in T2,
are internally disjoint, i. e. having no edge and no internal vertex in common. Independent
spanning trees have applications to fault-tolerant protocols in distributed processor networks
[3, 11]. In 2001, Hasunuma in [7, 8] introduced the notion of completely independent spanning
trees, an interesting variant of the classical notion of connectivity. Formally, spanning trees
T1, . . . , Ts of a graph G are completely independent if for every two distinct vertices u, v ∈
V (G), the (u, v)-paths in T1, . . . , Ts, are pairwise vertex disjoint except for end-vertices u
and v.

The problem of deciding whether a graph G has two completely independent spanning
trees is NP-complete [8]. Since not every graph has even two completely independent span-
ning trees, the following optimization version of the problem is meaningful. For a given

∗ Supported by the European Research Council (ERC) via grant Rigorous Theory of Preprocessing,
reference 267959.

© Manu Basavaraju, Fedor V. Fomin, Petr A. Golovach, and Saket Saurabh;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 73–84

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.73
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

74 Connecting Vertices by Independent Trees

s ≥ 2, can one find a maximum set of vertices spanned by s completely independent trees?
More precisely, for a set of vertices U of a graph G, we say that a subgraph T of G is
a spanning tree of U if T is an inclusion-minimal tree in G containing all vertices of U .
Spanning trees T1, . . . , Ts of U are completely independent if for any two distinct vertices
u, v ∈ U , the (u, v)-paths in T1, . . . , Ts, are pairwise vertex disjoint except for end-vertices
u and v. Then the task is to find a set of vertices U of maximum size (we call the vertices
of U terminals) such that there are s completely independent spanning trees of U .

In this paper, we initiate the study of the following parameterized problem.

Independently s-Connected k-Set
Instance: A graph G and positive integers s ≥ 2 and k.

Parameter 1: s.
Parameter 2: k.

Question: Does G contain a set of terminals U of size at least k such that there are s

completely independent spanning trees of U?

Previous results. Hasunama [8] has shown that it is NP-complete to decide whether a
graph G has two completely independent spanning trees. He also obtained a number of
results about existence of completely independent spanning trees for some special graph
classes. Other, mostly combinatorial, studies of the problem were carried out by Hasunuma
and Morisaka [9] and Péterfalvi [12].

Our contribution. Our main result is stated in the following theorem.

I Theorem 1. Independently 2-Connected k-Set can be solved in time 2O(k)nO(1) for
n-vertex graphs.

We prove the theorem by applying a WIN/WIN approach. We start with a combinatorial
result, which is interesting on its own. In Section 3 we show that every 2-connected graph
of pathwidth at least k, contains as a minor a graph H, which is a tree on k vertices
plus one vertex adjacent to all other vertices. We also give a polynomial time algorithm
which either provide us H, or a path decomposition of width k − 1. As it is sufficient to
solve Independently 2-Connected k-Set for the blocks of the input graph, we either
obtain two completely independent spanning trees for k terminals, or construct a path
decomposition of width at most k−1. The next step is an algorithm given in Section 5 that
solves Independently 2-Connected k-Set in time single exponential in the treewidth of
the input graph. This step is based on the recent techniques of computing representative sets
of graphic matroids [4]. Combining together both cases, we obtain the proof of Theorem 1.

Let us remark, that the NP-hardness reduction in [8] from Not-All-Equal-3SAT reduces
to a graph of size linear in the number of variables and clauses of the formula. Thus, unless
the Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane [10] fails, there is no
2o(k)nO(1) algorithm for Independently 2-Connected k-Set and thus our upper bound
is asymptotically tight up to ETH.

We complement our algorithm with a complexity result on kernelization for Independ-
ently 2-Connected k-Set, namely that the problem does not admit a polynomial kernel
unless NP ⊆ coNP /poly.

We also show that Independently s-Connected k-Set is FPT when parameterized
by s + k. It is not hard to reduce Independently s-Connected k-Set to the problem
of finding a topological minor of constant size in a graph. Then the result follows from a
deep Theorem of Grohe, Kawarabayashi, Marx and Wollan [6] on the parameterized testing
of topological minors.

M. Basavaraju, F. V. Fomin, P. A. Golovach, and S. Saurabh 75

2 Preliminaries

Graphs. We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and the edge set is denoted by E(G). For a set of
vertices S ⊆ V (G), G[S] denotes the subgraph of G induced by S, and by G− S we denote
the graph obtained from G by the removal of all the vertices of S, i. e., the subgraph of G
induced by V (G) \ S. For a single element set {v}, we write G− v instead of G− {v}. For
a vertex v, we denote by NG(v) its (open) neighborhood in G, that is, the set of vertices
which are adjacent to v. The degree of a vertex v is denoted by dG(v) = |NG(v)|, and ∆(G)
is the maximum degree of G. A vertex v is a cut-vertex of G if G − v has more connected
components than G. A connected graph with at least two vertices is 2-connected if it does
not contain a cut-vertex. A maximal 2-connected subgraph of G is called a 2-connected
component or block of G. Let T be a tree. For a vertex v ∈ V (T), we say that v is a leaf if
dT (v) = 1 or dT (v) = 0 (if |V (T)| = 1), and we say that v is an internal vertex otherwise.

Minors. The edge contraction of e = uv removes u and v from G, and replaces them by a
new vertex adjacent to precisely those vertices to which u or v were adjacent. If u is a vertex
of degree two such that its neighbors x, y are not adjacent, then the vertex dissolution of u
removes u and adds a new edge xy. A graph H is a minor of G if H can be obtained from
a subgraph of G by a sequence of vertex deletions, edge deletions and edge contractions.
Alternatively, we can define minors as follows. For two non-empty vertex disjoint subsets
X1, X2 ⊆ V (G), X1 and X2 are adjacent if there is uv ∈ E(G) such that u ∈ X1 and
v ∈ X2. An H-witness structure W is a collection of |V (H)| non-empty vertex disjoint
subsets W (x) ⊆ V (G), one for each x ∈ V (H), called H-witness sets, such that each W (x)
induces a connected subgraph of G, and for all x, y ∈ V (H) with x 6= y, if x and y are
adjacent in H, then W (x) and W (y) are adjacent in G. It is straightforward to see that
H is a minor of G if and only if G has an H-witness structure. A graph H is a topological
minor of G if H can be obtained from a subgraph of G by a sequence of vertex deletions,
edge deletions and vertex dissolution. Notice that if H is a topological minor of G, then by
subdividing edges of H we can obtain a graph that is isomorphic to a subgraph of G.

Treewidth and pathwidth. A tree decomposition of a graph G is a pair (X,T) where T is
a tree and X = {Xi | i ∈ V (T)} is a collection of subsets (called bags) of V (G) such that:
1.

⋃
i∈V (T) Xi = V (G),

2. for each edge xy ∈ E(G), x, y ∈ Xi for some i ∈ V (T), and
3. for each x ∈ V (G), the set {i | x ∈ Xi} induces a connected subtree of T .
The width of a tree decomposition ({Xi | i ∈ V (T)}, T) is maxi∈V (T) {|Xi| − 1}. The
treewidth of a graphG (denoted as tw(G)) is the minimum width over all tree decompositions
of G.

If T is restricted to be a path, then (X,T) is said to be a path decomposition. Re-
spectively, the pathwidth of a graph G (denoted as pw(G)) is the minimum width over all
path decompositions of G. Whenever we consider a path decomposition (X,P), we assume
that the bags are enumerated in the path order with respect to P . In other words, a path
decomposition of G is a sequence of bags (X1, . . . , Xr).

3 Algorithm for Independently 2-Connected k-Set

In this section we design an algorithm for Independently 2-Connected k-Set. We start
by a simple characterization of completely independent spanning trees that we use in our

FSTTCS 2014

76 Connecting Vertices by Independent Trees

arguments. This is followed by a a structural result that shows that if the pathwidth of
the input graph is large then the given instance is a yes instance. We use this to design a
algorithm mentioned in Theorem 1.

3.1 Characterization of completely independent spanning trees
Hasunuma proved in [7] that if T1, . . . , Ts are spanning trees of a graph G, then T1, . . . , Ts

are completely independent if and only if T1, . . . , Ts are edge-disjoint and for any vertex
v ∈ V (G), there is at most one spanning tree Ti such that dTi(v) > 1. We need a similar
claim for completely independent spanning trees of a set of terminals.

I Lemma 2. Let G be a graph, and let U ⊆ V (G) with |U | = k. Let also T1, . . . , Ts be
spanning trees of U . Then T1, . . . , Ts are completely independent spanning trees of U if and
only if
1. T1, . . . , Ts are edge disjoint,
2. for all i, j ∈ {1, . . . , s}, i 6= j, if v ∈ V (Ti) ∩ V (Tj), then v ∈ U ,
3. for each v ∈ U , there is at most one i ∈ {1, . . . , s} such that dTi(v) > 1.

Proof. We assume that k, s ≥ 2, as the claim is trivial otherwise. We first show the forward
direction. Suppose that T1, . . . , Ts are completely independent spanning trees of U .

We show that for any i, j ∈ {1, . . . , s}, i 6= j, Ti and Tj have no common vertex that is an
internal vertex of both the trees. To obtain a contradiction, assume that u ∈ V (Ti)∩ V (Tj)
is an internal vertex of both Ti and Tj . The vertex u is a cut-vertex of Ti. Because Ti is
an inclusion-minimal tree that contains U , there are two terminals x, y ∈ U that are in two
distinct components T ′i and T ′′i of Ti−u respectively. The tree Tj has the unique (x, y)-path
P and u /∈ V (P). Since u is an internal vertex of Tj , Tj−u has at least two components, and
P lies completely in one component T ′j of Tj − u. By minimality, there is z ∈ U such that z
is in another component of Tj − u. Notice that z /∈ V (T ′i) or z /∈ V (T ′′i). Assume without
loss of generality that z /∈ V (T ′i). Because x ∈ V (P) and z are in distinct components of
Tj − u, u is an internal vertex of the (x, z)-path in Tj . Because z /∈ V (T ′i) and x ∈ V (T ′i), u
is an internal vertex of the (x, z)-path in Ti as well, but it contradicts the assumption that
T1, . . . , Ts are completely independent spanning trees of U .

The proved claim immediately implies (3). To show (1), assume that two distinct trees
Ti, Tj have a common edge uv. Because neither u nor v can be an internal vertex of the both
trees, we can assume without loss of generality that u is a leaf of Ti and v is a leaf of Tj .
Because Ti, Tj are inclusion-minimal trees that contains U , any leaf of Ti or Tj is a terminal,
and u, v ∈ U . Then we have that the (u, v)-paths in Ti and Tj have a common edge; a
contradiction. To prove (2), it is sufficient to observe that if v ∈ V (Ti) ∩ V (Tj) and v /∈ U ,
then by minimality of Ti, Tj , v is an internal vertex of both these trees, a contradiction.

Assume now that T1, . . . , Ts are spanning trees of U that satisfy (1)–(3). Consider any
distinct u, v ∈ U and i, j ∈ {1, . . . , s}. Let Pi, Pj be the (u, v)-paths in Ti and Tj respectively.
By (1), Pi and Pj are edge disjoint. If Pi and Pj have a common vertex x 6= u, v, then by
(2), x ∈ U , and then dTi

(x), dTj
(x) ≥ 2 contradicting (3). Hence, Pi and Pj are internally

vertex disjoint. J

Clearly, if G is a disconnected subgraph, then G has a set of terminals U of size at least
k such that there are s completely independent spanning trees of U if and only if there is
such a set of terminals in one of the components of G, i. e., we can consider only connected
graphs. Lemma 2 implies that we can restrict ourself by 2-connected graphs. To see it, it
is sufficient to observe that if a set of terminals U has two vertices that does not belong to

M. Basavaraju, F. V. Fomin, P. A. Golovach, and S. Saurabh 77

the same block, then there is a cut-vertex of G that is an internal vertex of any spanning
tree of U contradicting Lemma 2.

I Lemma 3. Let G be a connected graph. For positive integers s and k, G has a set of
terminals U of size at least k such that there are s completely independent spanning trees of
U in G if and only if there is a block H of G with the same property.

3.2 Independent trees and pathwidth
In this section we show that if a 2-connected graph G has pathwidth at least k, then G

has a set of terminals U of size at least k such that there are two completely independent
spanning trees of U . We need some additional notations. Let G be a graph. For Z ⊆ V (G),
att(Z) is the set of all v ∈ Z with a neighbor in V (G) \ Z, and α(Z) = |att(Z)|.

I Theorem 4. Let G be a 2-connected graph with n vertices and m edges. Let also k be
a positive integer. If pw(G) ≥ k, then G has a minor H with the property that there is a
vertex w ∈ V (H) such that dH(w) ≥ k and H−w is a tree. Moreover, there is an algorithm
that in time O(nm) either produces a witness structure of such a minor H, or constructs a
path decomposition of G of width at most k − 1.

Proof. Suppose that Z is a non-empty proper subset of V (G) that satisfies the following
conditions:
(i) 1 ≤ α(Z) ≤ k,
(ii) there are vertex disjoint connected subgraph C0, . . . , Ct of G[Z] where t = α(Z) − 1

such that
for each i ∈ {0, . . . , t}, V (Ci) ∩ att(Z) 6= ∅,
G has an edge with one end-vertex in C0 and another in Ci for all i ∈ {1, . . . , t},
and
V (C1) ∪ . . . ∪ V (Ct) are in the same component of G− V (C0).

(iii) G[Z] has a path decomposition (X1, . . . , Xr) of width at most k−1 such that att(Z) ⊆
Xr.

Notice that att(Z) ⊆ V (C0) ∪ . . . ∪ V (Ct) and each Ci has the unique vertex in att(Z).

We prove the following claim.

I Claim A. Either α(Z) = k and G has a minor H with the property that there is a vertex
w ∈ V (H) such that dH(w) ≥ k and H −w is a tree, or |V (G) \Z| = 1 and pw(G) ≤ k− 1,
or there is Z ′ such that Z ⊂ Z ′ ⊂ V (G) and Z ′ satisfies (i)–(iii).

Proof of Claim A. Suppose that α(Z) = k = t + 1. Consider u ∈ att(Z) ∩ V (C0). There
is a neighbor v of u in V (G) \ Z. Let Ct+1 be the subgraph of G with the unique vertex
v. The graph G is 2-connected. Then G − u is connected, and G has a path that joins v
with at least one of C1, . . . , Ct that avoids C0. Because V (C1)∪ . . .∪V (Ct) are in the same
component of G−V (C0), we have that V (C1)∪. . .∪V (Ct+1) also are in the same component
of G− V (C0). Now we construct the minor H of G as follows. We contract the edges of C0
and denote the obtained vertex w. Then we contract the edges of the subgraphs C1, . . . , Ck

and denote the obtained vertices by u1, . . . , uk respectively. Let G′ be the obtained graph.
The vertices u1, . . . , uk are in the same component of G′ − w. Hence, G′ − w has a tree
T that contains u1, . . . , uk. We remove the vertices of V (G′) \ (V (T) ∪ {w}). Finally, we
remove all the edges of the obtained graph except the edges of T and the edges that join w
and T . Because u1, . . . , uk ∈ V (T) are adjacent to w, we have a required minor.

FSTTCS 2014

78 Connecting Vertices by Independent Trees

Let now α(Z) < k and let |V (G) \ Z| = 1. By (iii), G[Z] has a path decomposition
(X1, . . . , Xr) of width at most k−1 such that att(Z) ⊆ Xr. Let Xr+1 = att(Z)∪(V (G)\Z).
It is straightforward to see that (X1, . . . , Xr+1) is a path decomposition of G of width at
most k − 1.

From now we assume that α(Z) < k and |V (G) \ Z| > 1. We show that the set Z
can be extended by one vertex in such a way that the obtained set satisfies (i)–(iii). Let
u ∈ att(Z)∩V (C0) and let v be an arbitrary neighbor of u in V (G)\Z. We set Z ′ = Z∪{v}
and let Xr+1 = att(Z) ∪ {v}.

Because V (G) \ Z ′ 6= ∅ and G is connected, α(Z ′) ≥ 1. Clearly, α(Z ′) ≤ α(Z) + 1 ≤ k.
Hence, (i) holds.

It is straightforward to verify that (X1, . . . , Xr+1) is a path decomposition of G[Z ′] and
att(Z ′) ⊆ att(Z) ∪ {v} ⊆ Xr+1. The width of this decomposition is max{w, t + 1} where
w is the width of (X1, . . . , Xr). Recall that w ≤ k − 1 and t+ 1 = α(Z) < k. It means that
(iii) is fulfilled.

It remains to show (ii). Let Ct+1 be the subgraph of G with the unique vertex v. Clearly,
att(Z ′) ⊆ V (C0)∪ . . .∪ V (Ct+1) and G has an edge with one end-vertex in C0 and another
in Ci for all i ∈ {1, . . . , t+ 1}. Since G is 2-connected, G−u is connected, and G has a path
that joins v with at least one of C1, . . . , Ct that avoids C0. Because V (C1) ∪ . . . ∪ V (Ct)
are in the same component of G − V (C0), we have that V (C1) ∪ . . . ∪ V (Ct+1) also are
in the same component of G − V (C0). Notice that it can happen that not all Ci have
vertices in att(Z ′). Let {C ′1, . . . , C ′t′} = {Ci|V (Ci) ∩ att(Z ′) 6= ∅, 1 ≤ i ≤ t + 1}. Because
V (C1) ∪ . . . ∪ V (Ct+1) are in the same component of G − V (C0), V (C ′1) ∪ . . . ∪ V (C ′t′) are
in the same component of G − V (C0) too. Observe that since |V (Ci) ∩ att(Z)| = 1 for
i ∈ {0, 1, . . . , t}, we have |V (C ′i) ∩ att(Z ′)| = 1 for i ∈ {1, . . . , t′}, |V (C0) ∩ att(Z ′)| ≤ 1,
and att(Z ′) ⊆ V (C0) ∪ V (C ′1) . . . ∪ V (C ′t′). We consider two cases.

Case 1. The vertex u has at least two neighbors in V (G) \ Z. Then C0 has the unique
vertex u in att(Z ′), and we have that α(Z ′) = t′ + 1 and (ii) holds for C0, C

′
1, . . . , C

′
t′ .

Case 2. The vertex v is the unique neighbor of u in V (G) \ Z. Observe that since G is 2-
connected, t′ ≥ 2 in this case. Consider the graph G′ obtained from G by contracting edges
of C ′1, . . . , C ′t′ and denote by x1, . . . , xt′ the vertices obtained from these graphs respectively.
We have that x1, . . . , xt′ are in the same component of G′−V (C0). We construct a spanning
tree T for {x1, . . . , xt′} in G′ − V (C0). Because t′ ≥ 2, T has at least two leaves. Without
loss of generality we assume that x1 is a leaf of T . Then x2, . . . , xt′ and, consequently,
V (C ′2), . . . , V (C ′t′) are in the same component of G′−(V (C0)∪{x1}) and G−(V (C0)∪V (C ′1))
respectively. We construct C ′0 by taking C0 ∪C ′1 and adding an edge that joins C0 and C ′1.
Then att(Z ′) ⊆ V (C ′0) ∪ V (C ′2) . . . ∪ V (C ′t′) and G has an edge with one end-vertex in C ′0
and another in C ′i for all i ∈ {2, . . . , t′}. Also V (C ′2)∪ . . .∪V (C ′t′) are in the same component
of G − V (C ′0). Because V (C ′1) ∩ att(Z ′) 6= ∅, |V (C ′0) ∩ att(Z ′)| = 1. Then α(Z ′) = t′ and
(ii) is fulfilled for C ′0, C ′2, . . . , C ′t′ . J

Observe that a non-empty proper subset Z of V (G) that satisfies (i)–(iii) always exists,
because for any vertex z ∈ V (G), Z = {z} satisfies (i)–(iii). Suppose that pw(G) ≥ k, and
let Z ⊂ V (G) be an inclusion-maximal non-empty proper subset of V (G) that satisfies (i)–
(iii). Then by Claim A, G has a minor H with the property that there is a vertex w ∈ V (H)
such that dH(w) ≥ k and H − w is a tree.

To complete the proof, it remains to observe that the proof of Claim A can be transformed
to an algorithm that either constructs H, or produces a tree decomposition of G of width at

M. Basavaraju, F. V. Fomin, P. A. Golovach, and S. Saurabh 79

most k−1, or increases Z by adding one vertex. In the last case the algorithm also modifies
the subgraphs C0, . . . , Ct and adds a new bag to the path decomposition. Initially we choose
an arbitrary vertex z and set Z = {z}, t = 0 and C0 has the unique vertex z. Since each
iteration can be done in time O(m) and we have at most n iterations, we conclude that the
algorithm runs in time O(nm). J

This combinatorial result is tight in the following sense. If G = Kk, then pw(G) = k−1,
and G has a minorH with the property that there is a vertex w ∈ V (H) such that dH(w) ≥ k
andH−w is a tree. But clearlyG has no minors with a vertex of degree at least k. Theorem 4
gives us the following corollary.

I Corollary 5. Let G be a 2-connected graph with n vertices and m edges. Let also k be a
positive integer. If pw(G) ≥ k, then G has a set of terminals U of size at least k such that
there are 2 completely independent spanning trees of U . Moreover, there is an algorithm
that in time O(nm) either produces U and completely independent spanning trees T1, T2 of
U , or constructs a path decomposition of G of width at most k − 1.

We conclude this section by the observation that the bounds obtained in Corollary 5 is
almost tight. If G = Kk with k ≥ 4, we have pw(G) = k − 1, and there are two completely
independent spanning trees of V (G) where |V (G)| = k + 1 and the number of terminals
cannot be increased.

3.3 Proof of Theorem 1
In this section we give a proof of Theorem 1 by combining Lemma 3 and Corollary 5.
However, we also need the following lemma which gives an algorithm for Independently
2-Connected k-Set on graphs of bounded treewidth.

I Lemma 6. Let G be an n-vertex graph given together with its tree decomposition of width
tw. Then Independently 2-Connected k-Set on G can be solved in time 2O(tw)nO(1).

A naive algorithm for Independently 2-Connected k-Set would run in time
twO(tw)nO(1). To obtain the desired running time, we use the idea of representative families
introduced in [4] in our dynamic programming algorithm. By Lemma 2, we know that for
Independently 2-Connected k-Set we need to find two edge disjoint trees (F1, F2) sat-
isfying certain properties. Thus, if we take the intersection of the solution to some subgraph
of the input graph we get two forests (F ′1, F ′2). Let G be the input graph and H be an
induced subgraph of G such that |∂(H)| ≤ t where ∂(H) = N(V (G) \ V (H)). We call H,
a t-boundaried graph. At every node of the tree decomposition one can associate a t + 1
boundaried graph H of G. For H, we keep a family of partial solutions P that satisfies
a following property. Given a solution (L1, L2) to Independently 2-Connected k-Set,
there is a partial solution (Q1, Q2) ∈ P such that (Q1∪Lr

1, Q2∪Lr
2) is also a solution. Here,

Lr
1 = L1 \ E(H) and Lr

2 = L2 \ E(H). We use the ideas of matroids and representative
families in order to bound the size of P. One views each of the partial solution, (Q1, Q2),
as a pair of forests in a graphic matroid of a clique on the vertex set ∂(H). Thus these
forests correspond to a pair of independent sets in graphic matroid. Furthermore, for every
solution (L1, L2) to Independently 2-Connected k-Set, we view (Lr

1, L
r
2) as another

pair of independent sets in graphic matroid of a clique on the vertex set ∂(H). Now one
observes that (Q1 ∪ Lr

1, Q2 ∪ Lr
2) forms a pair of spanning tree of some induced subgraph

of the clique. Once we have identified partial solutions as pairs of independent sets in a
matroid one can show that the size of P is upper bounded by 2O(t). We finally give the
proof of our main result.

FSTTCS 2014

80 Connecting Vertices by Independent Trees

Proof of Theorem 1. Let (G, k) be an input to Independently 2-Connected k-Set.
Also assume that G has n vertices and m edges. We first compute all the blocks of G, say
B1, . . . , B`, in O(m+ n) time. Now, by Lemma 3 we know that G is a yes-instance if and
only if there exists an i ∈ {1, . . . , `} such that (Bi, k) is a yes-instance. Now on each Bi, we
first apply Corollary 5 and in O(nm) time either produce a terminal set U and completely
independent spanning trees T1, T2 of U , or construct a path decomposition of Bi of width
at most k − 1. In the former case we return U and completely independent spanning trees
T1, T2 of U . In the later case we apply Lemma 6 and check whether (G, k) is a yes-instance
to Independently 2-Connected k-Set. This completes the proof. J

4 Lower Bound on Kernelization

We proved that Independently 2-Connected k-Set is FPT. Hence, it is natural to
ask whether this problem has a polynomial kernel. A parameterized problem Π is said
to admit a kernel of size f : N → N if every instance (x, k) can be reduced in polynomial
time to an equivalent instance with both size and parameter value bounded by f(k). When
f(k) = kO(1) then we say that Π admits a polynomial kernel. The study of kernelization has
recently been one of the main areas of research in parameterized complexity, yielding many
important new contributions to the theory. The development of a framework for ruling out
polynomial kernels under certain complexity-theoretic assumptions [1, 2, 5] has added a new
dimension to the field and strengthened its connections to classical complexity.

Using the results by Bodlaender et al. [1], we show that it is unlikely even if we restrict
ourself to 2-connected graph. We first give a few definitions required for our proof. A
composition algorithm for a parameterized problem Π is an algorithm that receives as an
input a sequence of instances (I1, k), . . . , (It, k) of Π where each Ii is an input and k is
a parameter, and in time polynomial in

∑t
i=1 |Ii| + k produces an instance (I ′, k′) of Π

such that i) (I ′, k′) is a YES-instance of Π if and only if (Ii, k) is a YES-instance for some
i ∈ {1, . . . , t}, and ii) k′ is polynomial in k. If Π has a composition algorithm, then it is said
that Π is compositional. Bodlaender et al. [1] proved the following theorem.
I Theorem 7 ([1]). If Π is a compositional parameterized problem such that the unpara-
meterized version of Π is NP-complete, then Π has no polynomial kernel unless NP ⊆
coNP /poly.

It is easy to see that Independently 2-Connected k-Set is compositional for general
(or connected) graphs. But by Lemma 3, it is sufficient to consider the problem for 2-
connected graphs. Hence, we prove the following theorem.
I Theorem 8. Independently 2-Connected k-Set has no polynomial kernel even for
2-connected graphs unless NP ⊆ coNP /poly.
Proof. As the unparameterized version of Independently 2-Connected k-Set is NP-
complete for 2-connected graphs by the results of Hasunuma in [8], it is sufficient to show
that Independently 2-Connected k-Set is compositional for 2-connected graphs.

Let (G1, k), . . . , (Gt, k) be a sequence of instances of Independently 2-Connected
k-Set where G1, . . . , Gt are 2-connected, and we assume without loss of generality that
k ≥ 3. Let also ni = |V (Gi)| ≥ 3 for i ∈ {1, . . . , t}, and denote by vi

1, . . . , v
i
ni

the vertices of
Gi for i ∈ {1, . . . , t}. We construct G′ as follows (see Fig. 1).

For each h ∈ {1, . . . , t} and for each ordered pair (i, j) of distinct i, j ∈ {1, . . . , nh},
construct a copy G(i,j)

h of Gh; denote by x(i,j)
h and y

(i,j)
h the vertices vh

i and vh
j of the

copy G(i,j)
h of Gh respectively.

M. Basavaraju, F. V. Fomin, P. A. Golovach, and S. Saurabh 81

y
(1,3)
1

G
(1,2)
1 G

(1,3)
1 G

(n1,n1−1)
1 G

(1,2)
2 G

(nt,nt−1)
t

x
(1,2)
1 x

(1,3)
1 x

(nt,nt−1)
t y

(nt,nt−1)
ty

(1,2)
1

Figure 1 The construction of G′.

For each h ∈ {1, . . . , t}, construct edges y(i,j)
h x

(r,s)
h for distinct ordered pairs (i, j), (r, s)

such that either i = r and s = j + 1 or r = i+ 1 and j = nh, s = 1.
For each h ∈ {1, . . . , t}, construct edges y(nh,nh−1)

h x
(1,2)
h+1 ; we assume here that x(1,2)

t+1 =
x

(1,2)
1 .

We let k′ = 2k. Notice that for all x(i,j)
h and y

(i,j)
h , G′ has the unique edges that join

these vertices with the vertices outside G(i,j)
h . We call these edges by x(i,j)

h and y(i,j)
h -edges

respectively. Observe also that for all h, h′ and (i, j), (r, s), the graph G′ has a (y(i,j)
h , x

(r,s)
h′)-

path that contains y(i,j)
h and x(r,s)

h′ -edges.
It is straightforward to see that G′ is 2-connected. We show that (G′, k′) is a YES-

instance of Independently 2-Connected k′-Set if and only if (Gh, k) is a YES-instance
for some h ∈ {1, . . . , t}.

Suppose that there is h ∈ {1, . . . , t} such that Gh has a set of terminals U of size at least
k such that there are two completely independent spanning trees F, T of U . Because k ≥ 3,
F and T have internal vertices. We choose such vertices denoted by vh

i are vh
j respectively.

By Lemma 2, i 6= j. Denote by F (i,j)
h , T

(i,j)
h and F (j,i)

h , T
(j,i)
h the copies of F, T in G(i,j)

h and
G

(j,i)
h respectively. Let P be a (y(i,j)

h , x
(j,i)
h)-path in G′ that contains y(i,j)

h and x(j,i)
h -edges,

and let Q be a (y(j,i)
h , x

(i,j)
h)-path in G′ that contains y(j,i)

h and x(i,j)
h -edges. Let T ′ be the

tree obtained by taking the union of T (i,j)
h , T

(j,i)
h and P , and let F ′ be the tree obtained by

taking the union of F (i,j)
h , F

(j,i)
h and Q. It remains to observe that F ′, T ′ are completely

independent spanning trees of U ′ where U ′ is the union of the copies of U in G
(i,j)
h and

G
(j,i)
h . Since |U ′| = 2|U | ≥ 2k, we have that G a set of terminals U ′ of size at least k′ such

that there are two completely independent spanning trees F ′, T ′ of U ′.
Suppose now that G a set of terminals U ′ of size at least k′ such that there are two

completely independent spanning trees F ′, T ′ of U ′.
We claim that there are at most two G

(i,j)
h that contain vertices of U ′. To obtain a

contradiction, assume that three distinct G(i1,j1)
h1

, G
(i2,j2)
h2

, G
(i3,j3)
h3

have vertices of U ′. Then
by the construction of G′, there is s ∈ {1, 2, 3} such that F ′ contains the x(is,js)

hs
and y(is,js)

hs
-

edges. Because F ′, T ′ are edge disjoint by Lemma 2, T ′ cannot contain any vertex of G(is,js)
hs

;
a contradiction. We consider two cases.

Case 1. The set U ′ contains vertices of the unique G(i,j)
h . If F ′, T ′ do not include the x(i,j)

h

and y(i,j)
h -edges, then F ′, T ′ are subtrees of G(i,j)

h . By taking the copies of F ′, T ′ in Gh, we
have that Gh has a set of terminals of size at least k′ > k such that there are two completely
independent spanning trees of the set. Suppose that one of the trees, say F ′, contains at least
one of the x(i,j)

h and y(i,j)
h -edges. Because F ′ is a minimal spanning tree of U ′, F ′ contains

both the x(i,j)
h , y

(i,j)
h -edges. Then F ′ has the unique (y(i,j)

h , x
(i,j)
h)-path P with these edges,

and the internal vertices of P have degree two in F ′. Then the forest obtained from F ′

by the deletion of the edges and the inner vertices of P has two components F1 and F2.
Because V (F ′) ∩ U = (V (F1) ∩ U) ∪ (V (F2) ∩ U) and U1 = (V (F1) ∩ U), U2 = (V (F2) ∩ U)

FSTTCS 2014

82 Connecting Vertices by Independent Trees

are disjoint, we can assume without loss of generality that |U1| ≥ k. Let F be the unique
minimal spanning subtree of U1 in F1. Because F ′ contains the x(i,j)

h and y(i,j)
h -edges, T ′ is

a subgraph of G(i,j)
h by Lemma 2. Let T be be the unique minimal spanning subtree of U1

in T ′. We have that G(i,j)
h has the set of terminals U1 of size at least k such that there are

two completely independent spanning trees F, T of U1. By taking the copies of F, T in Gh,
we obtain that Gh has a set of terminals of size at least k such that there are two completely
independent spanning trees of the set.

Case 2. The set U ′ contains vertices of two distinct G(i,j)
h , G

(r,s)
h′ . Let U1 = V (G(i,j)

h) ∩ U ′

and U2 = V (G(r,s)
h′)∩U ′. Because U1, U2 is a partition of U ′, we can assume without loss of

generality that |U1| ≥ k. Notice that F ′, T ′ contain the x(i,j)
h , y

(i,j)
h , x

(r,s)
h′ , y

(r,s)
h′ -edges, and

the x(i,j)
h , y

(r,s)
h′ -edges (the y(i,j)

h , x
(r,s)
h′ -edges respectively) are in the same tree. We assume

that F ′ contains the x(i,j)
h , y

(r,s)
h′ -edges and T ′ has the y(i,j)

h , x
(r,s)
h′ -edges. Then F ′ has the

unique (x(i,j)
h , y

(r,s)
h′)-pathQ and and T ′ has the unique (y(i,j)

h , x
(r,s)
h′)-path R, and the internal

vertices of Q and R have degree two in F ′ and T ′ respectively. Then the forest obtained
from F ′ by the deletion of the edges and the inner vertices of Q has exactly two components
F1, F2, and it can be assumed that F1 is a subgraph of G(i,j)

h and F2 is a subgraph of G(r,s)
h′ .

Notice that U1 ⊆ V (F1), and let F be the unique spanning tree of U1 in F1. By the same
arguments, the forest obtained from T ′ by the deletion of the edges and the inner vertices of
R has exactly two components T1, T2, and it can be assumed that T1 is a subgraph of G(i,j)

h

and T2 is a subgraph of G(r,s)
h′ . Again, U1 ⊆ V (F1), and we consider the unique spanning

tree T of U1 in T1. We have that G(i,j)
h has the set of terminals U1 of size at least k such

that there are two completely independent spanning trees F, T of U1. By taking the copies
of F, T in Gh, we obtain that Gh has a set of terminals of size at least k such that there are
two completely independent spanning trees of the set.

In the both cases we have that there is h ∈ {1, . . . , t} such that (Gh, k) is a YES-instance
of Independently 2-Connected k-Set, and it competes the proof. J

5 FPT algorithm for Independently s-Connected k-Set and a
generalization

In this section we design an algorithm for Independently s-Connected k-Set. In fact,
what we show is that this problem is is FPT when parameterized by k + s. We show that
this problem can be reduced to checking existence of the bounded number of topological
minors of bounded size. As the checking of existence of topological minors can be done in
FPT-time by the recent results of Grohe et al. [6], we obtain the following theorem.

I Theorem 9. Independently s-Connected k-Set is FPT when parameterized by s+k.

Proof. If k = 1 or s = 1, then Independently s-Connected k-Set is trivial. If k =
2, then the problem can be solved in polynomial time by checking the existence of two
vertices that can be joined by at least s internally vertex disjoint paths. Also if s = 2, then
Independently s-Connected k-Set is FPT when parameterized by k by Theorem 1.
Hence, we can assume that s, k ≥ 3.

We prove the following two claims.

I Claim B. If H is a topological minor of G such that (H, s, k) is a YES-instance of In-
dependently s-Connected k-Set, then (G, s, k) is a YES-instance of Independently
s-Connected k-Set.

M. Basavaraju, F. V. Fomin, P. A. Golovach, and S. Saurabh 83

Proof of Claim B. Suppose that (H, s, k) is a YES-instance of Independently s-
Connected k-Set for a topological minor H of G. Then there is a set of terminals
U ⊆ V (H) of size at least k and there are s completely independent spanning trees T1, . . . , Ts

of U in H. Since H is a topological minor of G, G has a subgraph H ′ such that H ′ can be
obtained from H by a sequence of edge subdivisions. Let T ′1, . . . , T ′s be the trees obtained
from T1, . . . , Ts by applying these edge subdivisions to the edges of these trees. Denote by
U ′ the set of vertices of G that correspond to the vertices of U in H ′. It remains to observe
that T ′1, . . . , T ′s are completely independent spanning trees of U ′ in G by Lemma 2, i. e.,
(G, s, k) is a YES-instance of Independently s-Connected k-Set. J

I Claim C. If (G, s, k) is a YES-instance of Independently s-Connected k-Set, then
G has a topological minor H with at most sk + k − 2s vertices such that (H, s, k) is a
YES-instance of Independently s-Connected k-Set.

Proof of Claim C. Suppose that (G, s, k) is a YES-instance of Independently s-
Connected k-Set. Then there is a set of terminals U ⊆ V (G) of size exactly k and
there are s completely independent spanning trees T1, . . . , Ts of U in G. Let H be a sub-
graph of G that is the union of T1, . . . , Ts. Denote by H ′ the graph obtained from H by the
recursive dissolutions of degree two vertices that have non-adjacent neighbors. Clearly, H ′ is
a topological minor of G. Notice that because s ≥ 3, the vertices of U are not dissolved, and
we can dissolve only internal vertices of T1, . . . , Ts. Let T ′1, . . . , T ′s be the trees obtained from
T1, . . . , Ts respectively by these dissolutions. Then T ′1, . . . , T

′
s are completely independent

spanning trees of U in H ′ by Lemma 2, i. e., (H ′, s, k) is a YES-instance of Independently
s-Connected k-Set.

To obtain the bound on the number of vertices of H ′, we show that for each Ti, all
non-terminal internal vertices of degree two of Ti are dissolved. To obtain a contradiction,
assume that at some step, we could not dissolve a vertex u of degree two. It can happen only
if u has the neighbors x and y that are adjacent. Because Ti is a tree and the terminals are
not dissolved, x and y are joined in some other tree Tj , i. e., x, y ∈ V (Ti)∩V (Tj). Moreover,
x and y are joined in Ti, Tj by the unique (x, y)-paths Pi, Pj respectively such that the
internal vertices of Pi, Pj have degree two in Ti, Tj respectively. By Lemma 2, x, y ∈ U .
Because k ≥ 3, each of x, y is an internal vertex of one of the trees T1, . . . , Ts by Lemma 2.
Since s ≥ 3, either x or y is an internal vertex of at least two trees; a contradiction.

Thus, each T ′i has no non-terminal vertices of degree one or two. Therefore, because
|U | = k, T ′i has at most k−2 internal vertices. Then the total number of internal vertices of
T ′1, . . . , T

′
s is at most s(k−2), and the total number of vertices ofH ′ is at most s(k−2)+k. J

Now we can solve Independently s-Connected k-Set as follows. We consider all
2O(s2k2) graphs H with at most sk+ k− 2s vertices. For each H, we solve Independently
s-Connected k-Set using, e. g., brute force. If we obtain a yes-answer, then we check
whether H is a topological minor of G by the algorithm of Grohe et al. [6]. If H is a
topological minor of G, then (G, s, k) is a yes-instance of Independently s-Connected
k-Set by Claim B. If we have a no-answer for all H, then Independently s-Connected
k-Set for (G, s, k) has a no-answer by Claim C. J

A similar result can be obtained for the variant of the problem where a set of terminals
is fixed. Formally, Independent Trees for a Set of Terminals ask for a graph G,
positive integer s and a set U , whether there are s completely independent spanning trees of
U in G. Using the same arguments as in the proof of Theorem 9, we can show the following.

FSTTCS 2014

84 Connecting Vertices by Independent Trees

I Theorem 10. Independent Trees for a Set of Terminals is FPT when paramet-
erized by s+ |U |.

6 Conclusions

In this paper we initiated parameterized complexity of a natural connectivity problem and
designed several FPT algorithms for it. We conclude with several open questions.

Is it possible to solve Independently s-Connected k-Set in time 2O(k)nO(1) for a
fixed s ≥ 3?
What can be said about the approximability of Independently s-Connected k-Set?
Is there a constant factor approximation algorithm for the problem for s = 2?
We have shown that Independent Trees for a Set of Terminals is FPT when
parameterized by s + |U |. Is it possible to obtain a more efficient algorithm for this
problem? In particular, is it possible to solve the problem in single-exponential in |U |
for s = 2?

References
1 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On

problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
2 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification

unless the polynomial-time hierarchy collapses. In Leonard J. Schulman, editor, Proc. of
the 42nd ACM Symp. on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5–8 June 2010, pages 251–260. ACM, 2010.

3 Danny Dolev, Joseph Y. Halpern, Barbara Simons, and H. Raymond Strong. A new look
at fault-tolerant network routing. Inf. Comput., 72(3):180–196, 1987.

4 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of repres-
entative sets with applications in parameterized and exact algorithms. In Chandra Chekuri,
editor, Proc. of the 25th Annual ACM-SIAM Symp. on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5–7, 2014, pages 142–151. SIAM, 2014.

5 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
pcps for NP. In Cynthia Dwork, editor, Proc. of the 40th Annual ACM Symp. on Theory
of Computing, Victoria, BC, Canada, May 17–20, 2008, pages 133–142. ACM, 2008.

6 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Lance Fortnow and Salil P. Vadhan, editors,
Proc. of the 43rd ACM Symp. on Theory of Computing, STOC 2011, San Jose, CA, USA,
6–8 June 2011, pages 479–488. ACM, 2011.

7 Toru Hasunuma. Completely independent spanning trees in the underlying graph of a line
digraph. Discrete Mathematics, 234(1-3):149–157, 2001.

8 Toru Hasunuma. Completely independent spanning trees in maximal planar graphs. In
Ludek Kucera, editor, Graph-Theoretic Concepts in Computer Science, 28th International
Workshop, WG 2002, Cesky Krumlov, Czech Republic, June 13–15, 2002, Revised Papers,
volume 2573 of Lecture Notes in Computer Science, pages 235–245. Springer, 2002.

9 Toru Hasunuma and Chie Morisaka. Completely independent spanning trees in torus net-
works. Networks, 60(1):59–69, 2012.

10 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

11 Alon Itai and Michael Rodeh. The multi-tree approach to reliability in distributed networks.
Inf. Comput., 79(1):43–59, 1988.

12 Ferenc Péterfalvi. Two counterexamples on completely independent spanning trees. Discrete
Math., 312(4):808–810, 2012.

Tree Deletion Set Has a Polynomial Kernel
(but no OPTO(1) Approximation)

Archontia C. Giannopoulou∗1, Daniel Lokshtanov†1,
Saket Saurabh‡1,2, and Ondřej Suchý§3

1 Department of Informatics, University of Bergen, Norway
{archontia.giannopoulou|daniello}@ii.uib.no

2 The Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

3 Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, Czech Republic
ondrej.suchy@fit.cvut.cz

Abstract
In the Tree Deletion Set problem the input is a graph G together with an integer k. The
objective is to determine whether there exists a set S of at most k vertices such that G \ S is a
tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPTc

for any constant c. In this paper we give an O(k5) size kernel for the Tree Deletion Set
problem. An appealing feature of our kernelization algorithm is a new reduction rule, based on
system of linear equations, that we use to handle the instances on which Tree Deletion Set
is hard to approximate.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Tree Deletion Set, Feedback Vertex Set, Kernelization, Linear Equations

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.85

1 Introduction

In the Tree Deletion Set problem we are given as input an undirected graph G and
integer k, and the task is to determine whether there exists a set S ⊆ V (G) of size at most k
such that G\S is a tree, that is, a connected acyclic graph. This problem was first mentioned
by Yannakakis [25] and is related to the classical Feedback Vertex Set problem. Here
input is a graph G and integer k and the goal is to decide whether there exists a set S on at
most k vertices such that G \ S is acyclic. The only difference between the two problems is
that in Tree Deletion Set G \S is required to be connected, while in Feedback Vertex
Set it is not. Both problems are known to be NP-complete [10, 25].

∗ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.
267959.
† The research was supported by the Bergen Research Foundation and the University of Bergen through

project “BeHard”.
‡ The research was supported by the European Research Council through Starting Grant 306992 “Para-

meterized Approximation”.
§ The research was partially supported by the grant 14-13017P of the Czech Science Foundation.

© Archontia C. Giannopoulou, Daniel Lokshtanov, Saket Saurabh, and Ondřej Suchý;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 85–96

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.85
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

86 Tree Deletion Set Has a Polynomial Kernel (but no OPTO(1) Approximation)

Despite the apparent similarity between the two problems their computational complexities
differ quite dramatically. Feedback Vertex Set admits a factor 2-approximation algorithm,
while Tree Deletion Set is known to not admit any approximation algorithm with ratio
O(n1−ε) for any ε > 0, unless P = NP [1, 25]. With respect to parameterized algorithms, the
two problems exhibit more similar behavior. Indeed, some of the techniques that yield fixed
parameter tractable algorithms for Feedback Vertex Set [4, 5] can be adapted to also
work for Tree Deletion Set [21].

It is also interesting to compare the behavior of the two problems with respect to
polynomial time preprocessing procedures. Specifically, we consider the two problems in
the realm of kernelization. We say that a parameterized graph problem admits a kernel of
size f(k) if there exists a polynomial time algorithm, called a kernelization algorithm, that
given as input an instance (G, k) to the problem outputs an equivalent instance (G′, k′) with
k′ ≤ f(k) and |V (G′)|+ |E(G′)| ≤ f(k). If the function f is a polynomial, we say that the
problem admits a polynomial kernel. We refer to the surveys [11, 18] for an introduction to
kernelization. For the Feedback Vertex Set problem, Burrage et al. [3] gave a kernel of
size O(k11). Subsequently, Bodlaender [2] gave an improved kernel of size O(k3) and finally
Thomassé [22] gave a kernel of size O(k2). On the other hand the existence of a polynomial
kernel for Tree Deletion Set was open until this work. It seems difficult to directly adapt
any of the known kernelization algorithms for Feedback Vertex Set to Tree Deletion
Set. Indeed, Raman et al. [21] conjectured that Tree Deletion Set does not admit a
polynomial kernel.

The main reason to conjecture that Tree Deletion Set does not admit a polynomial
kernel stems from an apparent relation between kernelization and approximation algorithms
(cf. [19, page 15]). Most problems that admit a polynomial kernel, also have approximation
algorithms with approximation ratio polynomial in OPT (cf. [14, page 2]). Here OPT is the
value of the optimum solution to the input instance. In fact many kernelization algorithms
are already approximation algorithms with approximation ratio polynomial in OPT.

This relation between approximation and kernelization led to a conjecture [20, 8] that
Vertex Cover does not admit a kernel with (2− ε)k vertices for ε > 0, as this probably
would yield a factor (2− ε) approximation for the problem thus violating the Unique Games
Conjecture [13].

It is easy to show that an approximation algorithm for Tree Deletion Set with ratio
OPTO(1) would yield an approximation algorithm for the problem with ratio O(n1−ε) thereby
proving P = NP. In particular, suppose Tree Deletion Set had an OPTc algorithm for
some constant c. Since the algorithm will never output a set of size more than n, the
approximation ratio of the algorithm is upper bounded by min(OPTc, n

OPT) ≤ n1− 1
c+1 . This

rules out approximation algorithms for Tree Deletion Set with ratio OPTO(1), and makes
it very tempting to conjecture that Tree Deletion Set does not admit a polynomial
kernel.

In this paper we show that Tree Deletion Set admits a kernel of size O(k5). To
the best of our knowledge this is among the few examples of problems that do admit a
polynomial kernel, but do not admit any approximation algorithm with ratio OPTO(1) under
plausible complexity assumptions. The only other example we are aware of is a special case
of the CSP studied by Kratsch and Wahlström [15].

Our Methods. The starting point of our kernel are known reduction rules for Feedback
Vertex Set adapted to our setting. We also adapt the strategy to model some “pendant
parts” of the graph by weight on vertices during the kernelization process to simplify the

A.C. Giannopoulou, D. Lokshtanov, S. Saurabh, and O. Suchý 87

structure of the graph. By applying these graph theoretical reduction rules we can show that
there is a polynomial time algorithm that given an instance (G, k) of Tree Deletion Set
outputs an equivalent instance (G′, k′) and a partition of V (G′) into sets B, T , and I such
that
1. |B| = O(k2),
2. |T | = O(k4),
3. I is an independent set, and
4. for every v ∈ I, NG′(v) ⊆ B, and NG′(v) is a double clique.

Here a “double clique” means that for every pair x, y of vertices in NG′(v), there are two
edges between them. Thus we will allow G′ to be a multigraph, and consider a double edge
between two vertices as a cycle. In order to obtain a polynomial kernel for Tree Deletion
Set it is sufficient to reduce the set I to size polynomial in k.

For every vertex v ∈ I and tree deletion set S we know that |NG′(v) \ S| ≤ 1, since
otherwise G′ \ S would contain a double edge. Further, if v /∈ S then v has to be connected
to the rest of G′ \S and hence |NG′(v) \S| = 1, implying that v is a leaf in G′ \S. Therefore
G′ \ (S ∪ I) must be a tree. We can now reformulate the problem as follows.

For each vertex u in G′ \ I we have a variable xu which is set to 0 if u ∈ S and xu = 1
if u /∈ S. For each vertex v ∈ I we have a linear equation

∑
u∈N(v) xu = 1. The task is to

determine whether it is possible to set the variables to 0 or 1 such that (a) the subgraph of
G′ induced by the vertices with variables set to 1 is a tree and (b) the number of variables
set to 0 plus the number of unsatisfied linear equations is at most k.

At this point it looks difficult to reduce I by graph theoretic means, as performing
operations on these vertices correspond to making changes in a system of linear equations.
In order to reduce I we prove that there exists an algorithm that given a set S of linear
equations on n variables and an integer k in time O(|S|nω−1k) outputs a set S ′ ⊆ S of at
most (n+ 1)(k + 1) linear equations such that any assignment of the variables that violates
at most k linear equations of S ′ satisfies all the linear equations of S \ S ′. To reduce I we
simply apply this result and keep only the vertices of I that correspond to linear equations
in S ′. We believe that our reduction rule for linear equations will find more applications in
the future and, while not as involved, adds a little to the toolbox of algebraic reduction rules
for kernelization (see, for example, [7, 6, 17, 16, 23]).

Due to space constraints, the proofs of lemmata marked with ? are deferred to the full
version of the paper.

2 Basic Notions

For every positive integer n we denote by [n] the set {1, 2, . . . , n}, N denotes the set of
positive integers, and R denotes the real numbers.

For a graph G = (V,E), we use V (G) to denote its vertex set V and E(G) to denote
its edge set E. If S ⊆ V (G) we denote by G \ S the graph obtained from G after removing
the vertices of S. In the case where S = {u}, we abuse notation and write G \ u instead of
G \ {u}. For S ⊆ V (G), the neighborhood of S in G, NG(S), is the set {u ∈ V (G) \ S | ∃v ∈
S : {u, v} ∈ E(G)}. Again, in the case where S = {v} we abuse notation and write NG(v)
instead of NG({v}). The degree of vertex v denoted deg(v) is the number of edges incident
to it, loops being counted twice. A graph is connected if there is a path between any pair
of its vertices. A connected component in a graph G is a set of vertices H such that G[H]
is connected and H is maximal with this property. We use C(G) to denote the set of the
connected components of G. Given a graph G and a set S ⊆ G, we say that S is a feedback

FSTTCS 2014

88 Tree Deletion Set Has a Polynomial Kernel (but no OPTO(1) Approximation)

vertex set of G if the graph G \ S does not contain any cycles. In the case where G \ S is
connected we call S tree deletion set of G. Moreover, given a set S ⊆ V (G), we say that S is
a double clique of G if every pair of vertices in S is joined by a double edge.

Given two vectors x and y we denote by dH(x, y) the Hamming distance of x and y, that
is, dH(x, y) is equal to the number of positions where the vectors differ. For every k ∈ N we
denote by 0k the k-component vector (0, 0, . . . , 0). When k is implied from the context we
abuse notation and denote 0k as 0.

For a rooted tree T and vertex set M in V (T) the least common ancestor-closure (LCA-
closure) LCA-closure(M) is obtained by the following process. Initially, setM ′ = M . Then,
as long as there are vertices x and y in M ′ whose least common ancestor w is not in M ′,
add w to M ′. Finally, output M ′ as the LCA-closure of M .

I Lemma 1 (Fomin et al. [9]). Let T be a tree, M ⊆ V (T), and M ′ = LCA-closure(M).
Then, |M ′| ≤ 2|M | and for every connected component C of T \M ′, |NT (C)| ≤ 2.

3 A polynomial kernel for Tree Deletion Set

In this section we prove a polynomial size kernel for a weighted variant of the Tree Deletion
Set problem. More precisely the problem we will study is following.

Weighted Tree Deletion Set (wTDS)
Instance: A graph G, a function w : V (G)→ N, and a non-negative integer k.

Parameter: k.
Question: Does there exist a set S ⊆ V (G) such that

∑
v∈S

w(v) ≤ k and
G \ S is a tree?

3.1 Known Reduction Rules for wTDS
In this subsection we state some already known reduction rules for wTDS that are going to
be needed during our proofs.

I Reduction Rule 1 (Raman et al. [21]). If the input graph is disconnected, then delete all
vertices in connected components of weight less than (

∑
v∈V w(v))− k and decrease k by the

weight of the deleted vertices.

I Observation 2 (Raman et al. [21]). If
(∑

v∈V w(v)
)
> 2k, then after the exhaustive

application of Reduction Rule 1 the graph has at most one connected component.

I Reduction Rule 2 (Raman et al. [21]). If v is of degree 1 and u is its only neighbor, then
delete v and increase the weight of u by the weight of v.

I Reduction Rule 3 (Raman et al. [21]). If v0, v1, . . . , vl, vl+1 is a path in the input graph,
such that l ≥ 3 and deg(vi) = 2 for every i ∈ [l], then replace the vertices v1, . . . , vl by two
vertices u1 and u2 with edges {v0, u1}, {u1, u2}, and {u2, vl+1} and with w(u1) = min{w(vi) |
i ∈ [l]} and w(u2) =

(∑l
i=1 w(vi)

)
− w(u1).

Given a vertex x of G, an x-flower of order k is a set of k cycles pairwise intersecting
exactly in x. If G has an x-flower of order k + 1, then x should be in every tree deletion
set of weight at most k as otherwise we would need at least k + 1 vertices to hit all cycles
passing through x. Thus the following reduction rule is safe.

A.C. Giannopoulou, D. Lokshtanov, S. Saurabh, and O. Suchý 89

I Reduction Rule 4. Let (G,w, k) be an instance of wTDS. If G has an x-flower of order
at least k + 1, then remove x and decrease the parameter k by the weight of x. The resulting
instance is (G \ {x}, w|V (G)\{x}, k − w(x)).

The following theorem allows us to apply Reduction Rule 4 exhaustively in polynomial
time. A version of the theorem appears also in [2], but the version given in [22] is significantly
more powerful.

I Theorem 3 (Thomassé [22]). Let G be a multigraph and x be a vertex of G without a self
loop. Then in polynomial time we can find an x-flower of order k + 1 or, if such an x-flower
does not exist, a set of vertices Z ⊆ V (G) \ {x} of size at most 2k intersecting every cycle
containing x.

I Reduction Rule 5. Let (G,w, k) be an instance of wTDS. If v is a vertex such that
w(v) > k + 1, then let w(v) = k + 1.

An instance (G,w, k) of wTDS is called semi-reduced if none of the Reduction Rules 1–5
can be applied. By Observation 2 such an instance is either connected or the total weight of
all vertices is at most 2k and hence we have a kernel. Therefore, for the rest of the paper we
assume that the instance is connected.

I Lemma 4 (?). If (G,w, k) is an instance of wTDS reduced with respect to Reduction
Rule 5, then there is an equivalent instance (G′, k) of Tree Deletion Set such that
|V (G′)| ≤ (k + 1)|V (G)| and |E(G′)| ≤ |E(G)|+ |V (G′)|.

I Theorem 5 (Bafna et al. [1]). There is an O(min{|E(G)| log |V (G)|, |V (G)|2}) time al-
gorithm that given a graph G that admits a feedback vertex set of size at most k outputs a
feedback vertex set of G of size at most 2k.

3.2 A structural decomposition
In this subsection we decompose an instance (G,w, k) of wTDS to an equivalent instance
(G′, w′, k′) where V (G′) is partitioned into three sets B, T , and I, such that the size of B
and T is polynomial in k and I is an independent set. In particular we obtain the following
result.

I Lemma 6. There is a polynomial time algorithm that given a semi-reduced instance
(G,w, k) of wTDS either correctly decides that (G,w, k) is a no-instance or outputs an
equivalent instance (G′, w′, k′) and a partition of V (G′) into sets B, T , and I such that
(i) |B| ≤ 8k2 + 2k,
(ii) T induces a forest and |T | ≤ 240k4 + 272k3 + 65k2 − 19k − 7,
(iii) I is an independent set, and
(iv) for every v ∈ I, NG′(v) ⊆ B, |NG′(v)| ≤ 2k + 1, and NG′(v) is a double clique.

For an example of the structure of the graph G′ obtained from Lemma 6, see Figure 1.
We split the proof of this lemma into several auxiliary lemmata. We start by identifying

the set B.

I Lemma 7. There is a polynomial time algorithm that given a semi-reduced instance
(G,w, k) of wTDS either correctly decides that (G,w, k) is a no-instance or finds two sets F
and Q̂ such that, denoting B = F ∪ Q̂, the following holds.
(i) F is a feedback vertex set of G.
(ii) Each connected component of G \B has at most 2 neighbors in Q̂.

FSTTCS 2014

90 Tree Deletion Set Has a Polynomial Kernel (but no OPTO(1) Approximation)

v

N(v)

I

B

T

N(H)

H

.

Figure 1 The vertex set of the graph G′ is partitioned into a set B, a set T where every connected
component H of T is a tree, and a set I. The set I induces an independent set and for every vertex
v ∈ I, NG′(v) ⊆ B and NG′(v) induces a double clique.

(iii) For every connected component H ∈ C(G \B) and every vertex y ∈ B, |NG(y)∩H| ≤ 1,
that is, every vertex y of F and every vertex y of Q̂ have at most one neighbor in every
connected component H of G \B.

(iv) |B| ≤ 8k2 + 2k.

Proof. First notice that every tree deletion set of G of weight at most k is also a feedback
vertex set of G of size at most k in the underlying non-weighted graph. Thus, by applying
Theorem 5 we may find in polynomial time a feedback vertex set F of G. If |F | > 2k, then
output NO. Otherwise, |F | ≤ 2k.

As the instance (G,w, k) is semi-reduced, Reduction Rule 4 is not applicable, and G does
not contain an x-flower of order k+ 1 for any x ∈ F . Therefore, from Theorem 3, we get that
for every x ∈ F we can find in polynomial time a set Qx ⊆ V (G) \ {x} intersecting every
cycle that goes through x in G and such that |Qx| ≤ 2k. Let Q =

⋃
x∈F Q

x.
Let C(G \ F) = {H1, H2, . . . ,Hl} and note that, as F is a feedback vertex set of G, each

G[Hi] is a tree. From now on, without loss of generality we will assume that each G[Hi],
i ∈ [l], is rooted at some vertex vi ∈ Hi.

Let Qi = Hi ∩Q, i ∈ [l]. In other words, Qi denotes the set of vertices of Hi that are
also vertices of Q, i ∈ [l]. Let also Q̂i = LCA-closure(Qi), that is, let Q̂i denote the least
common ancestor-closure of the set Qi in the tree G[Hi]. Finally, let Q̂ =

⋃
i∈[l] Q̂i and note

that Q̂ ∩ F = ∅.
Let us now prove that F and Q̂ have the claimed properties. First of all, F is a feedback

vertex set by construction, proving (i). Second, since for each x in F we have |Qx| ≤ 2k, we
have |Q| ≤ 4k2, and from Lemma 1 we get that |Q̂| = |

⋃
i∈[l] Q̂i| =

∑
i∈[l] |Q̂i| ≤ 2

∑
i∈l |Qi| ≤

2|Q| ≤ 8k2. Together with |F | ≤ 2k this proves (iv). Third, from the construction of Q̂ and
from Lemma 1 we get the property (ii).

Let us now prove (iii). Let y ∈ B and H ∈ C(G \ B) and assume to the contrary that
|NG(y) ∩H| ≥ 2. Then, as G[H] is connected, the graph G[H ∪ {y}] contains a cycle that
goes through y. If y ∈ F , we get a contradiction to the facts that G[H ∪ {y}] is a subgraph

A.C. Giannopoulou, D. Lokshtanov, S. Saurabh, and O. Suchý 91

of G \ Qy and the set Qy intersects every cycle that goes through y. If y ∈ Q̂, we get a
contradiction, since G[H ∪ {y}] is a subgraph of G \ F (recall that Q̂ ∩ F = ∅) and G \ F is
acyclic. J

The next lemma shows that if B is as in the previous lemma, then the size of connected
components in the rest of the graph is bounded.

I Lemma 8 (?). If (G,w, k) and B are as in Lemma 7 and H is a connected component
of G \B, then |H| ≤ 12k + 7.

Let x, y be two vertices of B. We say that the pair {x, y} is in P≤k+1 if there are at most
k + 1 connected components H of G \B with {x, y} ⊆ NG(H) and that {x, y} is in P≥k+2

otherwise. Now we add to G a double edge between every pair in P≥k+2 to obtain the
graph Ĝ. The next lemma shows that the resulting instance is equivalent to the original one.

I Lemma 9. The instance (Ĝ, w, k), where Ĝ is as defined above, is equivalent to (G,w, k).

Proof. Let {x, y} ∈ P≥k+2. Notice that each connected component H of G \ B with
{x, y} ⊆ NG(H) provides a separate path between x and y. Observe then that if neither x
nor y belong to a tree deletion set D of G we need at least k + 1 vertices to hit all
the cycles, since otherwise there are at least two components H1, H2 ∈ C(G \ B) with
{x, y} ⊆ (NG(H1) ∩ NG(H2)) and (H1 ∪ H2) ∩ D = ∅ and thus the graph induced by
H1 ∪H2 ∪ {y, y′} contains a cycle. This implies that (G,w, k) is a yes-instance if and only if
at least one of the vertices x and y is contained in every tree deletion set of G of weight k. J

The following lemma shows that there are only few connected components of G\B having
a neighborhood that is not a double clique in Ĝ.

I Lemma 10. If (G,w, k) and B are as in Lemma 7 and Ĝ as defined above, then there is
a set CT ⊆ C(G \B) such that
(i) |CT | ≤ 20k3 + 11k2 − k − 1,
(ii) for every H in C(G\B)\CT , we have NG(H) is a double clique in Ĝ and |NG(H)∩Q| ≤ 1.

Proof. For x, y ∈ B we denote S(x, y) = {H ∈ C(G \ B) | {x, y} ⊆ NG(H)}. Let us set
CT =

⋃
{x,y}∈P≤k+1 S(x, y). Let us now assume that there is H in C(G \ B) \ CT , and two

vertices x and y in NG(H) that are not joined by a double edge. By construction of the
graph Ĝ, this implies that {x, y} ∈ P≤k+1. But this implies that H is in CT , a contradiction.
Furthermore, for every x, y ∈ Q̂ we have |S(x, y)| ≤ 1 as otherwise we would have a cycle in
G \ F and F is a feedback vertex set. Hence CT satisfies (ii). It remains to prove (i).

Let us first mention that it is easy to see that CT is of polynomial size. Indeed, we have
|CT | = |

⋃
{x,y}∈P≤k+1 S(x, y)| ≤ |B|2(k + 1) = O(k5). For the purpose of the more precise

size bound let us distinguish three subsets of CT :

T FF =
⋃
{x,y}⊆F∧{x,y}∈P≤k+1

S(x, y)

T QQ =
⋃
{x,y}⊆Q̂∧{x,y}∈P≤k+1

S(x, y)

T FQ =
(⋃

x∈F∧y∈Q̂∧{x,y}∈P≤k+1
S(x, y)

)
\ T QQ

Obviously, CT ⊆ (T FF ∪ T QQ ∪ T FQ). Hence, to bound the size of CT it is enough to
bound the sizes of T FF , T QQ, and T FQ. Note that for every {x, y} ∈ P≤k+1 we have
|S(x, y)| ≤ k + 1. It follows that |T FF | ≤

(|F |
2
)
(k + 1) ≤

(2k
2
)
(k + 1) = 2k3 + k2 − k.

FSTTCS 2014

92 Tree Deletion Set Has a Polynomial Kernel (but no OPTO(1) Approximation)

Next we claim that |T QQ| ≤ |Q̂| − 1 ≤ 8k2 − 1. For every x, y ∈ Q̂ we have |S(x, y)| ≤ 1
as otherwise we would have a cycle in G \ F and F is a feedback vertex set. Let AQ be the
graph with vertex set Q̂ where two vertices in Q̂ are connected by an edge if and only if
they are the neighbors of a component H ∈ T QQ in Q̂. Hence, the number of edges of AQ
equals |T QQ|. We now work towards showing that AQ is a forest. Indeed, assume to the
contrary that there exists a cycle in AQ. Then it is easy to see that we may find a cycle in
the graph Ĥ induced by the components in T QQ which correspond to the edges of the cycle
in AQ and their neighborhood in Q̂. Recall that Q̂ ∩ F = ∅ and therefore Ĥ is a subgraph
of G \ F . This contradicts the fact that F is a feedback vertex set of G. Hence, AQ is a
forest and the claim follows.

For the upper bound on T FQ, for every x ∈ F we partition the set Q̂ into two sets R≤1
x

and R≥2
x in the following way.

R≤1
x = {y ∈ Q̂ | there is at most 1 component H ∈ T FQ such that {x, y} ⊆ NG(H)}

R≥2
x = {y ∈ Q̂ | {x, y} ∈ P≤k+1 and there exist at least two distinct components

H1, H2 ∈ T FQ such that {x, y} ⊆ NG(H1) ∩NG(H2)}.

Observe that |T FQ| ≤
∑
x∈F

(
|R≤1
x |+ |R≥2

x |(k + 1)
)
and for every x ∈ F , it trivially holds

that |R≤1
x | ≤ |Q̂| ≤ 8k2.

Moreover, we claim that for every x ∈ F , |R≥2
x | ≤ k. Indeed, assume to the contrary that

|R≥2
x | ≥ k + 1 for some x ∈ F . Then there exist k + 1 vertices yi ∈ Q̂, i ∈ [k + 1], such that

for every i there exist two connected components Hi
1 and Hi

2 in T FQ ⊆ C(G \B) \ T QQ such
that {x, y} ⊆ NG(Hi

1) ∩NG(Hi
2). This implies that the graph induced by the vertex x, the

vertices yi, i ∈ [k + 1], and the components Hi
1 and Hi

2, i ∈ [k + 1], contains an x-flower of
order k + 1 (notice that, as none of the graphs belong to T QQ, they are pairwise disjoint).
This is a contradiction to the fact that G is semi-reduced. Therefore, for every x ∈ F we
have |R≥2

x | ≤ k.
Alltogether, we have |T FQ| ≤

∑
x∈F

(
8k2 + k(k + 1)

)
≤ 18k3 + 2k2 and |CT | ≤ |T FF |+

|T QQ|+|T FQ| ≤ (2k3 +k2−k)+(8k2−1)+(18k3 +2k2) = 20k3 +11k2−k−1 proving (i). J

Let us denote T =
⋃
H∈CT

H. Note that by the properties of CT we have C(Ĝ\ (B∪T)) =
C(G \B) \ CT . Further, by Lemma 8 we have |T | ≤ |CT |(12k + 7) and, hence, by Lemma 10,
|T | ≤ (20k3 + 11k2 − k − 1)(12k + 7) = 240k4 + 272k3 + 65k2 − 19k − 7.

We now prove that the components of C(G \ B) that are not in CT behave as single
vertices with respect to tree deletion sets.

I Lemma 11 (?). If there exists a tree deletion set S of Ĝ of weight at most k then there
exists a tree deletion set Ŝ of Ĝ of weight at most k such that for every H ∈ C(Ĝ \ (B ∪ T)),
either H ⊆ Ŝ or H ∩ Ŝ = ∅.

Now, let G′ be the graph obtained from Ĝ after contracting every connected component H
of Ĝ \ (B ∪ T) into a single vertex vH and setting w′(vH) =

∑
v∈H w(v) and w′(v) = w(v)

for every v ∈ (B ∪ T). We also define I to be the set V (G′) \ (B ∪ T). We now prove that
such a contraction does not affect the instance.

I Lemma 12 (?). If Ĝ, G′, and w′ are as defined above, then the instances (Ĝ, w, k) and
(G′, w′, k) are equivalent.

Lemma 6 now follows directly from Lemmata 7–12.

A.C. Giannopoulou, D. Lokshtanov, S. Saurabh, and O. Suchý 93

I Remark. While it might be tempting to say that among a pair of vertices in P≥k+2 a
solution must remove exactly one, this is not the case. Though, clearly, some of the common
neighbors of the pair remain untouched, they might be connected to the rest of the graph
through other vertices of B. Hence it might be the case that both vertices of the pair are
removed.

3.3 Results on Linear Equations
I Lemma 13. Let F be a field. For every matrix M ∈ Fm×n and positive integer k, there
exists a submatrix M ′ ∈ Fm′×n of M , where m′ ≤ n(k + 1), such that for every x ∈ Fn with
dH(M ′ · xT ,0m′) ≤ k, dH(M · xT ,0m) = dH(M ′ · xT ,0m′). Furthermore, the matrix M ′
can be computed in time O(m · nω−1k), where ω is the matrix multiplication exponent
(ω < 2.373 [24]), assuming that the field operations take a constant time.

Proof. In order to identify M ′ we identify j0 + 1 ≤ k + 1 (non-empty) submatrices
B0, B1, . . . , Bj0 of M , each having at most n rows, in the following way: First, let B0
be a minimal submatrix of M whose rows span all the rows of M , that is, let B0 be a base
of the vector space generated by the rows of M , and let also M0 be the submatrix obtained
from M after removing the rows of B0. We identify the rest of the matrices inductively as
follows: For every i ∈ [k], if Mi−1 is not the empty matrix we let Bi be a minimal submatrix
of Mi−1 whose rows span all the rows of Mi−1 and finally we let Mi be the matrix occurring
from Mi−1 after removing the rows of Bi.

We now define the submatrixM ′ ofM . Let j0 ≤ k be the greatest integer for whichMj0−1
is not the empty matrix. Let M ′ be the matrix consisting of the union of the rows of the
(non-empty) matrices B0 and Bi, i ∈ [j0]. As the rank of the matrices M , Mi, i ∈ [j0], is
upper bounded by n, the matrices B0, Bi, i ∈ [j0], have at most n rows each, and thereforeM ′
has at most n(j0 + 1) ≤ n(k + 1) rows. Observe that if j0 < k then the union of the rows
of the non-empty matrices B0, Bi, i ∈ [j0], contains all the rows of M and thus we may
assume that M ′ = M and the lemma trivially holds. Hence, it remains to prove the lemma
for the case where j0 = k, and therefore M ′ consists of the union of the matrices B0, Bi,
i ∈ [k]. As it always holds that dH(M · xT ,0) ≥ dH(M ′ · xT ,0) it is enough to prove that
for every x ∈ Fn for which dH(M ′ · xT ,0) ≤ k, dH(M · xT ,0) ≤ dH(M ′ · xT ,0). Thus, it
is enough to prove that for every row r of the matrix M ′′ obtained from M after removing
the rows of M ′, it holds that dH(r · xT ,0) = 0. Towards this goal let x ∈ Fn be a vector
such that dH(M ′ · xT ,0) ≤ k. From the Pigeonhole Principle there exists an i0 such that
dH(Bi0 · xT ,0) = 0, that is, if r1, r2, . . . , r|Bi0 | are the rows of Bi0 then rj · xT = 0, for every
j ∈ [|Bi0 |]. Recall however that the row r of M ′′ is spanned by the rows r1, r2, . . . , r|Bi0 |
of Bi0 . Therefore, there exist λj ∈ F, j ∈ [|Bi0 |], such that r =

∑
j∈[|Bi0 |]

λjrj . It follows
that r · xT =

∑
j∈[|Bi0 |]

λj(rj · xT) = 0 and therefore dH(r · xT ,0) = 0. This implies that
dH(M · xT ,0) ≤ dH(M ′ · xT ,0). Finally, for a rectangular matrix of size d× r, d ≤ r, Ibarra
et al. [12] give an algorithm that computes a maximal independent set of rows (a row basis)
in O(dω−1r) time. By running this algorithm k + 1 times we can find the matrix M ′ in
O(mnω−1k) time and this completes the proof of the lemma. J

I Lemma 14. Let F be a field. There exists an algorithm that given a set S of linear equations
over F on n variables and an integer k outputs a set S ′ ⊆ S of at most (n+ 1)(k + 1) linear
equations over F such that any assignment of the variables that violates at most k linear
equations of S ′ satisfies all the linear equations of S \ S ′. Moreover, the running time of the
algorithm is O(|S|nω−1k), assuming that the field operations take a constant time.

FSTTCS 2014

94 Tree Deletion Set Has a Polynomial Kernel (but no OPTO(1) Approximation)

Proof. Let x1, x2, . . . , xn denote the n variables and αij denote the coefficient of xj in
the i-th linear equation of S, i ∈ [|S|], j ∈ [n]. Let also αi(n+1) denote the constant term
of the i-th linear equation of S. In other words, the i-th equation of S is denoted as
αi1x1 + αi2x2 + · · ·+ αinxn + αi(n+1) = 0. Finally, let M be the matrix where the j-element
of the i-th row is αij , i ∈ [|S|], j ∈ [n+ 1]. From Lemma 13, it follows that for every positive
integer k there exists a submatrixM ′ ofM with at most (n+1)(k+1) rows and n+1 columns
such that for every x ∈ Fn+1 for which dH(M ′ · xT ,0) ≤ k, dH(M · xT ,0) = dH(M ′ · xT ,0)
and M ′ can be computed in time O(|S|nω−1k). Let S ′ be the set of linear equations that
correspond to the rows of M ′. Let then xi = βi, βi ∈ F, i ∈ [n], be an assignment that does
not satisfy at most k of the equations of S ′. This implies that dH(M ′ · z,0) ≤ k, where
z = (β1, β2, . . . , βn, 1)T . Again, from Lemma 13, we get that dH(M · z,0) = dH(M ′ · z,0).
Thus, the above assignment satisfies all the linear equations of S \ S ′. J

3.4 The Main Theorem
In this subsection by combining the structural decomposition of Subsection 3.2 and Lemma 14
from Subsection 3.3 we obtain a kernel for wTDS of size O(k4).

I Theorem 15. wTDS admits a kernel of size O(k4) and O(k4 log k) bits.

Proof. Let (G,w, k) be an instance of wTDS. Without loss of generality we may assume that
it is semi-reduced, G is connected, and that, from Lemma 6, V (G) can be partitioned into
three sets B, T , and I satisfying the conditions of Lemma 6. Note that, as G is connected,
every vertex of I has at least one neighbor in B. We construct an instance (G′, w′, k) of
wTDS in the following way. Let p be a prime number such that |B| < p < 2|B|. Such a prime
number exists by a Bertrand’s postulate (proved by Chebyshev in 1850). Let F = GF(p),
that is, the Galois field of order p. It takes at most O(|B|2) = O(k4) time to find p and the
multiplicative inverses in F.

Let I = {vi | i ∈ [|I|]} andB = {uj | j ∈ [|B|]}. We assign an F-variable xj to uj , j ∈ [|B|],
and a linear equation li over F to vi, i ∈ [|I|], where li is the equation

∑
j∈[|B|] αijxj − 1 = 0

and αij = 1 if uj ∈ NG(vi) and 0 otherwise. Let L = {li | i ∈ [|I|]} and L′ be the subset of L
obtained from Lemma 14. Let also I ′ = {vp ∈ I | lp ∈ L′} and G′ = G[B ∪ T ∪ I ′]. Finally,
let w′ = w|B∪T∪I′ . We now prove that (G′, w′, k) is equivalent to (G,w, k).

We first prove that if (G,w, k) is a yes-instance then so is (G′, w′, k). Let S be a tree
deletion set of G of weight at most k. Then G \ S is a tree and, as for every vertex v ∈ I \ S,
NG(v) is a double clique, v has degree exactly 1 in G \S. Therefore, the graph obtained from
G \ S after removing (I \ I ′) is still a tree. This implies that S \ (I \ I ′) is a tree deletion set
of G′ of weight at most k and (G′, w′, k) is a yes-instance.

Let now (G′, w′, k) be a yes-instance and S be a tree deletion set of G′ of weight at
most k. We claim that there exist at most k vertices in I ′ whose neighborhood lies entirely
in S. Indeed, assume to the contrary that there exist at least k + 1 vertices of I ′ whose
neighborhood lies entirely in S. Let J be the set of those vertices. Notice that for every
vertex v ∈ I ′, if NG′(v) ⊆ S, then either v ∈ S or I ′ \ {v} ⊆ S. Notice that if J ⊆ S, then S
has weight at least k + 1, a contradiction. Therefore, there exists a vertex u ∈ J that is
not contained in S. Then I ′ \ {u} ⊆ S. Moreover, recall that u has at least one neighbor z
in B and from the hypothesis z is contained in S. Therefore (I ′ \ {u}) ∪ {z} ⊆ S. As
|I ′| ≥ |J | = k + 1, it follows that |I ′ \ {u}| ≥ k. Furthermore, recall that B ∩ I ′ = ∅. Thus,
|S| ≥ k+ 1, a contradiction to the fact that S has weight at most k. Therefore, there exist at
most k vertices of I ′ whose neighborhood is contained entirely in S. For every j ∈ [|B|], let
xj = βj , where βj = 0 if uj ∈ S and 1 otherwise. Then there exist at most k linear equations

A.C. Giannopoulou, D. Lokshtanov, S. Saurabh, and O. Suchý 95

in L′ which are not satisfied by the above assignment. However, from the choice of L′ all
the linear equations in L \ L′ are satisfied and therefore, for every vertex u in I \ I ′ we have
|NG(u) \S| ≡ 1 (mod p). Since p > |B| this implies that u has exactly one neighbor in G \S.
Thus G \ S is a tree and hence, S is a tree deletion set of G as well.

Notice that V (G′) = B ∪ T ∪ I ′, where |I ′| ≤ 8k3 + 10k2 + 3k + 1 (Lemma 14) and
therefore |V (G′)| = O(k4). It is also easy to see that |E(G′)| = O(k4). Indeed, notice first
that as the set I ′ is an independent set there are no edges between its vertices. Moreover,
from Lemma 6 there are no edges between the vertices of the set I ′ and the set T . Observe
that, from the construction of I and subsequently of I ′, Lemma 6 implies that every vertex
of I ′ has at most 2k + 2 neighbors in B. As |I ′| ≤ 8k3 + 10k2 + 3k + 1 there exist O(k4)
edges between the vertices of I ′ and the vertices of B. Notice that from (2) of Lemma 6, T
induces a forest and thus there exist at most O(k4) edges between its vertices. Moreover,
from (1) of Lemma 6, again there exist O(k4) edges between the vertices of B. It remains to
show that there exist O(k4) edges with one endpoint in B and one endpoint in T . Recall
first that every connected component has at most 2 neighbors in Q̂. Therefore, there exist
at most 2k + 2 edges between every connected component of CT and B. Moreover, from
Lemma 10 we obtain that CT contains O(k3) connected components. Therefore, there exist
O(k4) edges with one endpoint in B and one endpoint in T . Thus, wTDS has a kernel of
O(k4) vertices and edges. Finally, from Reduction Rule 5, the weight of every vertex is upper
bounded by k + 1 and thus, it can be encoded using log(k + 1) bits resulting to a kernel of
wTDS with O(k4 log k) bits. J

From Lemma 4 we immediately get the following corollary.

I Corollary 16. Tree Deletion Set has a kernel with O(k5) vertices and edges.

References
1 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the

undirected feedback vertex set problem. SIAM J. Discrete Math., 12(3):289–297, 1999.
2 Hans L. Bodlaender and Thomas C. van Dijk. A cubic kernel for feedback vertex set and

loop cutset. Theory Comput. Syst., 46(3):566–597, 2010.
3 Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev

Mac, and Frances A. Rosamond. The undirected feedback vertex set problem has a poly(k)
kernel. In Parameterized and Exact Computation – IWPEC, volume 4169 of LNCS, pages
192–202, 2006.

4 Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set new measure and new
structures. In Algorithm Theory – SWAT 2010, volume 6139 of LNCS, pages 93–104, 2010.

5 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.

6 Robert Crowston, Michael R. Fellows, Gregory Gutin, Mark Jones, Frances A. Rosamond,
Stéphan Thomassé, and Anders Yeo. Simultaneously satisfying linear equations over F2:
MaxLin2 and Max-r-Lin2 parameterized above average. In Foundations of Software Tech-
nology and Theoretical Computer Science – FSTTCS 2011, volume 13 of LIPIcs, pages
229–240, 2011.

7 Robert Crowston, Gregory Gutin, Mark Jones, Eun Jung Kim, and Imre Z. Ruzsa. Systems
of linear equations over F2 and problems parameterized above average. In Algorithm Theory
– SWAT 2010, volume 6139 of LNCS, pages 164–175, 2010.

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

FSTTCS 2014

96 Tree Deletion Set Has a Polynomial Kernel (but no OPTO(1) Approximation)

9 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
deletion: Approximation, kernelization and optimal FPT algorithms. In Foundations of
Computer Science – FOCS 2012, pages 470–479, 2012.

10 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

11 Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007.

12 Oscar H. Ibarra, Shlomo Moran, and Roger Hui. A generalization of the fast LUP matrix
decomposition algorithm and applications. J. Algorithms, 3(1):45–56, 1982.

13 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε.
J. Comput. Syst. Sci., 74(3):335–349, 2008.

14 Stefan Kratsch. Polynomial kernelizations for MIN F+Π and MAX NP. Algorithmica,
63(1-2):532–550, 2012.

15 Stefan Kratsch and Magnus Wahlström. Preprocessing of Min Ones problems: A dichotomy.
In Automata, Languages and Programming, 37th International Colloquium, ICALP 2010,
Bordeaux, France, July 6–10, 2010, Proceedings, Part I, volume 6198 of Lecture Notes in
Computer Science, pages 653–665. Springer, 2010.

16 Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized polyno-
mial kernel for odd cycle transversal. In Symposium on Discrete Algorithms – SODA 2012,
pages 94–103, 2012.

17 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In Foundations of Computer Science – FOCS 2012, pages 450–459,
2012.

18 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization – preprocessing
with a guarantee. In The Multivariate Algorithmic Revolution and Beyond, volume 7370 of
LNCS, pages 129–161, 2012.

19 Dániel Marx. Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60–78, 2008.

20 Rolf Niedermeier. Invitation to Fixed Parameter Algorithms (Oxford Lecture Series in
Mathematics and Its Applications). Oxford University Press, USA, March 2006.

21 Venkatesh Raman, Saket Saurabh, and Ondřej Suchý. An FPT algorithm for tree deletion
set. In Algorithms and Computation – WALCOM 2013, volume 7748 of LNCS, pages
286–297, 2013.

22 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms,
6(2), 2010.

23 Magnus Wahlström. Abusing the Tutte matrix: An algebraic instance compression for the
K-set-cycle problem. In Symposium on Theoretical Aspects of Computer Science – STACS
2013, volume 20 of LIPIcs, pages 341–352, 2013.

24 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19–22, 2012, pages 887–898. ACM, 2012.

25 Mihalis Yannakakis. The effect of a connectivity requirement on the complexity of max-
imum subgraph problems. J. ACM, 26(4):618–630, 1979.

Editing to Eulerian Graphs∗

Konrad K. Dabrowski1, Petr A. Golovach2, Pim van ’t Hof2, and
Daniël Paulusma1

1 School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
{konrad.dabrowski,daniel.paulusma}@durham.ac.uk

2 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen,
Norway
{petr.golovach,pim.vanthof}@ii.uib.no

Abstract
We investigate the problem of modifying a graph into a connected graph in which the degree
of each vertex satisfies a prescribed parity constraint. Let ea, ed and vd denote the operations
edge addition, edge deletion and vertex deletion respectively. For any S ⊆ {ea, ed, vd}, we define
Connected Degree Parity Editing(S) (CDPE(S)) to be the problem that takes as input a
graph G, an integer k and a function δ : V (G)→ {0, 1}, and asks whether G can be modified into
a connected graph H with dH(v) ≡ δ(v) (mod 2) for each v ∈ V (H), using at most k operations
from S. We prove that

if S = {ea} or S = {ea, ed}, then CDPE(S) can be solved in polynomial time;
if {vd} ⊆ S ⊆ {ea, ed, vd}, then CDPE(S) is NP-complete and W[1]-hard when parameterized
by k, even if δ ≡ 0.

Together with known results by Cai and Yang and by Cygan, Marx, Pilipczuk, Pilipczuk and
Schlotter, our results completely classify the classical and parameterized complexity of the
CDPE(S) problem for all S ⊆ {ea, ed, vd}. We obtain the same classification for a natural
variant of the CDPE(S) problem on directed graphs, where the target is a weakly connected
digraph in which the difference between the in- and out-degree of every vertex equals a prescribed
value.

As an important implication of our results, we obtain polynomial-time algorithms for Eu-
lerian Editing problem and its directed variant. To the best of our knowledge, the only other
natural non-trivial graph class H for which the H-Editing problem is known to be polynomial-
time solvable is the class of split graphs.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Eulerian graphs, graph editing, polynomial algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.97

1 Introduction

Graph modification problems play a central role in algorithmic graph theory, partly due to
the fact that they naturally arise in numerous practical applications. A graph modification
problem takes as input a graph G and an integer k, and asks whether G can be modified

∗ The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 267959
and from EPSRC Grant EP/K025090/1.

© Konrad K. Dabrowski, Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 97–108

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.97
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

98 Editing to Eulerian Graphs

into a graph belonging to a prescribed graph class H, using at most k operations of a
certain type. The most common operations that are considered in this context are edge
additions (H-Completion), edge deletions (H-Edge Deletion), vertex deletions (H-
Vertex Deletion), and a combination of edge additions and edge deletions (H-Editing).
The intensive study of graph modification problems has produced a plethora of classical and
parameterized complexity results (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 19, 20]).

An undirected graph is Eulerian if it is connected and every vertex has even degree,
while a directed graph is Eulerian if it is strongly connected1 and balanced, i.e. the in-
degree of every vertex equals its out-degree. Eulerian graphs form a well-known graph
class both within algorithmic and structural graph theory. Several groups of authors have
investigated the problem of deciding whether a given graph can be made Eulerian using a
small number of operations. Boesch et al. [1] presented a polynomial-time algorithm for
Eulerian Completion, and Cai and Yang [4] showed that the problems Eulerian Vertex
Deletion and Eulerian Edge Deletion are NP-complete [4]. When parameterized by k,
it is known that Eulerian Vertex Deletion is W[1]-hard [4], while Eulerian Edge
Deletion is fixed-parameter tractable [7]. Cygan et al. [7] showed that the classical and
parameterized complexity results for Eulerian Vertex Deletion and Eulerian Edge
Deletion also hold for the directed variants of these problems.

Our Contribution. We generalize, extend and complement known results on graph modi-
fication problems dealing with Eulerian graphs and digraphs. The main contribution of
this paper consists of two non-trivial polynomial-time algorithms: one for solving the Eu-
lerian Editing problem, and one for solving the directed variant of this problem. Given
the aforementioned NP-completeness result for Eulerian Edge Deletion and the fact
that H-Editing is NP-complete for almost all natural graph classes H [2, 20], we find it
particularly interesting that Eulerian Editing turns out to be polynomial-time solvable.
To the best of our knowledge, the only other natural non-trivial graph class H for which
H-Editing is known to be polynomial-time solvable is the class of split graphs [13].

In fact, our polynomial-time algorithms are implications of two more general results. In
order to formally state these results, we need to introduce some terminology. Let ea, ed
and vd denote the operations edge addition, edge deletion and vertex deletion, respectively.
For any set S ⊆ {ea, ed, vd} and non-negative integer k, we say that a graph G can be
(S, k)-modified into a graph H if H can be obtained from G by using at most k operations
from S. We define the following problem for every S ⊆ {ea, ed, vd}:

CDPE(S): Connected Degree Parity Editing(S)
Instance: A graph G, an integer k and a function δ : V (G)→ {0, 1}.
Question: Can G be (S, k)-modified into a connected graph H with

dH(v) ≡ δ(v) (mod 2) for each v ∈ V (H)?

Inspired by the work of Cygan et al. [7] on directed Eulerian graphs, we also study a
natural directed variant of the CDBE(S) problem. Denoting the in- and out-degree of a
vertex v in a digraph G by d−G(v) and d+

G(v), respectively, we define the following problem
for every S ⊆ {ea, ed, vd}:

1 Replacing “strongly connected” by “weakly connected” yields an equivalent definition of Eulerian
digraphs, as it is well-known that a balanced digraph is strongly connected if and only it is weakly
connected (see e.g. [7]).

K.K. Dabrowski, P. A. Golovach, P. van ’t Hof, and D. Paulusma 99

Table 1 A summary of the results for CDPE(S) and CDBE(S). All results are new except
those for which a reference is given. The number of allowed operations k is the parameter in the
parameterized results, and if a parameterized result is stated, then the corresponding problem is
NP-complete.

S CDPE(S) CDBE(S)
ea, ed P P
ea P P
ed FPT [7] FPT [7]
vd W[1]-hard [4] W[1]-hard [7]
ea, vd W[1]-hard W[1]-hard
ed, vd W[1]-hard W[1]-hard
ea, ed, vd W[1]-hard W[1]-hard

CDBE(S): Connected Degree Balance Editing(S)
Instance: A digraph G, an integer k and a function δ : V (G)→ Z.
Question: Can G be (S, k)-modified into a weakly connected digraph H with

d+
H(v)− d−

H(v) = δ(v) for each v ∈ V (H)?

In Section 3, we prove that CDPE(S) can be solved in polynomial time when S = {ea}
and when S = {ea, ed}. The first of these two results extends the aforementioned polynomial-
time result by Boesch et al. [1] on Eulerian Completion and the second yields the first
polynomial-time algorithm for Eulerian Editing, as these problems are equivalent to
CDPE({ea}) and CDPE({ea, ed}), respectively, when we set δ ≡ 0. The complexity of the
problem drastically changes when vertex deletion is allowed: we prove that for every subset
S ⊆ {ea, ed, vd} with vd ∈ S, the CDPE(S) problem is NP-complete and W[1]-hard with
parameter k, even when δ ≡ 0. This complements results by Cai and Yang [4] stating that
CDPE(S) is NP-complete and W[1]-hard with parameter k when S = {vd} and δ ≡ 0 or
δ ≡ 1. Our results, together with the aforementioned results due to Cygan et al. [7]2 and
Cai and Yang [4], yield a complete classification of both the classical and the parameterized
complexity of CDPE(S) for all S ⊆ {ea, ed, vd}; see the middle column of Table 1.

In Section 4, we use different and more involved arguments to classify the classical and
parameterized complexity of the CDBE(S) problem for all S ⊆ {ea, ed, vd}. Interestingly,
the classification we obtain for CDBE(S) turns out to be identical to the one we obtained
for CDPE(S). In particular, our proof of the fact that CDBE(S) is polynomial-time
solvable when S = {ea} and S = {ea, ed} implies that the directed variants of Eulerian
Completion and Eulerian Editing are not significantly harder than their undirected
counterparts. All results on CDBE(S) are summarized in the right column of Table 1.

We would like to emphasize that there are no obvious hardness reductions between
the different problem variants. The parameter k in the problem definitions represents the
budget for all operations in total; adding a new operation to S may completely change the
problem, as there is no way of forbidding its use. Hence, our polynomial-time algorithms for
CDPE({ea, ed}) and CDBE({ea, ed}) do not generalize the polynomial-time algorithms for
CDPE({ea}) and CDBE({ea}), and as such require significantly different arguments. In

2 The FPT-results by Cygan et al. [7] only cover CDPE({ed}) and CDBE({ed}) when δ ≡ 0, but it can
easily be seen that their results carry over to CDPE({ed}) and CDBE({ed}) for any function δ.

FSTTCS 2014

100 Editing to Eulerian Graphs

particular, our main result, stating that Eulerian Editing is polynomial-time solvable, is
not a generalization of the fact that Eulerian Completion is polynomial-time solvable and
stands in no relation to the FPT-result by Cygan et al. [7] for Eulerian Edge Deletion.

We end this section by mentioning two similar graph modification frameworks in the
literature that formed a direct motivation for the framework defined in this paper. Mathieson
and Szeider [17] considered the Degree Constraint Editing(S) problem, which is that
of testing whether a graph G can be k-modified into a graph H in which the degree of every
vertex belongs to some list associated with that vertex. They classified the parameterized
complexity of this problem for all S ⊆ {ea, ed, vd}. Golovach [11] performed a similar study
where the resulting graph must in addition be connected.

2 Preliminaries

We consider finite graphs G = (V,E) that may be undirected or directed; in the latter
case we will always call them digraphs. All our undirected graphs will be without loops or
multiple edges; in particular, this is the case for both the input and the output graph in
every undirected problem we consider. Similarly, for every directed problem that we consider,
we do not allow the input or output digraph to contain multiple arcs. In our proofs we will
also make use of directed multigraphs, which are digraphs that are permitted to have multiple
arcs.

We denote an edge between two vertices u and v in a graph by uv. We denote an arc
between two vertices u and v by (u, v), where u is the tail of (u, v) and v is the head. The
disjoint union of two graphs G1 and G2 is denoted G1 +G2. The complete graph on n vertices
is denoted Kn and the complete bipartite graph with classes of size s and t is denoted Ks,t.

Let G = (V,E) be a graph or a digraph. Throughout the paper we assume that n = |V |
and m = |E|. For U ⊆ V , we let G[U] be the graph (digraph) with vertex set U and an edge
(arc) between two vertices u and v if and only if this is the case in G; we say that G[U] is
induced by U . We write G−U = G[V \U]. For E′ ⊆ E, we let G(E′) be the graph (digraph)
with edge (arc) set E′ whose vertex set consists of the end-vertices of the edges in E′; we say
that G(E′) is edge-induced by E′. Let S be a set of (ordered) pairs of vertices of G. We let
G− S be the graph (digraph) obtained by deleting all edges (arcs) of S ∩E from G, and we
let G+ S be the graph (digraph) obtained by adding all edges (arcs) of S \E to G. We may
write G− e or G+ e if S = {e}.

Let G = (V,E) be a graph. A component of G is a maximal connected subgraph of G.
The complement of G is the graph G = (V,E) with vertex set V and an edge between two
distinct vertices u and v if and only if uv /∈ E. A matching M in G is a set of edges, in
which no edge has a common end-vertex with some other edge. For a vertex v ∈ V , we
let NG(v) = {u | uv ∈ E} denote its (open) neighbourhood. The degree of v is denoted
dG(v) = |NG(v)|. The graph G is even if all its vertices have even degree, and it is Eulerian
if it is even and connected. We say that a set D ⊆ E is an edge cut in G if G is connected
but G−D is not. An edge cut of size 1 is called a bridge in G.

Let G = (V,E) be a digraph. If (u, v) is an arc, then (v, u) is the reverse of this arc. For
a subset F ⊆ E, we let FR = {(u, v)|(v, u) ∈ F} denote the set of arcs whose reverse is in F .
The underlying graph of G is the undirected graph with vertex set V where two vertices
u, v ∈ V are adjacent if and only if (u, v) or (v, u) is an arc in G. We say that G is (weakly)
connected if its underlying graph is connected. A component of G is a connected component
of its underlying graph. An arc a ∈ E is a bridge in G if it is a bridge in the underlying
graph of G. A vertex u is an in-neighbour or out-neighbour of a vertex v if (u, v) ∈ E or

K.K. Dabrowski, P. A. Golovach, P. van ’t Hof, and D. Paulusma 101

(v, u) ∈ E, respectively. Let N−G (v) = {u | (u, v) ∈ E} and N+
G (v) = {u | (v, u) ∈ E}, where

we call d−G(v) = |N−G (v)| and d+
G(v) = |N+

G (v)| the in-degree and out-degree of v, respectively.
A vertex v ∈ V is balanced if d+

G(v) = d−G(v). Recall that G is Eulerian if it is connected and
balanced, that is, the out-degree of every vertex is equal to its in-degree.

Let G = (V,E) be a graph and let T ⊆ V . A subset J ⊆ E is a T -join if the set of
odd-degree vertices in G(J) is precisely T . If G is connected and |T | is even then G has at
least one T -join. In Section 3 we need to find a minimum T -join, that is, one of minimum
size. We use the following result of Edmonds and Johnson [9] to do so.

I Lemma 1 ([9]). Let G = (V,E) be a graph, and let T ⊆ V . Then a minimum T -join (if
one exists) can be found in O(n3) time.

Lemma 1 was used by Cygan et al. [7] to solve H-Edge Deletion in polynomial time
when H is the class of even graphs. It would immediately yield a polynomial-time algorithm
for CDPE({ed}) if we dropped the connectivity condition.

We need a variant of Lemma 1 for digraphs in Section 4. Let G = (V,E) be a directed
multigraph and let f : T → Z be a function for some T ⊆ V . A multiset E′ ⊆ E with
T ⊆ V (G(E′)) is a directed f-join in G if the following two conditions hold: d+

G(E′)(v) −
d−G(E′)(v) = f(v) for every v ∈ T and d+

G(E′)(v)− d−G(E′)(v) = 0 for every v ∈ V (G(E′)) \ T .
A directed f -join is minimum if it has minimum size. The next lemma was used by Cygan
et al. [7] to solve H-Edge Deletion in polynomial time when H is the class of balanced
digraphs; it would also yield a polynomial-time algorithm for CDBE({ed}) if we dropped
the connectivity condition.

I Lemma 2 ([7]). Let G = (V,E) be a directed multigraph and f : T → Z be a func-
tion for some T ⊆ V . A minimum directed f-join F (if one exists) can be found in
O(nm logn log logm) time. Moreover, F consists of mutually arc-disjoint directed paths from
vertices u with f(u) > 0 to vertices v with f(v) < 0.

3 Connected Degree Parity Editing

We will show that CDPE(S) is polynomial-time solvable if S = {ea} or S = {ea, ed} and
that it is NP-complete and W[1]-hard with parameter k if vd ∈ S.

First, let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ, k) be an instance of CDPE(S) with G = (V,E).
Let A be a set of edges not in G, and let D be a set of edges in G, with D = ∅ if S = {ea}.
We say that (A,D) is a solution for (G, δ, k) if its size |A| + |D| ≤ k, the congruence
dH(u) ≡ δ(u) (mod 2) holds for every vertex u and the graph H = G+A−D is connected;
if H is not connected then (A,D) is a semi-solution for (G, δ, k). If S = {ea} we may denote
the solution by A rather than (A,D) (since D = ∅). We consider the optimization version
for CDPE(S). The input is a pair (G, δ), and we aim to find the minimum k such that
(G, δ, k) has a solution (if one exists). We call such a solution optimal and denote its size by
optS(G, δ). We say that a (semi)-solution for (G, δ, k) is also a (semi)-solution for (G, δ). If
(G, δ, k) has no solution for any value of k, then (G, δ) is a no-instance of CDPE(S) and
optS(G, δ) = +∞.

Let T = {v ∈ V | dG(v) 6≡ δ(v) (mod 2)}. Define GS = Kn if S = {ea, ed} and GS = G

if S = {ea}. Note that if S = {ea} then GS contains no edges of G, so in this case any T -join
in GS can only contain edges in E(G). The following key lemma is an easy observation.

I Lemma 3. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of CDPE(S) and A ⊆ E(G),
D ⊆ E(G). Then (A,D) is a semi-solution of CDPE(S) if and only if A ∪D is a T -join
in GS.

FSTTCS 2014

102 Editing to Eulerian Graphs

We extend the result of Boesch et al. [1] for δ ≡ 0 to arbitrary δ. Our proof is based
around similar ideas but we also had to do some further analysis. The main difference in the
two proofs is the following. If δ ≡ 0 then none of the added edges in a solution will be a
bridge in the modified graph (as the number of vertices of odd degree in a graph is always
even). However this is no longer true for arbitrary δ and extra arguments are needed. We
omit the proof of our result.

I Theorem 4. Let S = {ea}. Then CDPE(S) can be solved in O(n3) time.

We are now ready to present the main result of this section. Recall that proving this
result requires significantly different arguments than the ones used in the proof of Theorem 4.
Let S = {ea, ed} and let (G, δ) be an instance of CDPE(S). If F is a T -join in GS = Kn,
let D = F ∩ E(G) and A = F \D. Then by Lemma 3, (A,D) is a semi-solution. Note that
if F is a minimum T -join in GS then it is a matching in which every vertex of T is incident
to precisely one edge of F , so |F | = 1

2 |T |. We will show how this allows us to calculate
optS(G, δ) directly from the structure of G, without having to find a T -join. We will also
show that there are only trivial no-instances for this problem.

I Theorem 5. Let S = {ea, ed}. Then CDPE(S) can be solved in O(n+m) time and an
optimal solution (if one exists) can be found in O(n3) time.

Proof. Let S = {ea, ed} and let (G, δ) be an instance of CDPE(S). By Lemma 3, we may
assume that |T | is even, otherwise (G, δ) is a no-instance. If G = K2 and T = V (G), or
G = K1 +K1 and T = ∅, then (G, δ) is a no-instance. If G = K2 and T = ∅ then, trivially,
optS(G, δ) = 0, and if G = K1 + K1 and T = V (G) then optS(G, δ) = 1. To avoid these
trivial instances, we therefore assume that G contains at least three vertices. Under these
assumptions we will show that optS(G, δ) is always finite and give exact formulas for the
value of optS(G, δ). Let p be the number of components of G that do not contain any vertex
of T and let q be the number of components of G that contain at least one vertex of T . We
prove the following series of statements:

optS(G, δ) = 0 if p = 1, q = 0,
optS(G, δ) = max{3, p} if p ≥ 2, q = 0,
optS(G, δ) = 1

2 |T |+ 1 if p = 0, q = 1, G[T] = K1,r, for some r ≥ 1, and each edge of G[T]
is a bridge of G,
optS(G, δ) = max{p+ q − 1, p+ 1

2 |T |} in all other cases.

Note that if p = 1, q = 0, then the first statement applies and the trivial solution (A,D) =
(∅, ∅) is optimal. We now consider the remaining three cases separately.

Case 1: p ≥ 2 and q = 0.
Then T = ∅, so by Lemma 3 for any semi-solution (A,D), every vertex in GS(A ∪D) must
have even degree in GS(A ∪D). In other words, every vertex of G must be incident to an
even number of edges in A ∪D. Since p ≥ 2, the graph G is disconnected, so any solution
(A,D) is non-empty. This means that GS(A ∪D) must contain a cycle, so optS(G, δ) ≥ 3 if
a solution exits. Suppose p = 2. As G has at least three vertices, it contains a component
containing an edge xy. Let z be a vertex in its other component. We set A = {xz, yz}
and D = {xy} to obtain a solution for (G, δ). Since |A|+ |D| = 3, this solution is optimal.
Suppose p ≥ 3. Since G+A−D must be connected for any solution (A,D), every component
in G must contain at least one vertex incident to an edge of A. By Lemma 3, this vertex
must be incident to an even number of edges of A ∪D, meaning that it must be incident to
at least two such edges. Therefore optS(G, δ) ≥ p. Indeed, if we choose vertices v1, . . . , vp,

K.K. Dabrowski, P. A. Golovach, P. van ’t Hof, and D. Paulusma 103

one from each component of G, then setting A = {v1v2, v2v3, . . . , vp−1vp, vpv1} and D = ∅
gives a solution of size p, which is therefore optimal. This concludes Case 1.

Case 2: p = 0, q = 1, G[T] = K1,r for some r ≥ 1 and each edge of G[T] is a bridge of G.
Then G is connected. Let v0 be the central vertex of the star and let v1, . . . , vr be the
leaves. By Lemma 3, in any semi-solution (A,D), every vertex of T must be incident to
an odd number of edges in A ∪D, so optS(G, δ) ≥ 1

2 |T |. Suppose (A,D) is a semi-solution
of size |A| + |D| = 1

2 |T |. Then A ∪ D must be a matching with each edge joining a pair
of vertices of T . However, then v0vi ∈ A ∪ D for some i. Since v0vi ∈ E(G), we must
have v0vi ∈ D. However, since v0vi is a bridge of G, v0 and vi must then be in different
components of G + A − D, so G + A − D is not connected and (A,D) is not a solution.
Therefore optS(G, δ) ≥ 1

2 |T |+ 1.
Next we show how to find a solution of size 1

2 |T |+ 1. Since |T | is even, r must be odd.
First suppose that r = 1. Since G is connected and v0v1 is a bridge, G \ {v0v1} has exactly
two components. Since G contains at least three vertices, one of these components contains
another vertex x. Without loss of generality assume xv0 ∈ E(G), in which case xv1 /∈ E(G).
Then setting A = {xv1} andD = {xv0} gives a solution of size |A|+|D| = 2 = 1

2 |T |+1, so this
solution is optimal. Now suppose r ≥ 3. Let A = {v1v2, v2v3} ∪ {v2iv2i+1 | 2 ≤ i ≤ 1

2 (r− 1)}
and D = {v0v2}. Then (A,D) is a semi-solution and since v0, . . . , vr are all in the same
component ofG+A−D, we find that (A,D) is a solution. Since |A|+|D| = 2+ 1

2 (r−1)−1+1 =
1
2 |T |+ 1, this solution is optimal. This concludes Case 2.

Case 3: q ≥ 1 and Case 2 does not hold.
Then T 6= ∅. Let G1, . . . , Gp be the components of G without vertices of T and let G′ =
G− V (G1) ∪ · · · ∪ V (Gp). Note that G′ = G if p = 0 and that G′ is not the empty graph, as
q > 0. Choose vi ∈ V (Gi) for i ∈ {1, . . . , p}.

We first show that optS(G, δ) ≥ max{p+ q− 1, p+ 1
2 |T |}. Since G has p+ q components,

any solution (A,D) must contain at least p+ q − 1 edges in A to ensure that G+A−D is
connected, so optS(G, δ) ≥ p+ q − 1. If (A,D) is a solution then every component Gi must
contain a vertex incident to some edge in A. By Lemma 3, this vertex must be incident to an
even number of edges of A ∪D, meaning that it must be incident to at least two such edges.
By Lemma 3, every vertex of T must be incident to some edge in A ∪D. Therefore A ∪D
must contain at least p+ 1

2 |T | edges, so optS(G, δ) ≥ p+ 1
2 |T |.

We now show how to find a solution of size max{p+ q− 1, p+ 1
2 |T |}. We start by finding

a maximum matching M in G[T]. Let U be the set of vertices in T that are not incident to
any edge in M . We divide the argument into two cases, depending on the size of U .

Case 3a: U = ∅.
In this case, by Lemma 3, setting A = M and D = ∅ gives a semi-solution. Now suppose
that uv, u′v′ ∈M , such that uv is not a bridge in G+M and the vertices u and u′ are in
different components of G + M . Let M ′ = M \ {uv, u′v′} ∪ {u′v, uv′}. Then M ′ is also a
maximum matching in G[T]. However, G+M ′ has one component less than G+M . Indeed,
since uv is not a bridge in G+M , the vertices u, u′, v, v′ must all be in the same component
of G + M ′. Therefore, if such edges uv, u′v′ ∈ M exist, we replace M by M ′. We do this
exhaustively until no further such pairs of edges exist. At this point either every edge in M
is a bridge in G+M or every edge in M is in the same component of G+M . We consider
these possibilities separately.

First suppose that every edge in M is a bridge in G + M . Choose uv ∈ M and let
Q1, . . . , Qk be the components of G + M , with u, v ∈ V (Q1). Note that since every edge
in M is a bridge, k = p + q − |M |. Now let xi ∈ V (Qi) for i ∈ {2, . . . , k}. Let D = ∅

FSTTCS 2014

104 Editing to Eulerian Graphs

and let A = M if k = 1 and A = M \ {uv} ∪ {ux2, x2x3, . . . , xk−1xk, xkv} otherwise. Now
every vertex in G + A − D has the same degree parity as in G + M , so (A,D) is a semi-
solution by Lemma 3. The graph G + A − D is connected, so (A,D) is a solution. As
|A|+ |D| = |M | − 1 + p+ q− |M |+ 0 = p+ q− 1, we find that (A,D) is an optimal solution.

Now suppose that every edge in M is in the same component of G + M . Note that
G1, . . . , Gp are the remaining components of G+M . Choose uv ∈ M . Let D = ∅ and let
A = M if p = 0 and A = M \ {uv} ∪ {uv1, v1v2, . . . , vp−1vp, vpv} otherwise. Then every
vertex in G+A−D has the same parity as in G+M and G+A−D is connected, so by
Lemma 3 (A,D) is a solution. Since |A|+ |D| = 1

2 |T | − 1 + p+ 1 = p+ 1
2 |T |, this solution is

optimal. This concludes Case 3a.

Case 3b: U 6= ∅.
Note that z = |U | must be even since |T | is even. Every pair of vertices in U must be
non-adjacent in G, as otherwise M would not be maximum. Therefore G[U] is a clique. Let
U = {u1, . . . , uz}.

We claim that Q = G′ +M is connected. Clearly every vertex of the clique U must be in
the same component of Q = G′+M . Suppose for contradiction that Q1 is a component of Q
that does not contain U . Then Q1 must contain some edge w1w2 ∈M . However, in this case
M ′ = M \ {w1w2} ∪ {u1w1, u2w2} is a larger matching in G[T] than M , which contradicts
the maximality of M . Therefore Q is connected.

Let M ′ = {u1u2, u3u4, . . . , uz−1uz}. If z ≥ 4 then since U is a clique, G′+M −M ′ is con-
nected. If p = 0 set A = M and D = M ′. If p > 0 set A = M ∪{u1v1, v1v2, . . . , vp−1vp, vpu2}
and D = M ′ \ {u1u2}. Then G+A−D is connected, so (A,D) is a solution by Lemma 3.
This solution has size |A|+ |D| = p+ 1

2 |T |, so it is optimal.
Now suppose that z ≤ 3. Then z = 2. If p > 0, let A = M∪{u1v1, v1v2, . . . , vp−1vp, vpu2}

and D = ∅. Then G+A−D is connected, so (A,D) is a solution by Lemma 3. This solution
has size |A|+ |D| = p+ 1

2 |T |, so it is optimal. Assume that p = 0, so G+M contains only
one component. If u1u2 is not a bridge in G+M , let A = M and D = {u1u2}. Then G+M

is connected, so (A,D) is a solution. This solution has size |A| + |D| = p + 1
2 |T |, so it is

optimal.
Now assume that u1u2 is a bridge in Q = G+M . Let Q1 and Q2 denote the components

of Q− {u1u2} with u1 ∈ V (Q1) and u2 ∈ V (Q2). Note that u1u2 is also a bridge in G. We
claim that the edges of M are either all in Q1 or all in Q2. Suppose for contradiction that
y1z1 ∈ E(Q1)∩M and y2z2 ∈ E(Q2)∩M . Then M ′ = M \ {y1z1, y2z2} ∪ {u1y2, u2y1, z1z2}
would be a larger matching in G[T] than M , contradicting the maximality of M . Without
loss of generality, we may therefore assume that all edges of M are in Q1.

LetM = {x1y1, . . . , xryr}, where r = 1
2 |T |−1. We claim that u1 must be adjacent in G to

all vertices of T \{u1}. Suppose for contradiction that u1 is non-adjacent in G to some vertex
of T \ {u1}. Since u1u2 ∈ E(G), this vertex would have to be incident to some edge in M .
Without loss of generality, assume u1x1 /∈ E(G). Then M ′ = M \ {x1y1} ∪ {u1x1, u2y1}
would be a larger matching in G[T] thanM , contradicting the maximality ofM . Therefore u1
is adjacent in G to every vertex of T \ {u1}. In particular, since p = 0, it follows that q = 1
and G is connected.

Suppose that every edge between u1 and T \ {u1} is a bridge in G. Then no two vertices
of T \ {u1} can be adjacent, and G[T] = K1,r. However, then Case 2 applies, which we
assumed was not the case. Without loss of generality, we may therefore assume that u1x1
is not a bridge in G. Let A = M \ {x1y1} ∪ {y1u2} and D = {u1x1}. Then G + A −D is
connected, so (A,D) is a solution. Since |A|+ |D| = 1

2 |T | − 1− 1 + 1 + 1 = p+ 1
2 |T |, this

solution is optimal. This concludes Case 3b and therefore also concludes Case 3.

K.K. Dabrowski, P. A. Golovach, P. van ’t Hof, and D. Paulusma 105

It is clear that optS(G, δ) can be computed in O(n+m) time. We also observe that the above
proof is constructive, that is, we not only solve the decision variant of CDPE(ea, ed) but
we can also find an optimal solution. To do so, we must find a maximum matching in G[T].
This takes O(n5/2) time [18]. However, the bottleneck is in Case 3a, where we are glueing
components by replacing two matching edges by two other matching edges, which takes
O(n2) time. As the total number of times we may need to do this is O(n), this procedure
may take O(n3) time in total. Hence, we can obtain an optimal solution in O(n3) time. J

The proof of the next result has been omitted.

I Theorem 6. Let {vd} ⊆ S ⊆ {vd, ed, ea}. Then CDPE(S) is NP-complete and W[1]-hard
when parameterized by k, even if δ ≡ 0.

4 Connected Degree Balance Editing

We will show that CDBE(S) is polynomial-time solvable if {ea} ⊆ S ⊆ {ea, ed} and that it
is NP-complete and W[1]-hard with parameter k if vd ∈ S.

Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ, k) be an instance of CDBE(S) with G = (V,E). Let A
be a set of arcs not in G, and let D be a set of arcs in G, with D = ∅ if S = {ea}. We say that
(A,D) is a solution for (G, δ, k) if its size |A|+ |D| ≤ k, the equation d+

H(u)− d−H(u) = δ(u)
holds for every vertex u and the graph H = G+A−D is connected; if H is not connected
then (A,D) is a semi-solution for (G, δ, k). Just as in Section 3 we consider the optimization
version for CDBE(S) and we use the same terminology.

Let (G, δ) be an instance of (the optimization version) of CDBE(S) where G = (V,E).
Let T = T(G,δ) be the set of vertices v such that d+

G(v) − d−G(v) 6= δ(v). Define a function
f(G,δ) : T → Z by f(v) = f(G,δ)(v) = δ(v)− d+

G(v) + d−G(v) for every v ∈ T .
We construct a directed multigraph GS with vertex set V and arc set determined as follows.

If {ea} ⊆ S ⊆ {ea, ed}, for each pair of distinct vertices u and v in G, if (u, v) /∈ E, add the
arc (u, v) to GS (these arcs are precisely those that can be added to G). If S = {ea, ed}, for
each pair of distinct vertices u and v, if (u, v) ∈ E, add the arc (v, u) to GS (these arcs are
precisely those whose reverse can be deleted from G). Note that adding a (missing) arc has
the same effect on the degree balance of the vertices in a digraph as deleting the reverse of
the arc (if it exists). Also observe that GS becomes a directed multigraph rather than a
digraph only if S = {ea, ed} and there are distinct vertices u and v such that (u, v) ∈ E and
(v, u) /∈ E applies. Moreover, GS contains at most two copies of any arc, and if there are two
copies of (u, v) then (v, u) is not in GS .

Let F be a minimum directed f -join in GS (if one exists). Note that F may contains two
copies of the same arc if GS is a directed multigraph. Also note that for any pair of vertices
u, v, either (u, v) /∈ F or (v, u) /∈ F , otherwise F ′ = F \ {(u, v), (v, u)} would be a smaller
f -join in GS , contradicting the minimality of F . We define two sets AF and DF which, as
we will show, correspond to a semi-solution (AF , DF) of (G, δ). Initially set AF = DF = ∅.
Consider the arcs in F . If F contains (u, v) exactly once then add (u, v) to AF if (u, v) /∈ E
and add (v, u) to DF if (u, v) ∈ E (in this case (v, u) ∈ E holds). If F contains two copies
of (u, v) then add (u, v) to AF and (v, u) to DF ; note that by definition of F and GS , in
this case S = {ea, ed}, (u, v) /∈ E and (v, u) ∈ E. Observe that the sets AF and DF are not
multisets.

If X and Y are sets, then X] Y is the multiset that consists of one copy of each element
that occurs in exactly one of X and Y and two copies of each element that occurs in both.
The next lemma provides the starting point for our algorithm. Its proof has been omitted.

FSTTCS 2014

106 Editing to Eulerian Graphs

I Lemma 7. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of CDBE(S) where
G = (V,E). The following holds:
(i) If F is a minimum directed f-join in GS, then (AF , DF) is a semi-solution for (G, δ)

of size |F |.
(ii) If (A,D) is a semi-solution for (G, δ), then A]DR is a directed f-join in GS of size
|A|+ |D|.

Let (G, δ) be an instance of CDBE(S). Let p = p(G,δ) be the number of components
of G that contain no vertex of T . Let q = q(G,δ) be the number of components of G that
contain at least one vertex of T . Let t = t(G,δ) =

∑
u∈T |f(u)|.

We now state the following lemma. Its proof (based on Lemmas 2 and 7) has been
omitted.

I Lemma 8. Let {ea} ⊆ S ⊆ {ea, ed}. Let (G, δ) be an instance of CDBE(S) with q ≥ 1.
If F is a (given) minimum directed f -join in GS, then (G, δ) has a solution that has size at
most max{|F |, p+ q − 1, p+ 1

2 t}, which can be found in O(nm) time.

The next result is our first main result of this section. We prove it by showing that the
upper bound in Lemma 8 is also a lower bound for (almost) any instance of CDBE(S) with
{ea} ⊆ S ⊆ {ea, ed} that has a semi-solution.

I Theorem 9. For {ea} ⊆ S ⊆ {ea, ed}, CDBE(S) can be solved in time
O(n3 logn log logn).

Proof. Let {ea} ⊆ S ⊆ {ea, ed}, and let (G, δ) be an instance of CDBE(S). We first use
Lemma 2 to check whether GS has a directed f -join. Because GS has at most 2n2 arcs, this
takes O(n3 logn log logn) time. If GS has no directed f -join then (G, δ) has no semi-solution
by Lemma 7, and thus no solution either. Assume that GS has a directed f -join, and let F be
a minimum directed f -join that can be found in time O(n3 logn log logn) by Lemma 2. As
before, p denotes the number of components of G that do not contain any vertex of T , while q
is the number of components of G that contain at least one vertex of T , and t =

∑
u∈T |f(u)|.

We will prove the following series of statements:
optS(G, δ) = 0 if p ≤ 1, q = 0,
optS(G, δ) = p if p ≥ 2, q = 0,
optS(G, δ) = max(|F |, p+ q − 1, p+ 1

2 t) if q > 0.

If p ≤ 1 and q = 0 then A = D = ∅ is an optimal solution. If p ≥ 2 and q = 0,
to ensure connectivity and preserve degree balance, for every component of G there must
be at least one arc whose head is in this component and at least one arc whose tail is
in this component, thus any solution must contain at least p arcs. Let G1, . . . , Gp be
the components of G and arbitrarily choose vertices vi ∈ V (Gi) for i ∈ {1, . . . , p}. Let
A = {(v1, v2), (v2, v3), . . . , (vp−1, vp), (vp, v1)} and D = ∅. Then (A,D) is a solution which
has size p and is therefore optimal.

Suppose q ≥ 1. By Lemma 8 we find a solution (A,D) for (G, δ) of size at most max{|F |,
p+ q − 1, p+ 1

2 t} in O(nm) time. Hence, the total running time is O(n3 logn log logn), and
it remains to show that any solution has size at least max(|F |, p+ q − 1, p+ 1

2 t).
Let (A,D) be an arbitrary solution. Then (A,D) is also semi-solution. Every semi-solution

has size at least |F | by Lemma 7 2. Therefore (A,D) has size at least |F |.
Since there are p + q components in G, we must add at least p + q − 1 arcs to ensure

G+A−D is connected. Therefore (A,D) has size at least p+ q − 1.
Finally, for every vertex u with f(u) > 0 (resp. f(u) < 0) we find that (A,D) must be

such that at least |f(u)| arcs are either in A and have u as a tail (resp. head) or else are

K.K. Dabrowski, P. A. Golovach, P. van ’t Hof, and D. Paulusma 107

in D and have u as a head (resp. tail). For every component containing only vertices v with
f(v) = 0, there must be at least one arc in A whose head is in this component and at least
one arc in A whose tail is in this component (to ensure connectivity and to ensure that the
degree balance is not changed for any vertex in this component). Therefore we have that
(A,D) has size at least p+ 1

2 t. This completes the proof of Theorem 9. J

The proof of our second main result of this section has been omitted.

I Theorem 10. Let {vd} ⊆ S ⊆ {vd, ed, ea}. Then CDBE(S) is NP-complete and W[1]-hard
when parameterized by k, even if δ ≡ 0.

5 Conclusions

By extending previous work [1, 4, 7] we completely classified both the classical and para-
meterized complexity of CDPE(S) and CDBE(S), as summarized in Table 1. Our work
followed the framework used [11, 17] for (Connected) Degree Constraint Editing(S).
Our study was motivated by Eulerian graphs. As such, the variants DPE(S) and DBE(S)
of CDPE(S) and CDBE(S), respectively, in which the graph H is no longer required to be
connected, were beyond the scope of this paper. It follows from results of Cai and Yang [4]
and Cygan [7], respectively, that for S = {vd}, DPE(S) and DBE(S) are NP-complete
and, when parameterized by k, W[1]-hard, whereas they are polynomial-time solvable for
S = {ed} as a result of Lemmas 1 and 2, respectively. The problems DPE(S) and DBE(S)
are also polynomial-time solvable if {ea} ⊆ S ⊆ {ea, ed}; this is in fact proven by combining
Lemmas 1 and 3 for the undirected case, and Lemmas 2 and 7 for the directed case. We
expect the remaining (hardness) results of Table 1 to carry over as well.

Let ` be an integer. Here is a natural generalization of CDPE(S).

`-CDME(S): Connected Degree Modulo-`-Editing(S)
Instance: A graph G, integer k and a function δ : V (G)→ {0, . . . , `− 1}.
Question: Can G be (S, k)-modified into a connected graph H with

dH(v) ≡ δ(v) (mod `) for each v ∈ V (H)?

Note that 2-CDME(S) is CDPE(S). The following theorem shows that the complexity of
3-CDME(S) may differ from 2-CDME(S).

I Theorem 11. 3-CDME({ea, ed}) is NP-complete even if δ ≡ 2.

Proof. Reduce from the Hamiltonicity problem, which is NP-complete for connected cubic
graphs [10]. Let G be a connected cubic graph. Let δ(v) = 2 for every v ∈ V (G), and take
k = |E(G)|− |V (G)|. Then G has a Hamiltonian cycle if and only if G can be (S, k)-modified
into a connected graph H with dH(v) = 2 (mod 3) for all v ∈ V (H). J

It is natural to ask whether 3-CDME({ea, ed}) is fixed-parameter tractable with parameter k.
Finally, another direction for future research is to investigate how the complexity of

CDPE(S) and CDBE(S) changes if we permit other graph operations, such as edge con-
traction, to be in the set S.

References
1 Francis T. Boesch, Charles L. Suffel, and Ralph Tindell. The spanning subgraphs of Eu-

lerian graphs. Journal of Graph Theory, 1(1):79–84, 1977.

FSTTCS 2014

108 Editing to Eulerian Graphs

2 Pablo Burzyn, Flavia Bonomo, and Guillermo Durán. NP-completeness results for edge
modification problems. Discrete Applied Mathematics, 154(13):1824–1844, 2006.

3 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

4 Leizhen Cai and Boting Yang. Parameterized complexity of even/odd subgraph problems.
Journal of Discrete Algorithms, 9(3):231–240, 2011.

5 Katarína Cechlárová and Ildikó Schlotter. Computing the deficiency of housing markets
with duplicate houses. In IPEC 2010, volume 6478 of Lecture Notes in Computer Science,
pages 72–83. Springer, 2010.

6 Robert Crowston, Gregory Gutin, Mark Jones, and Anders Yeo. Parameterized Eulerian
strong component arc deletion problem on tournaments. Information Processing Letters,
112(6):249–251, 2012.

7 Marek Cygan, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Ildikó Schlotter. Para-
meterized complexity of Eulerian deletion problems. Algorithmica, 68(1):41–61, 2014.

8 Frederic Dorn, Hannes Moser, Rolf Niedermeier, and Mathias Weller. Efficient algorithms
for Eulerian extension and rural postman. SIAM Journal on Discrete Mathematics, 27:75–
94, 2013.

9 Jack Edmonds and Ellis L. Johnson. Matching, Euler tours and the Chinese postman.
Mathematical Programming, 5:88–124, 1973.

10 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

11 Petr A. Golovach. Editing to a connected graph of given degrees. In MFCS Part II, volume
8635 of Lecture Notes in Computer Science, pages 324–335. Springer, 2014.

12 Petr A. Golovach. Editing to a graph of given degrees. In IPEC 2014, Lecture Notes in
Computer Science. Springer, to appear.

13 Peter L. Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1(3):275–
284, 1981.

14 Wiebke Höhn, Tobias Jacobs, and Nicole Megow. On Eulerian extensions and their applic-
ation to no-wait flowshop scheduling. Journal of Scheduling, 15(3):295–309, 2012.

15 Linda Lesniak and Ortrud R. Oellermann. An Eulerian exposition. Journal of Graph
Theory, 10(3):277–297, 1986.

16 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary proper-
ties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

17 Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree constraints: A para-
meterized approach. Journal of Computer and System Sciences, 78(1):179–191, 2012.

18 Silvio Micali and Vijay V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum match-

ing in general graphs. In FOCS 1980, pages 17–27. IEEE Computer Society, 1980.
19 Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular

induced subgraphs. Journal of Discrete Algorithms, 7(2):181–190, 2009.
20 Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge

modification problems. Discrete Applied Mathematics, 113(1):109–128, 2001.

Parameterized Complexity of Fixed-Variable
Logics
Christoph Berkholz1 and Michael Elberfeld2

1 RWTH Aachen University, Aachen, Germany
berkholz@cs.rwth-aachen.de

2 RWTH Aachen University, Aachen, Germany
elberfeld@cs.rwth-aachen.de

Abstract
We study the complexity of model checking formulas in first-order logic parameterized by the
number of distinct variables in the formula. This problem, which is not known to be fixed-
parameter tractable, resisted to be properly classified in the context of parameterized complexity.
We show that it is complete for a newly-defined complexity class that we propose as an analog
of the classical class PSPACE in parameterized complexity. We support this intuition by the
following findings: First, the proposed class admits a definition in terms of alternating Turing
machines in a similar way as PSPACE can be defined in terms of polynomial-time alternating
machines. Second, we show that parameterized versions of other PSPACE-complete problems,
like winning certain pebble games and finding restricted resolution refutations, are complete for
this class.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Parameterized complexity, polynomial space, first-order logic, pebble
games, regular resolutions

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.109

1 Introduction

The main goal of computational complexity theory is to distinguish between tractable and
intractable problems. In classical complexity theory tractable problems are those that can
be solved in polynomial time, whereas intractable problems require exponential time (most
notably NP-complete problems, but also problems complete for higher levels of the polynomial
hierarchy, PSPACE, and EXPTIME). In parameterized complexity theory, tractable problems
are in FPT and can be solved in time f(k) · nO(1), whereas intractable problems require a
running time of nf(k).

Beside distinguishing between just tractable and intractable problems, looking at different
levels of intractability for NP-hard problems (by comparing them with respect to polynomial-
time reductions) led to understanding the importance of the polynomial hierarchy as well
as polynomial-space, and exponential-time computations. Already during the incubation
of parameterized complexity theory different levels of parameterized intractability were
observed based on comparing problems with respect to fixed-parameter tractable reduction
(fpt-reductions). This turned into a flourishing research area where classes that were initially
defined in an adhoc way by considering yet unclassified problems and their closures under
fpt-reductions turned out to be definable using descriptive characterizations in terms of
first-order logic.

© Christoph Berkholz and Michael Elberfeld;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 109–120

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.109
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

110 Parameterized Complexity of Fixed-Variable Logics

Paper’s Issue. The class XP of parameterized problems that can be solved in time nf(k) is
the analog of EXPTIME in parameterized complexity as both classes contain all problems
of intractable running time. Indeed, it turned out that parameterizations of EXPTIME-
complete problems tend to be complete for XP [2, 3, 4]. Several classes are proposed as
parameterized analogs of PSPACE. This includes the classes AW[SAT] and AW[∗], which
both admit alternative characterizations in terms of model checking first-order formulas, as
well as AW[P], which can be defined based on deterministic Turing machines that access a
certificate containing blocks of existential (nondeterministic) bits and blocks of universal
(nondeterministic) bits. For all of these PSPACE-analogs the alternation used to solve
problems is bounded by a function in terms of the parameter. On the one side, the classes
defined in this way helped to classify parameterized versions of PSPACE-complete problems
where the parameter is used to bound the use of alternation. On the other side, problems
that result from more general parameterizations of PSPACE-complete problems resisted to be
classified using these classes. A prominent example is the problem of evaluating first-order
formulas. It is PSPACE-complete [18] in the classical setting, and known to be in XP when
parameterized by the number of distinct variables in the formula, but not known to be hard
for this class. The importance of the fixed variable fragments of first-order logic stems from
the fact that k-variable formulas can be evaluated in time nO(k). In addition, by reusing
the variables one has access to an unlimited number of quantifier alternations, which makes
this fragment much more expressive than fragments with bound quantifier depth. A similar
observation can be made for determining the winner in a classical acyclic pebble game and
finding linear depth resolution refutations of bounded width; their unparameterized versions
are shown to be complete for PSPACE in [14] and [3], respectively, but they are not complete
for known parameterized analogs of PSPACE as they require unbounded alternation.

Paper’s Contributions. We properly classify the parameterized complexity of these problems
by presenting the following contributions during the course of the present paper: (1) We
consider the closure under fpt-reductions of model checking first-order formulas parameterized
by the number of distinct variables in the formula and sort this class into the hierarchy of
known levels of parameterized intractability. (2) We prove that the newly defined class SXP,
which stands for shallow XP, has a natural characterization in terms of alternating Turing
machines (with unbounded alternation) in a similar way as PSPACE can be characterized in
terms of alternating polynomial time. For this result, we apply techniques from descriptive
complexity theory [13] to simulate the behavior of alternating machines using first-order
formulas. (3) We show that other PSPACE-complete problems are complete for this class
under fpt-reductions when parameterized in a natural and very general way. We first
simulate the model checking game for k-variable logic within the acyclic k + 2-pebble game
of Kasai, Adachi and Iwata, which was introduced to simulate PSPACE machines, to show
that the pebble game is complete for our new class when parameterized by the number of
pebbles. Afterwards, we use a known reduction from the acyclic pebble game to regular
resolution of bounded width to show that finding resolution refutations of linear depth
and width k is another PSPACE-complete problem that fits in our parameterized analog of
PSPACE when parameterized by the width. Interestingly, the pebble game and bounded
width resolution have more general versions that are EXPTIME-complete, classically, and
XP-complete, parameterized.

Paper’s Organization. The next section defines concepts and terminology related to param-
eterized complexity and first-order logic. The subsequent Sections 3, 4, 5 present, respectively,

C. Berkholz and M. Elberfeld 111

the definition of our newly proposed parameterized analog of PSPACE, a machine characteri-
zation for the class, and complete problems.

2 Background

The present section provides background from parameterized complexity and first-order logic
as well as establishes notation related to parameterized versions of model checking first-order
formulas. The used definitions and notations closely follow the book of Flum and Grohe [12];
see also this book for standard results in parameterized complexity mentioned below.

Parameterized complexity. A parameterized problem is a pair (P, κ) consisting of a (classi-
cal) problem P ⊆ {0, 1}∗ and a parameterization κ : {0, 1}∗ → {1}∗ that is polynomial-time
computable; we commonly denote it by p-κ-P . Given an instance x ∈ {0, 1}∗, we use the
shorthands n := |x|, its size, and k := |κ(x)|, its parameter. We denote by FPT the class of
parameterized problems (P, κ) that are solvable by a deterministic Turing machine (dtm)
whose runtime is at most f(k) · nO(1) for a computable function f : N→ N; (parameterized)
problems in FPT are fixed-parameter tractable. The class XP is defined like FPT, but using
time bounds nf(k). The deterministic time hierarchy theorem implies that FPT is a proper
subclass of XP.

An fpt-reduction from a parameterized problem (P,κ) to a parameterized problem (P ′,κ′)
is a mapping r : {0, 1}∗ → {0, 1}∗ that is computable by a dtm in time f(k) · nO(1) for a
computable function f : N→ N, such that for every x ∈ {0, 1}∗, we have (1) x ∈ P if, and
only if, r(x) ∈ P ′, and (2) |κ′(r(x))| ≤ |g(κ(x))| for some reduction-dependent function
g : {1}∗ → {1}∗. Given a parameterized problem (P ′, κ′), the closure of (P ′, κ′) under fpt-
reductions, denoted by [(P ′, κ′)]fpt, is the class of all problems (P, κ) with an fpt-reduction
from (P, κ) to (P ′, κ′). Later we study problems that are complete for XP or other complexity
classes of parameterized problems between FPT and XP. In all of these cases, completeness
is defined with respect to fpt-reductions.

First-order logic. We start to define the syntax and semantics of first-order logic: A
vocabulary τ is a nonempty and finite set of relation symbols Ri with arities arity(Ri) ∈ N. A
structure A over τ consists of a finite set A, its universe, and a relation RAi ⊆ Aarity(Ri) for
every relation symbol Ri of τ . Based on (element) variables xi, i ∈ N, first-order formulas
(fo-formulas) over a vocabulary τ are (1) atomic formulas xi = xj and (x1, . . . , xr) ∈ Ri,
and (2) composed formulas ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ, which are based on connectives, and ∃xi ϕ
and ∀xi ϕ, which are based on quantifiers. Given a structure A and a formula ϕ over the
same vocabulary τ , A satisfies ϕ if the usual model relation A |= ϕ holds. Two formulas ϕ
and ψ are equivalent if they are satisfied by exactly the same structures.

In order to define parameterized problems and complexity classes that are based on
first-order formulas, we define classes of formulas and parameters of formulas: First of all, we
only consider fo-formulas in negation normal form, whose ¬-connectives are immediately in
front of atomic formulas. This does not restrict the set of fo-formulas in the sense that every
fo-formula can be turned into an equivalent formula in negation normal form by recursively
applying the rules of De Morgan. We denote this set of formulas by fo. The quantifier
alternation depth of a formula ϕ, denoted by qad(ϕ), is the number of alternations from ∃-
to ∀-quantifiers on any root-to-leaf path in ϕ’s syntax tree plus 1; and plus 2 if the first
quantifier is ∀. For every t ∈ N, the class of formulas ϕ ∈ fo with qad(ϕ) = t is altt. A
formula ϕ is in prenex normal form if ϕ = Q1x1 . . . Q`x` ψ where the Qi are quantifiers and

FSTTCS 2014

112 Parameterized Complexity of Fixed-Variable Logics

ψ does not contain quantifiers. The class of all these formulas is prenex and, for every
t ∈ N, we set Σt := prenex ∩ altt. Let ϕ ∈ fo. We denote the number of distinct variables
of ϕ by var(ϕ). The size of ϕ, denoted by size(ϕ), is the total number of symbols used to
write down ϕ.

Model checking formulas. In order to consider vocabularies, structures, and formulas as
part of instances to computational problems, we encode them using binary strings in a
standard way as done in [12]. We write enc(τ) for the binary string encoding of a vocabulary
τ ; enc(A) and enc(ϕ) are used for the encoding of a structure A and a formula ϕ, respectively.
Given a class of first-order formulas C ⊆ fo, we denote by mc(C) the model checking problem
for formulas from C: A positive instance of mc(C) consists of an encoded vocabulary enc(τ)
as well as an encoded structure enc(A) and an encoded formula enc(ϕ) with (1) ϕ ∈ C, (2)
A and ϕ are both over τ , and (3) A |= ϕ. We consider parameterized versions of model
checking problems with respect to several classes of formulas in the following section, and
their closure under fpt-reductions.

3 Parameterized complexity of first-order logic

Previous studies (mainly subsumed by the book [12]) observed that the parameterized
complexity of model checking first-order formulas with respect to several classes of formulas
and parameterizations is not only interesting from the perspective of solving the problem,
but as a central concept to study parameterized intractability, itself. That means, model
checking formulas in fo-logic is commonly used to define levels of parameterized intractability,
which make up a candidate hierarchy of complexity classes between the, provably distinct,
classes FPT and XP.

A first family of classes are defined as analogs of NP in the parameterized setting: This
spans the W -hierarchy, with its frequently used first level W[1] := [p-size-mc(Σ1)]fpt [7, 9,
11], as well as W[SAT] := [p-var-mc(Σ1)]fpt [7, 16] and the class W[P], whose definition
equals the one of FPT except that the used deterministic Turing machines have access
to a nondeterministic certificate of f(k) · logn nondeterministic bits [7, 6]. These classes
are considered to be analogs of NP in the parameterized world since it is possible to
nondeterministically guess candidate solutions to, say, graph problems of a parameter-
bounded size, and verify the guessed solution. The computational power we have for the
verifying step depends on the particular class. Since we consider FPT as the lowest level, of
tractable problems, the classes are defined by taking the closure of these problems under
fpt-reductions.

In a similar fashion, parameterized analogs of the polynomial-time hierarchy (PH) are
defined based on formulas with constant alternations with the most prominent suggestion
being the A-hierarchy with levels A[t] := [p-size-mc(Σt)]fpt for t ∈ N [10, 11].

A third kind of classes are designed to be analogs of PSPACE in the parameterized
setting: In this case, not only existential, but also universal, nondeterminism is permitted;
still nondeterminism is bounded in terms of the parameter. The most powerful of these
classes is AW[P], which is defined as W[P], but this time the acceptance behavior of the
dtm depends on a length-(f(k) · logn) certificate containing both existential and universal
nondeterministic bits where the number of alternations is bounded by f(k). Classes that are
defined via a less powerful solution verification phase are AW[SAT] := [p-var-mc(prenex)]fpt
and AW[∗] := [p-size-mc(prenex)]fpt. All of the mentioned PSPACE-analogs are originally
defined in terms of Boolean circuits and propositional logic [1]; the definitions based on
machines and model checking first-order formulas are taken from [12, Chapter 8].

C. Berkholz and M. Elberfeld 113

While the parameterized approaches towards mirroring the behavior of PSPACE have
proven to be useful to classify a large number of problems, some problems remained unclassified
and, hence, not well understood. These are parameterized problems whose solutions are
based on existential and universally nondeterministic guesses, but where it seems not possible
to bound the nondeterministic guesses in terms of the parameter. Thus, the parameter seems
to play a different role for these problems. A prominent example of such a problem is model
checking first-order formulas that only use a fixed (parameter-bounded) number of distinct
variables. As the variables can be reused, the quantifier alternation does not depend on
the parameter. This observation leads us to defining the following parameterized analog of
PSPACE with unbounded alternations. In Section 4 we realize that the defined complexity
class has a characterization in terms of alternating Turing machines that is similar to XP,
but using shallow parallel computations; hence, we choose the name SXP with S standing for
“shallow”.

I Definition 1. SXP := [p-var-mc(fo)]fpt

The class SXP is contained in XP and contains AW[P]. Figure 1 shows the relations
between these and other classes from parameterized complexity mentioned above.

I Fact 2. SXP ⊆ XP

I Lemma 3. AW[P] ⊆ SXP

Proof Sketch. Let (P, κ) ∈ AW[P] via a dtm M running in time f(k)·nc for some computable
function f and constant c, and using nondeterministic certificates of length f(k) · logn of
existential and universal bits; with f(k) alternations. The first phase of our fpt-reduction
to p-var-mc(fo) reduces the problem of simulating the computation of M on length-n and
parameter-k instances to the circuit evaluation problem as described in [15] for the classical
class P. The second step replaces the task of evaluating the circuit by model checking a
constant-variable first-order formula that defines the evaluation problem for circuits (the
same approach is commonly used to show that model checking first-order formulas with
just 2 variables is complete for P). To also take the alternating certificate into account,
which is given to the dtm, our formula is enriched by existential quantifiers, which guess
existential bits, and universal quantifiers, which guess universal bits; this construction uses a
single quantifier to handle a length-(logn) substring of the certificate by first applying the
“k · logn”-trick (see [12, Corollary 3.13] for details) to the circuit. Both the circuit and the
formula can be constructed using an fpt-reduction. The number of variables used by the
formula is bounded by a function in the original parameter. J

4 Alternative Characterizations

The classes that are defined via model checking first-order formulas in the previous section
are all defined by first taking a prototypical model checking problem for first-order formulas
of a restricted syntax along with a parameter, which is the formulas size or number of distinct
variables. Then the closures of these problems under fpt-reductions are considered, which
captures certain kinds of parameterized intractable problems. The prototypical problems are
chosen in order to mirror the behavior of a classical class in the parameterized setting. In
this section we present an alternative characterization of SXP in terms of alternating Turing
machines. It shows how the behavior of the class SXP (of parameterized problems) parallels
the behavior of the class PSPACE (of classical problems).

FSTTCS 2014

114 Parameterized Complexity of Fixed-Variable Logics

analogs
of NP

analogs of PH

analogs of PSPACE

FPT

[p-size-mc(Σ1)]fpt
= [p-size-mc(alt1)]fpt
= W[1] = A[1]

[p-var-mc(Σ1)]fpt
= W[SAT]

W[P]

[p-size-mc(Σt)]fpt
= [p-size-mc(altt)]fpt
= A[t]

[p-var-mc(Σt)]fpt [p-size-mc(prenex)]fpt
= [p-size-mc(fo)]fpt
= AW[∗]

[p-var-mc(prenex)]fpt
= AW[SAT]

AW[P]

SXP
= [p-var-mc(fo)]fpt

XP

Figure 1 We have the following inclusions of parameterized complexity classes for every t ∈ N;
where C D indicates C ⊆ D for classes C and D. While FPT is commonly considered to be
the analog of P in parameterized complexity and XP is an analog of EXPTIME, there are several
suggestion to reflect the behavior of the classical classes NP, the levels of PH, and PSPACE. Our
suggestion for a parameterized version of PSPACE is based on parameterizing first-order model
checking via the number of distinct variables in formulas.

An alternating Turing machine (atm) M consists of a set of states Q that is partitioned
into a set of existential states Q∃ and a set of universal states Q∀. Its (nondeterministic)
transitions are encoded by a relation ∆ ⊆ Q × Σk × Q × Σk × {LEFT, RIGHT}k where
(q, σ1, . . . , σk, q

′, σ′1, . . . , σ
′
k, d1, . . . , dk) ∈ ∆ means that if M is in state q and reads the

symbol σi on tape i, for i ∈ {1, . . . , k}, then it can write the symbol σ′i on tape i, for
i ∈ {1, . . . , k}, and moves its heads as defined by the di. We consider only machines M that
halt on every computation path. The acceptance behavior of an atm is defined recursively
(without using accepting and rejecting states explicitly) as follows: A universal configuration
accepts if every immediate successor configuration accepts, an existential configuration accepts
if there exists an immediate successor configuration that accepts. M accepts an input if the
starting configuration accepts.

From the proof of the well known characterization from Chandra et al. [5] of polynomial
deterministic time in terms of alternating logarithmic space, we get the following alternative
definition of XP. This parallels the definition of EXPTIME in terms of atms using polynomial
space.

C. Berkholz and M. Elberfeld 115

I Fact 4. XP is the class of parameterized problems (P, κ) that are accepted by atms using
space at most f(k) · logn.

While for EXPTIME problems we do not hope to lower the run-time substantially by
using alternation, alternation speeds-up the solution of problems in PSPACE since it equals
the class of problems accepted by atms in polynomial time [5]. The following lemma states
that our proposed parameterized version of PSPACE has a similar behavior. Its problems can
be solved by atms using f(k) · logn space, but only running in f(k) · nO(1) time. The proof
of the lemma is based on a refined view on the PSPACE-completeness of model checking
first-order formulas [17, 18] as well as ideas from descriptive complexity theory [13].

I Theorem 5. SXP is the class of parameterized problems (P, κ) that are accepted by atms
using space at most f(k) · logn and running in time at most f(k) · nO(1).

Proof. We start to show how problems in SXP, which are fpt-reducible to p-var-mc(fo), can
be solved by (f(k) · logn)-space- and f(k) · nO(1)-time-bounded atms. Classical results from
Chandra et al. [5] imply that FPT is the class of parameterized problems (P, κ) accepted by
atms using space at most f(k)+O(logn). A similar fact holds for (f(k) ·nO(1))-time-bounded
dtms that compute reductions; in this case we consider the problem of deciding whether
a certain position in the output of the dtm contains a certain symbol. If the reduction is
computed in time f(k) · nO(1), then this problem can be decided by an atm using space
f(k) +O(logn). To finish the proof of the above claim, we (1) consider an atm that model
checks first-order formulas in space at most f(k) · logn and time at most f(k) · nO(1) with
respect to the number of distinct variables as the parameter, and (2) modify it to run the
above machine for the reduction whenever it wants to access an input symbol.

For the other direction, let (P, κ) be solvable by an atm M using time f(κ) · nc and
space f(κ) · logn for a computable function f : N → N and constant c on length-n inputs.
In order to describe the reduction’s construction we consider an input x ∈ Σ∗. We assume,
without loss of generality, that M alternates between existential and universal states in
each transition. That means, if we consider the start configuration as having time stamp 0,
configurations with an even time stamp are always existential and configurations with an
odd time stamp are always universal. Recall that a configuration C of M on input x consists
of the current state, the head positions on the input tape and on the working tape, and the
content of the working tape. Commonly a configuration is encoded as a (binary) string of
length at most cM + f(k) · logn where cM is a constant depending on M .

We present an fpt-reduction from (P, κ) to p-var-mc(fo). A first attempt for the reduction
is to construct the (acyclic) configuration graph GM (x) = (vert,edg) that contains all
possible configurations of M as vertices and (directed) edges representing transitions between
them. Moreover, the initial configuration is colored using a unary predicate I, and the
existential and universal configurations are colored using unary predicates exist and univ,
respectively. Then we state a formula ϕM that defines the acceptance behavior of atms,
which is an alternating reachability query, that run in time at most f(κ) · nc based on
the graph. While we only need a constant number of variables for the formula, the graph
considered in this reduction is too large to be constructible using an fpt-reduction since we
consider all possible 2cM +f(κ)·logn configurations.

To get an fpt-reduction, we trade number of variables of the formula for the size of the
constructed structure: Instead of constructing the graph explicitly, we modify the formula
ϕM to a formula ϕM ′ that not only defines the acceptance behavior of M , but also implicitly
the configuration graph. How to modify the formula as well as how to construct a structure
for this approach is described below.

FSTTCS 2014

116 Parameterized Complexity of Fixed-Variable Logics

Instead of constructing a configuration graph, the second version of our reduction produces
a logical structure A with universe U := {1, . . . , f(κ)·nc}. The only relation on these elements
is the bit predicate bit = {(i, j) | position i in bit-string enc(j) is 1}.

The formula ϕM uses variables to store pointers to whole configurations. In order to
avoid this, we encode configurations of M using substrings for a configuration’s state, head
position, and working tape content. To encode a configuration with the help of a formula’s
element variables, we replace each element variable x in ϕM by a group of variables consisting
of a single variable xstate to contain the index of the state (assuming that the input size is
large enough), a variable xin-head to encode the head position on the input tape, a variable
xwork-head to encode the head position on the work tape, and f(κ) variables xcontent-i to
encode the content of the ith length-logn block on the working tape. Finally, we replace
the predicate symbols that are used to access the edges and vertex colorings of the graph
by subformulas that define these predicates based on the predicate bit. The details of this
well-known approach from descriptive complexity are described in the book of Immerman [13].

Both the formula ϕ′M and the used structure can be constructed in time f(k) · nO(1),
and the number of variables used in ϕ′M is bounded in terms of the machine M and the
parameter of the input instance k. J

Based on translating the alternating Turing machines from Lemma 5 into circuits, it
is possible to get a characterization of SXP in terms of families of Boolean circuits that
are uniform (the building blocks of the circuits can be recognized, for example, by using
a parameterized version of the classical class ALOGTIME where the parameter is given in
an appropriate way to the uniformity machine). These circuits have size nf(k) and depth
f(k) · nO(1). Thus, their shape also supports our intuition that SXP is the right analog of
PSPACE in the parameterized setting.

5 Parameterized polynomial-space-complete problems

Kasai, Adachi and Iwata [14] introduced a simple pebble game to provide a combinatorial
characterization of different complexity classes by playing several variants of that game. An
instance of the pebble game consists of a set of nodes X, a set of start positions S ⊆ X for
k = |S| pebbles, a goal node γ ∈ X and a set R ⊆ X3 of rules which are triples of pairwise
distinct nodes. There are two players in the game, which alternately move a pebble on the
game board according to some rule (u, v, w) ∈ R: if there are pebbles on u and v but not on
w, then the corresponding player can move the pebble from u to w. One player wins the game
if he puts a pebble on the goal node or reaches a position where the other player is unable to
move. The game board is acyclic if the underlying dag with vertex set X and arcs (u,w),
(v, w) for all (u, v, w) ∈ R is acyclic. In the acyclic pebble game the game board is required
to be acyclic. It turns out that determining the winner in the pebble game is complete for
EXPTIME and determining the winner in the acyclic variant is PSPACE-complete [14]. If
one fixes the number of pebbles k, it is possible to determine the winner (in both variants) in
time nO(k). This can easily be verified as the game can be simulated by an alternating Turing
machine that uses O(k logn) space to store the current position of the pebbles. Adachi, Iwata
and Kasai [2] proved a corresponding lower bound in the non-acyclic case. They simulated
single-tape Turing machines of running time O(nk) within the (2k + 1)-pebble game and
used the time hierarchy theorem to obtain a lower bound of nΩ(k). As remarked by Downey
and Fellows [8] it follows that, parameterized by the number of pebbles, this problem is
XP-complete. Thus, the pebble game supports the intuition that natural parameterizations of

C. Berkholz and M. Elberfeld 117

EXPTIME-complete problems tend to be XP-complete. We show that the PSPACE-complete
acyclic variant is complete for SXP under the same parameterization.

I Theorem 6. Playing the pebble game on acyclic boards parameterized by the number of
pebbles is complete for SXP under fpt-reductions.

Proof. As the acyclic k-pebble game ends after a linear number of rounds, it can be simulated
by an alternating Turing machine in space O(k logn) and time O(n). Hence, this problem
is in SXP. For the other direction we reduce from p-var-mc(fo). Let ϕ be a k-variable
first-order formula and A be a structure with universe [n]. First, by allowing negation
everywhere in the formula, we eliminate conjunction and universal quantification. We reduce
the model checking problem to the acyclic (k + 2)-pebble game such that A |= ϕ if, and
only if, Player 1 wins the pebble game. We introduce a special node _ to be used as middle
vertex in the rules (u,_, w). At the beginning of the game there is a pebble on this node,
which cannot be moved during the game. The acyclic game board resembles the structure
of the formula. We use k pebbles to store the current assignment of the k variables and an
additional pebble to control which subformula is evaluated. For every subformula ψ of ϕ we
introduce a control node X[ψ] and in addition nodes X[ψ, x, v], for all variables x ∈ var(ϕ)
and elements v ∈ [n], to store assignments of the variables. These nodes serve as the basic
data structure on the game board. We define the rules and additional nodes by induction on
the structure of the formula to satisfy the following invariant.

For every subformula ψ(x1, . . . , xk), Player 1 wins from the pebble position (X[ψ],
X[ψ, x1, v1], . . ., X[ψ, xk, vk]) iff A |= ψ[v1, . . . , vk].

As the pebble game is symmetric with respect to the players it follows that if the current
pebble position is (X[ψ], X[ψ, x1, v1], . . ., X[ψ, xk, vk]) and it is Player 2’s turn, then Player 1
wins iff A 6|= ψ[v1, . . . , vk]. Initially, the k value pebbles are on the nodes X[ϕ, x1, v], . . .,
X[ϕ, xk, v] for an arbitrary element v and the control pebble is on X[ϕ]. Thus, by the
invariant above, Player 1 wins iff A |= ϕ.

Atoms: For the base case let ψ = R(xi1 , . . . , xir) be an atom. We introduce addi-
tional nodes Y [ψ, a1, . . . , ar] and Yp[ψ, xij , a1, . . . , ar] for every tuple (a1, . . . , ar) ∈ RA,
every variable xij , j ∈ [r] and p ∈ {1, 2}. There are rules (X[ψ],_, Y [ψ, a1, . . . , ar]) that
enable Player 1 to choose a tuple (a1, . . . , ar) from the relation RA that is consistent
with the assignment specified by the pebbles on the nodes X[ψ, xi, vi]. To check this
consistency both players are forced to use the following set of rules in the predefined or-
der. First Player 2 moves the pebble from Y [ψ, a1, . . . , ar] to Y1[ψ, xi1 , a1, . . . , ar] using
(Y [ψ, a1, . . . , ar],_, Y1[ψ, xi1 , a1, . . . , ar]). Then it is Player 1’s turn and both players al-
ternately move the pebble using the rules (Y1[ψ, xij , a1, . . . , ar], X[ψ, xij , aj], Y2[ψ, xij+1 ,

a1, . . . , ar]) and (Y2[ψ, xij+1 , a1, . . . , ar],_, Y1[ψ, xij+1 , a1, . . . , ar]) for j = 1, . . . , r − 1. Fi-
nally, there is a rule (Y [ψ, xir , a1, . . . , ar],_, γ) that allows Player 1 to pebble the goal. By
definition, this sequence of rules can be applied (and thus Player 1 wins the game as the
goal node γ is pebbled) if A |= ψ[v1, . . . , vk]. On the other hand, if A 6|= ψ[v1, . . . , vk], then
Player 1 gets stuck and Player 2 wins.

Disjunction: If ψ = ψ1 ∨ ψ2, then we have to ensure that from the pebble position
(X[ψ], X[ψ, x1, v1], . . . , X[ψ, xk, vk]) Player 1 can move to either (X[ψ1], X[ψ1, x1, v1], . . . ,
X[ψ1, xk, vk]) or (X[ψ2], X[ψ2, x1, v1], . . . , X[ψ2, xk, vk]). To make this decision, we introduce
nodes Xp[ψj], for p, j ∈ {1, 2}, and rules (X[ψ],_, X1[ψj]) and (X1[ψj],_, X2[ψj]) for
j ∈ {1, 2}. Thus, Player 1 can choose an j and move to X1[ψj]. Afterwards, Player 2 is
forced to move to X2[ψj]. It remains to copy the current assignment to the subformula, that

FSTTCS 2014

118 Parameterized Complexity of Fixed-Variable Logics

is, the players have to move the pebbles from X[ψ, x, v] to X[ψj , x, v]. We use nodes X[ψj , i]
for i ∈ [k + 1] to control this process. The first rule is (X2[ψj],_, X[ψj , 1]). For all v ∈ [n]
and i ≤ k there are rules (X[ψ, xi, v], X[ψj , i], X[ψj , xi, v]) for copying the value of xi and
(X[ψj , i], X[ψj , v, xi], X[ψj , i+ 1]) to move the control pebble. Both players must cooperate
and use these rules successively to move the pebbles from X[ψ, x, v] to X[ψj , x, v]. At the
end of this process the pebble position is (X[ψj , k + 1], X[ψj , x1, v1]), . . . , X[ψj , xk, vk]) and
it is Player 2’s turn. He is forced to use the final rule (X[ψj , k + 1],_, X[ψj]). This finishes
the description of the ∨-case.

Negation: Let ψ = ¬ψ′. We simulate negation by changing the role of both players. That
is, from the configuration (X[ψ], X[ψ, x1, v1], . . . , X[ψ, xk, vk]) where it is Player 1’s turn we
want to force both players to reach the configuration (X[ψ′], X[ψ′, x1, v1], . . . , X[ψ′, xk, vk])
where it is Player 2’s turn. Changing is role of the players is rather easy as we just have to
introduce a dummy rule (X[ψ],_, X[ψ′]) to force one move of the control pebble. Afterwards
the players have to move the assignment pebbles from X[ψ, x, v] to X[ψ′, x, v]. This copy
process can be done in the same deterministic way as described in the ∨-case.

Existential quantification: Let ψ = ∃xjψ′. To model the existential quantifier we have
to ensure that from a pebble position (X[ψ], X[ψ, x1, v1], . . . , X[ψ, xj , vj]), . . . , X[ψ, xk, vk])
Player 1 can choose an element w ∈ [n] and reach the new position (X[ψ′], X[ψ′, x1, v1],
. . ., X[ψ′, xj , w]), . . ., X[ψ, xk, vk]). Copying the values of xi for i 6= j (moving the peb-
bles from X[ψ, xi, vi] to X[ψ′, xi, vi]) can be done in the same way as in the previous
cases. Hence, we end up with a configuration where it is Player 1’s turn and the peb-
bles are on X[ψ′, xi, vi] (i 6= j), X[ψ, xj , vj], and the control pebble is on an additional
node X0[ψ]. To change the value of xj we use the following construction. Let X1[ψ] and
X2[ψ] be two additional nodes. There is a rule (X0[ψ],_, X1[ψ]) and for every v ∈ [n]
we add the following three rules: (X[ψ, xj , v], X1[ψ], X2[ψ]), (X1[ψ], X2[ψ], X[ψ′, xj , v]),
(X2[ψ], X[ψ′, xj , v], X[ψ′]). First, Player 1 moves the pebble from X0[ψ] to X1[ψ]. After-
wards, Player 2 is forced to move the pebble from X[ψ, xj , vj] to X2[ψ]. Now Player 1 can
choose some w ∈ [n] and move the pebble from X1[ψ] to X[ψ′, xj , w]. The last move is done
by Player 2, who is forced to move the pebble from X2[ψ] to X[ψ′]. J

Another example that shifts the correspondence between EXPTIME and PSPACE in the
classical world to XP and SXP in the parameterized setting is resolution. Resolution is a
well-known and intensively studied proof system to detect the unsatisfiability of a given
formula in conjunctive normal form. Starting with the clauses from the cnf formula one
iteratively derives new clauses using only one simple rule: The resolution rule for a variable X
takes two clauses γ∪{X}, δ∪{¬X} and resolves γ∪δ. The given cnf formula is unsatisfiable
if, and only if, the empty clause can be derived. The width of a refutation is the maximal
number of literals in every clause of the derivation. A resolution derivation can naturally
be viewed as a directed acyclic graph (dag) where the nodes are labeled with clauses and
arcs pointing from the resolvent to its parents. The depth of a refutation is the length of the
longest path in the corresponding dag. If on every path in this derivation dag no variable has
been used twice by the resolution rule, then the derivation is regular. Note that the depth of
every regular resolution refutation is at most linear in the number of variables, thus linear
depth resolution generalizes regular resolution.

A resolution refutation of width k can be found be an alternating O(k logn)-space Turing
machine as follows: In each step, the machine stores one clause (using k logn bits) and tries
to justify that this clause can be derived. Starting from the empty clause, the machine
existentially guesses its parents and then universally chooses a parent to justify that it can
be derived. The machine accepts the input, if the current clause is from the cnf formula

C. Berkholz and M. Elberfeld 119

Table 1 To compare the correspondence between tractable and intractable in classical and
parameterized complexity we denote by poly and exp polynomial and exponential growth, and by fpt
and xp growth of the form f(k) · nO(1) and nf(k), respectively.

Alternating
Turing
machines

EXPTIME Alternating PSPACE machines of exp running time.
PSPACE Alternating PSPACE machines of poly running time.
XP Alternating SPACE(f(k) log n) machines of xp running time.
SXP Alternating SPACE(f(k) log n) machines of fpt running time.

Pebble games

EXPTIME Pebble game.
PSPACE Acyclic pebble game.
XP Pebble game, parameter: the number of pebbles.
SXP Acyclic pebble game, parameter: the number of pebbles.

Resolution

EXPTIME Bounded width resolution.
PSPACE Bounded width linear depth resolution.
XP Bounded width resolution, parameter: the width.
SXP Bounded width linear depth resolution, parameter: the width.

and rejects after (2n)k steps (which upper bounds the depth of width-k refutations). If
we additionally require the depth to be linear, the alternating machine is able to find a
refutation of width k in linear time. It follows that finding resolution refutations of width
k is in EXPTIME, if k is part of the input, and in XP, if k is the parameter. Furthermore,
finding linear depth refutations of width k is in PSPACE, if k is part of the input, and in
SXP, if k is the parameter. By reducing the pebble game to bounded width resolution [3] it
was shown that the corresponding problems are complete for EXPTIME, XP and PSPACE.
We now show that the same reduction, stated in Fact 7, can be used to show that finding
linear depth resolution refutations of bounded width is SXP-complete.

I Fact 7 ([3]). There is an fpt-reduction that takes an instance of the k-pebble game and
produces a 3-cnf formula Γ such that Player 1 wins the k-pebble game iff Γ has a resolution
refutation of width k + 1. If in addition the game board is acyclic, then Γ has a regular
resolution refutation of width k + 1.

I Lemma 8. Finding linear depth resolution refutations of width k is complete for SXP.

Proof. We already have observed that this problem is contained in SXP. Note that the
reduction stated in Fact 7 reduces the parametrized acyclic pebble game to parameterized
linear depth resolution, as every regular refutation has always linear depth. By Theorem 6 it
follows that finding linear depth refutations is complete for SXP when parameterized by the
width. J

6 Conclusion

We placed the model checking problem for fixed variable first-order logic within the hierarchy
of intractable problems in parameterized complexity. As a consequence we exhibited a new
parameterized complexity class, SXP, that corresponds to PSPACE in the same way as XP
corresponds to EXPTIME. To support this intuition we gave characterizations in terms
of alternating Turing machines, pebble games, and resolution refutations. The results are
summarized in Table 1.

FSTTCS 2014

120 Parameterized Complexity of Fixed-Variable Logics

References
1 Karl A. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter

tractability and completeness IV: On completeness for W[P] and PSPACE analogues. An-
nals of Pure and Applied Logic, 73(3):235–276, 1995.

2 Akeo Adachi, Shigeki Iwata, and Takumi Kasai. Some combinatorial game problems require
Ω(nk) time. J. ACM, 31:361–376, March 1984.

3 Christoph Berkholz. On the complexity of finding narrow proofs. In Foundations of Com-
puter Science, IEEE Annual Symposium on, pages 351–360, Los Alamitos, CA, USA, 2012.
IEEE Computer Society.

4 Christoph Berkholz. Lower bounds for existential pebble games and k-consistency tests.
Logical Methods in Computer Science, 9(4), 2013.

5 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

6 Yijia Chen, Jörg Flum, and Martin Grohe. Machine-based methods in parameterized
complexity theory. Theoretical Computer Science, 339(2–3):167–199, 2005.

7 R. Downey and M. Fellows. Fixed-parameter tractability and completeness I: Basic results.
SIAM Journal on Computing, 24(4):873–921, 1995.

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

9 Rodney G. Downey, Michael R. Fellows, and Ken Regan. Descriptive complexity and the
W-hierachy. In Proof Complexity and Feasible Arithmetic, volume 39 of AMS-DIMACS,
pages 119–134. AMS, 1998.

10 Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-
checking. SIAM J. Comp., 31(1):113–145, 2001.

11 Jörg Flum and Martin Grohe. Model-checking problems as a basis for parameterized in-
tractability. Logical Methods in Computer Science, 1(1), 2005.

12 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
13 Neil Immerman. Descriptive complexity. Springer, New York, 1999.
14 Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete

problems. SIAM J. Comput., 8(4):574–586, 1979.
15 Richard E Ladner. The circuit value problem is log space complete for P. SIGACT News,

7:18–20, 1975.
16 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.

Journal of Computer and System Sciences, 58(3):407–427, 1999.
17 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–

22, 1976.
18 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC 1982),
pages 137–146. ACM, 1982.

Synchronizing Words for Weighted and Timed
Automata∗

Laurent Doyen1, Line Juhl2, Kim G. Larsen2, Nicolas Markey1, and
Mahsa Shirmohammadi1,3

1 Laboratoire Spécification & Vérification – CNRS & ENS Cachan, France
2 CISS – Aalborg University, Denmark
3 Dpt Informatique – Université Libre de Bruxelles, Belgium

Abstract
The problem of synchronizing automata is concerned with the existence of a word that sends all
states of the automaton to one and the same state. This problem has classically been studied for
complete deterministic finite automata, with the existence problem being NLOGSPACE-complete.

In this paper we consider synchronizing-word problems for weighted and timed automata.
We consider the synchronization problem in several variants and combinations of these, includ-
ing deterministic and non-deterministic timed and weighted automata, synchronization to unique
location with possibly different clock valuations or accumulated weights, as well as synchroniza-
tion with a safety condition forbidding the automaton to visit states outside a safety-set during
synchronization (e.g. energy constraints). For deterministic weighted automata, the synchroniz-
ation problem is proven PSPACE-complete under energy constraints, and in 3-EXPSPACE under
general safety constraints. For timed automata the synchronization problems are shown to be
PSPACE-complete in the deterministic case, and undecidable in the non-deterministic case.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases Synchronizing words, weighted automata, timed automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.121

1 Introduction

The notion of synchronizing automata is concerned with the following natural problem: how
can we regain control over a device if we do not know its current state? Since losing the
control over a device may happen due to missing the observation on the outputs produced
by the system, static strategies, which are finite sequences (or words) of input letters are
considered while synchronizing systems. As an example think of remote systems connected to
a wireless controller that emits the command via wireless waves but expects the observations
via physical connectors (it might be excessively expensive to mount wireless senders on the
remote systems), and consider that the physical connection to the controller is lost because
of some technical failure. The wireless controller can therefore not observe the current states
of distributed subsystems. In this setting, emitting a synchronizing word as the command
leaves the remote system (as a whole) in one particular state, no matter which state each
distributed subsystem started at; thus the controller can regain control. For synchronizing
automata, there are also applications e.g. in planning, control of discrete event systems,
bio-computing, and robotics [2, 8, 4].

∗ This work was partially supported by the Belgian Fonds National de la Recherche Scientifique (FNRS),
by FP7 projects Cassting (601148) and ERC EQualIS (308087).

© Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey, and Mahsa Shirmohammadi;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 121–132

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.121
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

122 Synchronizing Words for Weighted and Timed Automata

`0 `1

`2 `3

a, b, c, d : 0 a, b : 0d : −2

c : 0

a, d : 0, c : −10
b : 1

a : 1, c, d : 0

b : −10

Figure 1 A complete deterministic WA with location-synchronizing word a10 · b · (c · b)2 · d under
non-negative safety condition.

Synchronizing automata have classically been studied in the setting of complete determin-
istic finite-state automata, with polynomial bounds on the length of the shortest synchronizing
word [3] and the existence problem being NLOGSPACE-complete. In this paper, we consider
synchronization in systems whose behavior depends on quantitative constraints. We study
two classes of such systems, weighted automata (WAs) and timed automata (TAs), and
introduce variants of synchronization to include the quantitative aspects as well as some
safety condition while synchronizing. The main challenge is that we are now facing automata
with infinite state-spaces and infinite branching (e.g. delays in a TA).

For WAs, states are composed of locations and quantitative weights. As weights are
merely accumulated in this setting, it is impossible to synchronize to a single state. Instead
we search for a location-synchronizing word, i.e., a word after which all states will agree on
the location. In addition, we add a safety condition insisting that during synchronization the
accumulated weight (energy) is safe, e.g. a non-negative safety condition that requires the
system to never run out of power while synchronizing. Considering the safety condition is
what distinguishes our setting from the one presented in [6]; moreover, in that work WAs are
restricted to have only non-negative weights on transitions. Figure 1 illustrates a WA with
four locations and four letters. We have to synchronize infinitely many states (`i, e) where `i

is one of the four locations and e ∈ R is the accumulated energy. The only way to location-
synchronize a state (`3, e) with states involving other locations is to input b. However, if b is
provided initially, this will drop the energy level by −10 violating the non-negative safety
condition for (`3, 0). Fortunately, the letter a recharges the energy level at `3 and has no
negative effect at other locations. After reading a10b, all states are synchronized in `0 and `1
with energy at least 0. Next, a d-input can location-synchronize states involving `0 and `1,
but it drops the energy level at `1 by −2. Again, we try to find a word that recharges
the energy at `1. Supplying c · b twice makes a d-transition safe to be taken to location-
synchronize safe states involving `0 and `1. So, the word a10 ·b ·(c ·b)2 ·d location-synchronizes
the automaton with non-negative safety condition.

For TAs, synchronizing the classical region abstraction is not sound. Figure 2 displays
a 1-letter TA with four locations. We have infinitely many states to synchronize using the
letter a and quantitative delays d(t) (t ∈ R≥0). We propose an algorithm which first reduces
the (uncountably) infinite set of configurations into a finite set (with at most the number of
locations in the TA), and then pairwise synchronizes the obtained finite set of states. The
word d(3) ·a ·a is a finitely synchronizing word that synchronizes the infinite set of states into
a finite set: whatever the initial state, inputting the word d(3) · a · a the TA ends up in one of
the states (`0, 0), (`1, 0) or (`3, 0). Moreover, since `3 cannot be escaped, any synchronizing
word in this automaton lead to a state involving `3. It then suffices to play a · d(1) · a · a · a
to end up in (`3, 0), whatever the initial state. A possible synchronizing word for this TA is
then d(3) · a3 · d(1) · a3, which always leads to the state (`3, 0).

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi 123

`0 `1 `2 `3
a

x := 0
x ≥ 1
a

x := 0

x < 1, a x ≤ 2, a
1 ≤ x ≤ 2, a

x < 1 ∨ x > 2, ax > 2, a, x := 0

Figure 2 A complete deterministic 1-letter TA with synchronizing word d(3) · a3 · d(1) · a3.

In this paper we consider the synchronization problem for TAs and WAs in several
variants: including deterministic and non-deterministic TAs and WAs, synchronization to
unique location with possibly different clock valuations or accumulated weights, as well as
synchronization with a safety condition forbidding the automaton to visit states outside
a safety-set during synchronization (e.g. energy constraints). Our results can be seen in
Table 1. For TAs the synchronization problems are shown to be PSPACE-complete in the
deterministic case, and undecidable in the non-deterministic case. For deterministic WAs,
the synchronization problem is proven PSPACE-complete under energy constraints, and in
3-EXPSPACE under general safety constraints.

The detailed proofs of these results can be found in a full version of this paper [5].

2 Definitions

A labeled transition system over a (possibly infinite) alphabet Γ is a pair 〈Q,R〉 where
Q is a set of states and R ⊆ Q × Γ × Q is a transition relation. The labeled transition
systems we consider have state space Q = L × X consisting of a finite set L of locations
and a possibly infinite set X of quantitative values. Given a state q = (`, x), let loc(q) = `

be the location of q, and for a ∈ Γ, let post(q, a) = {q′ | (q, a, q′) ∈ R}. For P ⊆ Q,
let loc(P) = {loc(q) | q ∈ P} and post(P, a) =

⋃
q∈P post(q, a). For nonempty words

w ∈ Γ+, define inductively post(q, aw) = post(post(q, a), w). A run (or path) in a labeled
transition system 〈Q,R〉 over Γ is a finite sequence q0q1 · · · qn such that there exists a
word a0a1 · · · an−1 ∈ Γ∗ for which (qi, ai, qi+1) ∈ R for all 0 ≤ i < n.

Synchronizing words

A word w ∈ Γ+ is synchronizing in the labeled transition system 〈Q,R〉 if post(Q,w) is a
singleton, and it is location-synchronizing if loc(post(Q,w)) is a singleton. Given U ⊆ Q,
a word w is synchronizing (resp., location-synchronizing) in 〈Q,R〉 with safety condition U

if post(U,w) is a singleton (resp., loc(post(U,w)) is a singleton) and post(U, v) ⊆ U for all
prefixes v of w. Thus a synchronizing word can be read from every state and bring the
system to a single state, and a location-synchronizing word brings the system to a single
location, possibly with different quantitative values. The safety condition U requires that
the states in Q \ U are never visited while reading the word. In this paper, we specify the
safety condition U by a function Safe : L → X, then U = {(`, x) ∈ Q | x ∈ Safe(`)}. We
say that a system is (location-)synchronizing if it has a (location-)synchronizing word. The
(location-)synchronizing problem (under a safety condition) asks, given a system (and a
safety condition), whether the system is (location-)synchronizing.

A finite state automaton is a special kind of labeled transition systems where the alphabet
and the state space are finite. Synchronizing words of finite-state automata have already
been extensively studied. The synchronizing problem in a finite-state automaton A is easily
reduced to a reachability problem in the power-set automaton of A. This provides a PSPACE
algorithm for this problem, and the problem is proved PSPACE-complete [7]. When A is

FSTTCS 2014

124 Synchronizing Words for Weighted and Timed Automata

Table 1 Summary of obtained results.

Timed Automata (TAs) Weighted Automata (WAs)
D
et
er
m
in
is
tic N

o
co
nd

iti
on Synchronization PSPACE-complete Trivial (always false)

Loc.-synchronization PSPACE-complete NLOGSPACE-complete

Sa
fe
ty

co
nd

iti
on Synchronization ? PSPACE-complete

Loc.-synchronization ? 3-EXPSPACE
energy cond.: PSPACE-c.

N
on

-d
et
er
m
in
is
tic

N
o

co
nd

iti
on Synchronization Undecidable Trivial (always false)

Loc.-synchronization Undecidable PSPACE-complete

Sa
fe
ty

co
nd

iti
on Synchronization Undecidable PSPACE-complete

Loc.-synchronization Undecidable ?

deterministic and complete, that means |post(q, a)| = 1 for all states q and letters a, a better
algorithm is obtained by iteratively synchronizing pairs of states [3, 8]: the existence of a
synchronizing word in A is indeed equivalent to the existence of synchronizing words for
each pair of states of A, which is reduced to polynomially-many reachability problems in the
product of two copies of A. The problem can then be proven NLOGSPACE-complete.

We consider labeled transition systems induced by WAs and TAs. We are interested in
(location-)synchronizing problem (with or without safety condition) in the labeled transition
systems induced by TAs and WAs, defined below.

Weighted automata (WAs)

A weighted automaton (WA) over a finite alphabet Σ is a tuple A = 〈L,E〉 consisting of a
finite set L of locations, and a set E ⊆ L× Σ× Z× L of edges. When E is clear from the
context, we denote by ` a:z−−→ `′ the edge (`, a, z, `′) ∈ E, which represents a transition on
letter a from location ` to `′ with weight z. We view the weights as the resource (or energy)
consumption of the system. The semantics of a WA A = 〈L,E〉 is the labeled transition
system JAK = 〈Q,R〉 on the alphabet Γ = Σ where Q ⊆ L× Z and ((`, e), a, (`′, e′)) ∈ R if
(`, a, e′ − e, `′) ∈ E. In a state (`, e), we call e the energy level. The WA A is deterministic if
for all edges (`, a, z1, `1), (`, b, z2, `2) ∈ E, if a = b, then z1 = z2 and `1 = `2; it is complete if
for all ` ∈ L and all a ∈ Σ, there exists an edge (`, a, z, `′) ∈ E.

Let I be the set of intervals with integer or infinite endpoints. For WAs, we consider
safety conditions of the form Safe : L→ I, and we denote an interval [y, z] by y ≤ e ≤ z, an
interval [z,+∞) by e ≥ z, etc. where e is an energy variable.

Timed automata (TAs)

Let C = {x1, . . . , x|C|} be a finite set of clocks. A (clock) valuation is a mapping v : C → R≥0
that assigns to each clock a non-negative real number. We denote by 0C (or 0 when the set
of clocks is clear from the context) the valuation that assigns 0 to every clock.

A guard g = (I1, . . . , I|C|) over C is a tuple of |C| intervals Ii ∈ I. A valuation v satisfies g,

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi 125

denoted v |= g, if v(xi) ∈ Ii for all 1 ≤ i ≤ |C|. For t ∈ R≥0, we denote by v+ t the valuation
defined by (v+ t)(x) = v(x) + t for all x ∈ C, and for a set r ⊆ C of clocks, we denote by v[r]
the valuation such that v[r](x) = 0 for all x ∈ r, and v[r](x) = v(x) otherwise.

A timed automaton (TA) over a finite alphabet Σ is a tuple 〈L,C,E〉 consisting of a finite
set L of locations, a finite set C of clocks, and a set E ⊆ L × I |C| × Σ × 2C × L of edges.
When E is clear from the context, we denote by ` g,a,r−−−→ `′ the edge (`, g, a, r, `′) ∈ E, which
represents a transition on letter a from location ` to `′ with guard g and set r of clocks to
reset. The semantics of a TA A = 〈L,C,E〉 is the labeled transition system JAK = 〈Q,R〉
over the alphabet Γ = R≥0 ∪ Σ (assuming Σ ∩R≥0 = ∅) where Q = L× (C → R≥0), and
((`, v), γ, (`′, v′)) ∈ R if

either γ ∈ R≥0, and ` = `′ and v′ = v + γ;
or γ ∈ Σ, and there is an edge (`, g, γ, r, `′) ∈ E such that v |= g and v′ = v[r].

The TA A is deterministic if for all states (`, v) ∈ Q, for all edges (`, g1, a, r1, `1) and
(`, g2, b, r2, `2) in E, if a = b, and v |= g1 and v |= g2, then r1 = r2 and `1 = `2; it is complete
if for all (`, v) ∈ Q and all a ∈ Σ, there exists an edge (`, g, a, r, `′) ∈ E such that v |= g.

3 Synchronization in deterministic WAs

In this section, we prove that location-synchronizing problem for deterministic WAs is
decidable. In the absence of safety conditions, two states involving the same location but
different initial energy can never be synchronized (synchronizing problem is trivial); however
in that setting, location-synchronization is equivalent to synchronization of deterministic
finite-state automata (i.e. weights play no role). In the presence of safety conditions,
synchronization is also most-often impossible, for the same reason as above. The only
exception is when safety condition is punctual (at most one safe energy level for each
location), in which case the problem becomes equivalent to synchronizing partial (not-
complete) finite-state automata, which is PSPACE-complete [7]. We thus focus on location-
synchronization with safety conditions. We fix a complete deterministic WA A = 〈L,E〉 over
the alphabet Σ, where the maximum absolute value appearing as weight in transitions is Z.

3.1 Location-synchronization under lower-bounded safety condition
In this subsection we assume that all the locations have safety conditions of the form e ≥ n,
with n ∈ Z. This is equivalent to having only safety conditions of the form e ≥ 0: it suffices
to add −n to the weight of all incoming transitions and to add +n to the weight of outgoing
transitions. In the sequel, we consider safety conditions of the form e ≥ 0, which we call
non-negative safety conditions or energy condition.

I Theorem 1. The existence of a location-synchronizing word in A under non-negative
safety condition Safe is PSPACE-complete.

Proof. Runs starting from two states with same location but two different energy levels
e2 > e1, always go through the states involving the same locations and the energy levels
preserving the difference e2 − e1. Therefore, to decide whether A is location-synchronizing
under non-negative safety condition, it suffices to check if there is a word that synchronizes
all locations with the initial energy 0, into a single location. We show that deciding whether
such word w exists is in PSPACE by providing an upper bound for the length of w.

Below, we assume that A has a location-synchronizing word. For all subsets S ⊆ L

with cardinality m > 2, there is a word that synchronizes S into some strictly smaller

FSTTCS 2014

126 Synchronizing Words for Weighted and Timed Automata

set. To characterize the properties of such words, we consider the weighted digraph Gm

induced by the product between m copies of A, where all vertices in {(`, . . . , `) | ` ∈ L},
which are vertices with m identical locations, are replaced with a new vertex synch. All
ingoing transitions to some location in {(`, . . . , `) | ` ∈ L} are redirected to synch. There is
only a self-loop transition in synch. An edge with weight 〈z1, . . . , zm〉 is non-negative (resp.,
zero-effect) if zi ≥ 0 for all dimensions 1 ≤ i < m (resp., zi = 0); and it is negative otherwise.
A non-negative edge is positive if zi is positive for some dimension i. There is a one-to-one
correspondence between a path x0x1 · · ·xn in Gm and a group of m runs ρ1 . . . ρm in A
such that all runs ρi are in shape of ρi = `i

0 · · · `i
n where xj = (`1

j , . . . , `
m
j) for all 0 ≤ j ≤ n.

A path is safe if all corresponding m runs ρi starting from `i
0 with energy level 0, always

keep a non-negative energy level while going through all the locations `i
1 · · · `i

n along the run.
The following lemma is a key to compute an upper bound for the length of location-

synchronizing words. Roughly speaking, it states that for all subsets S of locations, either
there is a short word w that synchronizes S into a strictly smaller set, or there exists a family
of words w0 · (w1)i (i ∈ N) such that inputting the word w0 · (w1)i accumulates energy i for
the run starting in some location ` ∈ S, while having non-negative effects along the runs
starting from the other locations in S. Consider the WA depicted in Fig. 1. Since in the
digraph G2, there is no safe path from (`0, `2) to synch, there is a family of words (b · c)i

such that each iteration of b · c increase the energy level in `2 by 1.

I Lemma 2. For all 1 < m ≤ |L|, for all vertices x of the digraph Gm, there is either a
safe simple path from x to synch, or a simple cycle where all edges are non-negative and at
least one is positive, which is reachable from x via a safe path.

The next lemma states that A has a location-synchronizing word if it has a short one,
of length at most Z|L| × |L|3+|L|2 . Since this value can be stored in polynomial space,
an (N)PSPACE algorithm can decide whether the given WA is location-synchronizing.

I Lemma 3. For the synchronizing WA A, there exists a short location-synchronizing word.

To show PSPACE-hardness, we use a reduction from synchronizing word problem for
deterministic finite automata with partially defined transition function that is PSPACE-
complete [7]. From a partial finite state automaton A, we construct a WA A′. All defined
transitions of A are augmented with the weight 0 in A′. To complete A′, all non-defined
transitions are added but with weight −1. Since the safety condition is non-negative in all
locations, none of the transitions with weight −1 are allowed to be used along synchronization
in A′. So, A has a synchronizing word if, and only if, A′ has a location-synchronizing one. J

We generalize the synchronizing word problem to location-synchronization from a subset,
where the aim is to synchronize a given subset of locations. This variant is used to decide
location-synchronization under general safety condition. Given a subset S ⊆ L of locations,
we prove Lemma 4 using reductions from and to coverability in vector-addition systems.

I Lemma 4. Deciding the existence of a location-synchronizing word from S in A under
lower-bounded safety condition Safe is decidable in 2-EXPSPACE, and it is EXPSPACE-hard.

3.2 Location-synchronization under general safety condition
We now discuss location-synchronization under the general safety condition where the energy
constraint for each location can be a bounded interval, lower or upper-bounded, or trivial
(always true). We proceed in two steps: first, we prove that the PSPACE-completeness
results in case of energy safety condition is preserved in location-synchronization under safety

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi 127

`0

`2

`1 `3
a, b : 0

b : 0
a : 0

a, b : 0

b : 0

a : 0

Figure 3 To location-synchronize the automaton, taking the back-edge `3
b,0−−→ `2 is avoidable.

condition with only lower-bounded or trivial constraints. Second, we extend our techniques
to establish results for general safety conditions. To obtain results for the general case, we
use the variant of location-synchronization from a subset, that is discussed in all cases too.

Location-synchronization under lower-bounded or trivial safety conditions

Let the safety condition Safe assign to each location of L either an interval of the form [n,+∞)
or true, and let us partition L into two classes L7→ and L↔ accordingly. A back-edge is a
transition that goes from a location in L↔ to a location in L 7→. Consider the WA drawn in
Fig. 3 with four locations and two letters. The safety condition is non-negative in `0 and `2,
and is trivial in `1 and `3: L7→ = {`0, `2} and L↔ = {`1, `3}. Thus, the transition `1

b:0−−→ `2
is a back-edge. The word abb is a location-synchronizing word that takes the back-edge
`1

b:0−−→ `2 in `1 (with non-negative energy levels). In this example, there exists an alternative
word aab that takes no back-edges and still location-synchronizes the automaton. We prove,
by Lemma 5, that such words always exist implying that taking back-edge transitions while
synchronizing is avoidable in deterministic WAs.

I Lemma 5. There is a location-synchronizing word in A under lower-bounded or trivial
safety condition Safe if, and only if, there is one in the automaton obtained from A by
removing all back-edge transitions.

Lemma 5 does not hold when synchronizing from a subset S of the locations. Indeed,
consider the one-letter automaton of Fig. 4: the locations `0 and `2 have non-negative safety
condition, while the location `1 has trivial safety condition. Obviously, it is possible to
location-synchronize from the set S = {`0, `2}, and this would not be possible without taking
the back-edge `1

a−→ `2. The result also fails for non-deterministic WAs. Consider the WA
depicted in Fig. 5, where L7→ = {1, 2} and L↔ = {3, 4}. We claim that the back-edge
3 b:+1−−−→ 2 is needed to location-synchronize. Initially, only letter a is available, because b
corresponds to a back-edge from 3 to 2 and would violate the safety condition there, while
the c-transition from 2 to 1 violates the condition in the location 1. After this step, inputting
more a’s is possible, but would not modify the set of states that have been reached, and in
particular would not help synchronizing. inputting c is still not an option (the same reason
as previously), so that only b is interesting, resulting in a back-edge. It remains to ensure
that there is indeed a way of synchronizing into the location 4, which is inputting c twice.

In the absence of back-edges and with non-empty L↔, location-synchronization can be
achieved in two steps: first location-synchronize all the states of L7→ to some location in L↔
using Theorem 1; then location-synchronize the states in L↔ where the weights play no role.

I Lemma 6. The existence of a location-synchronizing word in A under lower-bounded or
trivial safety condition Safe is PSPACE-complete.

The proof of Lemma 6 carries on for synchronizing from a subset of locations, except
using Lemma 4 instead of Theorem 1, and requiring that the automaton has no back-edge.

FSTTCS 2014

128 Synchronizing Words for Weighted and Timed Automata

`0

`1

`2

a

a

a

Figure 4 Unavoid-
able back-edges to syn-
chronize from a subset.

1

2 3

4

a, b : 0

a : 0

a, b, c : 0

a : 0

c : 0

c : −1
b : 0 a, c : 0

b : +1

1
N

2
N

3
Z

4
Z

1
N

2
N

3
N

4
Z

1
N

2
N+ 1

4
Z

1
N

4
Z

4
Z

a

b

c

c

Figure 5 Unavoidable back-edges to synchronize non-deterministic
WA.

I Lemma 7. Assume that A has no back-edge, and pick a set S of locations such that
L↔ ⊆ S. The existence of a location-synchronizing word in A from S under lower-bounded
or trivial safety condition Safe is decidable in 2-EXPSPACE, and it is EXPSPACE-hard.

Location-synchronization under general safety conditions

Let us relax the constraints on the safety condition Safe: some locations may have bounded
intervals to indicate the safe range of energy. The set L of locations is partitioned into L7−[, L7→
and L↔ where locations in L 7−[have safety conditions such as e ∈ [n1, n2] where n1, n2 ∈ Z.
In this setting, transitions from locations in L7→ or L↔ to locations in L7−[are considered
as back-edge too. Since taking back-edge transitions while synchronizing from a subset S
of locations is not avoidable, we can use bounded safety conditions to establish a reduction
from halting problem in Minsky machines to provide the following undecidability result.

I Lemma 8. The existence of a location-synchronizing word from a set S of locations in A
under general safety condition Safe is undecidable.

In the absence of back-edges, we get rid of bounded safety conditions, by explicitly
encoding the energy values in locations at the expense of an exponential blowup. We thus
assign non-negative safety condition to the encoded location and reduce to Lemma 6.

I Lemma 9. Assume that A has no back-edge. The existence of a location-synchronizing
word from S ⊆ L↔ in A under general safety condition Safe is decidable in 3-EXPSPACE,
and it is EXPSPACE-hard.

I Theorem 10. The existence of a location-synchronizing word in a WA A with general
safety condition Safe is decidable in 3-EXPSPACE, and it is PSPACE-hard.

4 Synchronization in TAs

This section focuses on deciding the existence of a synchronizing and location-synchronizing
word for TAs, proving PSPACE-completeness of the problems for deterministic TAs (without
safety conditions, i.e., no invariants), and proving undecidability for non-deterministic TAs.

4.1 Synchronization in deterministic TAs
We consider synchronizing words in TAs to be timed words that are sequences w = a0a1 · · · an

with ai ∈ Σ ∪R≥0 for all 0 ≤ i ≤ n. For a timed word, the length is the number of letters

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi 129

p

q

x < 1 a

x ≥ 1, a, x := 0

a

p
x=0

p
0<x<1

p
x=1

p
x>1

q
x=0

q
0<x<1

q
x=1

q
x>1

a
a

a a

a a a a

d d d

d d d

d

d

Figure 6 A TA and its region automaton (d is a special letter indicating delay transitions). The
region automaton is synchronized by the word a · a · d · d · d, but the TA cannot be synchronized
(because there is no way to reset the clock when starting from location q).

in Σ it contains, and the granularity is infinite if the word involves non-rational delays, and
it is the largest denominator if the timed word only involves rational delays.

We assume that the reader is familiar with the classical notion of region equivalence: this
equivalence partitions the set of clock valuations into finitely many classes (called regions),
and two states in the same location and region are time-abstract bisimilar. The region
automaton is then a finite-state automaton obtained by quotienting the original TA with
the region equivalence. We refer to [1] for a detailed presentation of this concept. The TA
depicted in Fig. 6 exemplifies the fact that the region equivalence is not sound to find a
synchronizing word. This is because region equivalence abstracts away the exact value of the
clocks, while synchronizing needs to keep track of them.

To establish a PSPACE algorithm for deciding the existence of a synchronizing word for
deterministic TAs, we first prove the existence of a short witness (in the sequel, a timed word
is short when its length and granularity are in O(2|C| × |L| × |R|)). The built short witness
starts with a finitely-synchronizing word, a word that brings the infinite set of states of the
automaton to a finite set, and continues by synchronizing the states of this finite set pairwise.

I Lemma 11. All synchronizing deterministic TAs have a short finitely-synchronizing word.

Proof. We fix a complete deterministic TA A = 〈L,C,E〉 with the maximal constant M .
We begin with two folklore remarks on TAs. For all locations `, we denote by L` = {(`, v) |
v(x) > M for all clocks x ∈ C} the set of states with location ` and where all clocks are
unbounded; L` is one of the states in the region automata of A.
I Remark. For all locations ` and for all timed words w, the set loc(post(L`, w)) is a singleton
and post(L`, w) is included in a single region.

Notice that above Remark is a special property of L`, and in general: elapsing the
same delay from two region-equivalent valuations may lead to non-equivalent valuations.
The second remark is technical and provides the length and granularity of timed words that
are needed for solving reachability in TAs.
I Remark. For all locations ` and all region r′ such that (`′, r′) is reachable from L` in the
region automaton of A, there exists a short timed word w of length at most |L| × |R| (where
R is the set of regions, whose size is exponential in the size of the automaton [1]) and two
valuations v ∈ r and v′ ∈ r′ such that post((`, v), w) = {(`′, v′)}.

Now, assuming that A has a synchronizing word, we build a short finitely-synchronizing wf

word with a key property: for all clocks x ∈ C, irrespective of the starting state, the run
over wf takes some transition resetting x. We first argue that for all clocks x ∈ C, from all

FSTTCS 2014

130 Synchronizing Words for Weighted and Timed Automata

states where v(x) 6= 0, there exists a reachable x-resetting transition. Towards contradiction,
assume that there exist some state (`, v) and clock x such that x will never be reset along
any run from (`, v). Runs starting from states with the same location ` but different clock
valuations, say (`, v′) with v′(x) 6= v(x), over a synchronizing word w, may either (1) reset x,
and thus the final values of x on two runs from (`, v) and (`, v′) are different, or (2) not
reset x, so that the difference between v(x) and v′(x) is preserved along the runs over w.
Both cases give contradiction, and thus for all clocks x ∈ C, from all states with v(x) 6= 0,
there exists a reachable x-resetting transition.

Pick a valuation ` and a clock x. Applying the argument above to an arbitrary state
of L` and clock x, we get a timed word w`,x. By first Remark, inputting the same timed
word from any state of L` always leads to the same transition resetting x. Moreover, all such
runs end up in the same region. Note that by second Remark, w`,x can be chosen to have
length and granularity at most |L| × |R|.

Below, we construct the short finitely synchronizing word wf for A where S is the infinite
set of states to be (finitely) synchronized (i.e., post(S,wf) must be a finite set). Repeat
the following procedure: pick a location ` such that there is an infinite set S` ⊆ S of states
with the location ` in S. For each clock x, iteratively, input a word that consists of a
(M + 1)-time-unit delay and the word w`,x. The timed word of M + 1 delay brings the
infinite set S` to the unbounded region L`. Next, following w`,x make the runs starting
from S` end up in a single region where clock x has the same value for all runs (since it has
been reset). The word w` = (d(M + 1) · w`,x)x∈C synchronizes the infinite set S` to a single
state by resetting all clocks, one-by-one, and it also shrinks S. We repeat the procedure for
next location `′ ∈ loc(post(S,w`)) until S is synchronized to a finite set. Note that for all
locations `, the word w` has length at most |C| × |L| × (|R|+ 1) and granularity at most
|L| × |R|. Thus the word wf , obtained by concatenating the successive words w`, has length
bounded by |C| × |L|2 × (|R| + 1) and granularity at most |L| × |R|, so that it is short.
By construction, it finitely-synchronizes A, which concludes our proof. J

From the proof of Lemma 11, we see that for all synchronizing TAs, there exists a
finitely-synchronizing word which, in a sense, synchronizes the clock valuations. Precisely:

I Corollary 12. For all synchronizing deterministic TAs, there exists a short finitely-
synchronizing word wf such that for all locations `, wf synchronizes the set {`}× (C → R≥0)
into a single state.

Lemma 13 uses Corollary 12 to construct a short synchronizing word for a synchroniz-
ing TA. A short synchronizing word consists of a finitely-synchronizing word followed by a
pairwise synchronizing word (i.e., a word that iteratively synchronizes pairs of states).

I Lemma 13. All synchronizing deterministic TAs have a short synchronizing word.

A naive algorithm for deciding the existence of a synchronizing word would consist in
non-deterministically picking a short timed word, and checking whether it is synchronizing.
However, the latter cannot be done easily, because we have infinitely many states to check,
and the region automaton is not sound for this.

I Theorem 14. Deciding the existence of a synchronizing word in a deterministic TA is
PSPACE-complete.

Proof. Given a complete deterministic TA A with the maximal constant M , we first consider
the set S0 = {(`,0) | ` ∈ L} and compute the successors post(S0, wf) reached from S0 by

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi 131

`i `f

`

`′

`0

α

α
α

Σ ∪ {α}

Σ ∪ {α}

Figure 7 (Schematic) reduction from reachability to synchronizing word.

a finitely-synchronizing word wf (built in the proof of Lemma 11). This can be achieved
using polynomial space, since S0 contains polynomially many states and wf can be guessed
on-the-fly. Moreover, since wf begins with a delay of M + 1 time unit, the set post(S0, wf)
is equal to the set post(Q,wf) where Q = L×RC

≥0 is the state space of the semantic JAK of
the TA A. The set post(S0, wf) contains at most |L| states, which can now be synchronized
pairwise. This phase can be achieved by computing the product automaton A2 and solving
reachability problems in that automaton. This algorithm runs in polynomial space, and
successfully terminates if, and only if, A has a synchronizing word.

The PSPACE-hardness proof is by a reduction from reachability in TA. The encoding is
rather direct: given a deterministic TA A (w.l.o.g. we assume that A is complete) and two
locations `i and `f , the existence of a run from (`i,0) to some state (`f , v) (with arbitrary v)
is encoded as follows (see Fig. 7):

add an extra letter α to the alphabet: Σ ∪ {α};
remove all outgoing edges from `f , and add a self-loop which is always available and
resets all the clocks;
add a self-loop on `i for α, which is always available and resets all the clocks;
add a location `0, with a transition to `i which is always available and resets all clocks;
for each location ` (except `0, `i and `f), add a transition (`, true, α, C, `0) to `0.

The resulting automaton A′ is deterministic and complete.

I Lemma 15. The automaton A′ has a synchronizing word if, and only if, there exists some
clock valuation v such that A has a run from (`i,0) to (`f , v). J

Using similar arguments, we obtain the following result:

I Theorem 16. Deciding the existence of a location-synchronizing word in a TA is PSPACE-
complete.

4.2 Synchronization in non-deterministic TAs
We now show the undecidability of the synchronizing-word problem for non-deterministic TAs.
The proof is by a reduction from the non-universality problem of timed language for non-
deterministic TAs, which is known to be undecidable [1].

I Theorem 17. The existence of a (location-)synchronizing word in a non-deterministic TA
is undecidable.

Proof. Let A = 〈L,C,E〉 be a non-deterministic TA over Σ, that we equip with an initial
location `i and a set F of accepting locations (w.l.o.g. we assume that A is complete).
From A, we construct another TA A′ over Σ′ as follows (see Fig. 8):

FSTTCS 2014

132 Synchronizing Words for Weighted and Timed Automata

`i `f

`

`′

d

s ?

?

?

??

Σ

Σ ∪ {#, ?}

#

#

#

Figure 8 (Schematic) reduction from non-universality to synchronizing word (the newly added
transitions are dashed; they all reset all the clocks. In this example: {`i, `f} ⊆ F .)

the alphabet is augmented with two new letters # and ?.
the set of locations of A′ is L ∪ {d, s} (assuming d, s /∈ L). Location s is a sink location,
carrying a self-loop for all letters of the alphabet. Location d is a “departure” location:
it also carries a self-loop for all letters, except for ?, which leads to `0. Those transitions
all reset all the clocks.
from all locations in L, there is a ?-transition to `i along which all the clocks are reset.
From the states not in F , there is a #-transition to s along which all clocks are reset.
From the states in F , the #-transition goes to d and reset all clocks.

I Lemma 18. The language of A is not universal if, and only if, A′ has a (location-)
synchronizing word.

The same reduction is used to show undecidability of the location-synchronizing problem;
note that all transitions going to s (the only possible location to synchronize) always reset all
clocks. Therefore, A′ is synchronizing if, and only if, it is location synchronizing. By taking
true safety condition for all locations (i.e., all states are safe), these two results also imply
the undecidability of (location-)synchronizing problem with safety condition. J

References
1 Rajeev Alur and David L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
2 Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro. DNA molecule provides

a computing machine with both data and fuel. National Acad. Sci. USA, 100:2191–2196,
2003.

3 Ján Černý. Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis, 14(3):208–216, 1964.

4 L. Doyen, T. Massart, and M. Shirmohammadi. Infinite synchronizing words for probabil-
istic automata. In Proc. of MFCS, LNCS 6907, pages 278–289. Springer, 2011.

5 Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey, and Mahsa Shirmohammadi.
Synchronizing words for timed and weighted automata. Research Report LSV-13-15, Labor-
atoire Spécification et Vérification, ENS Cachan, France, October 2013. 23 pages.

6 F.M. Fominykh and M.V. Volkov. P(l)aying for synchronization. In Nelma Moreira and
Rogério Reis, editors, CIAA’12, volume 7381 of LNCS, pages 159–170. Springer, 2012.

7 P.V. Martyugin. Complexity of problems concerning carefully synchronizing words for PFA
and directing words for NFA. In Farid M. Ablayev and Ernst W. Mayr, editors, CSR’10,
volume 6072 of LNCS, pages 288–302. Springer, 2010.

8 M.V. Volkov. Synchronizing automata and the Černý conjecture. In LATA’08, volume
5196 of LNCS, pages 11–27. Springer, 2008.

Finite-Valued Weighted Automata∗

Emmanuel Filiot1, Raffaella Gentilini2, and Jean-François Raskin1

1 Université Libre de Bruxelles
2 Universitá di Perugia

Abstract
Any weighted automaton (WA) defines a relation from finite words to values: given an input
word, its set of values is obtained as the set of values computed by each accepting run on that
word. A WA is k-valued if the relation it defines has degree at most k, i.e., every set of values
associated with an input word has cardinality at most k. We investigate the class of quantitative
languages defined by k-valued automata, for all parameters k. We consider several measures to
associate values with runs: sum, discounted-sum, and more generally values in groups.

We define a general procedure which decides, given a bound k and a WA over a group,
whether this automaton is k-valued. We also show that any k-valued WA over a group, under
some general conditions, can be decomposed as a union of k unambiguous WA. While inclusion
and equivalence are undecidable problems for arbitrary sum-automata, we show, based on this
decomposition, that they are decidable for k-valued sum-automata, and k-valued discounted sum-
automata over inverted integer discount factors. We finally show that the quantitative Church
problem is undecidable for k-valued sum-automata, even given as finite unions of deterministic
sum-automata.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Nested word, Transducer, Streaming

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.133

1 Introduction

Finite-state acceptor machines have found many applications in computer science. One of
the most famous and studied example is the class of finite-state automata, which enjoys
good algorithmic and closure properties. For instance, the decision problems of inclusion and
equivalence, are decidable for finite-state automata. Finite-state automata and some of their
variants have been successfully applied, for instance, to the theory of model-checking [6].
Their behaviour is however purely Boolean (either they accept their input or not). In many
applications, this abstraction is not sufficient to accurately model systems where quantitative
aspects are important. Weighted automata (WA) have been introduced to overcome this
modelling weakness, as they can define quantitative languages, i.e. functions from words to
values in some arbitrary set. WA have been studied for long [9] but recently, applications
in computer-aided verification have been considered and new theoretical questions have
been addressed [3]. In contrast with finite-state automata, the inclusion problem is however
undecidable for some classes of WA, such as automata over the tropical semiring. One of the
main goal of this paper is to recover decidability for some expressive classes of WA.

∗ This work is partially supported by FNRS (Mobilité 2014) and by INdAM-GNCS (Project 2014). We
thank the anonymous reviewers for their careful reading of our manuscript and their many insightful
comments and suggestions.

© Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 133–145

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.133
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

134 Finite-Valued Weighted Automata

Weighted automata (on finite words) extend finite-state automata with values which, in
general, are taken in a semiring (S,⊕,⊗). In this paper however, we focus on sum (weighted
automata over the tropical semiring) and discounted sum automata, but generalise our results
whenever it can be done. The value of an accepting run of a sum (resp. discounted sum)
automaton A on a finite word is the (left-to-right) sum (resp. discounted sum for a discount
factor λ ∈]0, 1[) of all the values occurring along that run. The value A(w) of a word w is
defined only if there exists an accepting run on w, as the maximum of all the values of the
accepting runs on w. As an example, consider the quantitative language L which associates
with each word w over the alphabet {a, b}, the value L(w) = max(#a(w),#b(w)), where
#x(w) is the number of occurrences of x in w. This language L can be defined by a sum
automaton A defined as the union of two disjoint deterministic WA Aa and Ab: For all
x ∈ {0, 1}, Ax has a single (accepting and initial) state with a 1-weighted loop on reading x,
and a 0-weighted loop on reading the other symbol.

The (quantitative) inclusion problem generalizes the classical inclusion problem for Boo-
lean languages. It is the problem of deciding, given two WA A and B, whether for all words
u, if u is accepted by A, then it is accepted by B and A(u) ≤ B(u). Even for the class of
sum automata, this problem is know to be undecidable [15]. In [10], we have introduced the
class of functional WA, i.e. WA such that every accepting runs on the same input word have
same value. We have shown, for several measures (sum, discounted sum, and ratio), that
this class is decidable, and has decidable inclusion problem.

Contributions. In this paper, we generalise the class of functional WA to k-valued WA
i.e., WA such that, for all input words w, the set of values computed by all the accepting
runs on w has cardinality at most k. For instance, the WA A defining the language L is
k-valued for all k ≥ 2. We show, for the measures sum and discounted sum (over inverted
integer discount factor 1/n), that they have decidable inclusion (and therefore decidable
equivalence). Given k ∈ N and a sum-automaton (resp. a discounted-sum automaton) A, we
prove that checking whether A is k-valued is decidable. We also show that if A is k-valued,
then it can be decomposed as finite union of functional (i.e. 1-valued) sum-automata (resp.
discounted-sum automata).

The last two results are more generally shown for group automata (GA). Group automata
extend finite state automata with weights over an infinitary group, i.e. a group (G,⊗) that
satisfies some condition called the infinitary condition. This condition implies that two
runs of a WA, on the same input, that synchronize on loop with different delays (i.e. the
difference between their output values before and after taking the loop are non equal), can
generate infinitely many different delays when iterating that loop. The semantics of a group
automaton is a function from finite words w to the set of values (in G) of all the accepting
runs on w. It is k-valued if any set of values associated with w has cardinality at most k. As
we show, sum- and discounted-sum automata can be treated as group automata, as far as the
max operation that combines the values of a word is not relevant. Real-time string-to-string
transducers are also group automata (over the free group generated by the output alphabet),
as they satisfy the infinitary condition. Therefore, our results (decidability of k-valuedness
and decomposition) do not only apply to sum- and discounted-sum automata, but more
generally to group automata, and as a particular case, we recover some results that were
already known for string transducers. We now detail our contributions:

k-valuedness problem. First, we show that given k ∈ N and a GA A, checking whether A
is k-valued is decidable. The proof of decidable k-valuedness for GA relies on a pumping
argument that allows us to bound the size of non k-valuedness witnesses. Applied to our

E. Filiot, R. Gentilini, and J.-F. Raskin 135

measures, this general procedure for testing k-valuedness is in PSpace for both sum and
discounted sum automata (seen as GA), when k is part of the input. The k-valuedness
problem is shown to be PSpace-hard for sum automata, when k is part of the input. When k is
fixed, we also show that testing k-valuedness can be done in PTime for sum automata, based
on PTime complexity result for checking the existence of a zero-circuit in a multi-weighted
graph [17]. Still for a fixed parameter k, we give another general k-valuedness checking
procedure for GA which, applied to discounted sum, provides us with a PTime complexity.
Applied to sum, this also yields PTime complexity with a worst constant than the ad-hoc
PTime procedure. This general procedure extends to GA a procedure that was defined in
[18] to decide k-valuedness of string-to-string transducers. Besides generalizing the procedure
of [18], we show here how to simplify it and provide a simpler correctness proof based on the
small witness property for non k-valuedness.

Decomposition of k-valued group automata. We show that any k-valued GA is equivalent
to a union of k functional GA. Our decomposition technique non-trivially extends to GA a
procedure that has been introduced for string-to-string transducers [19].

Inclusion, equivalence, and synthesis problems. Based on the decomposition result, we
give a general scheme to decide inclusion of two k-valued sum (resp. discounted sum) WA.
This scheme reduces the inclusion problem to checking the existence of a path with strictly
positive sum (resp. discounted sum) on all dimensions of a multi-weighted graph. We show
that this latter problem is decidable for sum (in PTime), and discounted sum (in PSpace)
with inverted discount factors 1/n, n ∈ N. Therefore, it yields decidable inclusion and
equivalence problems for these two classes of k-valued WA. If the two WA are given as unions
of deterministic automata and known to have included domains, this procedure is PTime
for sum automata, and PSpace for discounted sum automata. For general rational discount
factors, the problem is still open and related to other open problems identified in, e.g., [4]
and [2]. Finally, we consider the quantitative synthesis problem: the alphabet is partitioned
into two sets that are controlled respectively by two players. The winning objective of the
protagonist is given by a sum automaton A. The problem is to decide whether the protagonist
has a strategy to choose his letters such that whatever letters the opponent chooses, the
outcome of their interaction (which is a word) has strictly positive value by A. This problem
was shown to be undecidable for functional sum-automata and decidable for deterministic
sum-automata in [10]. Here, we show that it is undecidable for the union of p deterministic
sum-automata, for p ≥ 4.

Related Works. Comparisons with [10, 18, 19] have already been mentioned before. The
notion of k-valuedness originates from the theory of string-to-string transducers. For general
(non-deterministic) transducers, inclusion and equivalence are undecidable [11], but decidable
for k-valued transducers [12, 21, 7]. This latter result has then been extended to tree
transducers [20]. The k-valuedness problem for string-to-string transducers has been shown
to be decidable in several papers [12, 18, 21, 8], in PTime when k is fixed. Any sum automaton
A can be transformed into a string-to-string transducer TA over a unary output alphabet, by
adding m to all the weights of A (where m is the minimal weight occurring on the transitions
of A). Then A is k-valued iff TA is. While this encoding allows us to reuse existing results
on string-to-string transducers, the complexity results are not optimal, because the weights
of A are encoded in binary, and their translation into strings is unary. Moreover, there is no
such encoding for discounted sum automata and therefore we rather give general procedures
at the level of infinitary groups.

Sum-automata over N (called distance automata) have been considered in several papers,
and known results on the distance problem (deciding whether there exists an upper bound on

FSTTCS 2014

136 Finite-Valued Weighted Automata

the value of every input word) are nicely summarised in [22]. In particular in [22], the class
of finite-valued distance automata is considered. Finite-valuedness (deciding whether there
exists k such that the distance automaton is k-valued) is shown to be decidable by a direct
reduction to the string transducer case, and therefore the complexity bound is not optimal
when the weights are encoded in binary. The finite-valuedness problem is not adressed in
this paper. We leave it however as future work and it seems, again, that the technique of
[19] would nicely generalise to infinitary groups.

Finitely ambiguous sum automata are sum automata such that there exists a bound b on
the number of accepting runs on the same input word. They are known to be equivalent
to union of unambiguous sum automata [13, 14, 19, 22]. The best bound on the size of the
union (which matches exactly the degree of ambiguity of the automaton) is obtained in [19].
Our decomposition of k-valued WA as unions of unambiguous automata directly uses these
results as an intermediate step. In [13], it is shown that the equivalence problem for finitely
ambiguous sum-automata is decidable. There is however no precise complexity result.

Finally, let us mention that for the strictly positive discounted sum problem on multi-
weighted graphs, if one requires the discounted sum to be greater than or equal to 0 on all
the dimensions, then it corresponds to an open problem, which is at least as difficult as the
exact value (open) problem in 1-dimensional graph (i.e. decide in a weighted graph, whether
there exists a path with discounted sum exactly 0), as shown in [4].

2 Weighted Automata

Let W be a set (called weight-set) and Σ be a finite alphabet. An automaton over Σ and W
is a tuple A=(Q, qI , F, δ, γ) where Q is a finite set of states, F is a set of final states, qI ∈ Q
is the initial state, δ ⊆ Q×Σ×Q is the transition relation, and γ : δ →W is an edge-labelling
function, mapping δ onto a weight-set W . A run ρ of A over a word w = σ0 . . . σn ∈ Σ∗ is a
sequence ρ = q0σ0q1 . . . σnqn+1 such that q0 = qI and for all i ∈ {0, . . . , n}, (qi, σi, qi+1) ∈ δ.
We write ρ : q0

w|m−−−→ qn+1 to denote that ρ is a run on w starting at q0 and ending in
qn+1, where m = γ(q0, σ0, q1) · γ(q1, σ1, q2) · . . . · γ(qn, σn, qn+1). We write |ρ| to denote
the length of ρ, where |ρ| = n + 1. The run ρ is accepting if qn+1 ∈ F . A state q in
A = (Q, qI , F, δ, γ) is said co-accessible (resp. accessible) by some word w ∈ Σ∗ if there exists
some run ρ : q w|m−−−→ qf for some qf ∈ F (resp. some run ρ : qI

w|m−−−→ q). If such a word
exists, we say that q is co-accessible (resp. accessible). A is said to be trim if all its states
are both accessible and co-accessible. It is well-known that an automaton can be trimmed in
polynomial time [9].

A pair of states (q, q′) is co-accessible if there exists a word w such that q and q′ are
co-accessible by w. The domain of A, denoted by dom(A), is defined as the set of words
w ∈ Σ+ on which there exists some accepting run of A. Note that (Q, qI , F, δ) is a classical
finite state automaton over Σ. We say that A is deterministic if (Q, qI , F, δ) is deterministic.
We say that A is unambiguous if (Q, qI , F, δ) admits at most one accepting run for each word.

Give a run ρ = q0σ0 . . . σnqn+1 and 0 ≤ ` ≤ n + 1, we define ρ[`] = q`, ρ[:`] =
q0σ0 . . . σ`−1q` and ρ[`:] = q`σ` . . . qn+1. Given a run ρ′ = q′0σ0 . . . σnq

′
n+1 on the same input

as ρ, we define the synchronized product ρ⊗ ρ′ as the sequence (q0, q
′
0)σ0 . . . σn(qn+1, q

′
n+1).

A pair (`1, `2) such that 0 ≤ `1 < `2 ≤ n+ 1 is called a cycle (or loop) in ρ if ρ[`1] = ρ[`2].
The synchronized operator ⊗ can be inductively extended to sequences of runs as follows:
ρ1 ⊗ · · · ⊗ ρm = (ρ1 ⊗ · · · ⊗ ρm−1)⊗ ρm. A cycle (`1, `2) in ρ1 ⊗ · · · ⊗ ρm is sometimes called
a synchronizing cycle to emphasise that we consider product of runs.

If W is equipped with an operation ·, we define the value V (ρ) of a run ρ=q0σ0. . . σnqn+1

E. Filiot, R. Gentilini, and J.-F. Raskin 137

in A=(Q, qI , F, δ, γ) as: V (ρ) = γ(q0, σ0, q1) ·γ(q1, σ1, q2) · · · · ·γ(qn, σn, qn+1) if ρ is accepting
and V (ρ) = ⊥, otherwise1. The relation RA = {(w, V (ρ)) | w ∈ Σ+, ρ is a run of A on w}
is called2 the relation induced by A. For all k ∈ N, RA is k-valued if for all words w ∈ Σ+, we
have |{v | (w, v) ∈ RA, v 6= ⊥}| ≤ k. In this case we say that A is k-valued (and functional if
k = 1).

In this paper we consider weight sets having the algebraic structure of a group (W, ·,1).
Recall that a group is a structure (S, ·,1), where S is a set, · : S × S → S is an associative
operation, 1 ∈ S is a two sided identity element for · over S, and each element s ∈ S admits
an inverse s−1 ∈ S, such that s−1 · s = s · s−1 = 1 (the inverse is unique).

Functional automata over groups where studied in [10], where a polynomial functionality
test was given based on the notion of delay between two runs [5, 9] (cfr. Definition 1).
Moreover, [10] provided a determinization test for automata over infinitary groups, i.e.
groups satisfying the infinitary condition (c.f.r. Definition 2, below). Intuitively, the
infinitary condition ensures that iterating two runs on a parallel loop induces infinitely many
delays.

I Definition 1 (Delay). Let A = (Q, qI , F, δ, γ) be an automaton over a weight-set group
(W, ·,1). Given two elements d1, d2 ∈ W , the delay between d1 and d2 is defined by
delay(d1, d2) = d−1

1 · d2. Let p, q ∈ Q. A value d ∈ W is a delay for (p, q) if A admits two
runs ρ : qI

w−→ p, ρ′ : qI
w−→ q on some w ∈ Σ∗ s.t. delay(ρ, ρ′)=defdelay(V (ρ), V (ρ′)) = d.

I Definition 2 (Infinitary Condition). A group (W, ·,1) is said infinitary if it satisfies the
infinitary condition stating that for all v1, w1, v2, w2 ∈W , if v−1

1 w1 6= v−1
2 v−1

1 w1w2, then:

|{v−h2 v−1
1 w1w

h
2 | h ≥ 0}| =∞

A group automaton (GA) over Σ, is an automaton over Σ and an infinitary group. A
weighted automaton (WA) over Σ is an automaton over Σ and a semiring (we refer the reader
to [9] for a definition of semiring). If A is a weighted automaton over Σ and a semiring
(W,⊕, ·), the quantitative language LA defined by A is a mapping LA : Σ∗ → W ∪ {⊥},
where ⊥ 6∈W , defined for all w ∈ Σ∗ by LA(w) = ⊥ if w 6∈ dom(A), and LA(w) =

⊕
RA(w)

otherwise. Note that any weighted automaton over a semiring (W,⊕, ·) such that can be
seen as a group automaton, provided (W, ·,1) is an infinitary group, where 1 is the neutral
element for ·.

Remarkable subclasses of WA, such as e.g. Sum- and Dsum-automata [3], can be seen as
group automata, as outlined in the following remark (cfr. also Proposition 1).
I Remark (Sum- and Dsum-automata). Sum- (resp. Dsum-) automata are usually defined
as WA A = (Q, qI , F, δ, γ), where the weight set γ : δ → Z maps edges onto integers and
the value of a run ρ is simply the sum (resp. discounted sum) of the weights along its
edges. More precisely, given a run ρ = q0σ0q1 . . . σnqn+1 in a Sum-automaton A, V (ρ) is
defined by V (ρ) =

∑i=n
i=0 γ(qi, σi, qi+1) if ρ is accepting, and by V (ρ) =⊥ otherwise. If A is a

Dsum-automaton with discount factor λ ∈]0, 1[, then V (ρ) is defined by
∑i=n
i=0 λ

iγ(qi, σi, qi+1)
if ρ is accepting, and by ⊥ otherwise (we assume that ⊥< m for all m ∈ Z).

Clearly, Sum-automata can be seen as group automata over the group (Z,+, 0). For Dsum-
automata, consider the group (W, ·,1), where W = Q2, · is defined by (a, x) · (b, y) = (1

ya+

1 Here ⊥ /∈ W is a fresh symbol used to represent the fact that the value of ρ undefined.
2 As in [3], we do not consider the empty word as our weighted automata do not have initial and final
weight functions. This eases our presentation but all our results carry over to the more general setting
with initial and final weight function [9].

FSTTCS 2014

138 Finite-Valued Weighted Automata

b, xy), 1 = (0, 1), and given (a, x) ∈W , the inverse (a, x)−1 is given by (a, x)−1 = (−xa, x−1).
Given λ ∈ Q∩]0, 1[, a Dsum-automaton A on Σ can be seen as a group automaton over
(W, ·,1), by replacing each weight a in A with the pair (a, λ), a ∈ Z. Let w = w0 . . . wn ∈ Σ,
and consider a run ρ : q0

w−→ qn+1 on w in A. Then, ρ is valued by the pair (a, x) =
(1
λn γ(q0, w0, q1) + · · ·+ γ(qn, wn, qn+1), λn+1). Hence, (a, x) codes the value ax

λ = Dsum(ρ).
It can be shown that groups involved in the above definitions satisfy the infinitary condition.

I Proposition 1. Sum and Dsum automata can be coded as group automata (over an infinitary
group).

3 The k-Valuedness Problem

In this section, we consider the problem of determining whether a group automaton (for
fixed and unfixed k). As a first result, we provide a pumping argument that can be turned
into a simple k-valuedness test.

I Lemma 3 (Pumping). Let A = (Q, qI , F, δ, γ) be a group automaton over (W.·,1). A is
not k-valued iff there exists a word w ∈ Σ∗ having length |w| ≤ |Q|k+1 + |Q|k+1 · (k(k−1)

2)2

such that A admits k + 1 accepting runs with pairwise distinct values on w.

Lemma 3 yields immediately a decidability procedure for deciding if a given group automaton
is k-valued: It is sufficient to guess k + 1 runs of bounded length and check if they are
accepting and the outputs are pairwise distinct. Such a procedure turns out to be PSPACE
if the accumulated values along the guessed runs can be stored using polynomial space. In
particular, this is the case for the classes of Sum- and Dsum-automata. Therefore,

I Theorem 4. The k-valuedness problem is decidable for the class of group automata.
When k is part of the input, it is PSPACE-complete on the subclass of Sum-automata and
PSPACE-easy on the subclass of Dsum-automata.

I Remark. Lemma 3 can be put in parallel with Theorem 3 in [8], establishing that k-
valuedness for string to string transducers can be decided by analizing the image of a finite
set of words, namely those having length |Q|k+1F (k), where F (k) in [8] is an exponential
function expressed in terms of a recurrence relation.

3.1 The k-Valuedness Problem when k is a Fixed Constant
In this subsection, we study the k-valuedness problem on group automata assuming k as
a fixed constant. This assumption does not lower the complexity of the pumping based
procedure of the latter section (for both measures), however in this section we give other,
new procedures which provide better upper bounds for a fixed k. These new procedures, for
a non-fixed k, have worse complexities than the pumping based procedure (Exptime).

The Case of Sum-Automata. Theorem 6 below shows that Sum-automata can be tested
for k-valuedness in PTIME for fixed k. The polynomial k-valuedness algorithm designed
within Theorem 6 relies onto a reduction to the problem of finding a strictly positive path
(from the initial state to a final state) in a multi-weighted graph.

A k-weighted graph G = (Q, qI , E, F,w) is simply a weighted graph, where Q is the set
states, qI is the inital state, F is the set of final states, E ⊆ Q×Q is the edge relation and
w : E 7→ Zk assigns to each edge a vector of integers of dimension k. A path π = q0, . . . , qn
in G is strictly positive if and only if

∑n−1
i=0 w(qi, qi+1) > 0Zk . Lemma 5 below shows that

E. Filiot, R. Gentilini, and J.-F. Raskin 139

deciding whether a k-weighted graph G contains a strictly positive path to a final state can
be done in polynomial time.

I Lemma 5. Determining if a k-weighted graph contains a strictly positive path from the
inital state to a final state can be done in polynomial time.

Intuitively, the multi-weighted graph G built in Theorem 6 to decide if a given Sum-
automaton A is k-valued has dimension k. The vertices of G are (k + 1)-tuples of states of
A and G admits an edge e from (q1, . . . , qk+1) to (p1, . . . , pk+1) if and only if there exists
a ∈ Σ such that for all 1 ≤ i ≤ k+ 1 qi

a|ni−−−→ pi is an edge in A. Moreover the weight w(e) of
e is given by (n2 − n1, n3 − n2, . . . , nk+1 − nk). Therefore, A admits k + 1 accepting runs
qI

w|v1−−−→ p1, . . . , qI
w|vk+1−−−−→ pk+1 on w ∈ Σ∗ with pairwise distinct values v1 < v2 < · · · < vk+1

if and only if the associated multi-weighted graph G admits a strictly positive path to
(p1, . . . , pk+1).

I Theorem 6. The k-valuedness problem on Sum-automata can be solved in polynomial time,
when k is a fixed constant.

I Remark. Note that for string transducers the k-valuedness problem can be reduced in
polynomial time to the emptiness problem on one reversal nondeterministic multicounter
machines3 [12]. Although a similar reduction could be easily designed for Sum-automata, the
overall procedure for testing k-valuedness would be only pseudopolynomial, as it turns out
that emptiness of multicounter one-reversal machines where counters can be incremented by
arbitrary constants is NP-complete.

The Case of Group Automata. In this subsection we show that the whole class of group
automata can be tested for k-valuedness in polynomial time, assuming that k is an input
fixed constant. The main ingredients of the polynomial test designed are the same as the
ones used for the k-valuedness test on string transducers in [18], generalized from strings to
groups. However, the pumping result stated in the previous section allows to significatively
simplify the overall procedure of [18]. The first ingredient that we will use is the notion of
pairwise delays, that is a natural extension of the concept of delay between two runs at the
core of the functionality tests in [18]

I Definition 7 (k-Pairwise Delay). Let (W, ·,1) be an infinitary group, let k ∈ N. A k-pairwise
delay on W is a function δ : {〈i, j〉 | 1 ≤ i < j ≤ k} →W .

We denote by ∆k(G) the set of all k-pairwise delays on G = (W, ·,1) (omitting G and/or k
when the latter are clear from the context).

I Definition 8. A group automaton A = (Q, qI , F, δ, γ) on (W, ·,1) admits a k-pairwise delay
δ on (q1, . . . , qk) ∈ Qk iff there exists w ∈ Σ∗ such that for each pair 〈i, j〉, 1 ≤ i < j ≤ k, A
admits two runs qI

w|n−−→ qi, qI
w|m−−−→ qj such that n−1 ·m = δ(〈i, j〉). In this case, we say

that w witnesses δ on (q1, . . . , qk).

Given A = (Q, qI , F, δ, γ) on G = (W, ·,1), and k, i ∈ N, we define the function Di
k : Qk 7→

2∆k(G) where Di
k(q1, . . . , qk) is the set of k-pairwise delay on (q1, . . . , qk) witnessed by some

word w of length |w| ≤ i. Our pumping result ensures the existence of a bound b, polynomial
in |Q|, such that Db

k+1 retains enough information to decide whether A is k-valued:

3 The emptiness problem of reversal-bounded multicounter machines can be solved in polynomial time
[12].

FSTTCS 2014

140 Finite-Valued Weighted Automata

I Lemma 9. Let A = (Q, qI , F, δ, γ) be a group automaton over (W, ·,1), let b = |Q|k+1 +
|Q|k+1 · (k(k−1)

2)2. A is not k-valued iff it admits a tuple of final states (q1, . . . , qk+1) ∈ F k+1

such that Db
k+1(q1, . . . , qk+1) contains a (k + 1)-pairwise delay δ satisfying the following

condition: for all 0 ≤ i < j ≤ k + 1, δ(〈i, j〉) 6= 1.

Unfortunately, given (q1, . . . , qk+1) ∈ Qk+1, Db
k+1(q1, . . . , qk+1) could contain exponen-

tially many delays w.r.t. b, since each word w admits O(2|w|) runs on it. However, such delays
can be properly abstracted using a generalization from strings to groups of the very powerful
and elegant notion of minimal traverse, introduced in [18] to give a compact representation
of the delays generated by a k-valued string transducer. Formally,

I Definition 10 (k-Pairwise Partial Delay). Let (W, ·,1) be an infinitary group, let k ∈ N. A
k-pairwise partial delay on W is a function δ : {〈i, j〉 | 1 ≤ i < j ≤ k} →W ∪ ⊥.

We denote by ∆⊥k (G) the set of all k-pairwise partial delays on G = (W, ·,1). Given
τ, τ ′ ∈ ∆⊥k (G), we say that τ is smaller (i.e. “more abstract”) than τ ′ (τ v τ ′) if and only if
for all pairs 1 ≤ i < j ≤ k, if τ(〈i, j〉) 6= ⊥ then τ(〈i, j〉) = τ ′(〈i, j〉). Note that the lattice
defined by v on ∆⊥k (G) is not complete, namely τ, τ ′ admit a least upper bound if and only
if they are compatible on the defined components.

Definition 11, below, formally introduces the notion of minimal traverse for a set of
k-pairwise delays D. Intuitively, a minimal traverse τ for a set of k-pairwise delays D is so
called for two reasons. First, it is a k-pairwise partial delay τ that traverses i.e. intersects
each delay δ ∈ D on a pair of components (that is, τ(〈i, j〉) = δ(〈i, j〉) for some 1 ≤ i < j ≤ k).
Second, it is minimal w.r.t. v.

I Definition 11 (Minimal Traverse). Let D be a set of k-pairwise delays on (W, ·,1). A
traverse for D is a k-pairwise partial delay τ ∈ ∆⊥k (G) such that:

for each δ ∈ D, there exists a pair 〈i, j〉, 1 ≤ i < j ≤ k such that δ(〈i, j〉) = τ(〈i, j〉) 6= ⊥
for each pair 〈i, j〉, 1 ≤ i < j ≤ k, if τ(〈i, j〉) 6= ⊥, then there exists δ ∈ D such that
δ(〈i, j〉) = τ(〈i, j〉).

A minimal traverse for D is a traverse for D minimal w.r.t. v.

The set of minimal traverses for (a set of delays) D can obviously be empty, but more
importantly its maximum size depends only on k, as stated in Lemma 12 (i.e. it is a constant,
if k is assumed to be a constant). Given a set of delays D, we denote by α(D) the set of
minimal traverses for D.

I Lemma 12 ([18]). For each set of k-pairwise delays D on (W, ·,1), |α(D)| ≤ 2k4 .

We are now ready to present the announced abstraction for Di
k. Given Di

k : Qk 7→ 2∆k(G),
we denote by α(Di

k) : Qk 7→ 2∆⊥
k (G) the function that associates with each tuple of states

(q1, . . . , qk) ∈ Qk, the set of minimal traverses α(Di
k(q1, . . . , qk)) for Di

k(q1, . . . , qk).
Lemma 13 below states that the abstraction α retains enough information to decide

whether A is k-valued by inspecting α(Db
k+1), where b = |Q|k+1 + |Q|k+1 · (k(k−1)

2)2 is the
bound given by our pumping lemma.

I Lemma 13. Let A = (Q, qI , F, δ, γ) be a group automaton over (W, ·,1), let b = |Q|k+1 +
|Q|k+1 · (k(k−1)

2)2. A is not k-valued iff it admits a tuple of final states (q1, . . . , qk+1) ∈
F k+1 such that α(Db

k+1)(q1, . . . , qk+1) does not contain a minimal traverse τ satisfying the
following condition: τ is equal to one on each pair of components on which it is not ⊥, i.e.
τ v 1k+1.

Lemma 14 states that α(Di+1
k) can be computed from α(Di

k) (in PTIME).

E. Filiot, R. Gentilini, and J.-F. Raskin 141

I Lemma 14. Let A = (Q, qI , F, δ, γ) be a group automaton. For all i > 0, α(Di
k) can be

computed in polynomial time wrt |Q| and the size of α(Di−1
k).

We are finally ready to state our polynomial result for testing k-valuedness:

I Theorem 15. Let A be a group automaton over (W, ·,1). If the delays accumulated along
each polynomially bounded path of A can be computed in polynomial time, then k-valuedness
can be tested in polynomial time for A, when k is a fixed constant.

I Corollary 16. The k-valuedness problem on Dsum-automata can be solved in polynomial
time, when k is a fixed constant.

4 Decomposition of k-valued group automata

In this section, we show that any k-valued group automaton A (over an infinitary group)
is equivalent to a union of unambiguous group automata. Beside providing more insights
toward expressivity issues, the equivalence established throughout this section will be used
in Section 5 to provide positive results w.r.t. the decidability of the quantitative language
inclusion problem on k-valued WA. The proof of this equivalence goes in two steps. First, we
prove that A is equivalent to a k-ambiguous group automaton (for every input string, there
are at most k accepting runs). The construction generalizes to groups that of [19] established
for string-to-string transducers. Then, it is know that any k-ambiguous group automaton is
equivalent to a union of unambiguous ones. This result has been proved in [19] for string
transducers, based on a notion of lexicographic covering of k-ambiguous automata that can
be directly applied to group automata.

From k-valued to k-ambiguous group automata. We assume that G = (W, ·,1) is a group
that satisfies the infinitary condition. Recall that delay(u, v) = u−1 · v for all u, v ∈ W .
The construction we present in this section generalizes to groups the construction of [19],
proved for string-to-string transducers. In [19], the k-ambiguous equivalent transducer non-
deterministically guesses, when it reads an input string u, an output string v and a run ρ
that produces v such that all the runs on u that are strictly smaller than ρ (according to a
lexicographic order on runs) either (i) produce a different value, or (ii) have a delay that
exceeds some bound N on some prefix of u. For a sufficiently large N (that depends on the
transducer only), there are at most k such runs ρ if the transducer is k-valued.

In order to check properties (i) and (ii), it suffices to store the delays between the current
chosen run ρ with all the smaller runs. This is done by keeping track of all the states q
the smaller runs can reach, together with all the possible delays associated with q. If some
delay exceeds the bound N , it can safely be replaced by the value ∞, and therefore one
only needs to store delays of length N at most. The main difficulty, when generalising this
construction to groups, is that for groups, there is no notion of “long” delay since in general,
the group is not equipped with a metric. Instead, the bound N we consider is on the number
of different delays between the prefixes of the current chosen run ρ and the prefixes of the
smaller runs. Given two runs ρ, ρ′ on the same input word u ∈ Σ∗, we denote by lag(ρ, ρ′)
the set lag(ρ, ρ′) = {delay(ρ[:i], ρ′[:i]) | 0 ≤ i ≤ |u| + 1}. Our construction is based on the
following key lemma, that generalizes over group a similar lemma for strings proved in [19].

I Lemma 17. Let A be a trim group automaton over G with n states. If A is k-valued, then
for all tuples of runs (ρ1, . . . , ρk+1) on the same input, there exists 1 ≤ i < j ≤ k + 1 such
that:
1. ρi and ρj have the same output, i.e. V (ρi) = V (ρj).
2. |lag(ρi, ρj)| ≤ nk+1.

FSTTCS 2014

142 Finite-Valued Weighted Automata

Based on Lemma 17, we show that any k-valued trim GA A = (Q, qI , F,∆, γ) over G is
equivalent to some k-ambiguous GA A′ = (Q′, q′I , F ′,∆′, γ′). We let N = nk+1, where n is
the number of states of A. The idea is to order the transitions of A with a total order ≺A and
to extend it to a lexicographic order over runs. Then, the construction non-deterministically
guesses a run ρ of A, and checks that all the runs that are smaller than ρ produce either a
different value than ρ, or have a lag with ρ whose size exceeds N . Lemma 17 will ensure
that there are at most k such runs ρ on the same input. In order to check these properties,
A′ guesses the transitions of ρ and for each state q ∈ Q, it stores all the lags (which are sets
of delays) between the current prefix of ρ and the runs that end-up in q and are smaller than
this prefix. If the size of a lag exceeds N , then A′ replaces this lag by the extra value ∞.
We will see that doing so, any lag that has to be stored by A′ is a lag that can be generated
by two runs of length n2k+3 at most, and therefore the state space will be finite.

Given a lag between two runs ρ1 and ρ2 and two transitions on the same symbol that
extend these two runs respectively, in order to compute the lag of the extended runs, A′ also
needs to know the delay between ρ1 and ρ2. Therefore, A′ also needs to store, for each lag,
the “current” delay contained in this lag.

Construction of A’. Let us now define formally the state set Q′ of A′. We let D be the set
of all delays that can be generated by pairs of runs of length at most N2n4 (we will show
later why we need to take such a value). Note that D is a finite set. Let also PN (D) be all
the subsets of D of cardinality at most N . Then, we let Q′ = Q× (Q→ 2(PN (D)×D)∪{∞}).
After reading an input string u ∈ Σ∗, A′ is in state (q, `) ∈ Q′ iff q is the state of the current
guessed run ρ of A on u, and for all p ∈ Q, (L, d) ∈ `(p) iff there exists a run ρ′ on u ending
in p, smaller than ρ, and such that lag(ρ, ρ′) = L, |L| ≤ N , and delay(ρ, ρ′) = d. Moreover,
∞ ∈ `(p) iff there exists a run ρ′ on u ending in p, smaller than ρ, such that |lag(ρ, ρ′)| > N .

We accept a run iff it ends in a state (q, `) such that q is accepting in A (q ∈ F), and there
is no state p ∈ Q such that (L,1) ∈ `(p) for some L (otherwise it would mean that there
exists a smaller run which gives the same output than the guessed run, on the same input).
So, F ′ = {(q, `) ∈ Q′ | ∀p ∈ Q,∀(L, d) ∈ `(p), d 6= 1}. The initial state of A′ is q′I = (qI , `0)
where qI is the initial state of A, and for all q ∈ Q, `0(q) = ∅ if q 6= qI and {({1},1)} if
q = qI . The transitions in ∆′ are defined by: (p, `) a|u−−→ (p′, `′) ∈ ∆′ iff p a|u−−→ p′ ∈ ∆ and for
all q′ ∈ Q, `′(q′) = prune(update(`, p, p′, a, u, q′)) where update(`, p, p′, a, u, q′) is the union of

L1 {(L ∪ {u−1 · d · v}, u−1 · d · v) | ∃q.(L, d) ∈ `(q) ∧ q a|v−−→ q′},
L2 {({u−1 · v}, u−1 · v) | ∃p a|v−−→ q′ ≺A p

a|u−−→ p′}, and,
L3 {∞ | ∃q.∞ ∈ `(q) ∧ ∃q a|v−−→ q′ ∈ ∆}

.

and prune replaces each element (L, d) by ∞ if |L| > N , and prune(∞) =∞.
It is easy to show that A′ is well-defined, in the sense that the transition function is

defined over states of Q′ only, i.e. all the delays computed by A′ can be generated by pairs
of runs of length at most N2n4.

I Lemma 18. A and A′ are equivalent. Moreover, A′ is k-ambiguous.

On the ground of the decomposition of k-valued GA as k-ambiguous GA, and the known
decomposition of k-ambiguous automata into union of unambiguous automata, one gets
finally the following equivalence theorem:

I Theorem 19. Any k-valued GA over G is equivalent to the union of k unambiguous GA
over G.

E. Filiot, R. Gentilini, and J.-F. Raskin 143

5 The Inclusion and Synthesis Problems for k-Valued WA

Inclusion problem. In this section we consider k-valued V -automata, V ∈ {Sum,Dsum}
and we provide positive decidability results w.r.t. their inclusion problem. Given two V -
automata on the alphabet Σ, the inclusion problem (A ≤ B?) asks whether for all w ∈ Σ+,
LA(w) ≤ LB(w). This problem is undecidable for general Sum-automata, open for general
Dsum-automata and PSPACE-c for functional Sum- and Dsum-automata [3, 10]. Relying on
the results in the previous sections, we provide an inclusion test applying to k-valued Sum
and to the class of Dsum-automata having a discount factor λ that is an inverted integer,
i.e. we consider discount factors of the form 1

n , n ∈ N
∗. In more details, we show how to

encode the inclusion problem for Sum-automata (resp. Dsum-automata) into the problem of
determining a strictly positive path (resp. a path with strictly positive discounted sum) in a
multi-weighted graph.

Let A,B be two k-valued weighted V -automata, V ∈ {Sum,Dsum}. The encoding
proceeds in three steps. First, we check whether dom(A) ⊆ dom(B). Then, by Theorem 19,
A and B can be effectively decomposed as unions of k unambiguous V -automata

⋃k
i=1Gi and⋃k

i=1Hi respectively. We can assume that dom(Gi) = dom(A) for all i (resp. dom(Hi) =
dom(B) for all i)4. Clearly, A 6≤ B iff there exist w ∈ Σ∗ and i ∈ {1, . . . , k} such that
Gi(w) > B(w). For all i ∈ {1, . . . , k}, we finally check whether GI(w) > B(w) for some
w (i.e. Gi(w) > Hj(w) for some w and all j) by a reduction to a multi-dimensional graph
problem, as follows.

Let i ∈ {1, . . . , k}, Qi be the set of states of Gi, and Pj the set of states of Hj for all
j ∈ {1, . . . , k}. We construct a k-weighted graph Φi = (Vi, q0

i , Fi, Ei, wi) where the vertices
are Vi = Qi × P1 × · · · × Pk, the weight function has type wi : Ei → Zk, and the weighted
transitions are defined by (q, p1, . . . , pk) (v1,...,vk)−−−−−−→ (q′, p′1, . . . , p′k) ∈ Ei iff q

a|m−−→ q′ is a
transition of Gi and for all j ∈ {1, . . . , k}, pj

a|vj+m−−−−−→ p′j is a transition of Hj . Final vertices
(resp. the initial vertex) in Φi are those whose components are all final (resp. initial) states.

Then, the following holds: A � B if and only if there exists i ∈ {1, . . . , k} and a path
π to a final state in Φi with strictly positive sum (resp. stricly positive discounted sum)
on all components. By Lemma 5, it is possible to check in polynomial time whether a
multi-weighted graph of dimension k contains a strictly positive path to a target vertex.
Therefore, the inclusion problem is decidable for k-valued Sum-automata.

Lemma 20 below provides a PSPACE procedure to check whether a multi-weighted graph
has a path to a given target state with strictly positive discounted sum w.r.t. a discounted
factor λ that is an inverted integer 1

n , n ∈ N
∗. This leads to decidability of the inclusion also

for the class of Dsum-automata, when the discount factor λ is an inverted integer5.

I Lemma 20. Let (V, v0, E, w : E 7→ Zk) be a multi-weighted graph of dimension k, t ∈ V ,
and consider λ = 1

n , n ∈ N
∗. The problem of deciding whether G admits a path from v0 to t

with strictly positive discounted sum on all components w.r.t. λ is in PSPACE.

I Theorem 21. The inclusion problem is decidable for k-valued Sum-automata and k-valued
Dsum-automata associated with a discount factor λ such that λ = 1

n , n ∈ N
∗.

4 Otherwise, we opportunely complete Gi.
5 Note that inverted integer discounted factors where considered in [1] to provide a determinization

procedure applying to complete Dsum-automata (all states are accepting). However, for Dsum-automata
with final states no special form of discount factor can guarantee determinization [1].

FSTTCS 2014

144 Finite-Valued Weighted Automata

I Remark. If A and B are given in input as union of k1 and k2 unambiguous WA with the
same domain, then checking whether A ≤ B can be done in polynomial time (resp. PSPACE)
for Sum-automata (resp. Dsum-automata w.r.t. inverted integer discount factors) in virtue of
Lemma 20, Lemma 5 and Theorem 21. Finally, note that the encoding into WA over groups
povided by Proposition 1 allows to associate a different discount factor with each edge of
the given automaton. The results in Theorem 21 can be further generalized in this sense:
In particular, Proposition 1 guarantees the correctness of the encoding into the problem of
determining a path with strictly positive discounted sum in a multi-weighted graph. The
proof of Lemma 20, solving the latter problem, can be easily generalized to deal with different
inverted integer discount factors.

Quantitative Synthesis. We consider quantitative realizability problem. The realizability
problem is better understood as a game between two players: "Player input" (the environment,
also called Player I) and "Player output" (the controller, also called Player O). Player I
(resp. Player O) controls the letters of a finite alphabet ΣI (resp. ΣO). We assume that
ΣO ∩ ΣI = ∅ and that ΣO contains a special symbol # whose role is to stop the game. We
let Σ = ΣO ∪ ΣI . Formally, the realizability game is a turn-based game played on an arena
defined by a weighted automaton A = (Q = QO] QI , q0, F, δ = δI ∪ δO, γ), whose set of
states is partitioned into two sets QO and QI , δO ⊆ QO ×ΣO ×QI , δI ⊆ QI ×ΣI ×QO, and
such that dom(A) ⊆ (Σ\{#})∗#. Player O starts by giving an initial letter o0 ∈ ΣO, Player
I responds providing a letter i0 ∈ ΣI , then Player O gives o1 and Player I responds i1, and so
on. Player O has also the power to stop the game at any turn with the distinguishing symbol
#. In this case, the game results in a finite word (o0i0)(o1i1) . . . (ojij)# ∈ Σ∗, otherwise the
outcome of the game is an infinite word (o0i0)(o1i1) · · · ∈ Σω.

The quantitative realizability problem asks whether Player O has the strategy λO :
(ΣOΣI)∗ → ΣO such that for all Player I’s strategies λI : ΣO(ΣIΣO)∗ → ΣI , the outcome of
this two strategie, which is a finite word w, satisfies A(w) > 0, in which case we say that A
is realizable. We refer the reader to [10] for formal definitions of strategies and outcomes.
In [10], we have shown that the realizability problem is undecidable for functional Sum WA
(and for other measures), while a positive decidability results applies to deterministic Sum
WA (and for other measure). As a corollary, we know that the problem is undecidable for
k-valued Sum WA. We will strengthen this negative result here and show that even if the
problem is decidable for deterministic WA, it is undecidable for Sum WA defined as union of
k deterministic automata, for k ≥ 4. In particular, we show that the halting problem for
deterministic 2-counter Minsky machines [16] can be reduced to the quantitative language
realizability problem for the union of 4-deterministic Sum-automata.

I Theorem 22. The realizability problem for a 4-valued Sum-automata defined as a union
of 4 deterministic Sum-automata is undecidable.

References
1 U. Boker and T.A. Henzinger. Determinizing discounted-sum automata. In CSL, pages

82–96, 2011.
2 V. Bruyère, N. Meunier, and J-F. Raskin. Secure equilibria in weighted games. In LICS,

2014. to appear.
3 K. Chatterjee, L. Doyen, and T.A. Henzinger. Quantitative languages. ACM Trans. Com-

put. Log, 11(4), 2010.
4 K. Chatterjee, V. Forejt, and D. Wojtczak. Multi-objective discounted reward verification

in graphs and mdps. In LPAR, pages 228–242, 2013.

E. Filiot, R. Gentilini, and J.-F. Raskin 145

5 C. Choffrut. Une caractérisation des fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles. Theor. Comput. Sci., 5(3):325–337, 1977.

6 E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

7 R. de Souza. On the decidability of the equivalence for k-valued transducers. In Develop-
ments in Language Theory, pages 252–263, 2008.

8 R. de Souza and N. Kobayashi. A combinatorial study of k-valued rational relations. Journal
of Automata, Languages and Combinatorics, 3/4(13):207–231, 2008.

9 M. Droste, W. Kuich, and H. Vogler. HandBook of Weighted Automata. Springer, 2009.
10 E. Filiot, R. Gentilini, and J-F. Raskin. Quantitative languages defined by functional

automata. In CONCUR, pages 132–146, 2012.
11 T.V. Griffiths. The unsolvability of the equivalence problem for -free nondeterministic

generalized machines. Journal of the ACM, 1968.
12 E. Gurari and O. Ibarra. A note on finitely-valued and finitely ambiguous transducers.

Mathematical Systems Theory, 16(1):61–66, 1983.
13 K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the equivalence problem for

finitely ambiguous finance automata. IJAC, 12(3):445, 2002.
14 I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding unambiguity and sequenti-

ality from a finitely ambiguous max-plus automaton. TCS, 327(3):349–373, 2004.
15 D. Krob. The equality problem for rational series with multiplicities in the tropical semiring

is undecidable. Int. Journal of Algebra and Computation, 4(3):405–425, 1994.
16 M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
17 K. S. Rao and G. Sullivan. Detecting cycles in dynamic graphs in polynomial time. In Proc.

STOC’88, STOC, pages 398–406. ACM, 1988.
18 J. Sakarovitch and R. de Souza. On the decidability of bounded valuedness for transducers.

In Proc. MFCS 2008, MFCS. Springer-Verlag, 2008.
19 J. Sakarovitch and R. de Souza. Lexicographic decomposition of k -valued transducers.

Theory Comput. Syst, 47(3):758–785, 2010.
20 H. Seidl. Equivalence of finite-valued tree transducers is decidable. Mathematical Systems

Theory, 27(4):285–346, 1994.
21 A. Weber. On the valuedness of finite transducers. Acta Informatica, 27(8):749–780, 1989.
22 A. Weber. Finite-valued distance automata. TCS, 134(1):225–251, 7 November 1994.

FSTTCS 2014

First-order Definable String Transformations
Emmanuel Filiot1, Shankara Narayanan Krishna2, and
Ashutosh Trivedi2

1 F.N.R.S. Research Associate, Université Libre de Bruxelles, Belgium
efiliot@ulb.ac.be

2 Department of Computer Science and Engineering, IIT Bombay, India
krishnas,trivedi@cse.iitb.ac.in

Abstract
The connection between languages defined by computational models and logic for languages is
well-studied. Monadic second-order logic and finite automata are shown to closely correspond to
each-other for the languages of strings, trees, and partial-orders. Similar connections are shown
for first-order logic and finite automata with certain aperiodicity restriction. Courcelle in 1994
proposed a way to use logic to define functions over structures where the output structure is
defined using logical formulas interpreted over the input structure. Engelfriet and Hoogeboom
discovered the corresponding “automata connection” by showing that two-way generalised se-
quential machines capture the class of monadic-second order definable transformations. Alur
and Cerny further refined the result by proposing a one-way deterministic transducer model with
string variables – called the streaming string transducers – to capture the same class of transform-
ations. In this paper we establish a transducer-logic correspondence for Courcelle’s first-order
definable string transformations. We propose a new notion of transition monoid for streaming
string transducers that involves structural properties of both underlying input automata and vari-
able dependencies. By putting an aperiodicity restriction on the transition monoids, we define
a class of streaming string transducers that captures exactly the class of first-order definable
transformations.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages

Keywords and phrases First-order logic, streaming string transducers

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.147

1 Introduction

The class of regular languages is among one of the most well-studied concept in the theory
of formal languages. Regular languages have been precisely characterized widely by differing
formalisms like monadic second-order logic (MSO), finite state automata, regular expressions,
and finite monoids. The connection [8] between finite state automata and monadic second-
order logic (MSO) is among the most celebrated results of formal language theory. Over the
years, there has been substantial research to establish similar connections for the languages
definable using first-order logic (FO) [11]. Aperiodic automata are restrictions of finite
automata with certain aperiodicity restrictions defined through aperiodicity of their transition
monoid. Recall that the transition monoid of an automaton A is the set of Boolean transition
matrices Ms, for all strings s, indexed by states of A: Ms[p][q] = 1 if and only if there exists
a run from p to q on s. The set of matrices Ms is a finite monoid. It is aperiodic if there
exists m ≥ 0 such that for all s ∈ Σ∗, Msm = Msm+1 . Aperiodic automata define exactly
FO-definable languages [17, 11]. Other formalisms capturing FO-definable languages include
counter-free automata, star-free regular expressions, and very weak alternating automata.

© Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 147–159

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.147
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

148 First-order Definable String Transformations

1 a | (X,Y) := (aY,X)
1 2

a | X := aX

a | X := X

Figure 1 SSTs, T0 (shown left) and T1 (shown right), implement the transformation fhalve.

Beginning with the work of Courcelle [10], logic and automata connections have also
been explored in context of string transformations. The first result in this direction is by
Engelfriet and Hoogeboom [12], where MSO-definable transformations have been shown to
be equivalent to two-way finite transducers. This result has then been extended to trees and
macro-tree transducers [13]. Recently, Alur and Černý [1, 2] introduced streaming string
transducers, a one-way finite transducer model extended with variables, and showed that
they precisely capture MSO-definable transformations not only in finite string-to-string case,
but also for infinite strings [6] and tree [3, 5] transformations.

Streaming string transducers (SSTs) manipulate a finite set of string variables to compute
their output as they read the input string in one left-to-right pass. Instead of appending
symbols to the output tape, SSTs concurrently update all string variables using a concatena-
tion of output symbols and string variables in a copyless fashion, i.e. no variable occurs more
than once in each concurrent variable update. The transformation of a string is then defined
using an output (partial) function F that associates states with a copyless concatenation
of string variables. It has been shown that SSTs have good algorithmic properties (such as
decidable type-checking, equivalence) [1, 2] and naturally generalize to various settings like
trees and nested words [3, 5], infinite strings [6], and quantitative languages [4].

In this paper we study FO-definable string transformation and recover a logic and
transducer connection for such transformations. Such FO transformations, although weaker
than MSO transformations, still enjoy a lot of expressive power: for instance they can still
double, reverse, and swap strings, and are closed under FO look-ahead. We introduce a new
concept of transition monoid for SST, used to define the notion of aperiodic SST to capture
FO-definable transformations. To appreciate the challenges involved in finding the right
definition of aperiodicity for SSTs consider the transformation fhalve defined as an 7→ ad

n
2 e

implemented by two SSTs shown in in Figure 1. Intuitively fhalve is not FO-definable since
it requires to distinguish based on the parity of the input. Consider, the SST T1 shown in
Figure 1 with 2 accepting states and 1 variable.

Readers familiar with aperiodic automata may notice that the automata corresponding
to T1 is not aperiodic, but indeed has period 2. It seems a valid conjecture that SSTs whose
transition monoid of underlying automaton is aperiodic characterize first-order definable
transformations. However, unfortunately this is not a sufficient condition as shown by
the SST T0 in Figure 1 which also implements fhalve (its output is F (1) = X). In this
example, although the underlying automaton is aperiodic, variables contribute to certain
non aperiodicity.

We capture the notion of aperiodicity in SSTs by introducing the notion of variable flow.
We say that by reading letter a, variable X flows to Y (if the update of variable Y is based
on variable X). The notion of transition monoid is extended to SSTs to take both state and
variable flow into account. We define transition matrices Ms indexed by pairs (p,X) where
p is a state and X is a variable. Since in general, for copy-full SSTs, a variable X might
be copied in more than one variable, it could be that X flows into Y several times. Our
notion of transition monoid also takes into account, the number of times a variable flows into
another. In particular, Ms[p,X][q, Y] = i means that there exists a run from p to q on s on

E. Filiot, S. N. Krishna, and A. Trivedi 149

which X flows to Y for i number of times. Hence the transition monoid of an SST may not
be finite. A key contribution of this paper is that FO string transformations are exactly the
transformations definable by SSTs whose transition monoid is aperiodic with matrix values
ranging over {0, 1} (called 1-bounded transition monoid). In contrast with [1] our proof is
not based on the intermediate model of two-way transducers and is more direct. We give a
logic-based proof that simplifies that of [5] by restricting it to string-to-string transformations.
We also show that checking aperiodicity of an SST is PSpace-complete. Finally, simple
restrictions on SST transition monoids naturally capture restrictions on variable updates that
has been considered in other works. For instance, bounded copy of [6] correspond to finiteness
of the transition monoid, while restricted copy of [3] correspond to its 1-boundedness.

Related work. Diekert and Gastin [11] presented a detailed survey of several automata,
logical, and algebraic characterisations of first-order definable languages. As mentioned earlier
the connection between MSO and transducers have been investigated in [1, 12]. A connection
between two-way transducers and FO-transformations has been mentioned in [9] in an oral
communication, where authors left the SST connection as an open question. First-order
transformations are considered in [15], but not in the sense of [10]. In particular, they are
weaker, as they cannot double strings or mirror them, and are definable by one-way (variable-
free) finite state transducers. Finally, [7] considers first-order definable transformations with
origin information. The semantics is different from ours, because these transformations are
not just mapping from string to strings, but they also connect output symbols with input
symbols from where they originate. The first-order definability problem for regular languages
is known to be decidable. In particular, given a deterministic automaton A, deciding whether
A defines a first-order language can be decided in PSpace. Although we make an important
and necessary step in answering this question in the context of regular string transformation,
the decidability remains an open problem.

For the lack of space proofs are either sketched or omitted; full proofs can be found
in [14].

2 Preliminaries

A string over a finite alphabet Σ is a finite sequence of letters from Σ. We write ε for the
empty string and by Σ∗ for the set of strings over Σ. A language over Σ is a subset of Σ∗. For
a string s ∈ Σ∗ we write |s| for its length and dom(s) for the set {1, . . . , |s|} of its positions.
For all i ∈ dom(s) we write s[i] for the i-th letter of the string s. For any j ∈ dom(s), the
substring starting at position i and ending at position j is defined as ε if j < i and by the
sequence of letters s[i]s[i+ 1] . . . s[j] otherwise. We write s[i:j], s(i:j), s[i:j), and s(i:j], to
denote substrings of s respectively starting i and ending at j, starting at i+1 and ending at
j−1, and so on.

We represent a string s ∈ Σ∗ by the relational structure Ξs=(dom(s),�s, (Lsa)a∈Σ), called
the string model of s, where �s is a binary relation over the positions in s characterizing the
natural order, i.e. (i, j) ∈�s if i ≤ j; Lsa, for all a ∈ Σ, are the unary predicates that hold
for the positions in s labeled with the alphabet a, i.e., Lsa(i) iff s[i] = a, for all i ∈ dom(s).
When it is clear form context we drop the superscript s from the relations �s and Lsa.

2.1 First-order logic for strings
Properties of strings over Σ can be formalized by first-order logic denoted by FO(Σ). Formulas
of FO(Σ) are built up from variables x, y, . . . ranging over positions of string models along

FSTTCS 2014

150 First-order Definable String Transformations

with atomic formulas of the form x=y, x�y, and La(x) for all a ∈ Σ. Atomic formulas are
connected with propositional connectives ¬, ∧, ∨, →, and quantifiers ∀ and ∃ that range over
node variables. We say that a variable is free in a formula if it does not occur in the scope of
some quantifier. A sentence is a formula with no free variables. We write φ(x1, x2, . . . , xk)
to denote that at most the variables x1, . . . , xk occur free in φ. For a string s ∈ Σ∗ and for
positions n1, n2, . . . , nk ∈ dom(s) we say that s with valuation ν = (n1, n2, . . . , nk) satisfies
the formula φ(x1, x2, . . . , xk) and we write (s, ν) |= φ(x1, x2, . . . , xk) or s |= φ(n1, n2, . . . , nk)
if formula φ with ni as the interpretations of xi satisfies in string model Ξs. The language
defined by an FO sentence φ is L(φ) def= {s ∈ Σ∗ : Ξs |= φ}. We say that a language L is
FO-definable if there is an FO sentence φ such that L = L(φ).

2.2 Aperiodic Finite Automata
A finite automaton (FA)is a tuple A = (Q, q0,Σ, δ, F) where Q is a finite set of states, q0 ∈ Q
is the initial state, Σ is an input alphabet, δ : Q×Σ→ Q is a transition function, and F ⊆ Q
is the set of accepting states. (q, a, q′) denotes a transition of the automaton A from q to q′
on a; this is written as q a−→ q′. We write q0 s

A qn to denote a run from q0 to qn on string
s; (or q0 s qn if the automaton is clear from the context) s is accepted if qn ∈ F . The
language defined by a finite automaton A is L(A) = {s : q0 s qn and qn ∈ F}.

Recall that a monoid is an algebraic structure (M, ·, e) with a non-empty set M , a binary
operation ·, and an identity element e ∈ M such that for all x, y, z ∈ M we have that
(x · (y · z))=((x · y) · z), and x · e = e · x for all x ∈M . We say that a monoid (M, ·, e) is finite
if the set M is finite. We say that a monoid (M, ., e) is aperiodic [17] if there exists n ∈ N
such that for all x ∈M , xn = xn+1. Note that for finite monoids, it is equivalent to require
that for all x ∈M , there exists n ∈ N such that xn = xn+1. The following monoids are of
special importance in this paper.
1. Free Monoid. The set of all strings over Σ, denoted as (Σ∗, ., ε) and known as the free

monoid, has string concatenation as the operation and the empty string ε as the identity.
2. Transition Monoid. The set of transition matrices of an automaton A = (Q, q0,Σ, δ, F)

forms a finite monoid with matrix multiplication as the operation and the unit matrix
1 as the identity element. This monoid is denoted asMA = (MA,×,1) and known as
transition monoid of A. Formally, the set MA is the set of |Q|-square Boolean matrices
MA = {Ms : s ∈ Σ∗} where for all strings s ∈ Σ∗, we have that Ms[p][q] = 1 iff p s q.

We say that a FA is aperiodic if its transition monoid is aperiodic. It is well-known [17]
that a language L ⊆ Σ∗ is FO-definable iff it is accepted by some aperiodic FA.

3 Aperiodic String Transducers

For sets A and B, we write [A→ B] for the set of functions F : A→ B, and [A ⇀ B] for the
set of partial functions F : A ⇀ B. A string-to-string transformation from an input alphabet
Σ to an output alphabet Γ is a partial function in [Σ∗ ⇀ Γ∗]. We have seen some examples of
string-to-string transformations in the introduction. For the examples of first-order definable
transformations we use the following representative example.

I Example 1. Let Σ= {a, b}. For all strings s ∈ Σ∗, we denote by s its mirror image, and for
all σ ∈ Σ, by s\σ the string obtained by removing all symbols σ from s. The transformation
f1 : Σ∗ ⇀ Σ∗ maps any string s ∈ Σ∗ to the output string (s\b)s(s\a). For example,
f1(abaa) = aaa.aaba.b.

E. Filiot, S. N. Krishna, and A. Trivedi 151

Positions
Input String:

Copy#1

Copy#2

Copy#3

a b a a b b b b a

1 2 3 4 5 6 7 8 9

a a a a

a b a a b b b b a

b b b b b

φ1,1
� φ1,2

�

φ2,2
�φ2,3

� φ3,3
�

Figure 2 First-Order Transduction w 7→ (w\b)w(w\a).

3.1 First-order logic definable Transformations
Courcelle [10] initiated the study of structure transformations using monadic second-order
logic. In this paper, we restrict this logic-based transformation model to FO-definable string
transformations. The main idea of Courcelle’s transformations is to define a transformation
(w,w′) ∈ R by defining the string model of w′ using a finite number of copies of positions of
the string model of w. The existence of positions, various edges, and position labels are then
given as FO(Σ) formulas.

An FO string transducer is a tuple T=(Σ,Γ, φdom, C, φpos, φ�) where: Σ and Γ are (finite)
input and output alphabets; φdom is a closed FO(Σ) formula characterizing the domain of
the transformation; C= {1, 2, . . . , n} is a finite index set; φpos=

{
φcγ(x) : c ∈ C and γ ∈ Γ

}
is

a finite set of FO(Σ) formulas with a free position variable x; φ�=
{
φc,d� (x, y) : c, d ∈ C

}
is

a finite set of FO(Σ) formulas with two free position variables x and y. The transformation
JT K defined by T is as follows. A string s with Ξs = (dom(s),�, (La)a∈Σ) is in the domain of
JT K if s |= φdom and the output is the relational structure M = (D,�M , (LMγ)γ∈Γ) such that
D = {vc : c ∈ dom(s), c ∈ C and φc(v)} is the set of positions where φc(v) def= ∨γ∈Γφ

c
γ(v);

�M ⊆D×D is the ordering relation between positions and it is such that for v, u ∈ dom(s)
and c, d ∈ C we have that vc �M ud if w |= φc,d� (v, u); and for all vc ∈ D we have that
LMγ (vc) iff φcγ(v). Observe that the output is unique and therefore FO transducers implement
functions. However, note that the output structure may not always be a string. We say that
an FO transducer is a string-to-string transducer if its domain is restricted to string graphs
and the output is also a string graph.

We say that a string-to-string transformation is FO-definable if there exists an FO
string-to-string transducer implementing the transformation and write FOT for the set of
FO-definable string-to-string transformations. We define the quantifier rank qr(T) of an
FOT T as the maximal quantifier rank of any formula in T , plus 1. We add 1 for technical
reasons, mainly because defining the successor relation requires one quantifier.

I Example 2. Consider the transformation f1 of Example 1. It can be defined using an FO
transducer that uses three copies of the input domain as shown in Fig. 2.

The domain formula φdom, an FO formula, simply characterizes valid string models. The
first copy corresponds to (w\b), therefore the label formula φ1

γ(x) is defined by false if γ = b

in order to filter out the input positions labelled b, and by true otherwise. The second copy
corresponds to w, hence all positions of the input are kept and their labels preserved, but the
edge direction is complemented; hence the label formula is φ2

γ(x) = Lγ(x). The third copy
corresponds to (w\a) and hence φ3

γ(x) is true if γ = b and false otherwise. The transitive
closure of the output successor relation is defined by φ1,1

� (x, y) = x � y, φ2,2
� (x, y) = y � x,

φ3,3
� (x, y) = x � y, φc,c

′

� (x, y) = true if c < c′, and φc,c
′

� (x, y) = false if c′ < c. Note
that the transitive closure is not depicted on the figure, but only the successor relation.

FSTTCS 2014

152 First-order Definable String Transformations

Using first-order logic we define the position successor relation the following way: for
all copies c, d, the existence of a direct edge from a position xc to a position yd of the
output, also called the successor relation S(xc, yd), is defined by the formula φc,dsucc(x, y) def=
φc,d≺ (x, y) ∧ ¬∃z.

∨
e∈C φ

c,e
≺ (x, z) ∧ φe,d≺ (z, y) where φc1,c2

≺ (x1, x2) def= φc1,c2
� (x1, x2) ∧ x1 6= x2

for all c1, c2 ∈ C.

3.2 Streaming String Transducers
Streaming string transducers [1, 2] are one-way finite-state transducers that manipulates a
finite set of string variables to compute its output. Instead of appending symbols to the
output tape, SSTs concurrently update all string variables using a concatenation of string
variables and output symbols. The transformation of a string is then defined using an output
(partial) function F that associates states with a concatenation of string variables, s.t. if the
state q is reached after reading the string and F (q)=xy, then the output string is the final
valuation of x concatenated with that of y. In this section we formally introduce SSTs and
introduce restrictions on SSTs that capture FO-definable transformations.

Let X be a finite set of variables and Γ be a finite alphabet. A substitution σ is defined
as a mapping σ : X → (Γ ∪ X)∗. A valuation is defined as a substitution σ : X → Γ∗.
Let SX ,Γ be the set of all substitutions [X → (Γ ∪ X)∗]. Any substitution σ can be
extended to σ̂ : (Γ ∪ X)∗ → (Γ ∪ X)∗ in a straightforward manner. The composition σ1σ2
of two substitutions σ1 and σ2 is defined as the standard function composition σ̂1σ2, i.e.
σ̂1σ2(X) = σ̂1(σ2(X)) for all X ∈ X . We now introduce streaming string transducers.

I Definition 3. A streaming string transducer is a tuple (Σ,Γ, Q, q0, Qf , δ,X , ρ, F) where:
(1) Σ and Γ are (finite) input and output alphabets; (2) Q is a finite set of states with initial
state q0; (3) δ : Q × Σ → Q is a transition function; (4) X is a finite set of variables; (5)
ρ : (Q× Σ)→ SX ,Γ is a variable update function; (6) Qf is a subset of final states; and (7)
F : Qf ⇀ X ∗ is an output function.

The concept of a run of an SST is defined in an analogous manner to that of a finite state
automaton. The sequence 〈σr,i〉0≤i≤|r| of substitutions induced by a run r = q0

a1−→ q1
a2−→

q2 . . . qn−1
an−−→ qn is defined inductively as the following: σr,i=σr,i−1ρ(qi−1, ai) for 1 < i ≤ |r|

and σr,1 = ρ(q0, a1). We denote σr,|r| by σr. If the run r is final, i.e. qn ∈ Qf , we can extend
the output function F to the run r by F (r) = σεσrF (qn), where σε substitutes all variables
by their initial value ε. For all strings s ∈ Σ∗, the output of s by T is defined only if there
exists an accepting run r of T on s, and in that case the output is denoted by T (s) = F (r).
The transformation JT K defined by an SST T is the function {(s, T (s)) : T (s) is defined}.

I Example 4. Let us consider the SST T2 with one state q0 and three variables X, Y , and
Z, shown below implementing the transformation f1 introduced in Example 1. The variable
update is shown in the figure and the output function is s.t. F (q0) = XY Z.

q0 a | (X,Y, Z) := (Xa, aY, Z)b | (X,Y, Z) := (X, bY, Zb)

Let r be the run of T2 on s = abaa. We have σr,1 : (X,Y, Z) 7→ (Xa, aY, Z), σr,2 : (X,Y, Z) 7→
σr,1(X, bY, Zb) = (Xa, baY, Zb), σr,3 : (X,Y, Z) 7→ σr,2(Xa, aY, Z) = (Xaa, abaY, Zb) and
σr,4 : (X,Y, Z) 7→ σr,3(Xa, aY, Z) = (Xaaa, aabaY, Zb). Therefore we have that

T (s) = F (r) = σεσr,4F (q0) = σεσr,4(XY Z) = σε(XaaaaabaY Zb) = aaaaabab.

E. Filiot, S. N. Krishna, and A. Trivedi 153

3.3 SSTs: Transition Monoid and Aperiodicity
We define the notion of aperiodic SSTs by introducing an appropriate notion of transition
monoid for transducers. The transition monoid of an SST T is based on the effect of a string
s on the states and variables. The effect on variables is characterized by, what we call, flow
information that is given as a relation that describes the number of copies of the content of
a given variable that contribute to another variable after reading a string s.

State and Variable Flow. Let T = (Σ,Γ, Q, q0, Qf , δ,X , ρ, F) be an SST. Let s be a
string in Σ∗ and suppose that there exists a run r of T on s. Recall that this run induces a
substitution σr that maps each variable X ∈ X to a string u ∈ (Γ∪X)∗. For string variables
X,Y ∈ X , states p, q ∈ Q, and n ∈ N we say that n copies of Y flow to X from p to q if
there exists a run r on s from p to q, and Y occurs n times in σr(X). We denote the flow
with respect to a string s as (p, Y) s

n (q,X).

I Example 5. Consider the run r from q0 to q0 over the string aaaa in the following SST. To
minimize clutter, while drawing SSTs we omit updates of variables that remain unchanged.

q0 q1

q2q3

a | X := aX

a | Y := bX

a | Y := bY, Z := aX

a |W := Y Z

On the run r on aaaa, σr,4(W) = σr,3[W := Y Z] = σr,3(Y)σr,3(Z). However, σr,3(Y) =
bσr,2(Y) = b.b.σr,1(X) and σr,3(Z) = a.σr,2(X) = a.σr,1(X), and σr,1(X) = a. Now for run
r we have (q0, X) aaaa

2 (q0,W).

In order to define the transition monoid of an SST T , we first extend N with an extra
element ⊥, and let N⊥ = N ∪ {⊥}. This new element behaves as 0, i.e. for all i ∈ N⊥,
i.⊥ = ⊥.i = ⊥, i + ⊥ = ⊥ + i = i. Moreover, we assume that ⊥ < n for all n ∈ N. We
assume that pairs (p,X) ∈ Q×X are totally ordered.

I Definition 6 (Transition Monoid of SSTs). The transition monoid of a streaming string
transducer T is the set of square matrices over N⊥ indexed (in order) by elements of Q×X ,
defined by MT = {Ms | s ∈ Σ∗} where for all strings s ∈ Σ∗, Ms[p, Y][q,X] = n ∈ N if and
only if (p, Y) s

n (q,X), and Ms[p, Y][q,X] = ⊥ if and only if there is no run from p to q on
s. By definition, there is atmost one run r from (p, Y) to (q,X) on any string s.

It is easy to see that (MT ,×,1) is a monoid, where × is defined as matrix multiplication
and the identity element is the unit matrix 1. The mapping M•, which maps any string s
to its transition matrix Ms, is a morphism from (Σ∗, ., ε) to (MT ,×,1). We say that the
transition monoid MT of an SST T is n-bounded if all the coefficients of the matrices of MT

are bounded by n. Clearly, any n-bounded transition monoid is finite.
In the original definition [2] of SST, updates were copyless, i.e., the content of a variable

can never flow into two different variables, and cannot flow more than once into another
variable. In [3], this condition was slightly relaxed to the notion of restricted copy, where
a variable cannot flow more than once into another variable. This allows for a limited
form of copy: for instance, X can flow to Y and Z, but Y and Z cannot flow to the same
variable. Finally, bounded copy SSTs were introduced in [6] as a restriction on the variable
dependency graphs. This restriction requires that there exists a bound K such that any
variable flows at most K times in another variable. These three restrictions were shown
to be equivalent, in the sense that SSTs with copyless, restricted copy, and bounded copy

FSTTCS 2014

154 First-order Definable String Transformations

updates have the same expressive power. Due to our definition of transition monoid, and the
results of [6], Theorem 7 is immediate by observing that bounded copy restriction of [6] for
SSTs corresponds to finiteness of transition monoid. Also, notice that since the bounded
copy assumption generalizes the copyless [2] and restricted copy [3] assumptions, previous
definitions in the literature of SSTs correspond to finite transition monoids.

I Theorem 7 ([6]). [MSO-definable string transformations] A string transformation is
MSO-definable iff it is definable by an SST with finite transition monoid.

The main goal of this paper is to present a similar result for FO-definable transformations.
For this reason we define aperiodic and 1-bounded SSTs.

I Definition 8 (Aperiodic and 1-bounded SSTs). An SST is aperiodic if its transition monoid
is aperiodic. An SST is 1-bounded if its transition monoid is 1-bounded, i.e. for all strings s,
and all pairs (p, Y), (q,X), Ms[p, Y][q,X] ∈ {⊥, 0, 1}. See [14] for an example.

It can be shown (see [14]) that the domain of an aperiodic SST is FO-definable. We show
that an SST is non-aperiodic iff its transition monoid contains a non-trivial cycle. Checking
the existence of a non-trivial cycle is in PSpace for deterministic automata [16].

I Lemma 9. Checking aperiodicity and 1-boundedness for SSTs is PSpace-complete.

Now we are in a position to present the main result of this paper. We prove the following
key theorem using Lemma 15 (Section 5) and Lemma 11 (Section 4).

I Theorem 10 (FO-definable string transformations). A string transformation is FO-definable
iff it is definable by an aperiodic, 1-bounded SST.

4 From aperiodic 1-bounded SST to FOT

I Lemma 11. A string transformation is FO-definable if it is definable by an aperiodic,1-
bounded SST.

The idea closely follows the SST-to-MSOT construction of [1, 6]. The main challenge here
is to show that aperiodicity and 1-boundedness on the SST implies FO-definability of the
output string structure (in particular the predicate �). We first show that the variable flow
of any aperiodic,1-bounded SST is FO-definable. This will be crucial to show that the output
predicate � is FO-definable.

Let X ∈ X , s ∈ dom(T), i ∈ dom(s), and let n = |s|. We say that the pair (X, i) is useful
if the content of variable X before reading s[i] will be part of the output after reading the
whole string s. Formally, if r = q0 . . . qn is the accepting run of T on s, then (X, i) is useful
for s if (qi−1, X) s[i:n]

1 (qn, Y) for some variable Y ∈ F (qn). Thanks to the FO-definability
of variable flow this property is FO-definable.

Next, we define the SST-output structure given an input string structure. It is an
intermediate representation of the output, and the transformation of any input string into
its SST-output structure will be shown to be FO-definable. For any SST T and string
s ∈ dom(T), the SST-output structure of s is a relational structure GT (s) obtained by
taking, for each variable X ∈ X , two copies of dom(s), respectively denoted by Xin and
Xout. For notational convenience we assume that these structures are labeled on the edges.
This structure satisfies the following invariants: for all i ∈ dom(s), (1) the nodes (Xin, i)
and (Xout, i) exist only if (X, i) is useful, and (2) there is a directed path from (Xin, i) to
(Xout, i) whose sequence of labels is equal to the value of the variable X computed by T
after reading s[i]. The condition on usefulness of nodes implies that SST-output structures
consist of a single directed component, and therefore they are edge-labeled string structures.

E. Filiot, S. N. Krishna, and A. Trivedi 155

Xin

Xout

Y in

Y out

Zin

Zout

ε

ε

ε

a

b

ε

c

aaa

ε

ε

d

d

c

e

f

ε

ε

ε

ε

b

ε

ε

c

a
e

h

ε

f

ε

ε

a

run q0 q1 q2 q3 q4 q5

X := aXb

Y := aaa

Z := Zc

X := c

Y := Y

Z := dZd

X := X

Y := eY f

Z := Z

X := X

Y := aY bZc

Z := h

X := XeY f

Y := a

Z := Z

Figure 3 SST-output structure.

I Example 12. An example of SST-output structure in shown in Figure 3. Here we show
only the variable updates. Dashed arrows represent variable updates for useless variables,
and do not belong to SST-output structure; solid edges belong to the SST-output structure.
Initially the variable content of Z is ε, this is represented by the ε-edge from (Zin, 0) to
(Zout, 0) in the first column. Then, variable Z is updated to Zc. Hence, the new content of Z
starts with ε (represented by the ε-edge from (Zin, 1) to (Zin, 0), which is concatenated with
the previous content of Z, and then concatenated with c (it is represented by the c-edge from
(Zout, 0) to (Zout, 1)). The output is given by the path from (Xin, 5) to (Xout, 5) and equals
ceaeaaafbdcdcf . Also note that some edges are labelled by strings with several letters, but
there are finitely many possible such strings. In particular, we denote by OT the set of all
strings that appear in right-hand side of variable updates.

What remains for us, is to adapt from [1, 6], the MSO-definability of the transformation
that maps a string s to its SST-output structure : we show that it is FO-definable as long as
the SST is aperiodic. The main challenge is to define the transitive closure of the edge relation
in first-order. Let T be (Q, q0,Σ,Γ,X , δ, ρ,Qf). The SST-output structures of T , as node-
labeled strings, can be seen as logical structures over the signature SOT

= {(Eγ)γ∈OT
,�}

where the symbols Eγ are binary predicates interpreted as edges labeled by OT . We let E
denote the edge relation, disregarding the labels. To prove that transitive closure is FO[Σ]-
definable, we use the fact that variable flow is FO[Σ]-definable. The following property,
along with the FO-definability of variable flow, shows that transitive closure is FO-definable.
I Proposition 1. Let T be an aperiodic SST T . Let s ∈ dom(T), GT (s) its SST-output
structure and r = q0 . . . qn the accepting run of T on s. For all variables X,Y ∈ X , all
positions i, j ∈ dom(s) ∪ {0}, all d, d′ ∈ {in, out}, there exists a path from node (Xd, i) to
node (Y d′

, j) in GT (s) iff (X, i) and (Y, j) are both useful and one of the following holds:
1. Y r[j:i] X and d = in,
2. X r[i:j] Y and d′ = out, or
3. there exists k ≥ max(i, j) and two variables X ′, Y ′ such X r[i:k] X ′, Y r[j:k] Y ′ and

X ′ and Y ′ are concatenated in this order1 by r when reading s[k + 1].

1 By “concatenated” we mean that there exists a variable update whose rhs is of the form . . . X ′ . . . Y ′ . . .

FSTTCS 2014

156 First-order Definable String Transformations

Xin

Xout

Y in

Y out

Zin

Zout

run q0 q1 q2 q3 q4 q5

X := aXb

Y := aaa

Z := Zc

X := c

Y := Y

Z := dZd

X := X

Y := eY f

Z := Z

X := X

Y := aY bZc

Z := h

X := XeY f

Y := a

Z := Z

(1), (2)

(2)

(2)

(1)

(1)

(2)

(2)

(1)

(1)(3)

Figure 4 Conditions of Proposition 1.

I Example 13. We illustrate proposition 1 using example of Fig.4. We have for instance
(q2, Y) s[3:2]=ε

1 (q2, Y), therefore by conditions (1) (and (2)) by taking X = Y and i = j = 2,
there exists a path from (Y in, 2) to (Y out, 2). Note that none of these conditions imply
the existence of an edge from (Y out, 2) to (Y in, 2), but self-loops on (Y in, 2) and (Y out, 2)
are implied by conditions (1) and (2) respectively. Now consider positions 0 and 1 and
variable Z. It is the case that (q0, Z) s[1:1]

1 (q1, Z), therefore by condition (1) there is a
path from (Zin, 1) to (Zin, 0) and to (Zout, 0). Similarly, by condition (2) there is a path
from (Zin, 0) to (Zout, 1) and from (Zout, 0) to (Zout, 1). For positions 3 and 5, note that
(q3, Y) s[4:5]

1 (q5, X), hence there is a path from (Y d, 3) to (Xout, 5) for all d ∈ {in, out}.
By condition (2) one also gets edges from (Xin, 5) to (Y d, 3). Finally consider nodes (Zout, 2)
and (Xin, 3). There is no flow relation between variable Z at position 2 and variable X at
position 3. However, (q3, X) s[4:4]

1 (q4, X) and (q2, Z) s[3:4] (q4, Y). Then X and Y gets
concatenated at position 4 to define X at position 5. Hence, there is a path from (Xin, 3) to
(Zout, 2) (condition (3)).

I Lemma 14. For an aperiodic SST T , variables X,Y ∈ X and all d, d′ ∈ {in, out}, there
exists an FO[Σ]-formula pathX,Y,d,d′(x, y) with two free variables s.t. for all s ∈ dom(T) and
i, j ∈ dom(s), s |= pathX,Y,d,d′(i, j) iff there exists a path from (Xd, i) to (Y d, j) in GT (s).

We now sketch the proof of Lemma 11. Let Γ be the output alphabet. We adapt the
MSO-definability of strings to SST-output structures from [6, 1] and use the FO-definability of
transitive closure (Lemma 14) to show that strings to SST-output structure transformations
are FO-definable whenever the SST is aperiodic. Since the usefulness of nodes is FO-definable,
we filter out useless nodes in the first FO-transformation, unlike [6, 1], where useless nodes
in the SST-output structures are later removed by composing with another MSO-definable
transformation. We can transform the SST-output structures which are edge-labeled strings
over OT ⊆ Γ∗ to a node-labeled string over Γ. This transformation is again FO-definable by
taking a suitable number of copies of the input domain (max{|s| | s ∈ OT }). Now Lemma 11
follows from the closure of FO-transformations under composition [10].

E. Filiot, S. N. Krishna, and A. Trivedi 157

5 From FOT to aperiodic 1-bounded SST

The goal of this section is to prove the following lemma by showing a reduction from FO-
definable transformations to aperiodic, 1-bounded SSTs. Due to space limitations, we only
sketch the main ideas of the proof of this result.

I Lemma 15. A string transformation is FO-definable only if it is definable by an aperiodic,
1-bounded SST.

FO-types, heads and tails. The FO-K-type (K-type for short) of a string s is the set of
FO sentences of quantifier rank at most K that are true in s. The set of K-types is finite
(up to logical equivalence) [17]. We start with a key observation. Given an FO-transducer,
an input string s and a position i in s, all the maximal paths of the output structure induced
by nodes of the form jc, for all copies c and input positions j ≤ i define substrings of the
output of s. The starting (resp. ending) nodes of these substrings are respectively called
i-head and i-tails. Consider the FO-transduction shown in Figure 2 till position 3. Suppose
that we omit the positions and edges of the output graph post position 3. Upto position
3, the output graph consists of two strings: the first string is between the 3-head 11 and
the 3-tail 31 and stores aa, while the second string is between the 3-head 32 and the 3-tail
23 and stores the string abab. The key observation of [5] is that any i-head jc (resp. i-tail)
is uniquely identified by the K-type τ1 of the string s[1:j), the label a of input position j,
the copy c, and the K-type τ2 of the string s(j:i], for a bound K that depends only on the
FO-transducer.

SST construction. The main lines of the SST construction of [5] is to use as many SST
variables Xα as tuples α = (τ1, a, c, τ2). Since the sets of K-types, labels and copies are finite,
then so is the set of variables. At each position i in the input s, the content of Xα computed
by the SST is exactly the substring in between the i-head and i-tail identified by the tuple α.
To define the variable update when incrementing position i, if the SST knows the K-types
of the current prefix and suffix respectively, it can determine how the (i + 1)-heads and
(i+ 1)-tails are connected to the i-heads and i-tails, based on the FO-formulas that define
the output edge relation. Let us now explain how the SST can compute the K-types of
the prefix up to i and of the suffix from position i. It is known that the K-type of a string
s1s2 only depends on the K-types of s1 and s2 respectively [17]. Therefore, to compute the
K-type of the prefix up to i+ 1, the SST only needs to know the K-type of the prefix up to
i and the input label at position i + 1. Therefore, the states of the SST are K-types. To
compute the K-type of the suffix, we equip our SST with look-aheads, defined by aperiodic
finite state automata. We naturally extend the notion of aperiodic SST to aperiodic SST
with look-aheads, and, as an intermediate result, show that removing look-aheads can be
done while preserving aperiodicity (as well as 1-boundedness). From an FO-transducer, the
construction therefore produces an SST Tla with look-ahead. The main difficulty is to show
that Tla is aperiodic and 1-bounded.

Aperiodicity and 1-boundedness of Tla. One of the technical difficulties in showing that
Tla is aperiodic is to show that it computes the type informations and update the variables
in an aperiodic manner. A well-known property [17] we exploit is that for m ≥ 2K , for any
string s, the strings sm and sm+1 are indistinguishable by FO-sentences of rank at most K.

For the sake of understanding of this sketch and, in order to focus only on aperiodicity of
variable updates, we rather assume, in this sketch, that the positions i of the input strings

FSTTCS 2014

158 First-order Definable String Transformations

input string s

output string graph
i′i

hd(s, i, α)

hd(s, i′, α′)

tl(s, i, α) tl(s, i′, α′)

Figure 5 Variable flow is FO-definable.

s have been initially extended with type informations (τ1, τ2) where τ1 is the K-type of
s[1:i] and τ2 is the K-type of s(i:|s|]. Therefore, we can transform Tla into a one-state SST
T (without look-ahead), assuming it gets as input only strings extended with valid type
information. The 1-boundedness of T is a simple consequence of the construction (and was
already shown in [5] through the notion of restricted copy). Let us now briefly explain why
T is aperiodic, or equivalently, that its variable flow is aperiodic. It is sufficient to show that
the variable flow is FO-definable. Given s ∈ Σ∗, a position i in s, and a tuple α = (τ1, a, c, τ2)
as defined before, we denote by hd(s, i, α) the i-head (resp. tl(s, i, α) the i-tail) defined by
α in s. Given another tuple α′ and a position i′ > i in s, we relate the flow between variable
Xα at position i to variable Xα′ at position i′ to the existence of a path from hd(s, i′, α′) to
hd(s, i, α) that do not go beyond position i′ in the output graph of s.

I Example 16. Consider the FO-transformation of Fig. 5. As a consequence of the invariant
of our construction, the substring s1 that starts in position hd(s, i, α) and ends in tl(s, i, α),
at position i, is stored in variable Xα. The substring s2 from hd(s, i′, α′) to tl(s, i′, α′) is
stored, at position i′, in variable Xα′ . Since s1 is a substring of s2, the content of variable
Xα at position i (i.e. s1) flows into the content of variable Xα′ at position i′ (i.e. s2). Based
on the fact that the output transition closure of the edge relation is defined in FO, and the
fact that types are also FO-definable, we show that the existence of a path from hd(s, i′, α′)
to hd(s, i, α) that do not cross position i′ is FO-definable, and so is the variable flow.

As mentioned earlier, the complete proof starts directly with an SST with look-ahead
that computes the type information, therefore one has to study both state flow and variable
flow. An alternative proof could have been to compose two aperiodic SSTs (w/o lookaheads):
the first one annotates the string with type information, and the second one is the one-state
SST T . Then, it would remain to prove that aperiodic SSTs are closed under composition
(which is a consequence of our result and the fact that FO-transducers are closed under
composition). However, it is not clear that directly proving that aperiodic SSTs are closed
under composition would have been simpler than our proof based on SSTs with look-aheads.

References

1 R. Alur and P. Černý. Expressiveness of streaming string transducers. In Proc. FSTTCS
2010, pages 1–12, 2010.

E. Filiot, S. N. Krishna, and A. Trivedi 159

2 R. Alur and P. Černý. Streaming transducers for algorithmic verification of single-pass
list-processing programs. In Proc. POPL 2011, pages 599–610, 2011.

3 R. Alur and L. D’Antoni. Streaming tree transducers. In Proc. ICALP 2012, pages 42–53,
2012.

4 R. Alur, L. D’Antoni, J. V. Deshmukh, M. Raghothaman, and Y. Yuan. Regular functions
and cost register automata. In Proc. LICS 2013, pages 13–22, 2013.

5 R. Alur, A. Durand-Gasselin, and A. Trivedi. From monadic second-order definable string
transformations to transducers. In Proc. LICS 2013, pages 458–467, 2013.

6 R. Alur, E. Filiot, and A. Trivedi. Regular transformations of infinite strings. In Proc.
LICS 2012, pages 65–74, 2012.

7 M. Bojanczyk. Transducers with origin information. In Proc. ICALP 2014, pages 26–37,
2014.

8 J.R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Mathemat-
ische Logik und Grundlagen der Mathematik, 6(1–6):66–92, 1960.

9 O. Carton and L. Dartois. Aperiodic two-way transducers. In Highlights of Logic, Auto-
mata and Games, 2013. Slides available at http://highlights-conference.org/pub/
3-1-Dartois.pdf.

10 B. Courcelle. Monadic second-order definable graph transductions: a survey. Theoretical
Computer Science, 126(1):53–75, 1994.

11 V. Diekert and P. Gastin. First-order definable languages. In Logic and Automata: History
and Perspectives, pages 261–306. Amsterdam University Press, 2008.

12 J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-way finite-
state transducers. ACM Trans. Comput. Logic, 2:216–254, 2001.

13 J. Engelfriet and S. Maneth. Macro tree translations of linear size increase are MSO
definable. SIAM Journal on Computing, 32:950–1006, 2003.

14 E. Filiot, S.N. Krishna, and A. Trivedi. First-order definable string transformations.
15 P. McKenzie, T. Schwentick, D. Therien, and H. Vollmer. The many faces of a translation.

JCSS, 72, 2006.
16 J. Stern. Complexity of some problems from the theory of automata. Information and

Control, 66:163–176, 1985.
17 H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.

FSTTCS 2014

http://highlights-conference.org/pub/3-1-Dartois.pdf
http://highlights-conference.org/pub/3-1-Dartois.pdf

Regular Sensing
Shaull Almagor1, Denis Kuperberg2, and Orna Kupferman1

1 The Hebrew University, Israel
2 The University of Warsaw, Poland

Abstract
The size of deterministic automata required for recognizing regular and ω-regular languages is a
well-studied measure for the complexity of languages. We introduce and study a new complexity
measure, based on the sensing required for recognizing the language. Intuitively, the sensing
cost quantifies the detail in which a random input word has to be read in order to decide its
membership in the language. We show that for finite words, size and sensing are related, and
minimal sensing is attained by minimal automata. Thus, a unique minimal-sensing deterministic
automaton exists, and is based on the language’s right-congruence relation. For infinite words,
the minimal sensing may be attained only by an infinite sequence of automata. We show that
the optimal limit cost of such sequences can be characterized by the language’s right-congruence
relation, which enables us to find the sensing cost of ω-regular languages in polynomial time.

1998 ACM Subject Classification F.4.3 Formal Languages, B.8.2 Performance Analysis and
Design Aids, F.1.1 Models of Computation

Keywords and phrases Automata, regular languages, ω-regular languages, complexity, sensing,
minimization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.161

1 Introduction

Studying the complexity of a formal language, there are several complexity measures to
consider. When the language is given by means of a Turing Machine, the traditional measures
are time and space demands. Theoretical interest as well as practical considerations have
motivated additional measures, such as randomness (the number of random bits required for
the execution) [9] or communication complexity (number and length of messages required) [8].
For regular and ω-regular languages, given by means of finite-state automata, the classical
complexity measure is the size of a minimal deterministic automaton that recognizes the
language.

We introduce and study a new complexity measure, namely the sensing cost of the
language. Intuitively, the sensing cost of a language measures the detail with which a random
input word needs to be read in order to decide membership in the language. Sensing has
been studied in several other CS contexts. In theoretical CS, in methodologies such as
PCP and property testing, we are allowed to sample or query only part of the input [6]. In
more practical applications, mathematical tools in signal processing are used to reconstruct
information based on compressed sensing [4], and in the context of data streaming, one
cannot store in memory the entire input, and therefore has to approximate its properties
according to partial “sketches” [10].

Our interest in regular sensing is motivated by the use of finite-state automata (as well
as monitors, controllers, and transducers) in reasoning about on-going behaviors of reactive
systems. In particular, a big challenge in the design of monitors is an optimization of the
sensing needed for deciding the correctness of observed behaviors. Our goal is to formalize

© Shaull Almagor, Denis Kuperberg, and Orna Kupferman;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 161–173

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.161
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

162 Regular Sensing

regular sensing in the finite-state setting and to study the sensing complexity measure for
regular and ω-regular languages.

A natural setting in which sensing arises is synthesis: given a specification over sets I
and O of input and output signals, the goal is to construct a finite-state system that, given a
sequence of input signals, generates a computation that satisfies the specification. In each
moment in time, the system reads an assignment to the input signals, namely a letter in 2I ,
which requires the activation of |I| Boolean sensors. A well-studied special case of limited
sensing is synthesis with incomplete information. There, the system can read only a subset
of the signals in I, and should still generate only computations that satisfy the specification
[7, 2]. A more sophisticated case of sensing in the context of synthesis is studied in [3], where
the system can read some of the input signals some of the time. In more detail, sensing the
truth value of an input signal has a cost, the system has a budget for sensing, and it tries to
realize the specification while minimizing the required sensing budget.

We study the fundamental questions on regular sensing. We consider languages over
alphabets of the form 2P , for a finite set P of signals. Consider a deterministic automaton
A over an alphabet 2P . For a state q of A, we say that a signal p ∈ P is sensed in q if at
least one transition taken from q depends on the truth value of p. The sensing cost of q is
the number of signals it senses, and the sensing cost of a run is the average sensing cost of
states visited along the run. We extend the definition to automata by assuming a uniform
distribution of the inputs.1 Thus, the sensing cost of A is the limit of the expected sensing of
runs over words of increasing length.2 We show that this definition coincides with one that
is based on the stationary distribution of the Markov chain induced by A, which enables
us to calculate the sensing cost of an automaton in polynomial time. The sensing cost of
a language L, of either finite or infinite words, is then the infimum of the sensing costs of
deterministic automata for L. In the case of infinite words, one can study different classes
of automata, yet we show that the sensing cost is independent of the acceptance condition
being used.

We start by studying the sensing cost of regular languages of finite words. For the
complexity measure of size, the picture in the setting of finite words is very clean: each
language L has a unique minimal deterministic automaton (DFA), namely the residual
automaton RL whose states correspond to the equivalence classes of the Myhill-Nerode
right-congruence relation for L. We show that minimizing the state space of a DFA can only
reduce its sensing cost. Hence, the clean picture of the size measure is carried over to the
sensing measure: the sensing cost of a language L is attained in the DFA RL. In particular,
since DFAs can be minimized in polynomial time, we can construct in polynomial time a
minimally-sensing DFA, and can compute in polynomial time the sensing cost of languages
given by DFAs.

We then study the sensing cost of ω-regular languages, given by means of deterministic
parity automata (DPAs). Recall the size complexity measure. There, the picture for languages
of infinite words is not clean: A language needs not have a unique minimal DPA, and the

1 Our study and results apply also to a non-uniform distribution on the letters, given by a Markov chain
(see Remark 19).

2 Alternatively, one could define the sensing cost of A as the cost of its “most sensing” run. Such a
worst-case approach is taken in [3], where the sensing cost needs to be kept under a certain budget in
all computations, rather than in expectation. We find the average-case approach we follow appropriate
for sensing, as the cost of operating sensors may well be amortized over different runs of the system,
and requiring the budget to be kept under a threshold in every run may be too restrictive. Thus, the
automaton must answer correctly for every word, but the sensing should be low only on average, and it
is allowed to operate an expensive sensor now and then.

S. Almagor, D. Kuperberg, and O. Kupferman 163

problem of finding one is NP-complete [12]. It turns out that the situation is challenging
also in the sensing measure. First, we show that different minimal DPAs for a language may
have different sensing costs. In fact, bigger DPAs may have smaller sensing costs.

Before describing our results, let us describe a motivating example that demonstrates the
intricacy in the case of ω-regular languages. Consider a component in a vacuum-cleaning
robot that monitors the dust collector and checks that it is empty infinitely often. The
proposition empty indicates whether the collector is empty and a sensor needs to be activated
in order to know its truth value. One implementation of the component would sense empty
throughout the computation. This corresponds to the classical two-state DPA for “infinitely
often empty”. A different implementation can give up the sensing of empty for some fixed
number k of states, then wait for empty to hold, and so forth. The bigger k is, the lazier is
the sensing and the smaller the sensing cost is. As the example demonstrates, there may be
a trade-off between the sensing cost of an implementation and its size. Other considerations,
like a preference to have eventualities satisfied as soon as possible, enter the picture too.

Our main result is that despite the above intricacy, the sensing cost of an ω-regular
language L is the sensing cost of the residual automaton RL for L. It follows that the sensing
cost of an ω-regular language can be computed in polynomial time. Unlike the case of finite
words, it may not be possible to define L on top of RL. Interestingly, however, RL does
capture exactly the sensing required for recognizing L. The proof of this property of RL is
the main technical challenge of our contribution. The proof goes via a sequence (Bn)∞n=1 of
DPAs whose sensing costs converge to that of L. The DPA Bn is obtained from a DPA A
for L by a lazy sensing strategy that spends time in n copies of RL between visits to A, but
spends enough time in A to ensure that the language is L. It is worth noting that this result
is far from being intuitive. Indeed, first, as mentioned above, the extra expressive power that
is added to the setting by the acceptance condition of DPAs makes the residual automaton
irrelevant in the context of size minimization. Moreover, in the context of sensing, there
need not be a single DPA that attains the minimal sensing cost. It is thus surprising that
RL, which has no acceptance condition, captures the sensing cost of all DPAs. We believe
that this reflects a general property of deterministic parity automata that could be useful
outside of the scope of sensing. Intuitively, it means that we can “lose track” of the run of a
deterministic automaton for arbitrary long periods, just keeping the residual in memory, and
still be able to recognize the wanted language.

Due to lack of space, some of the proofs are omitted and can be found in the full version,
in the authors’ home pages.

2 Preliminaries

Automata
A deterministic automaton on finite words (DFA, for short) is A = 〈Σ, Q, q0, δ, α〉, where Q
is a finite set of states, q0 ∈ Q is an initial state, δ : Q×Σ→ Q is a total transition function,
and α ⊆ Q is a set of accepting states. We sometimes refer to δ as a relation ∆ ⊆ Q×Σ×Q,
with 〈q, σ, q′〉 ∈ ∆ iff δ(q, σ) = q′. The run of A on a word w = σ1 · σ2 · · ·σm ∈ Σ∗ is
the sequence of states q0, q1, . . . , qm such that qi+1 = δ(qi, σi+1) for all i ≥ 0. The run is
accepting if qm ∈ α. A word w ∈ Σ∗ is accepted by A if the run of A on w is accepting. The
language of A, denoted L(A), is the set of words that A accepts. For a state q ∈ Q, we use
Aq to denote A with initial state q. We sometimes refer also to nondeterministic automata
(NFAs), where δ : Q×Σ→ 2Q suggests several possible successor states. Thus, an NFA may
have several runs on an input word w, and it accepts w if at least one of them is accepting.

FSTTCS 2014

164 Regular Sensing

Consider a language L ⊆ Σ∗. For two finite words u1 and u2, we say that u1 and u2 are
right L-indistinguishable, denoted u1 ∼L u2, if for every z ∈ Σ∗, we have that u1 · z ∈ L iff
u2 · z ∈ L. Thus, ∼L is the Myhill-Nerode right congruence used for minimizing automata.
For u ∈ Σ∗, let [u] denote the equivalence class of u in ∼L and let 〈L〉 denote the set
of all equivalence classes. Each class [u] ∈ 〈L〉 is associated with the residual language
u−1L = {w : uw ∈ L}. When L is regular, the set 〈L〉 is finite, and induces the residual
automaton of L, defined by RL = 〈Σ, 〈L〉,∆L, [ε], α〉, with 〈[u], a, [u ·a]〉 ∈ ∆L for all [u] ∈ 〈L〉
and a ∈ Σ. Also, α contains all classes [u] with u ∈ L. The DFA RL is well defined and is
the unique minimal DFA for L.

A deterministic automaton on infinite words is A = 〈Σ, Q, q0, δ, α〉, where Q, q0, and δ
are as in DFA, and α is an acceptance condition. The run of A on an infinite input word
w = σ1 · σ2 · · · ∈ Σω is defined as for automata on finite words, except that the sequence of
visited states is now infinite. For a run r = q0, q1, . . ., let inf (r) denote the set of states that
r visits infinitely often. Formally, inf (r) = {q : q = qi for infinitely many i’s}. We consider
the following acceptance conditions. In a Büchi automaton, the acceptance condition is a set
α ⊆ Q and a run r is accepting iff inf (r) ∩ α 6= ∅. Dually, in a co-Büchi, again α ⊆ Q, but r
is accepting iff inf (r) ∩ α = ∅. Finally, parity condition is a mapping α : Q→ [i, . . . , j], for
integers i ≤ j, and a run r is accepting iff maxq∈inf (r){α(q)} is even.

We extend the right congruence ∼L as well as the definition of the residual automaton
RL to languages L ⊆ Σω. Here, however, RL need not accept the language of L, and we
ignore its acceptance condition.

Sensing
We study languages over an alphabet Σ = 2P , for a finite set P of signals. A letter σ ∈ Σ
corresponds to a truth assignment to the signals. When we define languages over Σ, we use
predicates on P in order to denote sets of letters. For example, if P = {a, b, c}, then the
expression (True)∗ · a · b · (True)∗ describes all words over 2P that contain a subword σa · σb

with σa ∈ {{a}, {a, b}, {a, c}, {a, b, c}} and σb ∈ {{b}, {a, b}, {b, c}, {a, b, c}}.
Consider an automaton A = 〈2P , Q, q0, δ, α〉. For a state q ∈ Q and a signal p ∈ P , we

say that p is sensed in q if there exists a set S ⊆ P such that δ(q, S \ {p}) 6= δ(q, S ∪ {p}).
Intuitively, a signal is sensed in q if knowing its value may affect the destination of at least
one transition from q. We use sensed(q) to denote the set of signals sensed in q. The sensing
cost of a state q ∈ Q is scost(q) = |sensed(q)|. 3

Consider a deterministic automaton A over Σ = 2P (and over finite or infinite words).
For a finite run r = q1, . . . , qm of A, we define the sensing cost of r, denoted scost(r), as
1
m

∑m
i=1 scost(qi). That is, scost(r) is the average number of sensors that A uses during r.

Now, for a finite word w, we define the sensing cost of w in A, denoted scostA(w), as the
sensing cost of the run of A on w. Finally, the sensing cost of A is the expected sensing cost
of words of length that tends to infinity, where we assume that the letters in Σ are uniformly
distributed. Thus, scost(A) = limm→∞ |Σ|−m

∑
w:|w|=m scostA(w). Note that the definition

applies to automata on both finite and infinite words.
Two DFAs may recognize the same language and have different sensing costs. In fact,

as we demonstrate in Example 1 below, in the case of infinite words two different minimal
automata for the same language may have different sensing costs.

3 We note that, alternatively, one could define the sensing level of states, with slevel(q) = |sensed(q)|
|P | .

Then, for all states q, we have that slevel(q) ∈ [0, 1]. All our results hold also for this definition, simply
by dividing the sensing cost by |P |.

S. Almagor, D. Kuperberg, and O. Kupferman 165

For a language L of finite or infinite words, the sensing cost of L, denoted scost(L) is
the minimal sensing cost required for recognizing L by a deterministic automaton. Thus,
scost(L) = infA:L(A)=L scost(A). For the case of infinite words, we allow A to be a determ-
inistic automaton of any type. In fact, as we shall see, unlike the case of succinctness, the
sensing cost is independent of the acceptance condition used.

I Example 1. Let P = {a}. Consider the language L ⊆ (2{a})ω of all words with infinitely
many a and infinitely many ¬a. In the following figure we present two minimal DBAs
(deterministic Büchi automata) for L with different sensing costs.

q0 q1 q2

¬a a
a ¬a

true

s0 s1 s2

¬a aa

¬a

a

¬a

While all the states of the second automaton sense a, thus its sensing cost is 1, the signal
a is not sensed in all the states of the first automaton, thus its sensing cost is strictly smaller
than 1 (to be precise, it is 4

5 , as we shall see in Example 7).

I Remark 2. Our study of sensing considers deterministic automata. The notion of sensing
is less natural in the nondeterministic setting. From a conceptual point of view, we want
to capture the number of sensors required for an actual implementation for recognizing the
language. Technically, guesses can reduce the number of required sensors. To see this, take
P = {a} and consider the language L = True∗ · a. A DFA for L needs two states, both
sensing a. An NFA for L can guess the position of the letter before the last one, where
it moves to the only state that senses a. The sensing cost of such an NFA is 0 (for any
reasonable extension of the definition of cost on NFAs). J

Probability

Consider a directed graph G = 〈V,E〉. A strongly connected component (SCC) of G is a
maximal (with respect to containment) set C ⊆ V such that for all x, y ∈ C, there is a
path from x to y. An SCC (or state) is ergodic if no other SCC is reachable from it, and is
transient otherwise.

An automaton A = 〈Σ, Q, q0, δ, α〉 induces a directed graph GA = 〈Q,E〉 in which
〈q, q′〉 ∈ E iff there is a letter σ such that q′ ∈ δ(q, σ). When we talk about the SCCs of A,
we refer to those of GA. Recall that we assume that the letters in Σ are uniformly distributed,
thus A also corresponds to a Markov chain MA in which the probability of a transition from
state q to state q′ is pq,q′ = 1

|Σ| |{σ ∈ Σ : δ(q, σ) = q′}|. Let C be the set of A’s SCC, and
Ce ⊆ C be the set of its ergodic SCC’s.

Consider an ergodic SCC C ∈ Ce. Let PC be the matrix describing the probability of
transitions in C. Thus, the rows and columns of PC are associated with states, and the value
in coordinate q, q′ is pq,q′ . By [5], there is a unique probability vector πC ∈ [0, 1]C such that
πCPC = πC . This vector describes the stationary distribution of C: for all q ∈ C it holds
that πC(q) = limm→∞

EC
m(q)
m , where EC

m(q) is the average number of occurrences of q in a run
of MA of length m that starts anywhere in C [5]. Thus, intuitively, πC(q) is the probability
that a long run that starts in C ends in q. In order to extend the distribution to the entire
Markov chain of A, we have to take into account the probability of reaching each of the
ergodic components. The SCC-reachability distribution of A is the function ρ : C → [0, 1] that
maps each ergodic SCC C of A to the probability that MA eventually reaches C, starting

FSTTCS 2014

166 Regular Sensing

from the initial state. We can now define the limiting distribution π : Q→ [0, 1], as

π(q) =
{

0 if q is transient,
πC(q)ρ(C) if q is in some C ∈ Ce.

Note that
∑

q∈Q π(q) = 1, and that if P is the matrix describing the transitions of MA and
π is viewed as a vector in [0, 1]Q, then πP = π. Intuitively, the limiting distribution of state
q describes the probability of a run on a random and long input word to end in q. Formally,
we have the following lemma, whose proof appears in the full version.

I Lemma 3. Let Em(q) be the expected number of occurrences of a state q in a run of length
m of MA that starts in q0. Then, π(q) = limm→∞

Em(q)
m .

Computing The Sensing Cost of an Automaton
Consider a deterministic automaton A = 〈2P , Q, δ, q0, α〉. The definition of scost(A) by
means of the expected sensing cost of words of length that tends to infinity does not suggest
an algorithm for computing it. In this section we show that the definition coincides with
a definition that sums the costs of the states in A, weighted according to the limiting
distribution, and show that this implies a polynomial-time algorithm for computing scost(A).
This also shows that the cost is well-defined for all automata.

I Theorem 4. For all automata A, we have scost(A) =
∑

q∈Q π(q) · scost(q), where π is the
limiting distribution of A.

I Remark 5. It is not hard to see that if A is strongly connected, then π is the unique
stationary distribution of MA and is independent of the initial state of A. Accordingly,
scost(A) is also independent of A’s initial state in this special case. J

I Theorem 6. Given an automaton A, the sensing cost scost(A) can be calculated in
polynomial time.

Proof. By Theorem 4, we have that scost(A) =
∑

q∈Q π(q) · scost(q), where π is the limiting
distribution of A. By the definition of π, we have that π(q) = πC(q)ρ(C), if q is in some
C ∈ Ce. Otherwise, π(q) = 0. Hence, the computational bottleneck is the calculation of the
SCC-reachability distribution ρ : C → [0, 1] and the stationary distributions πC for every
C ∈ Ce. It is well known that both can be computed in polynomial time via classic algorithms
on matrices. For completeness, we give the details in the full version. J

I Example 7. Recall the first DBA described in Example 1. Its limiting distribution is
π(q0) = π(q1) = 2

5 , π(q2) = 1
5 . Accordingly, its cost is 1 · 2

5 + 1 · 2
5 + 0 · 1

5 = 4
5 .

Additional examples can be found in the full version.

3 The Sensing Cost of Regular Languages of Finite Words

In this section we study the setting of finite words. We show that there, sensing minimization
goes with size minimization, which makes things clean and simple, as size minimization for
DFAs is a feasible and well-studied problem. We also study theoretical properties of sensing.
We show that, surprisingly, abstraction of signals may actually increase the sensing cost of
a language, and we study the effect of classical operations on regular languages on their
sensing cost. These last two contributions can be found in the full version.

S. Almagor, D. Kuperberg, and O. Kupferman 167

Consider a regular language L ⊆ Σ∗, with Σ = 2P . Recall that the residual automaton
RL = 〈Σ, 〈L〉,∆L, [ε], α〉 is the minimal-size DFA that recognizes L. We claim that RL also
minimizes the sensing cost of L.

I Lemma 8. Consider a regular language L ⊆ Σ∗. For every DFA A with L(A) = L, we
have that scost(A) ≥ scost(RL).

Proof. Consider a word u ∈ Σ∗. After reading u, the DFA RL reaches the state [u] and the
DFA A reaches a state q with L(Aq) = u−1L. Indeed, otherwise we can point to a word
with prefix u that is accepted only in one of the DFAs. We claim that for every state q ∈ Q
such that L(Aq) = u−1L, it holds that sensed([u]) ⊆ sensed(q). To see this, consider a signal
p ∈ sensed([u]). By definition, there exists a set S ⊆ P and words u1 and u2 such that
([u], S \ {p}, [u1]) ∈ ∆L, ([u], S ∪ {p}, [u2]) ∈ ∆L, yet [u1] 6= [u2]. By the definition of RL,
there exists z ∈ (2P)∗ such that, w.l.o.g, z ∈ u−1

1 L \ u−1
2 L. Hence, as L(Aq) = u−1L, we

have that Aq accepts (S \ {p}) · z and rejects (S ∪ {p}) · z. Let δA be the transition function
of A. By the above, δA(q, S \ {p}) 6= δA(q, S ∪ {p}). Therefore, p ∈ sensed(q), and we are
done. Now, sensed([u]) ⊆ sensed(q) implies that scost(q) ≥ scost([u]).

Consider a word w1 · · ·wm ∈ Σ∗. Let r = r0, . . . , rm and [u0], . . . , [um] be the runs
of A and RL on w, respectively. Note that for all i ≥ 0, we have ui = w1 · w2 · · ·wi.
For all i ≥ 0, we have that L(Ari) = u−1

i L, implying that then scost(ri) ≥ scost([ui]).
Hence, scostA(w) ≥ scostRL

(w). Since this holds for every word in Σ∗, it follows that
scost(A) ≥ scost(RL). J

Since L(RL) = L, then scost(L) ≤ scost(RL). This, together with Lemma 8, enables us
to conclude the following.

I Theorem 9. For every regular language L ⊆ Σ∗, we have scost(L) = scost(RL).

Finally, since DFAs can be size-minimized in polynomial time, Theorems 6 and 9 imply
we can efficiently minimize also the sensing cost of a DFA and calculate the sensing cost of
its language:

I Theorem 10. Given a DFA A, the problem of computing scost(L(A)) can be solved in
polynomial time.

4 The Sensing Cost of ω-Regular Languages

For the case of finite words, we have a very clean picture: minimizing the state space of
a DFA also minimizes its sensing cost. In this section we study the case of infinite words.
There, the picture is much more complicated. In Example 1 we saw that different minimal
DBAs may have a different sensing cost. We start this section by showing that even for
languages that have a single minimal DBA, the sensing cost may not be attained by this
minimal DBA, and in fact it may be attained only as a limit of a sequence of DBAs.

I Example 11. Let P = {p}, and consider the language L of all words w1 · w2 · · · such
that wi = {p} for infinitely many i’s. Thus, L = (True∗ · p)ω. A minimal DBA for L
has two states. The minimal sensing cost for a two-state DBA for L is 2

3 (the classical
two-state DBA for L senses p in both states and thus has sensing cost 1. By taking A1
in the sequence we shall soon define we can recognize L by a two-state DBA with sensing
cost 2

3). Consider the sequence of DBAs Am appearing in the figure below. The DBA Am

recognizes (True≥m ·p)ω, which is equivalent to L, yet enables a “lazy" sensing of p. Formally,
the stationary distribution π for Am is such that π(qi) = 1

m+2 for 0 ≤ i ≤ m − 1 and

FSTTCS 2014

168 Regular Sensing

π(qm) = 2
m+2 . In the states q0, . . . , qm−1 the sensing cost is 0 and in qm it is 1. Accordingly,

scost(Am) = 2
m+2 , which tends to 0 as m tends to infinity.

q0 q1 qm−1 qm
true true ¬p

p

4.1 Characterizing scost(L) by the residual automaton for L

In this section we state and prove our main result, which characterizes the sensing cost of an
ω-regular language by means of the residual automaton for the language:

I Theorem 12. For every ω-regular language L ⊆ Σω, we have scost(L) = scost(RL).

The proof is described over the following section. The first direction, showing that
scost(L) ≥ scost(RL), is proved by similar considerations to those used in the proof of
Lemma 8 for the setting of finite words, and can be found in the full version.

Our main effort is to prove that scost(L) ≤ scost(RL). To show this, we construct, given
a DPA A such that L(A) = L, a sequence (Bn)n≥1 of DPAs such that L(Bn) = L for every
n ≥ 1, and limn→∞ scost(Bn) = scost(RL). We note that since the DPAs Bn have the
same acceptance condition as A, there is no trade-off between sensing cost and acceptance
condition. More precisely, if L can be recognized by a DPA with parity ranks [i, j] (in
particular, if L is DBA-recognizable), then the sensing cost for L(A) can be obtained by a
DPA with parity ranks [i, j].

We first assume that A is strongly connected. We will later show how to drop this
assumption.

Let A = 〈Σ, Q, q0,∆, αA〉 be a strongly connected DPA for L. We assume that A is
minimally ranked. Thus, if A has parity ranks {0, 1, . . . , k}, then there is no DPA for L with
ranks {0, 1, . . . , k − 1} or {1, 2, . . . , k}. Also, if A has ranks {1, 2, . . . , k}, we consider the
complement DPA, which is A with ranks {0, 1, . . . , k− 1}. Since DPAs can be complemented
by dualizing the acceptance condition, their sensing cost is preserved under complementation,
so reasoning about the complemented DPA is sound. For 0 ≤ i ≤ k, a cycle in A is called an
i-loop if the maximal rank along the cycle is i. For 0 ≤ i ≤ j ≤ k, an [i, j]-flower is a state
q` ∈ Q such that for every i ≤ r ≤ j, there is an r-loop that goes through q`.

The following is an adaptation of a result from [11] to strongly connected DPAs:

I Lemma 13. Consider a strongly-connected minimally-ranked DPA A = 〈Σ, Q, q0,∆, αA〉
with ranks {0, . . . , k}. Then, there is a DPA D = 〈Σ, Q, q0,∆, αD〉 such that all the following
hold.
1. For every state s ∈ Q, we have L(As) = L(Ds). In particular, A and D are equivalent.
2. There exists m ∈ N such that D has ranks {0, ..., 2m+ k} and has a [2m, 2m+ k] flower.

Proof. We start with the following claim, whose proof appears in the full version.

I Claim 14. A does not have an equivalent DPA with ranks {1, . . . , k + 1}.

Now, [11] proves the lemma for A that needs not be strongly connected and has no
equivalent DPA with ranks {1, . . . , k+1}. There, the DPA D has ranks in {0, ..., 2m+ k + 1},
and has a [2m, 2m+ k]-flower q`. We argue that since A is strongly connected, D has only
ranks in {0, ..., 2m+ k}.

By [11], if there existsm ∈ N and a DPA D that recognizes L(A) and has a [2m, 2m+k+1]-
flower, then L(A) cannot be recognized by a DPA with ranks {1, ..., k + 2}. Observe that in

S. Almagor, D. Kuperberg, and O. Kupferman 169

this case, L(A) cannot be recognized by a DPA with ranks {0, ..., k} as well, as by increasing
the ranks by 2 we get a DPA with ranks {2, ..., k + 2}, contradicting the fact L(A) cannot
be recognized by a DPA with ranks in {1, ..., k + 2}. Hence, as A with ranks {0, ..., k} does
exist, the DPA D cannot have a [2m, 2m+ k + 1]-flower.

Now, in our case, the DPA A, and therefore also D, is strongly-connected. Thus, if D
has a state with rank 2m + k + 1, then the state q` is in the same component with this
state, and is therefore a [2m, 2m+ k + 1] flower. By the above, however, D cannot have a
[2m, 2m+ k + 1] flower, implying that D has ranks in {0, ..., 2m+ k}. J

Let A and D be as in Lemma 13, and q` be the [2m, 2m + k]-flower in D. Note
that A and D have the same structure and differ only in their acceptance condition. Let
Ω = {0, ..., 2m+ k}. For a word w ∈ Σ∗, let ρ = s1, s2, ..., sn be the run of D on w. If ρ ends
in q`, we define the q`-loop-abstraction of w to be the rank-word abs(w) ∈ Ω∗ of maximal
ranks between successive visits to q`. Formally, let w = y0 · y1 · · · yt be a partition of w such
that D visits the state q` after reading the prefix y0 · · · yj , for all 0 ≤ j ≤ t, and does not
visit q` in other positions. Then, abs(yi), for 0 ≤ i ≤ t, is the maximal rank read along yi,
and abs(w) = abs(y0) · abs(y1) · · · abs(yt). Recall that RL = 〈Σ, 〈L〉,∆L, [ε], α〉, where 〈L〉
are the equivalence classes of the right-congruence relation on L, thus each state [u] ∈ 〈L〉
is associated with the language u−1L of words w such that uw ∈ L. We define a function
ϕ : Q → 〈L〉 that maps states of A to languages in 〈L〉 by ϕ(q) = L(Aq). Observe that ϕ
is onto. We define a function γ : 〈L〉 → Q that maps languages in 〈L〉 to states of A by
arbitrarily choosing for every language u−1L ∈ 〈L〉 a state in ϕ−1(u−1L).

We define a sequence of words u2m, . . . , u2m+k ∈ Ω∗ as follows. The definition proceeds
by an induction. LetM = |Q|+1. First, u2m = (2m)M . Then, for 2m < i ≤ 2m+k, we have
ui = (i · ui−1)M−1 · i. For example, if m = 2 and |Q| = 2, then u4 = 444, u5 = 544454445,
u6 = 654445444565444544456, and so on. Let P be a DFA that accepts a (finite) word
w ∈ Σ∗ iff the run of D on w ends in q` and u2m+k is a suffix of abs(w), for the word
u2m+k ∈ Ω∗ defined above. In the full version we describe how to construct P , essentially by
combining a DFA over that alphabet Ω that recognizes Ω∗ · u2m+k with a DFA with state
space Q× Ω that records the highest rank visited between successive visits to q` and thus
abstracts words in Σ∗.

We can now turn to the construction of the DPAs Bn. Recall that A = 〈Σ, Q, q0,∆, αA〉,
and let P = 〈Σ, QP , t0,∆P , {tacc}〉. For n ≥ 1, we define Bn = 〈Σ, Qn, 〈q0, t0〉,∆n, αn〉 as
follows. The states of Bn are Qn = (〈L〉 × {1, . . . , n}) ∪ (Q × (QP \ {tacc})), where tacc
is the unique accepting state of P. We refer to the two components in the union as the
RL-component and the D-component, respectively. The transitions of Bn are defined as
follows.

Inside the RL-component: for every transition 〈[u], a, [u′]〉 ∈ ∆L and i ∈ {1, . . . , n− 1},
there is a transition 〈([u], i), a, ([u′], i+ 1)〉 ∈ ∆n.
From the RL-component to the D-component: for every transition 〈[u], a, [u′]〉 ∈ ∆L,
there is a transition 〈([u], n), a, (γ([u′]), t0)〉 ∈ ∆n.
Inside the D-component: for every transitions 〈q, a, q′〉 ∈ ∆ and 〈t, a, t′〉 ∈ ∆P with
t′ 6= tacc, there is a transition 〈(q, t), a, (q′, t′)〉 ∈ ∆n.
From the D-component to the RL-component: for every transitions 〈q, a, q′〉 ∈ ∆ and
〈t, a, tacc〉 ∈ ∆P , there is a transition 〈(q, t), a, (ϕ(q′), 1)〉 ∈ ∆n.

The acceptance condition of Bn is induced by that of A. Formally αn(q, t) = αA(q), for
states (q, t) ∈ Q×QP , and αn([u], i) = 0 for states ([u], i) ∈ 〈L〉 × {1, . . . , n}.

FSTTCS 2014

170 Regular Sensing

RL, 1 RL, 2 RL, 3 RL, nD × P n

Figure 1 The DPA Bn.

The idea behind the construction of Bn is as follows. The automaton Bn stays in RL for
n steps, then proceeds to a state in D with the correct residual language, and simulates D
until the ranks corresponding to the word u2m+k have been seen. It then goes back to RL,
by projecting the current state of D onto its residual in 〈L〉. The bigger n is, the more time
a run spends in the RL-component, making RL the more dominant factor in the sensing
cost of Bn. As n tends to infinity, the sensing cost of Bn tends to that of RL. The technical
challenge is to define P in such a way that even though the run spends less time in the D
component, we can count on the ranks visited during this short time in order to determine
whether the run is accepting. We are now going to formalize this intuition, and we start with
the most challenging part of the proof, namely the equivalence of Bn and A. The proof is
decomposed into the three Lemmas 15, 16, and 17.

I Lemma 15. Consider a word u ∈ Σ∗ such that the run of Bn on u reaches the D-component
in state 〈q, t〉. Then, L(Dq) = L(Aq) = u−1L.

Proof. We prove a stronger claim, namely that if the run of Bn on u ends in the RL-
component in a state 〈s, i〉, then s = [u], and if the run ends in the D-component in a state
〈q, t〉, then L(Aq) = u−1L. The proof proceeds by induction on |u| and is detailed in the full
version. By Lemma 13, for every q ∈ Q, we have L(Aq) = L(Dq), so the claim follows. J

I Lemma 16. If the run of Bn on a word w ∈ Σω visits the RL-component finitely many
times, then w ∈ L iff w ∈ L(Bn).

Proof. Let u ∈ Σ∗ be a prefix of w such that the run of Bn on w stays forever in the
D-component after reading u. Let (q, t) ∈ Qn be the state reached by Bn after reading
u. By Lemma 15, we have L(Aq) = u−1L. Since the run of Bn from (q, t) stays in the
D-components where it simulates the run of A from q, then Aq accepts the suffix w|u| iff
B(q,t)

n accepts w|u|. It follows that w ∈ L iff w ∈ L(Bn). J

The complicated case is when the run of Bn on w does visit the RL-component infinitely
many times. This is where the special structure of P guarantees that the sparse visits in the
D-component are sufficient for determining acceptance.

I Lemma 17. If the run of Bn on a word w ∈ Σω visits the RL-component infinitely many
times, then w ∈ L iff w ∈ L(Bn).

Proof. Let τ = s1, s2, s3, . . . be the run of Bn on w and let ρ = q1, q2, q3 . . . be the run of A
on w. We denote by τ [i, j] the infix si, ..., sj of τ . We also extend αD to (infixes of) runs by
defining αD(τ [i, j]) = αD(si), ..., αD(sj). For a rank-word u ∈ Ω∗, we say that an infix τ [i, j]
is a u-infix if αD(τ [i, j]) = u.

If v = τ [i, j], for some 0 ≤ i ≤ j, is a part of a run of D that consists of loops around q`,
we define the loop type of v to be the word in Ω∗ that describes the highest rank of each
simple loop around q` in v. An infix of τ whose loop type is ui for some 2m ≤ i ≤ 2m+ k is
called a ui-loop-infix.

By our assumption, τ contains infinitely many u2m+k-infixes. Indeed, by the definition of
P, otherwise τ get trapped in the D-component. We proceed by establishing a connection
between ui-loop-infixes of τ and the corresponding infixes of ρ, for all 2m ≤ i ≤ 2m+ k.

S. Almagor, D. Kuperberg, and O. Kupferman 171

Let i ∈ {2m, . . . , 2m+ k}, and consider a ui-loop-infix. By the definition of ui, such a
ui-loop-infix consists of a sequence of M = |Q|+ 1 i-loops in τ , with loops of lower ranks
between them. We can write w = xvw′, where v = w[c, d] is the sub word that corresponds
to the ui-loop-infix. Let u′i = αA(ρ[c, d]) be the ranks of ρ in its part that corresponds to v.

By our choice of M , we can find two indices c ≤ j < l ≤ d such that the pairs 〈(qj , t), q′j〉
and 〈(ql, t

′), q′l〉 reached by (τ, ρ) in indices j and l, respectively, satisfy qj = ql = q` and
q′j = q′l. Additionally, being a part of the run on a ui-loop-infix, the highest rank seen
between qj and ql in τ is i. We write v = v1v2v3, where v1 = v[1, j], v2 = v[j + 1, l], and
v3 = v[l + 1, |v|]. Thus, the loop type of v2 is in (iui−1)+i, with the convention u2m−1 = ε.

Consider the runs µ and η of Dqj and of Aq′
j on vω

2 , respectively. These runs are loops
labeled by v2, where the highest rank in µ is i. By Lemma 15, L(Dqj) = L(Dq′

j) = L(Aq′
j),

so the highest rank in η must have same parity (odd or even) as i.
Thus, we showed that for every i ∈ {2m, ..., 2m+ k}, and for every ui-loop-infix v of τ ,

there is an infix of v with loop-type in (iui−1)+i, such that the infix of ρ corresponding to v
has highest rank of same parity as i.

We want to show that rank k is witnessed on ρ during every u2m+k-infix of τ . Assume
by way of contradiction that this is not the case. This means that there is some u2m+k-infix
v′ in τ such that all ranks visited in ρ along v′ are at most k − 2. Indeed, since the highest
rank has to be of the same parity as 2m + k, which has the same parity as k, it cannot
be k − 1. By the same argument, within v′ there is an infix v′′ of u2m+k−1 of the form
((2m+ k − 1)(u2m+k−2))+(2m+ k − 1) in which the highest rank in ρ is of the same parity
as k − 1. As v′′ is also an infix of v′, the highest rank in ρ along v′′ is at most k − 2. Thus,
the highest rank along v′′ is at most k − 3. By continuing this argument by induction down
to 0, we reach a contradiction (in fact it is reached at level 1), as no rank below 0 is available.

We conclude that the run ρ witnesses a rank k in any uk-infix of τ . Since τ contains
infinitely many uk-infixes, then ρ contains infinitely many ranks k, and, depending on the
parity of k, either both ρ and τ are rejecting or both are accepting.

This concludes the proof that w ∈ L iff w ∈ L(Bn). J

We proceed to show that the sensing cost of the sequence of DPAs Bn indeed converges
to that of RL.

I Lemma 18. limn→∞ scost(Bn) = scost(RL).

Proof. Since D is strongly connected, then q` is reachable from every state in D. Also, since
q` is a [2m, 2m + k]-flower, we can construct a sequence of loops around q` whose ranks
correspond to the word u2m+k. Thus, tacc is reachable from every state in the D-component.
This implies that Bn is strongly connected, and therefore, a run of Bn is expected to traverse
both components infinitely often, making the RL-component more dominant as n grows,
implying that limn→∞ scost(Bn) = scost(RL). Formalizing this intuition involves a careful
analysis of Bn’s Markov chain, as detailed in the full version. J

Lemmas 16, and 17 put together ensure that for strongly connected automata, we have
that L(Bn) = L, so with Lemma 18, we get scost(L) = scost(RL).

It is left to remove the assumption about A being strongly connected. The proof is
detailed in the full version, and uses the above result on each ergodic component of A.

I Remark 19. All our results can be easily extended to a setting with a non-uniform
distribution on the letters given by any Markov chain, or with a different cost for each input
in each state. We can also use a decision tree to read the inputs instead of reading them

FSTTCS 2014

172 Regular Sensing

simulatenously, defining for instance a cost of 1.5 if the state starts by reading a, then if a is
true it also reads b. J

5 Directions for Future Research

Regular sensing is a basic notion, which we introduced and studied for languages of finite and
infinite words. In this section we discuss possible extensions and variants of our definition
and contribution.

Open systems: Our setting assumes that all the signals in P are generated by the environ-
ment and read by the automaton. In the setting of open systems, we partition P into a set I
of input signals, generated by the environment, and a set O of output signals, generated by
the system. Then, we define the sensing cost of a specification as the minimal sensing cost
required for a transducer that realizes it, where here, sensing is measured only with respect to
the signals in I. Also, the transducer does not have to generate all the words in the language
– it only has to associate a computation in the language with each input sequence. These two
differences may lead to significantly different results than those presented in the paper.

Trade-off between sensing and quality: The key idea in the proof of Theorem 12 is that
when we reason about languages of infinite words, it is sometimes possible to delay the
sensing and only sense in “sparse” intervals. In practice, however, it is often desirable to
satisfy eventualities quickly. This is formalized in multi-valued formalisms such as LTL
with future discounting [1], where formulas assign higher satisfaction values to computations
that satisfy eventualities fast. Our study here suggests that lower sensing leads to lower
satisfaction values. An interesting problem is to study and formalize this intuitive trade-off
between sensing and quality.

Transient cost: In our definition of sensing, transient states are of no importance. Con-
sequently, for example, all safety languages have sensing cost 0, as the probability of a safety
property not being violated is 0, and once it is violated, no sensing is required. An alternative
definition of sensing cost may take transient states into an account. One way to do it is to
define the sensing cost of a run as the discounted sum

∑
i≥0 2−i · sensed(|qi|) of the sensing

costs of the states q0, q1, ... it visits.

Beyond regular: Our definition of sensing cost can be adapted to more complex models,
such as pushdown automata or Turing machines. It would be interesting to see the trade-off
between sensing and classical complexity measures in such models.

References
1 S. Almagor, U. Boker, and O. Kupferman. Discounting in LTL. In TACAS, Lecture Notes

in Computer Science. Springer, 2014.
2 K. Chatterjee and R. Majumdar. Minimum attention controller synthesis for omega-regular

objectives. In FORMATS, pages 145–159, 2011.
3 K. Chatterjee, R. Majumdar, and T. A. Henzinger. Controller synthesis with budget

constraints. In HSCC, volume 4981 of Lecture Notes in Computer Science, pages 72–86.
Springer, 2008.

4 D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006.

S. Almagor, D. Kuperberg, and O. Kupferman 173

5 C. Grinstead and J. Laurie Snell. Introduction to Probability, chapter 11 (Markov Chains),
pages 405–470. American Mathematical Society, 1997.

6 G. Kindler. Property Testing, PCP, and Juntas. PhD thesis, Tel Aviv University, 2002.
7 O. Kupferman and M.Y. Vardi. Church’s problem revisited. The Bulletin of Symbolic

Logic, 5(2):245 – 263, 1999.
8 E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press,

1997.
9 C. Mauduit and A. Sárköz. On finite pseudorandom binary sequences. i. measure of pseu-

dorandomness, the legendre symbol. Acta Arith., 82(4):365–377, 1997.
10 S. Muthukrishnan. Theory of data stream computing: where to go. In Proc. 30th Sym-

posium on Principles of Database Systems, pages 317–319, 2011.
11 D. Niwinski and I. Walukiewicz. Relating hierarchies of word and tree automata. In STACS,

volume 1373 of Lecture Notes in Computer Science. Springer, 1998.
12 S. Schewe. Beyond Hyper-Minimisation – Minimising DBAs and DPAs is NP-Complete.

In FSTTCS, volume 8 of Leibniz International Proceedings in Informatics (LIPIcs), pages
400–411, 2010.

FSTTCS 2014

Symbolic Solving of Extended Regular Expression
Inequalities
Matthias Keil and Peter Thiemann

Institute for Computer Science
University of Freiburg
Freiburg, Germany
{keilr,thiemann}@informatik.uni-freiburg.de

Abstract
This paper presents a new algorithm for the containment problem for extended regular expressions
that contain intersection and complement operators and that range over infinite alphabets. The
algorithm solves extended regular expressions inequalities symbolically by term rewriting and
thus avoids the translation to an expression-equivalent automaton.

Our algorithm is based on Brzozowski’s regular expression derivatives and on Antimirov’s
term-rewriting approach to check containment. To deal with large or infinite alphabets effec-
tively, we generalize Brzozowski’s derivative operator to work with respect to (potentially infinite)
representable character sets.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Extended regular expression, containment, infinite alphabet, infinite
character set, effective boolean algebra

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.175

1 Introduction

Regular expressions have many applications in the context of software development and
information technology: text processing, program analysis, compiler construction, query
processing, and so on. Modern programming languages either come with standard libraries
for regular expression processing or they provide built-in facilities to this end (e.g., Perl,
Ruby, and JavaScript). Many of these implementations augment the basic regular operations
+, ·, and ∗ (union, concatenation, and Kleene star) with enhancements like character classes
and wildcard literals, cardinalities, sub-matching, intersection, complement, and so on.

Regular expressions (RE) are advantageous in these domains because they provide a
concise means to encode many interesting problems. REs are well suited for verification
applications, because there are decision procedures for many problems involving them: the
word problem (w ∈ JrK), emptiness (JrK = ∅), finiteness, containment (JrK ⊆ JsK), and
equivalence (JrK = JsK). Here we let r and s range over RE and write J·K for the function that
maps a regular expression to the regular language that it denotes. There are also effective
constructions for operations like union, intersection, complement, prefixes, suffixes, etc on
regular languages.

Recent applications impose new demands on operations involving regular expressions. The
Unicode character set with its more than 1.1 million code points requires the ability to deal
effectively with very large character sets and hence character classes. Similarly, formalizing
access contracts for objects in scripting languages even requires regular expressions over an
infinite alphabet: in this application, the alphabet itself is an infinite formal language (the

© Matthias Keil and Peter Thiemann;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 175–186

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.175
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

176 Symbolic Solving of Extended Regular Expression Inequalities

language of field names) and a “character class” (i.e., a set of field names) is itself described
by a regular expression [12, 8]. Hence, a “character class” may have infinitely many elements.

To enable such applications, we study the containment problem for regular expressions
with two enhancements. First, we consider extended regular expressions (ERE) that contain
intersection and complement operators beyond the standard regular operators of union,
concatenation, and Kleene star. An ERE also denotes a regular language but it can be
much more concise than a standard RE. Second, we consider EREs on any alphabet that
is presented as an effective boolean algebra. This extension encompasses some practically
useful instances of infinite alphabets like the set of all field names in a scripting language.

The first enhancement is known to be decidable, but we give a new symbolic decision
procedure based on Brzozowski’s regular expression derivatives [4] and Antimirov’s rewriting
approach to check containment [1]. The second enhancement has been studied previously
[21, 19, 20], but in the context of automata and finite state transducers. It has not been
investigated at the level of regular expressions and in particular not in the context of
Brzozowski’s and Antimirov’s work. We give sufficient conditions to ensure applicability
of our modification of Brzozowski’s and Antimirov’s approach to the containment problem
while retaining decidability.

1.1 Related Work
The practical motivation for considering this extension is drawn from the authors’ previous
work on checking access contracts for objects in a scripting language at run time [12]. In
that work, an access contract specifies a set of access paths that start from a specific anchor
object. An access path is a word over the field names of the objects traversed by the path
and we specify such a set of paths by a regular expression on the field names. We claim
that such a regular expression draws from an infinite alphabet because a field name in a
scripting language is an arbitrary string (of characters). For succinctness, we specify sets of
field names using a second level of regular expressions on characters.

In our implementation, checking containment is required to reduce memory consumption.
If the same object is restricted by more than one contract, then we apply containment
checking to remove redundant contracts. In our previous work, contracts were limited to
basic regular expressions and the field-level expressions were limited to disjunctions of literals.
Applying the results of the present paper enables us to lift both restrictions.

The textbook approach to checking regular expression containment is via translation
to finite automata, which may involve an exponential blowup, and then by constructing
a simulation (or a bisimulation for equivalence) [9]. A related approach based on non-
deterministic automata is presented by Bonchi and Pous [3].

The exponential blowup is due to the construction of a deterministic automaton from
the regular expression. Thompson’s construction [18], creates a non-deterministic finite
automaton with ε-transitions where the number of states and transitions is linear to the length
of the (standard) regular expression. Glushkov’s [7] and McNaughton and Yamada’s [14]
position automaton computes an n + 1-state non-deterministic automaton with up to n2

transitions from an n-symbol expression. They are the first to use the notion of a first
symbol. Brzozowski’s regular expression derivatives [4] directly calculate a deterministic
automaton from an ERE. Antimirov’s partial derivative approach [2] computes a n+ 1-state
non-deterministic automation, but his work does not consider intersection and complement.
We are not aware of an extension of Glushkov’s algorithm to extended regular expressions.

Owens and other have implemented an extension of Brzozowski’s approach with character
classes and wildcards [16].

M. Keil and P. Thiemann 177

Antimirov [1] also proposes a symbolic method for solving regular expression inequalities,
based on partial derivatives, with exponential worst-case run time. His containment calculus
is closely related to the simulation technique used by Hopcroft and Karp [9] for proving
equivalence of automata. In fact, a decision procedure for containment of regular expressions
leads to one for equivalence and vice versa. Ginzburg [6] gives an equivalence procedure
based on Brzozowski derivatives. Antimirov’s original work does not consider intersection
and complement. Caron and coworkers [5] extend Antimirov’s work to ERE using antichains,
but the resulting procedure is very complex compared to ours.

A shortcoming of all existing approaches is their restriction to finite alphabets. Supporting
both makes a significant difference in practice: an iteration over the alphabet Σ is feasible for
small alphabets, but it is impractical for very large alphabets (e.g., Unicode) or infinite ones
(e.g., another level of regular languages as for our contracts). Furthermore, most regular
expressions used in practice contain character sets. We apply techniques developed for
symbolic finite automata to address these issues [20].

1.2 Overview
This paper is organized as follows. In Section 2, we recall notations and concepts. Section 3
introduces the notion of an effective boolean algebra for representing sets of symbols abstractly.
Section 4 explains Antimirov’s algorithm for checking containment, which is the starting
point of our work. Next, Section 5 defines two notions of derivatives on regular expressions
with respect to symbol sets. It continues to introduce the key notion of next literals, which
ensures finiteness of our extension to Antimirov’s algorithm. Section 6 contains the heart
of our extended algorithm, a deduction system that determines containment of extended
regular expressions along with a soundness proof.

A technical report [13] extends this paper by an appendix with further technical details,
examples, and proofs of theorems.

2 Regular Expressions

An alphabet Σ is a denumerable, potentially infinite set of symbols. Σ∗ is the set of all finite
words over symbols from Σ with ε denoting the empty word. Let a, b, c ∈ Σ range over
symbols; u, v, w ∈ Σ∗ over words; and A,B,C ⊆ Σ over sets of symbols.

Let L,L′ ⊆ Σ∗ be languages. The left quotient of L by a word u, written u−1L, is the
language {v | uv ∈ L}. It is immediate from the definition that (au)−1L = u−1(a−1L) and
that u ∈ L iff ε ∈ u−1L. Furthermore, L ⊆ L′ iff u−1L ⊆ u−1L′ for all words u ∈ Σ∗. The
left quotient of one language by another is defined by L−1L′ = {v | uv ∈ L′, u ∈ L}. We
write L·L′ for the concatenation of languages {uv | u ∈ L, v ∈ L′} and L∗ for the Kleene
closure {v1 . . . vn | n ∈ N, vi ∈ L}. We sometimes write L for the complement Σ∗ \ L and A
for Σ \A.

An extended regular expression (ERE) on an alphabet Σ is a syntactic phrase derivable
from non-terminals r, s, t. It comprises the the empty word, literals, union, concatenation,
Kleene star, as well as intersection and negation operators.

r, s, t := ε | A | r+s | r·s | r∗ | r&s | !r

Compared to standard definitions, a literal is a set A of symbols, which stands for an abstract,
possibly empty, character class. We write a instead of {a} for the frequent case of a single
letter literal. We consider regular expressions up to similarity [4], that is, up to associativity
and commutativity of the union operator with the empty set as identity.

FSTTCS 2014

178 Symbolic Solving of Extended Regular Expression Inequalities

The language JrK ⊆ Σ∗ of a regular expression r is defined inductively by:

JεK = {ε}
JAK = {a | a ∈ A}

Jr+sK = JrK ∪ JsK
Jr·sK = JrK·JsK
Jr∗K = JrK∗

Jr&sK = JrK ∩ JsK
J!rK = JrK

For finite alphabets, JrK is a regular language. For arbitrary alphabets, we define a language
to be regular, if it is equal to JrK, for some ERE r.

We write r v s (r is contained in s) to express that JrK ⊆ JsK.
The nullable predicate ν(r) indicates whether JrK contains the empty word, that is, ν(r)

iff ε ∈ JrK. It is defined inductively by:

ν(ε) = true
ν(A) = false

ν(r+s) = ν(r) ∨ ν(s)
ν(r·s) = ν(r) ∧ ν(s)
ν(r∗) = true

ν(r&s) = ν(r) ∧ ν(s)
ν(!r) = ¬ν(r)

The Brzozowski derivative ∂a(r) of an ERE r w.r.t. a symbol a computes a regular expression
for the left quotient a−1JrK (see [4]). It is defined inductively as follows:

∂a(ε) = ∅

∂a(A) =
{
ε, a ∈ A
∅, a /∈ A

∂a(r+s) = ∂a(r)+∂a(s)

∂a(r·s) =
{
∂a(r)·s+∂a(s), ν(r)
∂a(r)·s, ¬ν(r)

∂a(r∗) = ∂a(r)·r∗
∂a(r&s) = ∂a(r)&∂a(s)
∂a(!r) = !∂a(r)

The case for the set literal A generalizes Brzozowski’s definition. The definition is extended
to words by ∂au(r) = ∂u(∂a(r)) and ∂ε(r) = r. It is easy to see that u ∈ JrK iff ε ∈ J∂u(r)K.

3 Representing Sets of Symbols

The definition of an ERE in Section 2 just states that a literal is a set of symbols A ⊆ Σ.
However, to define tractable algorithms, we require that A is an element of an effective
boolean algebra [20] (U,t,u, ·,⊥,>) where U ⊆ ℘(Σ) is closed under the boolean operations.
Here t and u denote union and intersection of symbol sets, · the complement, and ⊥ and >
the empty set and the full set Σ, respectively. In this algebra, we need to be able to decide
equality of sets (hence the term effective) and to represent singleton symbols.

For finite (small) alphabets, we may just take U = ℘(Σ). A set of symbols may be
enumerated and ranges of symbols may be represented by character classes, as customarily
supported in regular expression implementations. Alternatively, a bitvector representation
may be used.
If the alphabet is infinite (or just too large), then the boolean algebra of finite and
cofinite sets of symbols is the basis for a suitable representation. That is, the set
U = {A ∈ ℘(Σ) | A finite ∨A finite} is effectively closed under the boolean operations.
In our application to checking access contracts in scripting languages [12], the alphabet
itself is a set of words (the field names of objects) composed from another set Γ of symbols:
Σ ⊆ ℘(Γ∗). To obtain an effective boolean algebra, we choose the set U = {A ⊆ ℘(Γ∗) |
A is regular}, which is effectively closed under the boolean operations.
Sets of symbols may also be represented by formulas drawn from a decidable first-order
theory over a (finite or infinite) alphabet. For example, the character range [a-z] would
be represented by the formula x ≥ ’a’∧x ≤ ’z’. In this case, the boolean operations get

M. Keil and P. Thiemann 179

mapped to the disjunction, conjunction, or negation of predicates; bottom and top are
false and true, respectively. An SMT solver can decide equality and subset constraints.
This approach has been demonstrated to be effective for very large character sets in the
work on symbolic finite automata [20].

The rest of this paper is generic with respect to the choice of an effective boolean algebra.

4 Antimirov’s Algorithm for Checking Containment

Given two regular expressions r, s, the containment problem asks whether r v s. This problem
is decidable using standard techniques from automata theory: construct a deterministic
finite automaton for r&!s and check it for emptiness. The drawback of this approach is the
expensive construction of the automaton. In general, this expense cannot be avoided because
problem is PSPACE-complete [10, 11, 15].

Antimirov [1] proposed an algorithm for deciding containment of standard regular ex-
pressions (without intersection and negation) that is based on rewriting of inequalities. His
algorithm has the same asymptotic complexity as the automaton construction, but it can
fail early and is therefore better behaved in practice. We phrase the algorithm in terms of
Brzozowski derivatives to avoid introducing Antimirov’s notion of partial derivatives.

I Theorem 1 (Containment [1, Proposition 7(2)]). For regular expressions r and s,

r v s⇔ (∀u ∈ Σ∗) ∂u(r) v ∂u(s).

Antimirov’s algorithm applies this theorem exhaustively to an inequality r v̇ s (i.e., a
proposed containment) to generate all pairs ∂u(r) v̇ ∂u(s) of iterated derivatives until it finds
a contradiction or saturation. More precisely, Antimirov defines a containment calculus CC
which works on sets S of atoms, where an atom is either an inequality r v̇ s or a boolean
constant true or false. It consists of the rule CC-Disprove which infers false from a trivially
inconsistent inequality and the rule CC-Unfold that applies Theorem 1 to generate new
inequalities.

CC-Disprove
ν(r) ∧ ¬ν(s)
r v̇ s `CC false

CC-Unfold
ν(r)⇒ ν(s)

r v̇ s `CC {∂a(r) v̇ ∂a(s) | a ∈ Σ}

An inference in the calculus for checking whether r0 v s0 is a sequence S0 `CC S1 `CC S2 `CC
. . . where S0 = {r0 v̇ s0} and Si+1 is an extension of Si by selecting an inequality in Si and
adding the consequences of applying one of the CC rules to it. That is, if r v̇ s ∈ Si and
r v̇ s `CC S, then Si+1 = Si ∪ S.

Antimirov argues [1, Theorem 8] that this algorithm is sound and complete by proving
(using Theorem 1) that r v s does not hold if and only if a set of atoms containing false is
derivable from r v̇ s. The algorithm terminates because there are only finitely many different
inequalities derivable from r v̇ s using rule CC-Unfold.

The containment calculus CC has two drawbacks. First, the choice of an inequality for the
next inference step is nondeterministic. Second, an adaptation to a setting with an infinite
alphabet seems doomed because rule CC-Unfold requires us to compute the derivative for
infinitely many a ∈ Σ at each application. We address the second drawback next.

FSTTCS 2014

180 Symbolic Solving of Extended Regular Expression Inequalities

5 Derivatives on Literals

In this section, we develop a variant of Theorem 1 that enables us to define a variant of
the CC-Unfold rule that is guaranteed to add finitely many atoms, even if the alphabet is
infinite. First, we observe that we may restrict the symbols considered in rule CC-Unfold
to initial symbols of the left hand side of an inequality.

I Definition 2 (First). Let first(r) := {a | aw ∈ JrK} be the set of initial symbols derivable
from regular expression r.

Clearly, (∀a ∈ Σ) ∂a(r) v ∂a(s) iff (∀b ∈ first(r)) ∂b(r) v ∂b(s) because ∂b(r) = ∅ for
all b /∈ first(r). Thus, CC-Unfold does not have to consider the entire alphabet, but
unfortunately first(r) may still be an infinite set of symbols. For that reason, we propose
to compute derivatives with respect to literals (i.e., non-empty sets of symbols) instead of
single symbols. However, generalizing derivatives to literals has some subtle problems.

To illustrate these problems, let us recall the specification of the Brzozowski derivative:

J∂a(r)K = a−1JrK

We might be tempted to consider the following naive extension of the derivative to a set of
symbols A.

J∂A(r)K = A−1JrK =
⋃
a∈A

a−1JrK =
⋃
a∈A

J∂a(r)K (wrong)

However, this attempt at a specification yields inconsistent results. To see why, consider the
case where r = !s. Generalizing from ∂a(!s) = !∂a(s), we might try to define ∂A(!s) := !∂A(s).
If this definition was sensible, then (1) and (2) should yield the same results:

J∂A(!s)K (wrong)=
⋃
a∈A

J∂a(!s)K def ∂a=
⋃
a∈A

J∂a(s)K (1)

J!∂A(s)K def ∂a= J∂A(s)K (wrong)=
⋃
a∈A

J∂a(s)K de Morgan=
⋂
a∈A

J∂a(s)K (2)

However, we obtain a contradiction: with A = {a, b} and s = a·a+b·b, (1) yields Σ∗
whereas (2) yields {a, b}, which is clearly different.

5.1 Positive and Negative Derivatives
To address this problem, we introduce two types of derivative operators with respect to
symbol sets. The positive derivative ∆A(r) computes an expression that contains the union
of all ∂a(r) with a ∈ A, whereas the negative derivative ∇A(r) computes an expression
contained in the intersection of all ∂a(r) with a ∈ A.

The positive and negative derivative operators are defined by mutual induction and flip
at the complement operator. Most cases of their definition are identical to the Brzozowski
derivative (cf. Section 2), thus we only show the cases that are different. For all literals A
with JAK 6= ∅:

∆B(A) :=
{
ε, A uB 6= ⊥
∅, otherwise

∆B(!r) := !∇B(r)

∇B(A) :=
{
ε, A uB = ⊥
∅, otherwise

∇B(!r) := !∆B(r)

M. Keil and P. Thiemann 181

For single symbol literals of the form B = {a}, it holds that ∆a(r) = ∇a(r) = ∂a(r).
Derivatives with respect to the empty set are defined as ∆∅(r) = ∅ and ∇∅(r) = Σ∗.

The following lemma states the connection between the derivative by a literal and the
derivative by a symbol.

I Lemma 3 (Positive and negative derivatives). For any r and B, it holds that:

J∆B(r)K ⊇
⋃
a∈B

J∂a(r)K J∇B(r)K ⊆
⋂
a∈B

J∂a(r)K

Proof of Lemma 3. Both inclusions are proved simultaneously by induction on r. J

The following examples illustrate the properties of the derivatives.

I Example 4 (Positive derivative). Let r be (a · c)&(b · c) and let the literal A = {a, b}.

∆A(r) = ∆A(a · c)&∆A(b · c) = c&c w ∂a(r)+∂b(r) = ∅+∅

I Example 5 (Negative derivative). Let r be (a · c)+(b · c) and let the literal A = {a, b}.

∇A(r) = ∇A(a · c)+∇A(b · c) = ∅+∅ v ∂a(r)&∂b(r) = c&c

Positive (negative) derivatives yield an upper (lower) approximation to the information
expected from a derivative. This approximation arises because we tried to define the
derivative with respect to an arbitrary literal A. To obtain the precise information, we need
to restrict these literals suitably to next literals.

5.2 Next Literals
An occurrence of a literal A in a regular expression r is initial if there is some a ∈ Σ such that
∂a(r) reduces this occurrence. That is, the computation of ∂a(r) involves ∂a(A). Intuitively,
A helps determine the first symbol of an element of JrK.

I Example 6 (Initial Literals).
1. Let r1 = {a, b}.a∗. Then {a, b} is an initial literal.
2. Let r2 = {a, b}.a∗ + {b, c}.c∗. Then {a, b} and {b, c} are initial.

Generalizing from the first example, we might be tempted to conjecture that if A is initial in
r, then (∀a, b ∈ A) ∂a(r) = ∂b(r). However, the second example shows that this conjecture is
wrong: {a, b} is initial in r2, but ∂a(r2) = a∗ and ∂b(r2) = a∗ + c∗.

The problem with the second example is that {a, b} ∩ {b, c} 6= ∅. Hence, instead of
identifying initial literals of an ERE r, we define a set next(r) of next literals which are
mutually disjoint, whose union contains first(r), and where the symbols in each literal yield
the same derivative. In the second example, it must be that next(r2) = {{a}, {b}, {c}}.

It turns out that this problem arises in a number of cases when defining next(r) inductively.
Hence, we define an operation on that builds a set of mutually disjoint literals that cover the
union of two sets of mutually disjoint literals.

I Definition 7 (Join). Let L1 and L2 be two sets of mutually disjoint literals.

L1 on L2 :={(A1 uA2), (A1 u
⊔

L2), (
⊔

L1 uA2) | A1 ∈ L1, A2 ∈ L2}

The following lemma states the properties of the join operation.

FSTTCS 2014

182 Symbolic Solving of Extended Regular Expression Inequalities

next(ε) = {∅}
next(A) = {A}

next(r+s) = next(r) on next(s)

next(r·s) =
{
next(r) on next(s), ν(r)
next(r), ¬ν(r)

next(r∗) = next(r)
next(r&s) = next(r) u next(s)
next(!r) = next(r) ∪ {

d
{A | A ∈ next(r)}}

Figure 1 Computing next literals.

I Lemma 8 (Properties of Join). Let L1 and L2 be non-empty sets of mutually disjoint
literals.
1.

⋃
(L1 on L2) =

⋃
L1 ∪

⋃
L2.

2. (∀A 6= A′ ∈ L1 on L2) A uA′ = ∅.
3. (∀A ∈ L1 on L2) (∀Ai ∈ Li) A uAi 6= ∅ ⇒ A v Ai.

Proof of Lemma 8. Immediate from the definition. J

Figure 1 contains the definition of next(r). For ε the set of next literals consists of the empty
set. The next literal of a literal A is A. The next literals of a union r+s are computed as
the join of the next literals of r and s as explained in Example 6. The next literals of a
concatenation r·s are the next literals of r if r is not nullable. Otherwise, they are the join
of the next literals of both operands. The next literals of a Kleene star expression r∗ are the
next literals of r. For an intersection r&s, the set of next literals is the set of all intersections
A uA′ of the next literals of both operands. In this case, the join operation on is not needed
because symbols that only appear in literals from one operand can be elided. To see this,
consider next(a&b) = {{a} u {b}} = {∅} whereas {{a}} on {{b}} = {∅, {a}, {b}}.

The set of next literals of !r comprises the next literals of r and a new literal, which is the
intersection of the complements of all literals in next(r). We might contemplate to exclude
literals that contain symbols a such that ∂a(r) is equivalent to Σ∗, but we refrain from doing
so because this equivalence cannot be decided with a finite set of rewrite rules [17].

The function next(r) \ {∅} computes the equivalence classes of a partial equivalence
relation ∼ on Σ such that equivalent symbols yield the same derivative on r. The relation is
defined by a ∼ b if there exists A ∈ next(r) such that a ∈ A and b ∈ A. Furthermore, the
derivative by a symbol that is not part of the relation yields the empty set.

I Lemma 9 (Partial Equivalence). Let L = next(r).
1. (∀A ∈ L) (∀a, b ∈ A) ∂a(r) = ∂b(r)
2. (∀a /∈

⋃
L) ∂a(r) = ∅

Proof of Lemma 9. Both proofs are by induction on r. J

It remains to show that next(r) covers all symbols in first(r).

I Lemma 10 (First). For all r,
⋃
next(r) ⊇ first(r).

Proof of Lemma 10. The proof is by induction on r. J

Moreover, there are only finitely many different next literals for each regular expression.

I Lemma 11 (Finiteness). For all r, |next(r)| is finite.

M. Keil and P. Thiemann 183

Proof of Lemma 11. By induction on r. The base cases construct finite sets and the
inductive cases build a finite number of combinations of the results from the subexpressions.

J

Now, we put next literals to work. If we only take positive or negative derivatives with
respect to next literals, then the inclusions in Lemma 3 turn into equalities. The result is
that both the positive and the negative derivative, when applied to a next literal A, calculate
a regular expression for the left quotient A−1JrK.

I Theorem 12 (Left Quotient). For all r, A ∈ next(r) \ {∅}, and a ∈ JAK:

J∆A(r)K = J∇A(r)K = J∂a(r)K

Proof of Lemma 12. By induction on r. J

Motivated by this result, we define the Brzozowski derivative for a non-empty subset A of a
literal in next(r). This definition involves an arbitrary choice of a ∈ A, but this choice does
not influence the calculated derivative according to Lemma 9, part 1.

I Definition 13. Let A′ ∈ next(r). For each ∅ 6= A ⊆ A′ define ∂A(r) := ∂a(r), where a ∈ A.

I Lemma 14 (Coverage). For all a, u, and r it holds that:

u ∈ J∂a(r)K ⇔ ∃A ∈ next(r) : a ∈ A ∧ u ∈ J∆A(r)K ∧ u ∈ J∇A(r)K

Proof of Lemma 14. This result follows from Theorem 12 and Lemma 10. J

We conclude that to determine a finite set of representatives for all derivatives of a regular
expression r it is sufficient to select one symbol a from each equivalence class A ∈ next(r)\{∅}
and calculate ∂a(r). Alternatively, we may calculate ∆A(r) or∇A(r) according to Theorem 12.
It remains to lift this result to solving inequalities.

6 Solving Inequalities

Theorem 1 is the foundation of Antimirov’s algorithm. It turns out that we can prove a
stronger version of this theorem, which makes the rules CC-Disprove and CC-Unfold sound
and complete and which also encompasses the soundness of the restriction to first sets.

I Theorem 15 (Containment).

r v s ⇔ (ν(r)⇒ ν(s)) ∧ (∀a ∈ first(r)) ∂a(r) v ∂a(s)

Proof of Theorem 15. r v s iff JrK ⊆ JsK iff (∀w) w ∈ JrK⇒ w ∈ JsK.
Induction on w. If w = ε, then ε ∈ JrK ⇒ ε ∈ JsK iff ν(r) ⇒ ν(s). If w = aw′, then

a ∈ first(r) ⊆ first(s), w′ ∈ a−1JrK ⊆ a−1JsK, which is equivalent to ∂a(r) v ∂a(s). J

As we remarked before, it may be very expensive (or even impossible) to construct all
derivatives with respect to the first symbols, particularly for negated expressions and for
large or infinite alphabets. To obtain a decision procedure for containment, we need a finite
set of derivatives. Therefore, we use next literals as representatives of the first symbols and
use Brzozowski derivatives on literals (Definition 13) on both sides.

To define the next literals of an inequality r v̇ s, it would be sound to use the join
of the next literals of both sides: next(r) on next(s). However, we can do slightly better.
Theorem 15 proves that the first symbols of r are sufficient to prove containment. Using the
full join operation, however, would cover first(r) ∪ first(s) (by Lemma 10). Hence, we define
a left-biased version of the join operator that only covers the symbols of its left operand.

FSTTCS 2014

184 Symbolic Solving of Extended Regular Expression Inequalities

I Definition 16 (Left Join). Let L1 and L2 be two sets of mutually disjoint literals.

L1 n L2 :={(A1 uA2), (A1 u
⊔

L2) | A1 ∈ L1, A2 ∈ L2}

The following lemma states the properties of the left join operation.

I Lemma 17 (Properties of Left Join). Let L1 and L2 be non-empty sets of mutually disjoint
literals.
1.

⋃
(L1 n L2) =

⋃
L1.

2. (∀A 6= A′ ∈ L1 n L2) A uA′ = ∅.
3. (∀A ∈ L1 n L2) (∀Ai ∈ Li) A uAi 6= ∅ ⇒ A v Ai.

Proof of Lemma 17. Immediate from the definition. J

I Definition 18 (Next Literals of an Inequality). Let r v̇ s be an inequality.

next(r v̇ s) := next(r) n next(s)

Finally, we can state a generalization of Antimirov’s containment theorem for EREs, where
each unfolding step generates only finitely many derivatives.

I Theorem 19 (Containment). For all regular expressions r and s,

r v s ⇔ (ν(r)⇒ ν(s)) ∧ (∀A ∈ next(r v̇ s)) ∂A(r) v ∂A(s).

Proof of Theorem 19. The proof is by contraposition. If r 6v s then ∃A ∈ next(r v̇ s) :
∂A(r) 6v ∂A(s) or ¬(ν(r)⇒ ν(s)). J

For A ∈ next(r v̇ s) define ∇A(r v̇ s) := (∇A(r) v̇∆A(s)) = (∂A(r) v̇ ∂A(s)).

I Theorem 20 (Finiteness). Let R be a finite set of regular inequalities. Define

F (R) = R ∪ {∇A(r v̇ s) | r v̇ s ∈ R,A ∈ next(r v̇ s)}

For each r and s, the set
⋃
i∈N F

(i)({r v s}) is finite.

Proof of Theorem 20. As we consider regular expressions up to similarity (cf. [4]) and
∇A(r v̇ s) = ∂A(r) v̇ ∂A(s) is essentially applying the Brzozowski derivative to a pair of
(extended) regular expressions, the set of these pairs is finite (because there are only finitely
many dissimilar iterated Brzozowski derivatives for a regular expression [4]). J

These results are the basis for a complete decision procedure for solving inequalities
on extended regular expressions where literals are defined via an effective boolean algebra.
Figure 2 defines this procedure as a judgment of the form Γ ` r v̇ s : b, where Γ is a set
of previous visited inequalities r v̇ s with ν(r) ⇒ ν(s) that are assumed to be true and
b ∈ {true, false}. The effective boolean algebra comes into play in the computation of the
next literals and in the computation of the derivatives.

Rule (Disprove) detects contradictory inequalities in the same way as Antimirov’s rule
CC-Disprove. Rule (Cycle) detects circular reasoning: Under the assumption that r v̇ s
holds we were not (yet) able to derive a contradiction and thus conclude that r v̇ s holds.
This rule guarantees termination because of the finiteness result (Theorem 20). The rules
(Unfold-True) and (Unfold-False) apply only if r v̇ s is neither contradictory nor in
the context. A deterministic implementation would generate the literals A ∈ next(r v̇ s) and
recursively check ∇A(r v̇ s). If any of these checks returns false, then (Unfold-False) fires.
Otherwise (Unfold-True) signals a successful containment proof. Theorem 19 is the basis
for soundness and completeness of the unfolding rules.

M. Keil and P. Thiemann 185

(Disprove)
ν(r) ¬ν(s)

Γ ` r v̇ s : false

(Cycle)
r v̇ s ∈ Γ

Γ ` r v̇ s : true

(Unfold-True)
r v̇ s 6∈ Γ ν(r)⇒ ν(s) ∀A ∈ next(r v̇ s) : Γ ∪ {r v̇ s} ` ∂A(r) v̇ ∂A(s) : true

Γ ` r v̇ s : true

(Unfold-False)
r v̇ s 6∈ Γ ν(r)⇒ ν(s) ∃A ∈ next(r v̇ s) : Γ ∪ {r v̇ s} ` ∂A(r) v̇ ∂A(s) : false

Γ ` r v̇ s : false

Figure 2 Decision procedure for containment.

(Prove-Identity)
Γ ` r v r : true

(Prove-Empty)
Γ ` ∅ v s : true

(Prove-Nullable)
ν(s)

Γ ` ε v s : true

(Disprove-Empty)
∃A ∈ next(r) : A 6= ∅
Γ ` r v ∅ : false

Figure 3 Prove and disprove axioms.

I Theorem 21 (Soundness). For all regular expression r and s:

∅ ` r v̇ s : > ⇔ r v s

Proof of Theorem 21. We prove that Γ ` r v̇ s : false iff r 6v s, for all contexts Γ where
r v̇ s /∈ Γ. This is sufficient because each regular inequality gives rise to a finite derivation
by Theorem 20. J

In addition to the rules from Figure 2, we may add auxiliary rules to detect trivially
consistent or inconsistent inequalities early (Figure 3 contains some examples). Such rules
may be used to improve efficiency. They decide containment directly instead of unfolding
repeatedly.

7 Conclusion

Antimirov’s algorithm is a viable tool for proving containment of regular expressions to
extended regular expressions on potentially infinite alphabets. To work effectively with such
alphabets, we require that literals in regular expressions are drawn from an effective boolean
algebra. As a slight difference, we work with Brzozowski derivatives instead of Antimirov’s
notion of partial derivative.

The main effort in lifting Antimirov’s algorithm is to identify, for each regular inequality
r v̇ s, a finite set of symbols such that calculating the derivation with respect to these
symbols covers all possible derivations with all symbols. We regard the construction of the
set of suitable representatives in an effective boolean algebra, embodied in the notion of next
literals next(r v̇ s), as a key contribution of this work.

FSTTCS 2014

186 Symbolic Solving of Extended Regular Expression Inequalities

References
1 Valentin M. Antimirov. Rewriting regular inequalities. In Horst Reichel, editor, FCT,

volume 965 of LNCS, pages 116–125. Springer, 1995.
2 Valentin M. Antimirov. Partial derivatives of regular expressions and finite automaton

constructions. Theoretical Computer Science, 155(2):291–319, 1996.
3 Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to

congruence. In Roberto Giacobazzi and Radhia Cousot, editors, POPL, pages 457–468,
Rome, Italy, January 2013. ACM.

4 Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
5 Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. Partial derivatives of an

extended regular expression. In Adrian Horia Dediu, Shunsuke Inenaga, and Carlos Martín-
Vide, editors, LATA, volume 6638 of LNCS, pages 179–191. Springer, 2011.

6 A. Ginzburg. A procedure for checking equality of regular expressions. J. ACM, 14(2):355–
362, April 1967.

7 Victor M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys,
16(5):1–53, 1961.

8 Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. Access permission contracts
for scripting languages. In John Field and Michael Hicks, editors, Proc. 39th ACM Symp.
POPL, pages 111–122, Philadelphia, USA, January 2012. ACM Press.

9 John Edward Hopcroft and Richard Manning Karp. A linear algorithm for testing equiva-
lence of finite automata. Technical report, Cornell University, 1971.

10 Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the equivalence,
containment, and covering problems for the regular and context-free languages. J. Comput.
Syst. Sci., 12(2):222–268, 1976.

11 Tao Jiang and Bala Ravikumar. Minimal NFA problems are hard. SIAM J. Comput.,
22(6):1117–1141, 1993.

12 Matthias Keil and Peter Thiemann. Efficient dynamic access analysis using JavaScript
proxies. In Proceedings of the 9th Symposium on Dynamic Languages, DLS’13, pages 49–
60, New York, NY, USA, 2013. ACM.

13 Matthias Keil and Peter Thiemann. Symbolic solving of regular expression inequalities.
Technical report, Institute for Computer Science, University of Freiburg, 2014.

14 Robert McNaughton and Hisao Yamada. Regular expressions and state graphs for au-
tomata. Electronic Computers, IRE Transactions on, EC-9(1):39–47, 1960.

15 Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. In SWAT (FOCS), pages 125–129. IEEE
Computer Society, 1972.

16 Scott Owens, John H. Reppy, and Aaron Turon. Regular-expression derivatives re-examined.
J. Funct. Program., 19(2):173–190, 2009.

17 Valentin N. Redko. On defining relations for the algebra of regular events. Ukrain. Mat.,
16:120–126, 1964.

18 Ken Thompson. Regular expression search algorithm. Commun. ACM, 11(6):419–422,
1968.

19 Gertjan van Noord and Dale Gerdemann. Finite state transducers with predicates and
identities. Grammars, 4(3):263–286, 2001.

20 Margus Veanes. Applications of symbolic finite automata. In Stavros Konstantinidis, edi-
tor, CIAA, volume 7982 of Lecture Notes in Computer Science, pages 16–23, Halifax, NS,
Canada, 2013. Springer.

21 Bruce W. Watson. Implementing and using finite automata toolkits. Nat. Lang. Eng.,
2(4):295–302, December 1996.

Solving the Stable Set Problem in Terms of the
Odd Cycle Packing Number
Adrian Bock1, Yuri Faenza1, Carsten Moldenhauer1, and
Andres Jacinto Ruiz-Vargas2

1 DISOPT, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 DCG, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
The classic stable set problem asks to find a maximum cardinality set of pairwise non-adjacent
vertices in an undirected graph G. This problem is NP-hard to approximate with factor n1−ε

for any constant ε > 0 [10, 24], where n is the number of vertices, and therefore there is no hope
for good approximations in the general case. We study the stable set problem when restricted to
graphs with bounded odd cycle packing number ocp(G), possibly by a function of n. This is the
largest number of vertex-disjoint odd cycles in G. Equivalently, it is the logarithm of the largest
absolute value of a sub-determinant of the edge-node incidence matrix AG of G. Hence, if AG is
totally unimodular, then ocp(G) = 0. Therefore, ocp(G) is a natural distance measure of AG to
the set of totally unimodular matrices on a scale from 1 to n/3.

When ocp(G) = 0, the graph is bipartite and it is well known that stable set can be solved in
polynomial time. Our results imply that the odd cycle packing number indeed strongly influences
the approximability of stable set. More precisely, we obtain a polynomial-time approximation
scheme for graphs with ocp(G) = o(n/ logn), and an α-approximation algorithm for any graph
where α smoothly increases from a constant to n as ocp(G) grows from O(n/ logn) to n/3. On
the hardness side, we show that, assuming the exponential-time hypothesis, stable set cannot
be solved in polynomial time if ocp(G) = Ω(log1+ε n) for some ε > 0. Finally, we generalize a
theorem by Györi et al. [9] and show that graphs without odd cycles of small weight can be made
bipartite by removing a small number of vertices. This allows us to extend some of our above
results to the weighted stable set problem.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases stable set problem, independent set problem, approximation algorithms,
odd cycle packing number, maximum subdeterminants

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.187

1 Introduction

The stable or independent set problem is fundamental in combinatorial optimization. It
is as follows: Given an undirected graph G = (V,E), find a subset S ⊆ V of maximum
cardinality such that no two vertices in S are adjacent. Stable sets occur naturally when
pairwise conflicts of choice have to be respected. It is among the very first combinatorial
optimization problems that were shown to be NP-hard [14], and a showcase for the field
of hardness of approximation. There is theoretical evidence that the stable set problem is
extremely hard to solve: A celebrated result of Håstad [10], derandomized by Zuckerman [24],
shows that unless P = NP , there does not exist a

(
n1−ε)-approximation for the stable set

problem, where n is the number of vertices of G and ε > 0 is any fixed constant (here and
throughout the paper, n denotes the number of vertices of the graph in analysis). From a

© Adrian Bock, Yuri Faenza, Carsten Moldenhauer, and Andres Jacinto Ruiz-Vargas;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 187–198

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.187
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

188 Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number

parameterized perspective, the stable set problem is W [1]-hard (see e.g. [4]), i.e., there is no
polynomial time algorithm even if the cardinality of the optimal solution is considered as a
fixed parameter.

When restricted to special graph classes the problem becomes more tractable. For
instance, it is polynomial time solvable in perfect graphs and claw-free graphs [5, 8, 19], while
it has a PTAS e.g. on planar graphs [2]. Foremost, it can be solved efficiently on bipartite
graphs. In this case, the edge-node incidence matrix

AG(e, u) =
{

1 if u is incident to e,
0 otherwise,

is totally unimodular, see, e.g. [20]. By the Hoffman-Kruskal theorem [12], all the vertices of
the natural linear programming relaxation for the stable set problem

max
{∑
v∈V

xv : AG x ≤ 1, x ≥ 0
}

are then integral, and one can resort to algorithms for linear programming to efficiently solve
the problem, also in its weighted variant. A 0/1-matrix is totally unimodular if the largest
absolute value of any of its sub-determinants is at most 1. The guiding questions of our
paper are:

How well can the stable set problem be approximated if AG is not totally unimodular?
Is it possible to parametrize the approximability by the largest absolute value ∆ of a
sub-determinant of AG?

Recall that ∆ = 1, i.e. the totally unimodular case, is equivalent to G having no odd
cycles. ∆ maintains a neat combinatorial interpretation also when it is greater than 1.
Define the odd cycle packing number of G to be the cardinality of a maximum family of
vertex-disjoint odd cycles of G. We denote it by ocp(G), omitting the dependence on G

when it is clear from the context. Note that ocp(G) ≤ n/3 for all graphs G. As observed
in [7], for a graph G with edge–node incidence matrix AG, the largest absolute value of a
sub-determinant is ∆ = 2ocp. Hence upper bounding ∆ is tantamount to upper bounding
the odd cycle packing number of G.

Our contribution. We show that the stable set problem can be very well approximated if
ocp(G) = o(n/ logn). Beyond this, the approximation guarantee smoothly approaches the
hardness result from [10] as ocp approaches n/3.

I Theorem 1. The stable set problem on a graph G admits the following approximation
algorithms:

Polynomial time approximation scheme (PTAS) if ocp(G) = o(n/ logn);
O
(
n1/p)-approximation if ocp(G) ≤ n

2δp−1 for p integer (possibly a function of n) and
any constant δ > 1.

Surprisingly, these approximation guarantees can be obtained using simple greedy algo-
rithms. Theorem 1 implies that stable set is fixed-parameter tractable (with the parameter
being the size of the maximum stable set) when ocp = o(n/ logn), see Corollary 12, and that
graphs where the hardness [10] is achieved can essentially be partitioned into triangles.

Before discussing each of the two algorithms of Theorem 1 separately, let us remark that
both can be executed and will output a certificate of the approximation guarantee even

A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas 189

without the knowledge of the ocp of the input graph. The first algorithm runs in polynomial
time on graphs with ocp = o(n/ logn). However, it might run in super-polynomial time on
graphs with ocp = Ω(n/ logn). The second algorithm always runs in polynomial time.

In order to make the first algorithm robust against malicious input, it would be sufficient
to find the ocp of the input graph. Unfortunately, computing the odd cycle packing number
of a graph is NP-hard and inapproximable up to log1/2−ε n for all ε > 0 (see the discussion
in [3]). The best-known approximation algorithm has only ratio

√
n [15]. But, we can use the

following weak separation theorem to distinguish between graphs with ocp(G) = Ω(n/ logn)
and graphs with ocp(G) = o(n/ log2 n).

I Theorem 2 (Weak separation). Let G(V,E) be a graph and 1 ≤ c ≤ n = |V | with c

possibly depending on n. In time O(n4) we can conclude that ocp(G) <
√
cn, or that

ocp(G) ≥ c, and hence distinguish between graphs with ocp(G) = Ω(n/ logn) and graphs with
ocp(G) = o(n/ log2 n).

Thus, for most inputs to the algorithms from Theorem 1 we can efficiently check if they
satisfy the condition on the ocp. Theorem 2 follows from a careful analysis of a simple greedy
algorithm for ocp, see Theorem 3.

Considering hardness of approximation, we show that the stable set problem over G
cannot be solved in polynomial time when ocp = Ω(log1+ε n) for all ε > 0, unless the
exponential-time hypothesis is false (see Theorem 13). Hence, under the exponential-time
hypothesis, Theorem 1 is best possible for graphs with ocp ∈ Ω(log1+ε(n)) ∩ o(n/ logn) for
each ε > 0.

The stable set problem, parameterized by the odd cycle packing number, can also be
seen as a special case of integer programming parameterized by the absolute value of a sub-
determinant of the constraint matrix. In particular, our hardness result provides an example
of a non-polytime solvable (under the exponential-time hypothesis) integer program when
the absolute value of the maximum sub-determinants is assumed to be of order Ω

(
nlogε n

)
.

In the weighted version of the stable set problem, a non-negative integer weight is
associated to each vertex, and the goal is to find the set of non-adjacent vertices of maximum
total weight. Extending our PTAS for the unweighted case we show that the weighted stable
set problem on G admits a PTAS if ocp = O(

√
logn/ log logn) (see Theorem 15).

A key ingredient in all our algorithms is an idea of Györi et al. [9]. If a graph does not
have small odd cycles, it is possible to find a small set of vertices that can be removed from
the graph in order to make it bipartite. We extend the result of [9] to the vertex weighted
case which supplies the necessary machinery for the PTAS for the weighted variant. This
generalization is obtained by relating odd cycles of small weight with the number of vertices
to be removed to make the graph bipartite. One easily checks that a variant relating odd
cycles of small weight with the weight of vertices to be removed cannot exist.

Organization of the paper. We conclude this first section settling notation and highlighting
related work. Section 2 is devoted to an improved approximation of ocp and Theorem 2.
Section 3 is devoted to the proof of Theorem 1. We will first outline an easy algorithm
(Algorithm 2) that provides the basic ideas and yields a first approximation result. This
will prove the second part of Theorem 1. Then, we will discuss ideas on how to refine the
analysis to prove the first part of Theorem 1. Section 4 deals with the weighted version of
both Györi et al.’s theorem and the PTAS for the weighted stable set problem.

FSTTCS 2014

190 Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number

1.1 Notation
Throughout this paper we consider an undirected graph G = (V (G), E(G)). When G is
clear from the context we will denote its vertex and edge sets by V and E respectively. For
each v ∈ V (G), let Ni(v) denote the i-th neighborhood in a breadth-first search from v.
For S ⊆ V , we denote by G[S] the subgraph of G induced by S. For a weighted graph G
and v ∈ V (G) we use w(v) to denote the weight of v and for a subset S ⊆ V define
w(S) =

∑
v∈S w(v). All weights are assumed to be non-negative integers. Most of the other

notation and definitions we employ are standard, and we refer the reader to textbooks for
details on graphs, approximation algorithms, fixed-parameter tractability, and big-O notation
(see for instance [21], [4], and [23]).

1.2 Related work
A dual concept to packing odd cycles is finding an odd cycle transversal, i.e., the minimum
number of vertices that have to be removed to bipartize the graph. We denote it by oct(G).
Clearly for each graph G we have ocp(G) ≤ oct(G), and there are examples of graphs, called
Escher walls [18], where ocp = 1 and oct =

√
n. In some special cases there are odd cycle

transversals of small size. For instance, in planar graphs, it is known that oct ≤ 6 ocp [16].
Györi et al. [9] showed that oct is also small when G does not have “short” odd cycles.
More formally, for each ε > 0 (possibly a function of n), if G has no odd cycle of length at
most εn, then oct(G) ≤ f(ε) for some function f only depending on ε. This result and our
new generalization are key components of our algorithms. Both computing ocp and oct is
NP-hard, even when the input graph is planar [15, 6]. However, the two problems admit a√
n [15] and

√
logn [1] approximation, respectively.

The exponential-time hypothesis (ETH) [13] states that, for each k ≥ 3, k−SAT cannot
be decided with a sub-exponential time algorithm. An algorithm runs in sub-exponential time
if it takes time 2o(n) where n is the size of the instance. Impagliazzo et al.[13] also show that
the ETH implies that there is no sub-exponential time algorithm for the stable set problem.

In the rest of the paper we will often use the fact that a shortest odd cycle in a graph
can be found in time O(n3). This is standard, and can be found e.g. in [17].

2 Odd cycle packing

In this section, we show that a simple greedy algorithm provides a min{ocp, n/ocp}-
approximation for the ocp. Hence, when ocp = Θ(

√
n), it matches the O(

√
n)-approximation

by Kawarabayashi and Reed [15], and in all other cases improves over it.

Algorithm 1: Greedy algorithm for ocp
Input: a graph G.
Output: a family C of vertex-disjoint odd cycles of G.

1. Set G′ = G, C = ∅.
2. WHILE G′ is not bipartite:

i) Find a shortest odd cycle C of G′.
ii) Set C = C ∪ {C} and G′ = G′ \ C.

3. Return C.

A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas 191

I Theorem 3. In time O(n4) Algorithm 1 finds a min{ocp, n
ocp}-approximation for ocp.

Proof. Let ocp := ocp(G), |V | = n, O be the optimal solution, and C = {C1, . . . , Ct} be
the solution output by Greedy. As Algorithm 1 will find at least one odd cycle (if any), we
know it is an ocp-approximation. So we only need to prove that t n

ocp ≥ ocp or, equivalently,
ocp2 ≤ tn.

For i = 1, . . . , t, let |Ci| = ci and ki be the number of cycles from O that intersect Ci
but none of C1, . . . , Ci−1. Note that

∑t
i=1 ki = ocp. As all cycles from O contributing to ki

have length at least |Ci| = ci, and as cycles from O are vertex-disjoint, we deduce

t∑
i=1

kici ≤ n. (1)

As Ci can intersect at most |Ci| = ci vertex-disjoint odd cycles, we have

0 ≤ ki ≤ ci for all i. (2)

We conclude that

ocp2 = (
t∑
i=1

ki)2 ≤ t
t∑
i=1

k2
i ≤ t

t∑
i=1

kici ≤ tn,

where the first inequality follows from Cauchy-Schwarz, and the others from (2) and (1)
respectively. The complexity bound follows from the fact that we can find an odd cycle in a
graph in time O(|V |3). J

In order to prove Theorem 2, it is sufficient to observe that, if the greedy algorithm
outputs C of cardinality t < c, then we know ocp(G) ≤

√
tn <

√
cn. Otherwise, ocp(G) ≥

t ≥ c. The second part of the theorem follows by taking c = n/ log2 n.
It is easy to see that Theorem 3 is essentially tight for each value of ocp. We give

here the construction for ocp =
√
n: let G be a graph with odd cycles C0, C1 . . . , C√n

all of length
√
n, such that C0 intersects each of C1, . . . , C√n in exactly one vertex, and

C1 . . . , C√n are pairwise vertex-disjoint. Then the greedy algorithm may pick C0 only, while
ocp(G) =

√
n. One easily generalizes this construction to other values of ocp.

Now let C be the family of all odd cycles of the graph, and let f-ocp be the optimum
solution to the following natural LP relaxation of ocp:

max
∑
C∈C

yC (ocp-LP)∑
C:v∈C

yC ≤ 1 for all v ∈ V

yC ≥ 0 for all C ∈ C.

With arguments very close to those used in the proof of Theorem 3 one can show the following,
also improving over results from [15]. We defer details to the journal version of the paper.

I Theorem 4. The greedy algorithm is a min{ocp, |V |f-ocp} algorithm for the ocp and a
min{f-ocp, |V |f-ocp} for f-ocp. In particular, the integrality gap of the LP given by (ocp-LP) is
bounded by min{f-ocp, |V |f-ocp}.

FSTTCS 2014

192 Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number

3 Stable set

The main idea of all subsequent algorithms is the following. In a first step, delete small odd
cycles. Due to the definition of small, this will only delete a small portion of the graph. If
the remaining graph is bipartite, we can solve the stable set problem to optimality on this
remainder. Otherwise, in a second step, we can leverage the fact that the remaining graph
does not contain small odd cycles and obtain a large stable set.

The precise implementation of this second step depends on the size of the ocp. We
will first show a general method that does not require to know the ocp of the input graph,
i.e., its runtime is independent of the ocp but the approximation guarantee depends on it
(Algorithm 2). Then, assuming that ocp = o(n/ logn) we will show how to improve this
second step to obtain a PTAS (Algorithm 3 and 4).

3.1 A first approximation algorithm
Now, assume that G does not have an odd cycle of size at most 2k + 1. Lemma 5 states
that G must have a large stable set (depending on k). We defer the proof to the journal
version. A similar result, though with slightly different dependencies, was also obtained
in [22].

I Lemma 5. Let k ∈ N and G be a graph with no odd cycles of cardinality less or equal to
2k + 1 (k ≥ 1). Then, there exists a stable set S of size |S| > 1

3n
k

k+1 which can be found in
time O(n5/2).

I Corollary 6. Let G be a graph without odd cycles of cardinality less or equal to 2k + 1
(k ≥ 1). Then Lemma 5 gives a

(
3 n1/(k+1))-approximation algorithm to the stable set

problem.

Now, given any graph G, Algorithm 2 iteratively removes odd cycles of length up to some
fixed value 2k+ 1, and then applies Lemma 5 to obtain a large stable set. The optimal k will
depend on the odd cycle packing number of the graph. Since we want to apply it to graphs
whose ocp is not known a priori, we run the algorithm for all possible values of k. Let us
remark that the approximation guarantee of Algorithm 2 is in terms of the ocp. However,
we can compute an upper bound on the effective guarantee without knowing the ocp. This
is because the bound on the approximation guarantee compares the obtained solution with
the size of the entire graph.

Algorithm 2: Approximation algorithm for general ocp
Input: a graph G.
Output: a stable set of G.

1. For k = 1, . . . ,
⌊
n−1

2
⌋
do:

i) G′ = G, Sk = ∅.
ii) While there exists an odd cycle of cardinality at most 2k + 1 in G′, delete it from G′.
iii) If G′ is empty, choose any vertex v in G and set Sk = {v}.
iv) Else apply Lemma 5 to G′ and obtain Sk.

2. Return the set Sk of maximum cardinality.

A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas 193

I Theorem 7. Algorithm 2 has approximation guarantee{
n if ocp = n

3

3n(n− (2p+ 1)ocp)
1

p+1−1 if ocp < n
2p+1 for some p ∈ N

for the stable set problem and runs in time O
(
n5).

Proof. There are Θ(n) iterations. Finding a shortest odd cycle takes O(n3) time. Hence,
the deletion step in each iteration takes at most O(n4) time. The application of Lemma 5
takes O(n5/2) time. Overall, Algorithm 2 runs in time O(n5).

We now prove the approximation guarantee. If G′ is empty at the end of step ii), the
guarantee is clearly n. Otherwise, at most (2k + 1)ocp vertices have been deleted. Hence, if
(2k+ 1)ocp < n, then G′ has at least n− (2k+ 1)ocp vertices and no odd cycle of cardinality
at most 2k + 1. Therefore, the application of Lemma 5 yields a stable set of size at least
1
3 (n− (2k + 1)ocp)

k
k+1 . This implies an approximation guarantee of

n/

(
1
3 (n− (2k + 1)ocp)

k
k+1

)
= 3n (n− (2k + 1)ocp)

1
k+1−1

,

under the condition that (2k + 1)ocp < n. Given that ocp < n
2p+1 we obtain the claimed

result with k = p. J

Note that this provides a smooth transition when ocp approaches n/3. This is formally
stated in the next corollary and establishes the second part of Theorem 1 (the difference in
the exponent is due to the offset of p in the bound on the ocp).

I Corollary 8. Let G be a graph with ocp(G) ≤ n
2δp+1 for a strictly positive integer p (possibly

a function of n) and a constant δ > 1. Then, Algorithm 2 yields a O
(
n1/(p+1))-approximation.

Proof. Since δ > 1 we have

ocp ≤ n

2δp+ 1 <
n

2p+ 1 .

Thus, we can use the result from Theorem 7 and obtain a guarantee of

3n(n− (2p+ 1)ocp)−
p

p+1 ≤ 3n
(
n

(
1− 2p+ 1

2δp+ 1

))− p
p+1

= 3n1/(p+1)
(

2δp+ 1
2p(δ − 1)

) p
p+1

.

Now, observe that 1
2 ≤

p
p+1 ≤ 1 and

(
2δp+1

2p(δ−1)

)
≤ (δ+ 1

2p)
δ−1 ≤ δ+1

δ−1 . The claim immediately
follows. J

Let us remark that Corollary 8 gives a O(
√
n)-approximation for graphs that have

ocp ≤ n
3+δ for small constant δ > 0. Note that in particular triangle-free graphs fall into

this category and the best known approximation algorithm for these graphs has a guarantee
of O(

√
n) [11]. Further, if ocp = O

(
n

logn

)
we obtain a constant factor approximation. We

will see next that for smaller ocp we can even obtain an approximation scheme.

3.2 A PTAS for ocp = o (n/ log n)
We now restrict our attention to graphs G with ocp = o (n/ logn), i.e., we assume that there
exists a function f(n) ∈ o(1) such that the input graph G on n vertices has ocp(G) ≤ f(n) n

lnn .
We give a PTAS for the stable set problem in these graphs. Again, the algorithm does not

FSTTCS 2014

194 Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number

require the knowledge of the ocp and hence can be run on any graph. However, the existence
of such a function f is required to prove polynomial runtime.

The main new ingredient in this algorithm is to find a small odd cycle transversal X, i.e.,
a small set of vertices whose removal bipartizes the graph. We use a result by Györi et al. [9]
that gives a bound on |X| that is, in a certain sense, independent of the size of the graph.
Given the right parameter settings, we can ensure that |X| is small and can therefore be
removed from the graph. Solving stable set to optimality on the remaining bipartite graph
then yields the solution.

We start by restating the theorem of Györi et al. [9]. The proof in [9] contains a minor,
non-fatal error. We restate a correct version in Theorem 9 with adapted constants. The
proof is constructive and can be turned into a polytime algorithm. We do not outline the
proof of Theorem 9 here since it follows (albeit with new constants) also from the weighted
version in Theorem 14.

I Theorem 9 (from [9]). Let 0 < ε ≤ 1 (possibly a function of n) and assume there exists
no odd cycle of cardinality smaller than εn in G. Then, there is an odd cycle transversal X
of G of size |X| ≤ 48

ε ln 5
ε that can be found in O(n4) time.

Note that the bound in Theorem 9 is only useful for ε = Ω (logn/n). It will turn out
later that this is the reason for the limitation of our PTAS to graphs with ocp = o (n/ logn).

Algorithm 3 is a technical routine that will guarantee the existence of stable sets of a
certain size, given an upper bound b on the ocp, and a parameter c that will depend on the
approximation factor of the PTAS.

Algorithm 3: Subroutine for computing a large stable set
Input: graph G, parameters b ≥ c > 0.
Output: a stable set of G.

1. Set ε = c
b , and let G′ = G.

2. While there exists an odd cycle of cardinality smaller than ε|V (G)| in G′, remove it
from G′.

3. If G′ is not bipartite, find an odd cycle transversal X (Theorem 9) and remove it from G′.
4. Solve the stable set problem in G′ and return the solution.

I Lemma 10. Let G be a graph, and b and c chosen such that b ≥ ocp(G) > 0 and 0 < c ≤ b.
Then, Algorithm 3 applied to G, b, and c finds in time O(n4) a stable set of size at least

1
2

(
(1− c)n− 48 b

c
ln 5 b

c

)
.

Proof. The algorithm removes at most ocp odd cycles of size at most εn in Step 2. Hence,
G′ has at least n− ocp εn ≥ n− b cbn = (1− c)n vertices. The claim now follows using the
bound on |X| from Theorem 9 and the fact that every bipartite graph admits a stable set on
at least half of its vertices.

Finding a shortest odd cycle in G′ takes O(|V (G′)|3) ⊆ O(n3) time. Since the removal
of an odd cycle means the removal of at least three vertices, this procedure is only needed
O(n) times. Hence, Step 2 takes O(n4) time. Step 3 takes O(n4) time (Theorem 9). Solving
maximum stable set in G′ takes O(n5/2) time [21, Cor. 19.3a]. In fact, the proof requires
only one side of the bipartition which can be found in O(n2). Concluding, the runtime of
Algorithm 3 is O(n4). J

A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas 195

Algorithm 4: PTAS for the unweighted case when ocp = o(n/ logn)
Input: graph G and a parameter δ > 0.
Output: a stable set of G.

1. Set c = δ
3+2δ and b = c2n

50 lnn .
2. Run Algorithm 3 with b and c and obtain a solution S. Let C denote the union of the cycles

removed in Step 2 of Algorithm 3 and X denote the set found in Step 3 of Algorithm 3.
3. If 1

2 |C|+ |X| ≤ δ|S|, return S.
4. Otherwise, solve the maximum stable set problem by complete enumeration.

I Theorem 11 (Polynomial time approximation scheme). Let 1 ≥ δ > 0 and G be a graph
with ocp(G) = h(n), where h(n) = o

(
n

logn

)
. Algorithm 4 is a (1 + δ) approximation for

the maximum stable set problem on G and runs in time p(δ) + O(n4) for an appropriate
function p depending only on δ.

Proof. If Algorithm 4 returns a solution in Step 4, we obtain the optimal solution. Hence,
assume that Algorithm 4 returns a solution in Step 3. We derive an upper bound on the size
of the optimal solution OPT(G). Let G′ denote the bipartite graph after the application of
Step 3 of Algorithm 3. Recall that G = G′ ∪X ∪ C. In each cycle of C, the optimal solution
can take at most half of the vertices. Note that S is the optimal solution on the bipartite
graph G′ (Step 4 of Algorithm 3). Hence,

OPT(G) ≤ OPT(G′) + |X|+ 1
2 |C| = |S|+ |X|+

1
2 |C| ≤ (1 + δ)|S|.

Since ocp(G) = o(n/ logn) there exists a function f ∈ o(1) with ocp(G) ≤ f(n) n
lnn . Let

N be the constant

N = min
{
m ∈ N : c2m

50 lnm ≥ 1 and f(m′) ≤ c2

50 for all m′ ≥ m
}
.

We now prove that for n ≥ N the condition in Step 3 of Algorithm 4 will be satisfied. Hence,
the algorithm only uses complete enumeration for constant size graphs, where the constant
only depends on δ when we fix the function h in the statement of the theorem. Otherwise, it
relies on Algorithm 3 which runs in time O(n4). This concludes the analysis of the running
time.

Therefore, assume n ≥ N . By the definition of N and b we have b ≥ 1 and b = c2n
50 lnn ≥

f(n) n
lnn ≥ ocp(G). Thus, b is a valid upper bound for ocp. The size of each cycle in C is

upper bounded by εn. Therefore |C| ≤ ocp ε n ≤ b ε n = c n. Furthermore, we have from
Theorem 9 and the setting of b that

|X| ≤ 48b
c

ln
(

5b
c

)
≤ c n 1

lnn ln
(n

lnn

)
≤ c n.

Plugging this into the bound of Lemma 10 gives |S| = OPT(G′) ≥ 1
2 ((1− c)n− c n) =

1
2 (1− 2c)n. Finally, using c = δ

3+2δ we obtain

|X|+ 1
2 |C|

|S|
≤

cn+ 1
2cn

1
2 (1− 2c)n

= 3c
1− 2c = δ.

Thus, if n ≥ N , Algorithm 4 returns a solution in Step 3. J

FSTTCS 2014

196 Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number

3.3 Fixed-parameter tractability
Algorithm 4 is in fact an efficient PTAS (see e.g. [4]), for its running time is at most
p(δ) +O(n4), for appropriate function p. Using standard arguments (see [4, Theorem 4.6])
we can use Algorithm 4 to conclude the following.

I Corollary 12. Let h : N→ N be a function such that h(n) = o(n/ logn). Then, the stable
set problem is FPT in the class of graphs with ocp = h(n). More precisely, for a graph G
in this class it can be solved in time f(OPT) + n4, where OPT is the maximum stable set
and f is an appropriate function depending only on OPT.

3.4 Hardness
I Theorem 13. If the ETH is true, then for each ε > 0, the maximum stable set problem
cannot be solved in polynomial time for graphs with ocp = Ω((logn)1+ε).

A sketch of the proof is as follows: given a graph G, we can “blow it up” in order to
obtain a new graph G′ with much more vertices, but the same ocp. In particular, the ocp
will be much smaller with respect to the number of vertices of the graph. Then, we show that
solving the stable set problem for G′ in polynomial time implies that we can solve the stable
set problem for G in sub-exponential time, contradicting the ETH. We defer the details to
the journal version.

4 Weighted stable set

4.1 Graphs without odd cycles of small weight are almost bipartite
In this section, we show that a graph without odd cycles of small weight has an odd cycle
transversal of small cardinality. This generalizes Theorem 9 by Györi et al. [9]. The proof of
Theorem 14 follows the same framework of the original: we iteratively find and delete “small”
neighborhoods of vertices from a “small” cycle. However, the presence of weights implies
some difficulties that are non-trivial to overcome. Let us mention two here: first, unlike
in the unweighted case, not all vertices from a “small” cycle are a suitable starting point
for this procedure. Second, it is not clear a priori how to define weighted neighborhoods
appropriately. We postpone the full proof to the journal version. The weighted version also
provides a proof of the unweighted case with different constants, but the same dependency
on ε.

I Theorem 14. Let G be a graph with n vertices and node weights w. Let 0 < ε ≤ 1 and
assume there exists no odd cycle C of G with w(C) < εw(V). Then, there exists an odd cycle
transversal X of G of size |X| ≤ 96

ε ln 10
ε that can be found in O(n4 log(w(V))) time.

4.2 A PTAS for ocp = O(
√

log n
log log n

)

In this section, we present a PTAS for the weighted stable set problem. Note that this time
we need to know the ocp of the graph in advance. We only sketch the proof here and defer it
to the journal version.

Similarly to the unweighted case, we iteratively remove odd cycles of small weight until
we can find an odd cycle transversal X of small cardinality, whose existence is guaranteed by
Theorem 14. There are two obstacles to overcome. First, the weight of the set X can be
very high, so we cannot afford to simply remove it as in the unweighted case. Second, the

A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas 197

maximum weight of a stable set in the graph is not necessarily a constant fraction of the
total weight of the graph. Thus we have to ensure that the total weight of the odd cycles
that we remove is small with respect to the weight of the optimum solution.

We overcome the first obstacle by enumerating all possible stable sets on X. The second
obstacle can be dealt with via the following observation. The input graph G = (V,E) can
be partitioned into ocp many odd cycles and one bipartite subgraph. By the pigeonhole
principle, one of these subgraphs has weight at least 1

ocp+1w(V). Since the maximum stable
set of an odd cycle C is at least 1

3w(C), we conclude that the maximum weight stable set
of G has weight at least 1

3ocp+3w(V) ≥ 1
6ocpw(V). The combination of those two difficulties

limits the applicability of our PTAS to graphs with ocp = O(
√

logn/ log logn).

I Theorem 15. Algorithm 5 is a PTAS for the weighted stable set problem if ocp =
O
(√

logn
log logn

)
.

Algorithm 5: PTAS for the weighted stable set problem in graphs with ocp = O
(√

logn
log logn

)
Input: graph G, vertex weights w : V → N, a parameter δ > 0.
Output: a stable set of G of weight at least 1

1+δ times the optimal value.

1. Set ε = δ
6(1+δ)ocp2 for the remainder of the algorithm and use G′ = G as a copy.

2. While there exists an odd cycle of weight at most εw(G′) in G′, remove it from G′.
3. Apply Theorem 14 to find an odd cycle transversal X of G′.
4. Compute the maximum weight stable set in G′:

For each stable set S̄ ⊆ X, compute the maximum weighted stable set S′ in G′ \ (X ∪
N(S̄)).
Return S̄ ∪ S′ with maximum weight.

Acknowledgments. We thank Friedrich Eisenbrand for attracting our attention to the
problem and for stimulating discussions. Yuri Faenza was supported by the German Research
Foundation (DFG) within the Priority Programme 1307 Algorithm Engineering. Andres J.
Ruiz-Vargas was supported by the Swiss National Science Foundation grants 200020-144531
and 200021-137574.

References

1 A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

logn) Approximation
Algorithms for Min UnCut, Min 2CNF Deletion, and Directed Cut Problems. In Proceedings
of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC’05, pages
573–581, New York, NY, USA, 2005.

2 B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Jour-
nal of the ACM, 41(1):153–180, January 1994.

3 M. Di Summa, F. Eisenbrand, Y. Faenza, and C. Moldenhauer. On largest volume simplices
and sub-determinants. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, California, USA, January 04-06, 2015,
2015.

4 R.G. Downey and M.R. Fellows. Parametrized Complexity. Springer-Verlag New York,
Inc., New York, NY, USA, 1999.

FSTTCS 2014

198 Solving the Stable Set Problem in Terms of the Odd Cycle Packing Number

5 Y. Faenza, G. Oriolo, and G. Stauffer. Solving the weighted stable set problem in claw-free
graphs via decomposition. Journal of the ACM, 61(4), 2014.

6 S. Fiorini, N. Hardy, B. Reed, and A. Vetta. Approximate min-max relations for odd cycles
in planar graphs. Mathematical Programming, 110(1, Ser. B):71–91, 2007.

7 J.W. Grossman, D.M. Kulkarni, and I. E. Schochetman. On the minors of an incidence
matrix and its smith normal form. Linear Algebra and its Applications, 218:213 – 224, 1995.

8 M. Grötschel, L. Lovász, and A. Schrijver. Stable sets in graphs. In Geometric Algorithms
and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics, pages 272–
303. Springer Berlin Heidelberg, 1988.

9 E. Györi, A.V. Kostochka, and T. Luczak. Graphs without short odd cycles are nearly
bipartite. Discrete Mathematics, 163(1–3):279–284, 1997.

10 J. Håstad. Clique is hard to approximate within n(1 − ε). In Acta Mathematica, pages
627–636, 1996.

11 M.M. Halldórsson. Approximations of independent sets in graphs. In Klaus Jansen and
José Rolim, editors, Approximation Algorithms for Combinatiorial Optimization, volume
1444 of Lecture Notes in Computer Science, pages 1–13. Springer Berlin Heidelberg, 1998.

12 A. J. Hoffman and J.B. Kruskal. Integral boundary points of convex polyhedra. In Linear
inequalities and related systems, Annals of Mathematics Studies, no. 38, pages 223–246.
Princeton University Press, Princeton, N. J., 1956.

13 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences, 63(4):512 – 530, 2001.

14 R.M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972.

15 K.-I. Kawarabayashi and B. Reed. Odd cycle packing. In Proceedings of the 42nd ACM
symposium on Theory of computing, STOC’10, pages 695–704. ACM, 2010.

16 D. Král, J.-S. Sereni, and L. Stacho. Min-max relations for odd cycles in planar graphs.
SIAM Journal on Discrete Mathematics, 26(3):884–895, 2012.

17 B. Monien. The complexity of embedding graphs into binary trees. In Fundamentals of
Computation Theory, FCT’85, Cottbus, GDR, September 9-13, 1985, pages 300–309, 1985.

18 B. Reed. Mangoes and blueberries. Combinatorica, 19:267–296, 1999.
19 N. Sbihi. Algorithme de recherche d’un stable de cardinalite maximum dans un graphe

sans etoile. Discrete Mathematics, 29(1):53 – 76, 1980.
20 A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.
21 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume A. Springer,

2003.
22 J. B. Shearer. The independence number of dense graphs with large odd girth. The Elec-

tronic Journal of Combinatorics, 2, 1995.
23 D.B. West. Introduction to Graph Theory. Prentice Hall, 2000.
24 D. Zuckerman. Linear degree extractors and the inapproximability of max clique and

chromatic number. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory
of Computing, STOC’06, pages 681–690, New York, NY, USA, 2006. ACM.

Lift & Project Systems Performing on the Partial
Vertex Cover Polytope∗

Konstantions Georgiou and Edward Lee†

Department of Combinatorics and Optimization, University of Waterloo
200 University Ave. W, Waterloo ON, N2L 3G1 Canada
k2georgiou@uwaterloo.ca, e45lee@uwaterloo.ca

Abstract
We study integrality gap (IG) lower bounds on strong LP and SDP relaxations derived by the
Sherali-Adams (SA), Lovász-Schrijver-SDP (LS+), and Sherali-Adams-SDP (SA+) lift-and-project
(L&P) systems for the t-Partial-Vertex-Cover (t-PVC) problem, a variation of the classic Vertex-
Cover problem in which only t edges need to be covered. t-PVC admits a 2-approximation
using various algorithmic techniques, all relying on a natural LP relaxation. Starting from this
LP relaxation, our main results assert that for every ε > 0, level-Θ(n) LPs or SDPs derived by
all known L&P systems that have been used for positive algorithmic results (but the Lasserre
hierarchy) have IGs at least (1 − ε)n/t, where n is the number of vertices of the input graph.
Our lower bounds are nearly tight, in that level-n relaxations, even of the weakest systems, have
integrality gap 1.

As lift-and-project systems have given the best algorithms known for numerous combinatorial
optimization problems, our results show that restricted yet powerful models of computation
derived by many L&P systems fail to witness c-approximate solutions to t-PVC for any constant
c, and for t = O(n). This is one of the very few known examples of an intractable combinatorial
optimization problem for which LP-based algorithms induce a constant approximation ratio, still
lift-and-project LP and SDP tightenings of the same LP have unbounded IGs.

As further motivation for our results, we show that the SDP that has given the best algorithm
known for t-PVC has integrality gap n/t on instances that can be solved by the level-1 LP
relaxation derived by the LS system. This constitutes another rare phenomenon where (even in
specific instances) a static LP outperforms an SDP that has been used for the best approximation
guarantee for the problem at hand.

Finally, we believe our results are of independent interest as they are among the very few
known integrality gap lower bounds for LP and SDP 0-1 relaxations in which not all variables
possess the same semantics in the underlying combinatorial optimization problem. Most import-
antly, one of our main contributions is that we make explicit of a new and simple methodology
of constructing solutions to LP relaxations that almost trivially satisfy constraints derived by all
SDP L&P systems known to be useful for algorithmic positive results (except the La system).
The latter sheds some light as to why La tightenings seem strictly stronger than LS+ or SA+
tightenings.

1998 ACM Subject Classification G.1.6 Convex Programming, G.2.0 Combinatorial Algorithms

Keywords and phrases Partial vertex cover, combinatorial optimization, linear programming,
semidefinite programming, lift and project systems, integrality gaps

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.199

∗ Research completed as part of the Undergraduate Research Program at the Department of Combinatorics
and Optimization, University of Waterloo.
† Research supported by NSERC of Canada.

© Konstantions Georgiou and Edward Lee;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 199–211

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.199
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

200 Lift & Project Systems Performing on the Partial Vertex Cover Polytope

1 Introduction

Let G = (V,E) be a graph on n vertices and t ∈ N, with t ≤ |E|. A subset of vertices S
that are incident to at least t many edges is called a t-partial vertex cover. In the t-Partial-
Vertex-Cover (t-PVC) optimization problem, the goal is to find a t-partial vertex cover
S of minimum size. t-PVC is a tractable optimization problem whenever t = Θ(1). In
the other extreme, |E|-PVC is exactly the classic NP-hard problem known as minimum
Vertex-Cover (VC). As such, any hardness of approximation for VC translates to the same
hardness for |E|-PVC. In particular, |E|-PVC is 1.36 and (2− o(1)) hard to approximate
assuming P 6= NP [10] and the Unique Games Conjecture [18] respectively. Moreover, there
exists an approximation preserving reduction from t-PVC to VC as long as n/t = nΘ(1)

[4]. Unlike VC, t-PVC is also known to be hard in bipartite graphs [5]. On the positive
side, [16, 25, 31] have proposed 2-approximation algorithms even for the weighted version
of t-PVC (see [20] for a wider family of results concerning partial covering problems). The
common starting point of all these results is the standard 0-1 LP relaxation for t-PVC
(see (t-PVC-LP) in Section 2.1). The best (asymptotic) approximation known for t-PVC
relies on a SDP relaxation and achieves a 2− Ω (log logn/ logn) ratio [15].

A standard performance measure for convex-programming (LP or SDP) relaxations is
the so-called integrality gap (IG), i.e. the worst possible ratio between the cost of the exact
optimal solution and the cost of the relaxation. As a measure of complexity, IG upper or
lower bounds are informative for two main reasons: (1) the majority of convex-programming
based approximation algorithms attain an approximation ratio equal to the best provable
upper bound on the IG. (2) Convex-programming relaxations can be seen as a restricted
and static model of computation that can immediately witness using fractional solutions the
existence of good integral and approximate solutions.

For a long series of combinatorial optimization problems, the best approximability known
agrees with the IG of natural convex-programming relaxations. In contrast, all analyses
for convex-programming relaxations for t-PVC [16, 25, 15] witness some integral solution
with cost sol to the relaxation satisfying sol ≤ 2 · rel + Θ(1), where rel is the value of the
relaxation. This leaves open the possibility that the IG of these relaxations is unbounded
when the optimal solution has small enough cost. In fact, it was already known that the
standard 0-1 relaxation (t-PVC-LP) has IG at least n/t. We establish the same IG for the
SDP of [15].

However, the power of convex-programming for combinatorial optimization problems is
not limited by the performance of the natural and static relaxations. A number of systematic
procedures, known as lift-and-project (L&P) systems, have been proposed in order to reduce
the IG of 0-1 LP relaxations P ⊆ [0, 1]m (the reader should think of P as the feasible region of
a relaxation of some combinatorial problem). The seminal works of Lovász and Schrijver [23],
Sherali and Adams [28], and Lasserre [21] give such systematic methods (LS, LS+, SA, and
La respectively).1 Starting with the polytope P , each of the systems derives a sequence
(hierarchy) of relaxations P (r) for P ∩ {0, 1}m that are nested, preserve the integral solutions
of P , and P (m) is exactly the integral hull of P (hence the IG of the last relaxation is 1
independently of the underlying objective). For these reasons, these systems are also known
as hierarchies (of LP or SDP relaxations). More importantly, if P admits a (weak) separation
oracle, then one can optimize a linear objective over the so-called level−r relaxation P (r) of

1 LS+ and SA systems derive stronger relaxations than the LS system, while LS+, SA are incomparable.
La derives SDPs that are at least as srong than relaxations derived by any other system.

K. Georgiou and E. Lee 201

all methods but the La system in time mO(r) (the same is true also for the La system if the
initial relaxation has polysize). In other words, all L&P systems constitute “parameterized”
models of computation for attacking intractable combinatorial optimization problems.

There are numerous combinatorial problems for which either L&P systems have given the
best approximation algorithms known (with no matching combinatorial algorithms known),
or with approximation guarantees matching the best combinatorial algorithms known. We
refer the reader to [8] for a relatively recent survey.

For this reason, a long line of research has been devoted in proving IG lower bounds for
relaxations derived by L&P systems, while any such result is understood as strong evidence
of the true inapproximability of the combinatorial problem at hand. At the same time, an α
IG for level-r relaxations derived by L&P systems implies that algorithms (for a restricted
yet powerful model of computation) that run in time mO(r) cannot witness the existence
of α-approximate solutions to the combinatorial problem. It is notable that examples of
integrality gaps for L&P systems that are way off from the best approximability known for a
combinatorial optimization problem are quite rare.

1.1 Our contributions and comparison to previous work
To the best of our knowledge, this is the first study of integrality gap lower bounds for
lift-and-project tightenings of the natural 0-1 relaxation of t-PVC. Our starting point is the
standard LP relaxation (t-PVC-LP) that has been used in all 2-approximation algorithms
for weighted instances. We aim to derive strong integrality gap lower bounds for level-r
relaxations derived by the LS+, SA and SA+ systems, where r is as large as possible, and
t = O(n) (where n is the number of vertices in the input graph). It is worthwhile noticing
that there is a number of very strong IG lower bounds known for VC in L&P systems,
including IG of 2 − ε, for every ε > 0, for level-Θ(n) LS LPs [27], level-nΘ(1) SA LPs [6],
level-Θ(

√
log / log logn) LS+ SDPs [14], level-5 SA+ SDPs [2], and IG of 7/6− ε and 1.36

for level-Θ(n) [26] and level-nΘ(1) [32] La SDPs. Each of the aforementioned lower bounds
imply directly the same IG lower bounds, for the same level relaxation and for the same
system for (t-PVC-LP) by a straightforward reduction. Nevertheless, for the magnitude of t
for t-PVC for which we establish our results (roughly speaking for t ≤ n/2), and in which
the problem makes the transition from tractable to intractable, our IG lower bounds are
superconstant.

The majority of our results are negative. Our motivating observations are that (a) a
simple graph instance is responsible for a n/t IG of the SDP of [15] (Proposition 2), on which
the best algorithm know for t-PVC is based and (b) the level-1 LP derived by the LS system
(which is strictly weaker than the LS+ and SA systems) solves the same instances exactly
(Proposition 5). This is a remarkable example of a simple LP that outperforms, even in
a specific instance, an SDP that has been used for the best algorithm for a combinatorial
problem (the authors are not aware of another similar example). It is natural then to ask
whether relaxations derived by L&P systems can witness existence of 2-approximate solutions
to t-PVC. We answer this question in the negative by proving strong IG lower bounds for
all L&P systems (but the La system) that have been used for positive algorithmic results.
For all these systems we show that as long as n ≥ 2r + 2t+ 2, the level-r relaxations have
integrality gap at least

(
n−2r

2
)
/t · n. As an immediate corollary, we see that the integrality

gap of the starting LP (which is at least n/t) remains (1− ε) n
t for level-Θ(n) LP and SDP

relaxations. Our results could have also been stated as rank lower bounds of a certain
knapsack-type inequality (the one certifying a good IG). Many similar results have appeared
in the literature, e.g. [9, 22, 7], but they are all for polytopes that are of different structure
than the partial vertex cover polytope.

FSTTCS 2014

202 Lift & Project Systems Performing on the Partial Vertex Cover Polytope

The above negative results bring up another rare phenomenon; for the family of tractable
combinatorial optimization problems t-PVC, for which t = Θ(1), L&P-relaxations have
unbounded discrepancy. The authors are aware only of one more similar result [24]. This is
in contrast to many combinatorial optimization problems, and in particular VC, for which
constant-level L&P-relaxations either have integrality gaps matching the best approximability
or they even solve tractable variations of the problems. Finally, due to the approximation
preserving reduction from VC to t-PVC [4], when t = nΘ(1), our results also imply that
L&P systems applied on the t-PVC standard polytope cannot yield new insights for the
NP-hardness inapproximability of VC.

We believe that our results are of independent interest also for two more reasons. The
first reason is that relaxation (t-PVC-LP), for which we establish strong IG L&P lower
bounds, is defined over two types of variables, i.e. vertex and edge variables corresponding
to different semantics. IG lower bounds for L&P relaxations of such polytopes are very rare
(the authors are aware only of one such result [19]). The second reason is that it is not well
understood under which conditions semidefinite programming delivers better algorithmic
properties than linear programming. Especially for LPs, the probabilistic interpretation of
SA system (deriving the strongest LPs known), on which we elaborate below, has unified our
understanding both for positive and negative results. When it comes to SDPs, one needs to
employ seemingly stronger arguments that enhances the probabilistic interpretation of the
systems with a geometric substance. Interestingly, with our technique for showing L&P lower
bounds, we make explicit that it is possible to devise solutions to LP relaxations that satisfy
many PSD conditions, almost trivially. For this we identify a generic and remarkably simple
condition of solutions to LP relaxations that can fool a large family of PSD constraints (for a
high level explanation of the condition see Section 1.2). We hope that this simple observation
can help towards bridging our understanding for LP and SDP relaxations.

1.2 Our techniques
For our main results we employ some standard and generic techniques for constructing vector
solutions for convex relaxations derived by the SA system. Then we identify a condition
special to our solution that allows us to argue that the same construction is robust against
SDP tightenings. Our IG instance is the unweighted clique on n vertices, which for all t,
admits an optimal solution of cost 1. This IG construction suffers a decay that is proportional
to
(

n−2r
2
)
. The decay with r is unavoidable, at a high level, due to that level-r relaxations

solve accurately local subinstances induced by r many elements corresponding to variables.
Since our LP relaxation has edge variables, the removal of r many edges induces a clique of
n− 2r vertices. Since we still have

(
n−2r

2
)
edges, each edge needs to be covered “on average”

t/
(

n−2r
2
)
fractional times. Due to the symmetry imposed in our solutions, this is also the

contribution of each vertex in the objective.

Establishing the SA IG lower bound: A common and generic approach for constructing
SA solutions is to use the probabilistic interpretation of the system, first introduced in [17],
and that is implicit in all our arguments of Section 3. At a high level, the curse and the
blessing of the SA system is that level-r solutions are convex combinations of (LP feasible)
vectors that are integral in any set of r many variable-indices. These convex combinations
can be interpreted as families of distributions of feasible integral solutions for subsets of
the input instance of size-r (hence subsets of variables as well), that additionally enjoy the
so-called local-consistency property: distributions over different subinstances should agree
on the solutions of the common sub-subinstance. Designing such probability distributions

K. Georgiou and E. Lee 203

over sets of indices that also enclose the support of any constraint gives automatically a
solution to the level-r SA. Finding however such distributions is in general highly non trivial,
especially when aiming for a big integrality gap.

The previous recipe is not directly applicable to the t-PVC polytope, as it has a defining
facet that involves all edges of the input graph. This means that had we blindly tried to
find families of probability distributions as described above, then we would have unavoidably
defined distributions of feasible solutions in the integral hull. Our strategy is to deviate
from the generic probabilistic approach, and focus first on satisfying constraints of the SA
relaxation of relatively small support.

At a high level, the novelty of our approach is that we do not explicitly define locally
consistent distributions of local 0-1 assignments, one for each subset of variables of bounded
size, rather we achieve this implicitly. One of the advantages of our construction is that it is
surprisingly simple. Specifically, we define a global distribution of 0-1 assignments as follows:
each of the vertices is chosen in the solution independently at random, and with negligible
probability, and covered edges are those incident to at least one chosen vertex.

The locally consistent distributions, that we need to associate each subset of variables
A with, are obtained by restricting the global distribution onto the subinstance induced
by A. This trick can be thought as a vast generalization of the so-called correction-phase
(or expansion recovery) that is common to all SA lower bounds, although it is sometimes
hidden in the technicalities of the proofs ([13] is a good example where the correction phase
is made explicit). According to this trick, set A is effectively blown up (or “corrected”) to a
big enough superset A with certain structural properties. This allows for sampling almost
uniformly at random over local 0-1 assignments (of variables in A) that can be easily seen to
induce consistent local distributions, whereas the same task seems to be impossible to be
realized directly on A. Interestingly, A is the whole instance in our case.

Our global distribution has a special property that it always satisfies all linear constraints
of the t-PVC polytope but the one demand-constraint, i.e. the constraint that requires t
many edges to be covered. In particular, the proposed vector solution is a convex combination
of exponentially many solutions in the integral hull and of the outlier all-0 vector. In fact our
global distribution assigns probability 1− o(1) to the latter vector, which is also responsible
for the large integrality gap.

Notably, there is no generic reason to believe that such a vector solution satisfies the
almost global constraint of the t-PVC polytope that involves all edges. To that end, we take
advantage of the fact that we do not need to define feasible solutions of the whole instance
in every small subinstance. This means that if presented with a small subinstance of the
input graph, we are allowed in principle to cover zero edges in that subgraph with positive
probability, as long as we do cover t many edges in the complement. That said, constraints
of large support cannot be treated probabilistically with respect to the global distribution.
Instead, we deal with such constraints almost algebraically (in contrast to the majority of
SA constructions), as one would normally do for a standard LP. More specifically, we rely
on the fact that when we condition on covering zero edges in a subclique of size at most 2r,
edges that do not touch this subclique are covered independently at random with significant
probability compared to how many edges are left. Linearity of expectation then can prove
for us that the demand constraint is indeed satisfied.

Establishing IG lower bounds for SDP hierarchies: Showing that our SA vector solution
is robust against SDP tightenings is by construction very easy. The reason is that all SDP
hierarchies (that have been used for positive algorithmic results), except the La system,

FSTTCS 2014

204 Lift & Project Systems Performing on the Partial Vertex Cover Polytope

distinguish constraints between those imposed by the starting 0-1 relaxation, and that are
always linear, and PSD constraints that are valid for all 0-1 assignments (independently of
the starting relaxation). As a result, any IG lower bound for strong LP relaxations that is
based on a solution that comes from a global distribution of 0-1 assignments immediately
translates into the same IG for a series of SDP hierarhies. A natural question that is raised is
whether such global distributions of 0-1 assignments can be used to fool strong LP relaxations
(and we answer this in the positive as we explain above). The second question that we raise
is whether our solution is robust also against Lasserre tightenings. We answer this in the
negative in Section 4.2.

2 Preliminaries

We denote by 1n the all-1 vector of dimension n, and we drop the subscript, whenever the
dimension is clear from the context. Similarly, by all-α vector we mean the vector α1. For a
fixed set of indices [m] := {1, . . . ,m}, we denote by Pr all subsets of [m] of size at most r
(for the partial vertex cover polytope and for a graph G = (V,E), we will use [m] = V ∪ E).
For some y ∈ RPr+1 , we denote by Y the so-called moment matrix of y that is indexed by P1
in the rows and by Pr in the columns, with YA,B = yA∪B. In other words, Y ∈ R|P1|×|Pr|

whenever y ∈ RPr+1 , whereas Y is a square symmetric matrix if r = 1. Finally, we denote by
{eI}I∈Pr

the standard orthonormal basis of Pr, so that YeA is the column of Y indexed by
set A.

Note: In the interest of space, we have omitted some proofs from this version of the paper;
we refer the reader to [12] for a full presentation.

2.1 Problem Definition and a Natural LP Relaxation
Given an integer t, and a graph G = (V,E) with vertex weights wi ∈ R+ for each i ∈ V ,
t-PVC can be alternatively defined as the following optimization problem where variables
{xq}q∈V ∪E are further restricted to be integral.

min
∑
i∈V

wi xi (t-PVC-LP)

s.t. xi + xj ≥ xe, ∀e = {i, j} ∈ E (1)∑
e∈E

xe ≥ t (2)

0 ≤ xq ≤ 1 ∀q ∈ V ∪ E (3)

Below we focus on uniform instances, in which wi = 1, for all i ∈ V . We denote the set
of feasible solutions of the above LP as Pt(G), or much simpler as Pt when the underlying
graph is clear from the context, and we call it the t-partial vertex-cover polytope. For each
edge e, the reader should understand xe as the 0-1 indicator variable that says whether e will
be among the (at least) t many that will be covered by some vertex, while for each vertex i,
the 0-1 variables xi indicate whether vertex i is chosen in the solution.

(t-PVC-LP) is the starting point for the 2-approximation algorithm for t-PVC in [4], and
a 2−Θ(1/d) approximation for unweighted instances, where d the maximum degree of the
input graph, in [29, 11]. Strictly speaking, the analysis that guarantees the 2-approximability
is not relative to the performance of the LP for all instances, as in fact (t-PVC-LP) has an
unbounded integrality gap.

K. Georgiou and E. Lee 205

I Observation 1 (Star-graph fools (t-PVC-LP) [25]). Consider the unweighted star-graph
G = (V,E) with V = 1, . . . , n, n+ 1, and edges {n + 1, i} ∈ E, for i = 1, . . . , n. The
optimal solution to t-PVC is 1, for every t ∈ N. In contrast, consider the feasible solution
to (t-PVC-LP) that sets xe = xn+1 = t/n for all e ∈ E, and the rest of variables equal to 0.
This gives a solution of cost t/n, hence the integrality gap of (t-PVC-LP) is at least n/t.

This is also true for the SDP relaxation of t-PVC that gives the best known approximation
algorithm.

I Proposition 2. For all t ≤ n/2, the SDP of [15] has integrality gap at least n/t when the
input is the star-graph of Observation 1.

2.2 Hierarchies of LP and SDP relaxations
In this section we introduce families of LPs and SDPs derived by the so-called LS, LS+ [23]
and SA [28] systems. Starting with a polytope P ⊆ [0, 1]m, each of the LS+ and SA systems
derives a nested sequence of relaxations {P (r)}r=1,...,m, such that P (m) = conv (P ∩ {0, 1}m),
while under mild assumptions one can optimize over P (r) in time mO(r). For an instance
G = (V,E) of t-PVC, our intention is to derive and study this sequence of relaxations
starting with P = Pt(G), i.e. the feasible region of the standard LP relaxation (t-PVC-LP),
hence setting |m| = |V |+ |E|. For the sake of simplicity, we adopt a unified exposition of
the systems (see [22] for a more abstract exposition of lift-and-project systems).

For technical reasons, it is convenient to apply a standard homogenization to polytope
P as follows: variables xp are replaced by x{p} and each constraint aTx ≥ b is replaced by
aTx ≥ bx∅. Adding the constraint x∅ ≥ 0 along with the previous constraints define a cone
that we denote by K. Clearly K ∩{x∅ = 1} is exactly polytope P . Next we define a sequence
of SDP refinements of an arbitrary 0-1 polytope, proposed by Lovász and Schrijver [23], and
that is commonly known in the literature as the LS+-hierarchy (of SDPs).

I Definition 3 (The LS+ system). Let K(0) := K be a conified polytope P ⊆ [0, 1]m. The
level-r LS+tightening of K(0) is defined as the cone

K(r) =
{
x ∈ RP1 : ∃y ∈ RP2 : Y � 0, Ye∅ = x and

∀i ∈ [m], Ye{i},Y
(
e∅ − e{i}

)
∈ K(r−1)

}
The level-r LS+ refinements (tightenings) N (r)

+ (P) of P is obtained by projecting K(r)
+ onto

x∅ = 1, i.e. N (r)
+ (P) = K

(r)
+ ∩ {x ∈ RP1 : x∅ = 1}.

Next we introduce the SA system defined by Sherali and Adams [28], and that derives a
sequence of LP relaxations (and not SDP relaxations).

I Definition 4 (The SA system). Let K be a conified polytope P ⊆ [0, 1]m. The level-r SA
tightening of K is defined as the cone

M (r) =
{
x ∈ RP1 : ∃y ∈ RPr+1 : Ye∅ = x, and

∀Y,N with Y ∪N ∈Pr, Y
∑
∅⊆T⊆N (−1)|T |eY ∪T ∈ K

}
The level-r SA refinement (tightening) S(r)(P) of P is obtained by projecting M (r) onto
x∅ = 1, i.e. S(r)(P) = M (r) ∩ {x ∈ RP1 : x∅ = 1}.

Occasionally we abuse notation and we treat N (r)
+ (P),S(r)(P) as subsets of [0, 1]m, instead

of {x ∈ [0, 1]m+1 : x∅ = 1}. Also, relaxations derived by LS+ and SA are in principle
incomparable.

FSTTCS 2014

206 Lift & Project Systems Performing on the Partial Vertex Cover Polytope

We observe that level-1 SA tightening coincides with the level-1 Lovász-Schrijver-LP
tightening (N (1)

+ (P) without the PSD constraint). This seemingly weak LP solves the
problematic star graph.

I Proposition 5. Let G be the star graph of Observation 1. Then the level-1 SA tightening
of Pt(G) has integrality gap 1.

Proof. Let x be a vector in the level-1 SA tightening of Pt(G), and let y be its moment
matrix Y as in Definition 4. Suppose now that for some b,b,d,d ∈ Rn and a ∈ R we have
YeT
∅ =

(
1,bT , a,dT

)
and YeT

{n+1} =
(
a,bT

, a,dT
)
, where we explicitly assume that the list

of indices has first all vertices (with the center being last), followed by all edges. Note that
with this terminology, the value of the objective for such a solution is a+ 1T

n b, which we
need to compare to opt = 1.

Next we focus on Y(e∅ − e{n+1}) that satisfies all homogenized constraints of Pt(G), and
in particular constraints (1) of edges {n+1, i}, i = 1, . . . , n, which require that b−b ≥ d−d.
Similarly, constraint (2) of Pt(G) implies that 1T

n (d− d) ≥ (1− a)t. Therefore a+ 1T
n b ≥

a+ 1T
n (d− d) ≥ a+ (1− a)t ≥ 1 = opt. J

Recall that by Proposition 2 the star graph is also responsible for a n/t integrality gap
for the SDP of [15], i.e. the relaxation which the best algorithm known for t-PVC is based
on. The surprising conclusion from Proposition 5 is that a simple LP that one can derive
systematically from Pt(G) outperforms that particular SDP for a specific instance. This is
in contrast to other known examples of level-Θ(m) LS tightenings that are strictly weaker
than natural and static SDP relaxations. Finally, it is worthwhile mentioning that we do not
know whether constant-level L&P tightenings of (t-PVC-LP) derive the SDP of [15].

For algorithmic purposes, a number of SA variants have been proposed that give rise to
hierarchies of SDPs (see [1] for a list of them). The simplest variation, and the one that has
resulted surprisingly strong positive results, is usually referred as the mixed hierarchy. This
system, that we denote here by SA+ imposes an additional PSD constraint.

I Definition 6 (The SA+ system). Let K be a conified polytope P ⊆ [0, 1]m. The level-r
SA+ tightening of K is defined as the refinement of cone M (r), as in Definition 4, where the
(m+ 1)-leading principal minor of the moment matrix Y, i.e. the principal minor of Y that
is indexed by sets of variables of size at most 1, is PSD.

Level-r SDPs derived by the SA+ and LS+ systems are not comparable. In Section 4 we
introduce a further refinement of SA+ that is strictly tighter than LS+, and for which we
actually derive the same IG lower bounds as in SA. We postpone its definition due to its
technicality.

By the generic algorithmic properties common to LS+, SA and SA+ systems, and for
the t-PVC polytope, it is immediate that for any graph G = (V,E) the level-(|V | + |E|)
relaxations have integrality gap 1. However, from the proof of convergence from all systems,
it easily follows that vectors in level-r relaxations satisfy any constraint that is valid for
the integral hull of Pt(G) and that has support at most r. If opt denotes the optimal value
for G = (V,E) then

∑
i∈V xi ≥ opt is a constraint valid for every integral solution with

support |V |. Hence, level-|V | LPs or SDPs derived by SA, LS+ and SA+ systems can solve
any t-PVC instance exactly. Can level-r relaxations close the unbounded integrality gap
of Pt(G) as exhibited in Observation 1, for r = o(|V |)? We answer this question in the
negative in the next sections by proving strong integrality gaps for superconstant level LP
and SDP relaxations. As a byproduct, we show this way that LPs and SDPs that give rise

K. Georgiou and E. Lee 207

to algorithms that run in superpolynomial time cannot solve to any good proximity even the
tractable combinatorial problem t-PVC where t = Θ(1).

3 IG lower bounds for the Sherali-Adams LP system

This section is devoted in proving one of our main results.

I Theorem 7. Let n, r, t be integers with n ≥ 2r + 2t+ 2. Then the integrality gap of the
level-r SA-tightening of (t-PVC-LP) on graphs with n vertices is at least

(
n−2r

2
)
/t · n.

For this we fix a clique G = (V,E) on n vertices, along with r, t such that n ≥ 2r + 2t+ 2.
We start by presenting Random Process 1, that defines a distribution of 0-1 assignments for
variables of the polytope Pt(G).

Random Process 1 (Definition of distribution Dp)
Require: A fixed p ∈ [0, 1].

1: for i ∈ V do
2: Independently at random, set xi = 1 with probability p
3: end for
4: for e ∈ E do
5: Set xe equal to 1 as long as e is incident to some i for which xi = 1, and otherwise to

0.
6: end for

Output: Distribution Dp induced by the experiment above.

We are ready to propose a vector solution y ∈ RPr+1 to the level-r SA tightening of Pt(G).
For A ∈ Pr+1 (with ground set V ∪ E), and for each q ∈ A, let Xq be the random variable
which equals 1 if xq = 1 in the random experiment of Dp, and 0 otherwise. For all such
A ⊆ V ∪ E, we define

yA := E
Dp

∏
q∈A

Xq

 = P
Dp

[∀q ∈ A, xq = 1] (4)

where the last equality is due to that Xq are 0-1 variables. In particular, this means that for
all i ∈ V and f ∈ E we have y{i} = p, y{f} = 2p− p2.

We use the following technical lemma; it is a standard observation used in many SA lower
bounds.

I Lemma 8. For Y ∪N ∈ Pr+1, let wY,N :=
∑
∅⊆T⊆N (−1)|T |yY ∪T . Then

wY,N = PDp(Y ∪N) [∀q ∈ Y,Xq = 1, & ∀q′ ∈ N,Xq′ = 0] .

We can now prove that y is solution to the level-r SA polytope of t-PVC, for a proper
choice of p.

I Lemma 9. For the complete graph G = (V,E) on n vertices, and for all r, t with n ≥
2r + 2t+ 2, let y ∈ RPr+1 be as in (4), where p = t/

(
n−2r

2
)
. Then y ∈ S(r)(Pt(G)).

Proof. Let Y,N ∈ Pr with |Y ∪N | ≤ t. We need to show that y := Y
∑
∅⊆T⊆N (−1)|T |eY ∪T ∈

RP1 satisfies all constraints of Pt(G) (after they are homogenized).

FSTTCS 2014

208 Lift & Project Systems Performing on the Partial Vertex Cover Polytope

Asking that y satisfies the constraint (1) for an edge e = {i, j} is the same as asking that
wY ∪{i},N +wY ∪{j},N −wY ∪{e},N ≥ 0. Note that |Y ∪N ∪{i, j}| ≤ r+ 2. Due to Lemma (8)
and by linearity of expectation we have

wY ∪{i},N + wY ∪{j},N − wY ∪{e},N = E
Dp(Y ∪N∪{i,j})

∏
q∈Y

Xq

∏
p∈N

(1−Xp) (Xi +Xj −Xe)

 .
Recall in Random Process 1 we set xe = 1 only when at least one among xi, xj is already set
to 1. Therefore the previous expected value is always non negative.

In a similar manner we can show that box constraints (3) are satisfied. First, constraints
of the form xq ≥ 0, q ∈ V ∪ E are satisfied for y, since by Lemma 8, wY ∪{q},N represents a
probability of an event. As for constraints xq ≤ 1, we need to prove that wY ∪{q},N ≤ wY,N .
This is true again due to Lemma 8, and because the event associated with wY,N is logically
implied by that of wY ∪{q},N .

Finally we need to show that y satisfies constraint (2), i.e. constraint
∑

e∈E wY ∪{e},N ≥
t · wY,N . For this we recall that |Y ∪ N | ≤ r, and so in the original clique on n vertices,
there is a subclique G′ = (U,F) on at least n− 2r ≥ 4 vertices, such that no edge in F is
incident to any element (vertex or edge) in Y ∪N , and |F | ≥

(
n−2r

2
)
> 0. This means that

for every f ∈ F the event that Xf = 1 is independent to any 0-1 assignment on variables
in Y ∪N , while PDp [Xf = 1] = 2p− p2 ≥ p, since p = t/

(
n−2r

2
)
≤ t/

(2t+2
2
)
< 1/2. Since we

also have |F | · p = |F | · t/
(

n−2r
2
)
≥ t, we conclude that

∑
e∈E wY ∪{e},N ≥

∑
e∈F wY ∪{e},N =

|F | · p · wY,N ≥ t · wY,N , as promised. J

The objective of the level-r SA LP is no more than n · p = t · n/
(

n−2r
2
)
, while the optimal

solution of the input graph has cost 1, concluding the proof of Theorem 7.
It is worthwhile noticing that our superconstant integrality gaps lower bounds hold only

for values of parameter t = o(n). The reader can easily verify that when the input is the
n-clique, then the optimal solution to (t-PVC-LP) is exactly t/(n− 1) (e.g. using the dual
of (t-PVC-LP)). Therefore, for any constant c and when n/c ≤ t ≤ n − 1, for which the
optimal solution to t-PVC is still 1, the integrality gap of (t-PVC-LP) is strictly less than c.

4 IG lower bounds for various SDP hierarchies

4.1 SDPs derived by the SA+ and LS+ systems
In this section we argue that the moment matrix Y of solution y that we proposed in Lemma 9
satisfies very strong PSD conditions. This will immediately imply the same IG lower bounds
of Theorem 7 also for stronger SDP systems, as summarized in the next theorem.

I Theorem 10. Let n, r, t be integers with n ≥ 2r + 2t + 2. Then the integrality gap of
the level-r LS+ and SA+ tightenings of (t-PVC-LP) on graphs with n vertices is at least(

n−2r
2
)
/t · n.

For proving Theorem 10, we fix the clique G = (V,E) on n vertices, together with r, t
such that n ≥ 2r + 2t+ 2. In all our arguments below we use y ∈ RPr+1 as defined in (4),
as well as vector w (indexed by pairs of sets of variables) as it appears in Lemma 8. We
also define the matrix X Y,N ∈ RP1×P1 , which at entry A,B (i.e. any two sets of size at
most 1) equals wY ∪A∪B,N . Note that matrix X Y,N is exactly the moment matrix of random
variables {Xq}q∈V ∪E condition on Xq = 1 for all q ∈ Y , and Xq′ = 0 for all q′ ∈ N , scaled
by the constant PDp [∀q ∈ Y,Xq = 1 & ∀q′ ∈ N,Xq′ = 0]. In particular, for each q ∈ V ∪ E
we have that vectors X Y,N eq,X Y,N (e∅ − eq) satisfy all constraints of Pt(G).

K. Georgiou and E. Lee 209

Now recall that y ∈ RPr+1 is obtained by the global distribution Dp that associates any
0-1 assignment of variables of Pt(G) with some probability. In particular, if x ∈ {0, 1}P1 ,
with x∅ = 1, is such a 0-1 assignment, then xxT is a rank 1 PSD matrix. Clearly, matrix
X Y,N is a convex combination of such rank-1 PSD matrices, hence it is PSD as well. We
conclude with an Observation.

I Observation 11. Let Y,N be any subsets of V ∪E such that |Y ∪N | ≤ r− 1. Then X Y,N

is positive semidefinite.

It is now immediate that our SA solution y satisfies also the extra PSD constraint imposed
by SA+. What we only need to observe is that the leading principal minor of Y indexed by
sets of size at most 1 is exactly X ∅,∅, which is PSD by Observation 11. Hence, Theorem 7
also holds when SA tightenings are replaced by SA+ tightenings.

Next we argue that our SA solution is robust against much stronger SDP refinements.
Note that vector w is well defined for all level-r SA solutions y. Especially when y is obtained
as a convex combination of integral vectors, all matrices X Y,N are PSD, for all |Y ∪N | ≤ r−1.
That is, the latter constraints constitute a further refinement of the SA+ system. Again by
Observation 11 it is immediate that our level-r SA solution fools also these exponentially
many (in r) PSD conditions. These new PSD refinements are stronger than the constraints
derived by the level-(r − 1) LS+ system (see [30]); this concludes the proof of Theorem 10.

4.2 On SDPs derived by the Lasserre system
A natural question to ask is whether our SA solution fools SDPs derived by the so-called
Lasserre (La) system [21]. The level-r La-SDP is defined as follows. For y ∈ R2r+2, the
La-moment matrix Z is a matrix indexed by Pr+1 with ZA,B = yA∪B. For each constraint∑

i α
(l)
i xi − β(l) ≥ 0 of P , the La-slack moment matrix Z(l) is a matrix indexed by Pr with

Z(l)
A,B =

∑
i α

(l)
i yA∪B∪{i} − β(l)yA∪B. The level-r La SDP requires that all matrices Z and

{Z(l)}l are PSD. Notably, the PSDness of proper principal minors of matrices Z and {Z(l)}l

imply the level-r SA linear constraints [22]. As such, the level-r La SDP is at least as strong
as the level-r SA LP. Unfortunately, we show that the level-1 La SDP is not fooled by our SA
solution.

I Lemma 12. For any constant r, the level-1 La SDP eliminates the level-r solution proposed
in Lemma 9.

Proof. Fix n, t, p, and let y be the solution to the level-(r) SA-tightening as described in
Lemma 9. Consider the level-1 slack matrix for (2). In order to prove that this matrix is
not PSD, it suffices to focus on its principal minor Z that is indexed only by subsets of
vertices. To that end, let yA ∈ RP1 be the indicator vector of set A ⊆ V . Let also Sn denote
the expected slack we have in constraint (2) when each vertex is chosen with probability
p in the n-clique, and Cn,a be the number of edges that are covered by choosing a many
vertices in the same graph. Then, it is easy to verify by definition that Z has the form(
Z
)

I,J
= p|I∪J| (Sn−|I∪J| + Cn,|I∪J|

)
. Applying the Schur complement on Z with respect

to the entry
(
Z
)
∅,∅ = Sn, and given that Sn > 0, we have that Z is PSD if and only if

M − (p(Sn−1+Cn,1))2

Sn
Jn is PSD, where M is the minor of Z indexed by sets of vertices of

size 1, and Jn is the all-one n × n matrix. By symmetry, all rows of M have the same
sum, i.e. the all-one vector 1 is an eigenvector for the Schur complement. Elementary
calculations then show that the leading term of the corresponding eigenvalue, when p = c/n2,
is
(
−2c4 − 15c3

2 − 2c2
)

1
n < 0 (the rest of the summands are of order o(1/n)). J

FSTTCS 2014

210 Lift & Project Systems Performing on the Partial Vertex Cover Polytope

5 Discussion / Open Problems

The algorithmic significance of our results pose a natural (and classic) open problem, related
also to questions on extended formulations; Does t-PVC admit a polysize (or tractable)
LP or SDP relaxation that has integrality gap no more than 2, even when t = O(n)? It is
notable that this question has been studied in [3] for a generalization of t-PVC but with no
implications to our problem. Note also that our strongest IG lower bounds are valid only
when t/n = ε, for small enough ε > 0, where n is the number of vertices of the input graph.
As a result, another interesting open question is, given t and n, find the smallest r = r(n, t)
for which the level-r LP or SDP derived by some L&P system has integrality gap no more
than 2. In particular, can it be that r = ω(1) when t ≥ n?

Finally, our SDP IG lower bounds make explicit that global distributions of 0-1 assignments
can be used to witness solutions to SA LP tightenings of superconstant integrality gaps. We
also demonstrate that it is almost straightforward to show that the same solutions are robust
against SDP tightenings of many L&P systems except the La system. Can the same family
of global distributions fool La SDPs when it is also enriched with intuitive and stronger
conditions? A generic positive or negative answer would give new insights in understanding
the power of the various SDP hierarchies.

Acknowledgments. We would like to thank the anonymous referees for their valuable
comments.

References
1 Y. Au and L. Tunçel. A comprehensive analysis of polyhedral lift-and-project methods.

CoRR, abs/1312.5972, 2013.
2 S. Benabbas, S. O. Chan, K. Georgiou, and A. Magen. Tight Gaps for Vertex Cover in the

Sherali-Adams SDP Hierarchy. In FSTTCS, volume 13 of LIPIcs, pages 41–54, 2011.
3 S.K. Bera, S. Gupta, A. Kumar, and S. Roy. Approximation algorithms for the partition

vertex cover problem. In WALCOM, volume 7748 of LNCS, pages 137–145. Springer, 2013.
4 N.H. Bshouty and L. Burroughs. Massaging a linear programming solution to give a 2-

approximation for a generalization of the vertex cover problem. In STACS, volume 1373 of
LNCS, pages 298–308. Springer, 1998.

5 B. Caskurlu and K. Subramani. On partial vertex cover on bipartite graphs and trees.
CoRR, abs/1304.5934, 2013.

6 M. Charikar, K. Makarychev, and Y. Makarychev. Integrality gaps for Sherali-Adams
relaxations. In STOC, pages 283–292, New York, NY, USA, 2009. ACM Press.

7 K.K.H. Cheung. Computation of the lasserre ranks of some polytopes. Math. Oper. Res,
32(1), 2007.

8 E. Chlamtáč and M. Tulsiani. Convex relaxations and integrality gaps. In Miguel F.
Anjos and Jean B. Lasserre, editors, Handbook on Semidefinite, Conic and Polynomial
Optimization, volume 166 of International Series in Operations Research & Management
Science, pages 139–169. Springer US, 2012.

9 W. Cook and S. Dash. On the matrix-cut rank of polyhedra. Mathematics of Operations
Research, 26(1):19–30, 2001.

10 Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex-cover.
Annals of Mathematics, 162(1):439–486, 2005.

11 R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial covering
problems. J. Algorithms, 53(1):55–84, 2004.

K. Georgiou and E. Lee 211

12 K. Georgiou and E. Lee. Lift and project systems performing on the partial-vertex-cover
polytope. CoRR, abs/1409.6365v1, 2014.

13 K. Georgiou and A. Magen. Expansion Fools the Sherali-Adams System: Compromising
Local and Global Arguments. Technical Report CSRG-587, University of Toronto, Novem-
ber 2008.

14 K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis. Integrality gaps of 2-o(1) for vertex
cover SDPs in the Lovász–Schrijver hierarchy. SIAM J. Comput, 39(8):3553–3570, 2010.

15 E. Halperin and A. Srinivasan. Improved approximation algorithms for the partial vertex
cover problem. In APPROX, volume 2462, pages 161–174. Springer, 2002.

16 D. S. Hochbaum. The t-vertex cover problem: Extending the half integrality framework
with budget constraints. In APPROX, volume 1444 of LNCS, pages 111–122. Springer
Berlin Heidelberg, 1998.

17 C. Kenyon-Mathieu and W. F. de la Vega. Linear programming relaxations of maxcut. In
SODA, pages 53–61. ACM Press, 2007.

18 S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-ε. J. Comput.
Syst. Sci., 74(3):335–349, 2008.

19 S.G. Kolliopoulos and Y. Moysoglou. Sherali-Adams gaps, flow-cover inequalities and
generalized configurations for capacity-constrained Facility Location. In APPROX, LNCS,
page to appear, 2014.

20 J. Könemann, O. Parekh, and D. Segev. A unified approach to approximating partial
covering problems. Algorithmica, 59:489–509, 2011.

21 J. B. Lasserre. An explicit exact SDP relaxation for nonlinear 0-1 programs. In IPCO,
volume 2081 of LNCS, pages 293–303. Springer, Berlin, 2001.

22 M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations
for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003.

23 L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization, 1(2):166–190, May 1991.

24 M. Mastrolilli. The lasserre hierarchy in almost diagonal form. CoRR, abs/1312.6493, 2013.
25 J. Mestre. A primal-dual approximation algorithm for partial vertex cover: Making edu-

cated guesses. Algorithmica, 55(1):227–239, 2009.
26 G. Schoenebeck. Linear level lasserre lower bounds for certain k-CSPs. In FOCS, pages

593–602. IEEE Computer Society, 2008.
27 G. Schoenebeck, L. Trevisan, and M. Tulsiani. Tight integrality gaps for Lovász-Schrijver

LP relaxations of vertex cover and max cut. In STOC, pages 302–310. ACM Press, 2007.
28 H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the continuous and con-

vex hull representations for 0–1 programming problems. SIAM J. Discrete Math., 3(3):411–
430, 1990.

29 A. Srinivasan. Distributions on level-sets with applications to approximation algorithms.
In FOCS, pages 588–599, 2001.

30 Iannis Tourlakis. New lower bounds for approximation algorithms in the Lóvasz-Schrijver
hierarchy. PhD thesis, Department of Computer Science, June 2006.

31 J. Tu, J. Du, and F. Yang. An iterative rounding 2-approximation algorithm for the
k-partial vertex cover problem. Acta Mathematicae Applicatae Sinica, English Series,
30(2):271–278, 2014.

32 M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In STOC, pages 303–312,
New York, NY, USA, 2009. ACM Press.

FSTTCS 2014

Replica Placement on Directed Acyclic Graphs
Sonika Arora1, Venkatesan T. Chakaravarthy2, Kanika Gupta1,
Neelima Gupta1, and Yogish Sabharwal2

1 Department of Computer Science, University of Delhi, India
sonika.ta@gmail.com,kanika.g.mcs.du.2012@gmail.com,ngupta@cs.du.ac.in

2 IBM India Research Lab, New Delhi, India
{vechakra,ysabharwal}@in.ibm.com

Abstract
The replica placement problem has been well studied on trees. In this paper, we study this
problem on directed acyclic graphs. The replica placement problem on general DAGs generalizes
the set cover problem. We present a constant factor approximation algorithm for the special
case of DAGs having bounded degree and bounded tree-width (BDBT-DAGs). We also present a
constant factor approximation algorithm for DAGs composed of local BDBT-DAGs connected in a
tree like manner (TBDBT-DAGs). The latter class of DAGs generalizes trees as well; we improve
upon the previously best known approximation ratio for the problem on trees. Our algorithms are
based on the LP rounding technique; the core component of our algorithm exploits the structural
properties of tree-decompositions to massage the LP solution into an integral solution.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation Algorithms, LP Rounding

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.213

1 Introduction

The replica placement problem is an important problem that finds applications in a variety of
domains such as internet and video on demand service delivery (see [8, 10, 5]). We refer to [13]
for additional applications. This problem is concerned with the optimal placement of copies
(replicas) of a database on the nodes of a network in order to serve periodic requests from a
set of clients under the setting wherein each replica can serve a limited number of requests
and a client can only be served by a replica within a specified distance (QOS requirement).
Prior work has studied the problem for the case of tree networks [5, 13, 3, 9, 2, 1]. The goal
of this paper is to address the problem on more general DAG networks.

Replica Placement Problem. The input consists of a DAG G = (V,E). Each leaf node
(having no in-edges) represents a client. Let A be the set of all the clients and let |A| = m.
The input specifies a request r(a) for each client a ∈ A. The input also includes a capacity
W . For each edge (u, v) in E, the input specifies a distance d(u, v). For a node u and a client
a such that there is a path from a to u in the graph, let d(a, u) be the shortest distance from
a to u. Each client a is associated with a quantity dmax(a), the maximum distance it can
travel.

A feasible solution selects a subset of nodes and places replicas on them in order to service
the requests of the clients. The solution must assign the request of each client a to some
(unique) replica u such that there is a path from a to u in the graph and d(a, u) ≤ dmax(a);
we call this latter condition the distance constraint. Furthermore, the total requests assigned

© Sonika Arora, Venkatesan T. Chakaravarty, Kanika Gupta, Neelima Gupta, and Yogish Sabharwal;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 213–225

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.213
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

214 Replica Placement on Directed Acyclic Graphs

to any replica must not exceed the capacity W . A client can be serviced by opening a replica
at the client node itself. Our goal is to minimize the number of replicas placed.

We assume that the capacity W and the requests r(·) are integral and that W is
polynomially bounded in the number of nodes. Furthermore, without loss of generality, we
assume that r(a) ≤W for all clients a ∈ A.

Prior Work. The above problem and its variants have been well-studied for tree networks
in the existing literature [5, 13, 3, 9, 2, 1], from both practical and algorithmic perspectives.

Benoit et al. [3] studied the the replica placement problem on trees. They showed
that the problem is NP-hard to approximate within a factor of 3/2 even without distance
constraints (i. e., dmax(a) =∞, for all clients a) and when the network is a binary tree. They
obtained the above result by showing that the above problem generalizes the bin-packing
problem. Benoit et al. [2] presented a 2-approximation for the replica placement problem
without distances. For the case with distances, they designed a greedy algorithm with an
approximation ratio of (1 + ∆), where ∆ is the maximum number of children of any node.

Arora et al.[1] presented an algorithm for tree networks with a constant approximation
ratio (independent of ∆). Their result also applies to the partial cover version, wherein the
input additionally specifies a number K and only K clients need to be serviced by a solution.

The replica placement problem can easily be seen to be a special case of the capacitated
set cover problem. The latter problem admits an algorithm with an approximation ratio of
O(logn) [12]; up to constant factors, the ratio is the best possible, unless NP = P [6]. For
the case of vertex cover, Chuzhoy and Naor [4] and Gandhi et al. [7] presented algorithms
for the capacitated vertex cover problem with approximation ratio of 3 and 2, respectively.
However, their algorithms can handle only the case of simple graphs. Saha and Khuller [11]
presented a 34-approximation algorithm for the more general case of multi-graphs.

The capacitated vertex cover problem plays an important role in the constant factor
approximation algorithm for the replica placement problem on tree networks, due to Arora
et al. [1], mentioned earlier. The above algorithm is based on the LP rounding technique. It
works by reducing the issue of rounding an LP solution for the replica placement problem to
an issue of rounding LP solutions of a suitably construed capacitated vertex cover instance.
The algorithms presented in the current paper also make use of the above strategy.

Our Results. Prior work has primarily dealt with the replica placement problem on tree
networks. In this paper, we study the problem on directed acyclic graphs. On DAGs, the
replica placement problem is as hard as the capacitated set cover problem. We therefore
focus on special classes of DAGs and provide constant factor approximation algorithms.

The first class of DAGs that we address are rooted DAGs that have bounded degree
and bounded tree-width; we call these BDBT-DAGs. Tree-width is a notion traditionally
associated with undirected graphs. A graph with bounded tree-width can be decomposed
into disconnected pieces by removing a small number of nodes. By tree-width of a DAG, we
shall mean the tree-width of the graph obtained by ignoring the direction on the edges.

Our first result is a constant factor approximation algorithm for BDBT-DAGs.
There exists a polynomial time algorithm for the replica placement problem on BDBT-
DAGs having an approximation ratio of 2 · (d+ t+ 2), where d and t are respectively the
degree bound and tree-width bound. of the input BDBT-DAG.

Our second result deals with a generalization of BDBT-DAGs, which we call TBDBT-
DAGs (tree of BDBT-DAGs). Intuitively, a TBDBT-DAG is composed of BDBT-DAGs
connected in a tree-like manner. A TBDBT-DAG is constructed by starting with a skeletal

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal 215

root	

pivot	

Figure 1 Example of TBDBT-DAG. The figure also shows the root of one of the component
BDBT-DAGs and the pivot that it connects to in another BDBT-DAG.

tree T , whose vertices are referred to as proxies. Then, each proxy is substituted with
a BDBT-DAG. For each proxy q in T , the root vertex of the associated BDBT-DAG is
connected to some vertex (called pivot) in the BDBT-DAG associated with the parent proxy
of q (see Figure 1).

The overall DAG has bounded tree-width, but may not have bounded degree. Our main
result is a constant factor approximation algorithm for TBDBT-DAGs.

There exists a polynomial time algorithm for the replica placement problem on TBDBT-
DAGs having an approximation ratio of O(d + t), where d and t are respectively the
maximum degree bound and maximum tree-width bound of any component BDBT-DAG
of the input TBDBT-DAG.

The class of TBDBT-DAGs clearly generalizes trees (wherein each component BDBT-DAG
consists of a single vertex). Therefore the above result generalizes the constant factor
approximation algorithm for the case of trees given in the prior work [1]. In fact, our analysis
is more refined and leads to an improved constant factor.

Discussion. Tree networks, considered in prior work, have a simpler structure wherein each
node has only one out-neighbor (i. e., parent). If we ignore the distance constraints, replica
placement on such networks reduces to a capacitated set cover scenario over a set system
consisting of a laminar family of sets. The classical set cover problem on such laminar familes
can easily be handled. Thus, the distance and the capacity constraints are the only critical
issue in the case of tree networks. On the the other hand, networks considered by us are
DAGs, wherein a node can have multiple (but, bounded) number of out-neighbors leading to
more complex set systems. In fact, any arbitrary set system can be encoded as an instance
of the replica placement problem if we allow general DAGs, or even bounded degree DAGs.
One of the important technical contributions of this paper is to show that the issue can
be addressed, if the DAGs additionally have bounded tree-width (namely, BDBT-DAGs).
However, the family of BDBT-DAGs do not encompass trees. Our main result deals with
the larger class of TBDBT-DAGs, which generalizes both BDBT-DAGs and trees.

2 Preliminaries

In this section we describe a natural LP for our problem and setup terminology that we will
use. We then formally define the specific class of DAGs that we address in this paper.

FSTTCS 2014

216 Replica Placement on Directed Acyclic Graphs

LP Formulation. We consider a natural LP formulation. We say that a solution opens node
u, if it places a replica on it. We say that a client a is attachable to a node u, if there exists a
path from a to u and d(a, u) ≤ dmax(a). For a client a, let Att(a) denote the set of all nodes
to which client a can be attached. For a node u, let Att(u) denote the set of all clients that
can be attached to node u. For a set of nodes U, let Att(U) = ∪u∈UAtt(u).

For each node u ∈ V , we introduce a variable y(u) that specifies the extent to which u
is open. For each client a ∈ A and each node u ∈ Att(a), we introduce a variable x(a, u)
that specifies the extent to which a is assigned to u. A node u is said to service a client a, if
x(a, u) > 0; we also say that a is assigned to u if u services a.

min
∑
u∈V

y(u)∑
a∈Att(u)

x(a, u) · r(a) ≤ y(u) ·W (∀u ∈ V) (1)

x(a, u) ≤ y(u) (∀a ∈ A, u ∈ Att(a)) (2)∑
u∈Att(a)

x(a, u) = 1 (∀a ∈ A) (3)

y(u) ≤ 1 (∀u ∈ V) (4)

Further, we add non-negativity constraints for all the variables. Constraint (1) (called
the capacity constraint) enforces that at any node the total request assigned does not exceed
the capacity W . Constraint (2) ensures that a client can be assigned to a node only to an
extent to which the node is open; without this constraint, it can be shown that the LP has
an unbounded integrality gap. Constraint (3) enforces that every client is serviced to an
extent of exactly one, i. e. every client is fully served. Constraint (4) requires that a node
can be opened to an extent of at most one.

For an LP solution σ, we shall denote the variables of the solution by xσ and yσ unless
stated otherwise. We shall also use x and y to denote the variables when the solution is clear
from the context of the discussion. Consider an LP solution σ. The cost of an LP solution is
given by the objective function: cost(σ) =

∑
u∈V yσ(u). For a set X ⊆ V , the cost of the

set X in the solution σ is given by costσ(X) =
∑
u∈X yσ(u).

I Definition 1 (Fully-open, fully-closed and partially-open nodes). We call a node u fully-open,
if yσ(u) = 1; fully-closed, if yσ(u) = 0; and partially open, if 0 < yσ(u) < 1. J

I Definition 2 (Load and Fully Loaded nodes). For a set of clients B ⊆ A and set of
nodes U ⊆ V , by loadσ(B,U) we mean the total assignments of B to nodes in U , i. e.,
loadσ(B,U) =

∑
a∈B

∑
v∈U xσ(a, v) · r(a).

For a node u ∈ V , By loadσ(u) we mean the total assignments to node u, i. e., loadσ(u) =∑
a∈Att(u) xσ(a, u) · r(a). A node u is said to fully loaded if loadσ(u) = W . J

I Definition 3 (Integrally Open and Integral Solutions). A solution σ is said to be integrally
open, if every node is either fully-open or fully-closed and an integrally open solution is said
to be an integral solution if every client is serviced by exactly one node. J

DAGs of interest. In this paper we shall address two types of DAGs; these DAGs have
bounded tree-width. We recollect the concept of tree-width and then formally define the
DAGs that we address in this paper.

I Definition 4 (Tree-decomposition and tree-width). A tree-decomposition of graph G = (V,E)
is a pair 〈{Vi|i ∈ I}, T 〉 where V1, . . . , Vh are subsets of V called pieces, I = [1, h], and T is a
tree with elements of I as nodes. A tree-decomposition must satisfy the following properties:

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal 217

1. Node coverage: every node of G belongs to at least one piece Vi, i. e., ∪i∈IVi = V

2. Edge coverage: for every edge e = (u, v) ∈ E, there is some piece Vi containing both ends
of e, i. e., ∃i ∈ I such that {u, v} ⊆ Vi

3. Coherence: for every graph vertex v , all pieces containing v form a connected component,
i. e.,∀i, j, k ∈ I, if j lies on the path between i and k in T , then Vi ∩ Vk ⊆ Vj

The width of 〈{Vi|i ∈ I}, T 〉 equals max{|Vi| : i ∈ I} − 1. The tree-width of G is the
minimum k such that G has a tree-decomposition of width k. J

We will use the following property of tree-decompositions for designing our algorithm.

I Property 1 (Separation Property). Let p be any piece of T . Suppose that T − p has
components T1, T2.....Td. Then the subgraphs G[T1 − Vp], G[T2 − Vp], . . . , G[Td − Vp] have no
nodes in common, and there are no edges between them.

The first type of DAGs that we address have bounded degree and tree-width.

I Definition 5 (Bounded Degree Bounded Tree-width DAG (BDBT-DAG)). We say that a
rooted DAG is a bounded degree bounded tree-width DAG if the undirected graph obtained
by ignoring directions on the edges has bounded degree and bounded tree-width.

We denote the root node of a BDBT-DAG, G, by Rt(G). J

The second type of DAGs that we consider generalize BDBT-DAGs as well as trees.

I Definition 6 (Tree of BDBT-DAGs (TBDBT-DAG)). A TBDBT-DAG G is a pair 〈{Dj |j ∈
J}, T 〉 where D1, D2, . . . , Dh are BDBT-DAGs, J = [1, h] and T is a tree with the elements
of J as nodes and labeled edges satisfying the following properties:

The vertices of the BDBT-DAGs are disjoint, i. e., V (Di) ∩ V (Dj) = φ ∀ i, j ∈ J , i 6= j.
The vertex set of G is the union of the vertices of BDBT-DAGs, i. e., V (G) = ∪j∈JV (Dj).
The edges of all the BDBT-DAGs are contained in G, i. e., E(Dj) ⊆ E(G) for all j ∈ J .
For every edge e = (Di, Dj) in T , there is an edge (Rt(Di), `(e)) in G that links the two
BDBT-DAGs by connecting the root of Di to a node of V (Dj) determined by the label
`(e) on the edge; `(e) ∈ V (Dj) is said to be a pivot node.

Let Roots(G) be the roots of all BDBT-DAGs of G, i. e., Roots(G) = {Rt(Dj) : j ∈ J}. J

We make the following observation regarding the tree-width of TBDBT-DAGs.

I Observation 1. If the maximum tree-width of any component BDBT-DAG is t, then the
TBDBT-DAG has tree-width max{t, 1}.

3 Algorithm for BDBT-DAGs via Stable Solutions

For the ease of exposition, we first consider the simpler case of BDBT-DAGs and present a
constant factor approximation algorithm. The components developed as part of the algorithm
will also be useful in handling the more generic TBDBT-DAGs.

The algorithm is based on the LP rounding technique. Let σin be an optimal solution to
the LP formulation. The algorithm works by applying a sequence of transformations until
an integral solution is obtained, wherein each transformation increases the cost by at most a
constant factor. The notion of stable solutions plays a key role in the above process.

I Definition 7 (Stable solution). A solution σ is said to be stable if the nodes can be
partitioned into two sets R and P called rich and poor nodes respectively such that the
following properties are satisfied:

FSTTCS 2014

218 Replica Placement on Directed Acyclic Graphs

1. The rich nodes, R, are fully open.
2. For any poor node u ∈ P , the total extent to which the poor nodes service the clients

attachable to u is less than W , i. e., loadσ(Att(u), P) < W .
3. Every client is either serviced by only nodes in R or only nodes in P but not both. J

Intuitively, a stable solution segregates the input instance into two parts, the first part
comprising of the rich nodes and the clients serviced by them, and the second part comprising
of the poor nodes and the clients serviced by them. It is easy to handle the first part, since
all the nodes in the instance are fully open. The second part has the useful feature that it is
uncapacitated in essence; meaning, no matter how we assign the clients, the capacity W at a
node can never be exceeded and hence, the capacity constraints can safely be ignored.

We next present two procedures. The first procedure works on any bounded degree DAG
and transforms an arbitrary LP solution σin into a stable solution σs with only a (d + 2)
factor increase in cost, where d is the degree bound. The second procedure works on any
bounded tree-width DAG and transforms any stable solution σs into an integrally open
solution σio with only a (t + 1) factor increase in cost, where t is the tree-width bound.
Combining the two procedures, we can handle any BDBT-DAG and transform an arbitrary
LP solution σin into an integrally open solution σio with only a constant factor increase in
cost. Finally, the integrally open solution can be transformed into an integral solution using
a cycle cancellation based method proposed in prior work [1].

The above procedures make use of a subroutine called pulling procedure, described next.
This subroutine is also employed by other algorithms in the paper to reassign the clients.

Pulling Procedure. Given a node u and a set of nodes X such that u /∈ X, by performing
the pulling procedure from X on to u, we mean reassigning the clients that are attachable to
u from X on to u while it has remaining capacity.

Formally, let σin be the input solution. We process each client-node pair 〈a, v〉 iteratively
where a ∈ Att(u) and v ∈ X. Let πold be the LP solution at the start of the current iteration.
We construct a new solution πnew as follows. We set xπnew (a, u) = xπold

(a, u) + δ and
xπnew

(a, v) = xπold
(a, v)− δ where

δ = min
{
xπold

(a, v), W − loadπold
(u)

r(a)

}
.

All other values of xπnew
(., .) and yπnew

(.) are retained as in πold. πnew is taken as the input
solution πold for the next iteration. At the end of processing all client-node pairs, the solution
πnew of the last iteration is taken as the final solution σout output by this procedure.

Note that if loadσin(u) + loadσin(Att(u), X) ≤ W (before the pulling procedure), then
loadσout

(Att(u), X) = 0, otherwise loadσout
(u) = W (after the pulling procedure).

3.1 Constructing Stable Solutions for Bounded Degree DAGs
In this section, we show how to transform any feasible solution σin for a bounded degree
DAG into a stable solution σs as stated in the following Lemma.

I Lemma 8. Any LP solution σin for a bounded degree DAG can be converted into a stable
solution σs such that costσs(R) ≤ (d+ 1) · cost(σin) and costσs(P) ≤ cost(σin) where R
and P are respectively the rich and poor nodes of the stable solution σs.

Proof Sketch. The transformation is divided into the reddening phase and browning phase.

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal 219

Reddening Phase. In this phase, the algorithm tries to make as many nodes fully loaded
as possible. We shall color all fully loaded nodes red. For this, the algorithm processes the
nodes iteratively in an arbitrary order. For every node, it checks if the node can become fully
loaded by performing the pulling procedure from non-red nodes. If so, we actually perform
the pulling procedure, open this node and color it red. The reddening phase completes when
all the nodes are processed. Hereafter, no node becomes fully loaded (red).

Browning Phase. In this phase, we process all the neighbors of red nodes that are not
already red. For each such node, u, we open the node, perform the pulling procedure on
u from non-red nodes and color it brown. Note that the total load on u, even after the
reassignments, will be less than W (otherwise u would have become red in the first step).
This completes the processing of the browning phase (and stage 1).

It can be shown that the solution at this stage is a stable solution taking the set of red
and brown nodes to be rich and the remaining nodes to be poor. The first two properties
are easy to check. The third property follows from the fact that if a client is attachable to a
rich node and is assigned to a poor node, then it must be attachable to a brown node; but
then the brown node would have pulled the assignments of this client from the nodes in P .

We now analyse the cost. Note that the cost of any feasible LP solution must be at
least b

∑
a∈A r(a)/W c. Moreover, each of the red nodes is fully loaded. Therefore the

number of red nodes is no more than cost(σin). There are at most d neighbours of a
red node; thus the total number of brown nodes is at most d · cost(σin). This implies
that costσs(R) ≤ (d+ 1) · cost(σin). As the extent of openness of the remaining nodes is
untouched, it follows that costσs

(P) ≤ cost(σin). J

3.2 Bounded Tree-width DAGs: Stable to Integrally Open Solutions
In this section, we show how to transform any stable solution σs for a bounded tree-width
DAG into an integrally open solution σio as captured in the following Lemma.

I Lemma 9. Let R and P respectively be the rich and poor nodes of a stable solution σs of
a DAG, G, of constant tree-width t. Then σs can be converted to an integrally open solution
σio such that the nodes of R remain untouched, i. e., yσio(u) = yσs(u) for all u ∈ R and
xσio

(a, u) = xσs
(a, u) for all clients a ∈ A and nodes u ∈ R. Thus, costσio

(R) = costσs
(R).

Moreover, if Z1 is the set of of fully-opened nodes of P in σio, then costσio
(Z1) ≤ (t+ 1) ·

costσs
(P). The remaining nodes of P are fully closed.

Proof Sketch. Our procedure shall color poor nodes yellow and white during its course of
execution; the yellow nodes will be opened and the white nodes will be closed. At the end
of the procedure all the poor nodes will be colored yellow or white thereby obtaining an
integrally open solution. We shall call a node resolved if it is either rich or colored (yellow or
white) and unresolved otherwise. Recall that rich nodes are already open. We shall maintain
two sets, Res and Unres of the resolved and unresolved nodes respectively. Every node of
the graph will either be in Res or in Unres. Initially we set Res = R and Unres = P . These
sets will be modified as we color the nodes and resolve them. We shall also say that a client
is resolved if it is only assigned to resolved nodes; we shall call it unresolved otherwise.

Consider a tree decomposition, 〈{Vi|i ∈ I}, T 〉, of the DAG G having tree-width t. Fix
some piece pr containing Rt(G) to be the root of the tree decomposition and assume all
edges to be directed towards pr. We say that a client a is critical at piece p ∈ I if p is the
highest piece along the path to pr such that a can be assigned to some node of Vp. We call a
piece critical if it is critical for some client.

FSTTCS 2014

220 Replica Placement on Directed Acyclic Graphs

We process the pieces of the tree decomposition in any topological order (bottom-up); let
p be the piece being processed in the current iteration. We check if there is any client, a, that
is critical at p. If not, we do nothing. Otherwise, consider the partitioning of the set Unres
based on whether a node appears in p or not; let Y = Unres∩Vp and Y = Unres\Vp. Further,
let X be the nodes of Y that appear in some piece q below p in the tree decomposition, i. e.,
X = {u ∈ Y : u ∈ Vq and ∃ a path from q to p in the tree decomposition}. We can show
that (i) the extent to which the nodes in X and Y are open collectively is at least 1, i. e.,∑
v∈X∪Y ys(v) ≥ 1; and (ii) all the clients assigned to nodes in X are attachable to some

node of Y . We open up the nodes of Y and color them yellow. We account for the cost of
fully opening these nodes of Y by charging them to the extent to which the nodes of X ∪ Y
are open in the solution σs. We perform the pulling procedure on all the nodes of Y by
pulling all the attachable clients from all nodes in Y . Note that the pulling on nodes of Y
will ensure that no clients remain assigned to the nodes in X any more. We therefore close
all these nodes in X and color them white. We incur a factor (t+ 1) loss in the process as
the tree-width is t. Now, the nodes of Y are opened and the nodes of X are closed - we
therefore move them from the set Unres to Res. Note that any poor node is charged at most
once as it must be in Unres to be charged and it is moved to the set Res immediately after
being charged. This completes the processing of the piece p. We now outline why (i) and (ii)
must hold. For (i), since client a critical at p is unresolved, it can only be assigned to nodes
in X ∪ Y . Moreover

∑
v∈V xπold

(a, v) = 1 and xπold
(a, v) ≤ yπold

(v) on any node v. Hence∑
v∈X∪Y yπold

(v) ≥ 1. For (ii), consider any client, b, serviced by some u ∈ X. Now b could
not have become critical at any piece below p otherwise it would have been pulled to the
node it became critical on. Thus b must be attachable to some node of Y in p.

We close any unresolved nodes left at the end as no clients can be assigned to them (every
client has to be critical on some node). Hence we obtain an integrally open solution. J

3.3 BDBT-DAGs: Constant Factor Approximation Algorithm
In this section, we consider BDBT-DAGs and present a constant factor approximation
algorithm. Combining Lemma 8 and 9, we can convert the optimal LP solution σin into an
integrally open solution σio. The only issue with σio is that the request r(a) of a client a
may be split and assigned to multiple nodes. On the other hand, our problem definition
requires that the request must be wholly assigned to a single node. We can address the issue
using a cycle cancellation procedure described in prior work[1].

I Lemma 10. Any integrally open solution σio can be converted into an integral solution
σout such that cost(σout) ≤ 2 · cost(σio).

Using the cost analysis as stated in the lemmas, we see that cost(σout) ≤ 2 · cost(σio) ≤
2 · (costσs(R) + (t + 1) · costσs(P)) ≤ 2 · ((d + 1) · cost(σin) + (t + 1) · cost(σin)) =
2 · (d+ t+ 2) · cost(σin).

We have thus established the following theorem.

I Theorem 11. Any LP solution σin for a BDBT-DAG instance can be transformed into
an integral solution σout such that cost(σout) ≤ 2 · (d+ t+ 2) · cost(σin), where d and t are
respectively the degree bound and tree-width bound of the DAG.

4 Replica Placement Problem on TBDBT-DAGs

The goal of this section is to design a constant factor approximation algorithm for the replica
placement problem on TBDBT-DAGs. The algorithm builds on the procedure for handling

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal 221

BDBT-DAGs presented earlier. Recall that the procedure for BDBT-DAGs works in two
stages, wherein the first stage transforms an LP solution σin into a stable solution σs and
the second stage transforms σs into an integrally open solution σio. Finally, the solution σio
is converted into an integral solution using techniques from prior work. In the context of
TBDBT-DAGs, it is difficult to obtain a stable solution, because these DAGs do not have
bounded degree. Instead, our algorithm goes via a similar, but weaker notion of pseudo-stable
solutions. The process of converting pseudo-stable solutions to integrally open solutions
is also more involved and utilizes the concept of hierarchical solutions, which generalize
integrally open solutions. It suffices to get hierarchical solutions, since prior work has shown
how to transform such solutions to integral solutions. We next define pseudo-stable and
hierarchical solutions, and outline our two transformations.

I Definition 12 (Pseudo-stable solution). An LP solution σ is said to be pseudo-stable, if
the nodes can be partitioned into two sets R and P called rich and poor nodes respectively
satisfying the following properties:

1. The rich nodes, R, are fully open.
2. For any poor node u ∈ P , the total extent to which the poor nodes service the clients

attachable to u is less than W , i. e., loadσ(Att(u), P) < W .
3. Every client is either serviced by

a. only nodes in R.
b. only nodes in P .
c. nodes in both R and P . Any client a in this category should be attachable to exactly

one node in S, where S is the set of all poor roots having a rich pivot as their out-
neighbor, i. e., S = {u ∈ Roots(G) ∩ P : out-neighbor of u is a rich pivot}. The lone
node in S to which a is attachable is called the special root of a.

The clients in the first two categories are said to be settled, whereas those in the third
category are said to be unsettled. J

We transform any given LP solution to a pseudo-stable solution using a procedure similar
to the one used for obtaining stable solutions in the context of bounded degree DAGs; the
transformation is discussed in Section 4.1. The next (and more sophisticated) stage of the
algorithm converts a pseudo-stable solution into a hierarchical solution, defined below.

I Definition 13 (Hierarchical solutions). An LP solution σ is said to be hierarchical if every
client is assigned to at most one partially-open node. J

Hierarchical solutions generalize the notion of integrally open solutions. In the context of
designing constant factor approximation algorithm for the case of trees, prior work presented
a procedure for transforming an LP solution into a hierarchical solution. For the case
of TBDBT-DAGs, we present a procedure for transforming pseudo-stable solutions into
hierarchical solutions. Given a pseudo-stable solution σps, our procedure works by segregating
σps into two parts σ1 and σ2 with the following properties:

σ1 is a stable solution for a subset of clients. We can transform this partial solution into
an integrally open solution σ′

1 using the procedure in Lemma 9, since TBDBT-DAGs
have bounded tree-width.
σ2 is a feasible solution for the remaining set of clients and has certain nice properties
that allow us to transform it into a hierarchical solution σ′

2. This transformation is based
on the intuition that a TBDBT-DAG consists of a skeletal tree T , where each node is
in turn a BDBT-DAG. The skeletal tree structure allows us to use ideas from the prior
work[1] in obtaining the hierarchical solution σ′

2.

FSTTCS 2014

222 Replica Placement on Directed Acyclic Graphs

We finally merge σ′
1 and σ′

2 into a single hierarchical solution σh servicing all the clients.
The rest of the section is devoted to describing the different transformations.

4.1 Obtaining a Pseudo-stable Solution
In this section, we show how to transform any feasible solution σin for a TBDBT-DAG into
a pseudo-stable solution σps. The following Lemma formally captures the transformation.

I Lemma 14. Any LP solution σin can be converted into a pseudo-stable solution σps such
that costσps

(R) ≤ (d + 2) · cost(σin) and costσps
(P) ≤ cost(σin) where R and P are

respectively the rich and poor nodes of the stable solution σps.

Proof Sketch. This transformation is a minor modification from that used in Lemma 8 for
BDBT-DAGs. The transformation is divided into the reddening and browning phases.

The reddening phase is same as before. We make as many nodes fully loaded (red) as
possible, and open them. We perform the browning phase with slight modifications. For
every red node we color all its non-red neighbors brown except for the in-neighbors that are
in Roots(G). Note that every node has bounded degree ignoring the in-neighbors in Roots(G);
a node may have an arbitrary number of in-neighbors from Roots(G).

We now show that the solution is pseudo-stable. We take the set of all red and brown
nodes as R and the remaining nodes as P . Consider any client, a, assigned to a node v1 in
R as well as a node v2 in P ; we need to show that a is attachable to exactly one node in
S. We first observe that a cannot be attachable to any brown node since then the brown
node must have pulled the assignments of a from nodes in P and a would not be assigned
to v2. This also implies that v1 is red. We now show that a is attachable to at least one
node in S. Consider the path from a to v1. The non-red node closest to v1 on this path, say
v3, must either be brown or in Roots(G) ∩ P. But since a is not attachable to any brown
node, v3 ∈ Roots(G) ∩ P. Moreover, the out-neighbor of v3 is a red (and hence rich) pivot
and therefore v3 ∈ S. Next we show that a cannot be attachable to two nodes in S. Suppose
a is attachable to two nodes, u1, u2 ∈ S. Then there must be a path between them; w.l.o.g.
let there be a path from u1 to u2. The out-neighbor of u1 is a rich pivot, say v. Then, either
v is itself brown or there exists a brown node on the path from v to u2 (as v is red, u2 ∈ P
and we color all non-red out-neighbors of red nodes brown). This contradicts our inference
that a cannot be attachable to a brown node. Hence the solution is pseudo-stable.

The cost analysis is similar to that in Lemma 8. The change in factor arises because
earlier we could color at most d neighbors brown, but now we may color brown one more
neighbour – the out-neighbor of a red root (which is a pivot not in the BDBT-DAG). J

4.2 Obtaining a Hierarchical Solution
In this section, we show how transform a pseudo-stable solution σps into a hierarchical
solution σh and prove the following lemma.

I Lemma 15. Let R and P respectively be the rich and poor nodes of a pseudo-stable
solution σps of a TBDBT-DAG, G. Let t be the maximum tree-width of any of its component
BDBT-DAGs. Then σps can be converted to a hierarchical solution σh such that the nodes
of R remain untouched, i. e., yσh

(u) = yσps(u) for all u ∈ R and xσh
(a, u) = xσps(a, u)

for all clients a ∈ A and nodes u ∈ R. Thus, costσh
(R) = costσps

(R). Moreover,
costσh

(P) ≤ (max{t, 1}+ 2) · costσs(P).

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal 223

Proof. Let A1 and A2 be the set of settled and unsettled clients with respect to σps. We
split the original problem instance into two instances focusing on the settled and unsettled
clients, respectively. This is achieved by taking two copies of the original DAG, denoted I1
and I2; we set r(a) = 0 for all unsettled clients in I1 and r(a) = 0 for all settled clients in
I2. From σps, we can get two feasible LP solutions σ1 and σ2 for the instances I1 and I2,
respectively. The solutions σ1 and σ2 are copies of σps, except that we set xσ1(a, u) = 0 for
all unsettled clients a and xσ2(a, u) = 0 for all settled clients a, for all nodes u ∈ V .

Note that σ1 is a stable solution for I1. Hence, the solution σ1 can be transformed into
an integrally open solution σ′

1 for the instance I1, using the procedure given in Lemma 9
(since a TBDBT-DAG has tree width max{t, 1}, where t is the maximum tree-width of any
of its component BDBT-DAGs). Let Z1 be the nodes of P opened by this algorithm.

We now focus on the second instance I2, consisting of only unsettled clients, and transform
the solution σ2 into a hierarchical solution σ′

2 using the following Lemma.

I Lemma 16. Let R and P respectively be the rich and poor nodes of a pseudo-stable solution
σ2 of a TBDBT-DAG with constant tree-width t having only unsettled clients. Then σ2 can
be converted to a hierarchical solution σ′

2 such that the nodes of R remain untouched, i. e.,
yσ′

2
(u) = yσ2(u) for all u ∈ R and xσ′

2
(a, u) = xσ2(a, u) for all clients a and nodes u ∈ R.

Thus, costσ′
2
(R) = costσ2(R). Moreover if Z2 is the set of fully or partially open nodes of

P in σ′
2, then costσ′

2
(Z2) ≤ costσ2(P).

Proof Sketch. Let U be the set of unsettled clients. We process the nodes that are special
roots for some client iteratively in topological order (bottom-up) of the DAG. Let u be the
node currently being processed. Let B be the set of clients for which u is a special root and
let Xu be the set of nodes of P to which the clients of B are assigned (this may include u
itself). We shall argue that all the clients assigned to Xu have the same special root, i. e.,
u. We shall perform the pulling procedure on u from Xu \ {u}. Note that all the clients in
B will be reassigned to u and no clients will remain assigned to Xu \ {u}. We shall close
down all the nodes of Xu and open u to the extent min{costσ2(Xu), 1}; thus the solution
remains feasible. We shall account for the cost of opening u by charging the extent to which
the nodes of Xu are open in the solution σ2. This completes the processing of u. We now
outline why all the clients assigned to Xu have u as their special root. Consider any client
b assigned to a node v in Xu. By definition of Xu, there must be a client, c, assigned to v
and having special root as u. It can be argued that clients attachable to the same node will
have the same special root (this follows from the fact that the roots of the BDBT-DAGs are
arranged in a tree-like manner in a TBDBT-DAG using a skeletal tree). Since c and b are
both attachable to v, they must have the same special root; therefore the special root of b
must also be u. Hence, all the clients assigned to Xu have u as the special root.

Note that the clients in B are not assigned to any poor node above u. Therefore u and
B will not participate in any further processing (of other nodes that are special roots). Thus
any node is charged at most once only. The special roots are taken as the set Z2. J

We shall now combine the solutions σ′
1 and σ′

2 into a solution σh for the original input
TBDBT-DAG as follows. Let Z1 be the set of fully open nodes in σ′

1 and Z2 be the nodes of P
that are fully or partially open in σ′

2. The nodes of R remain untouched in both the solutions.
We construct σh by opening all the nodes of R and Z1. Then, we open all the nodes in
Z2 \Z1 to the extent that they were open in σ′

2. The assignments are retained from both the
solutions σ′

1 and σ′
2 (the client sets are disjoint). Formally: (i) set yσh

(u) = yσ′
1
(u) (which is

1) for all u ∈ R∪Z1; (ii) set yσh
(u) = yσ′

2
(u) for all u ∈ Z2 \Z1; (iii) set xσh

(a, u) = xσ′
1
(a, u)

for all settled clients a and nodes u; (iv) set xσh
(a, u) = xσ′

2
(a, u) for all unsettled clients a

FSTTCS 2014

224 Replica Placement on Directed Acyclic Graphs

and nodes u. Note that no node in Z1 ∪ Z2 can become fully loaded, because they belong to
the set P . Moreover, the nodes of Z2 \ Z1 are also sufficiently open to service the clients
assigned to them as they are not assigned any clients in the solution of the instance I1 and
the solution to the instance I2 is feasible. The solution σh is hierarchical as the unsettled
clients are assigned to at most one partially-open node since σ′

2 is hierarchical.
Using the cost analysis as stated in Lemmas 9 and 16, we see that costσh

(R) = costσps
(R)

and costσh
(P) ≤ costσ′

1
(Z1) + costσ′

2
(Z2) ≤ (max{t, 1} + 1) · costσ1(P) + costσ2(P)

≤ (max{t, 1}+ 2) · costσps
(P) This completes the proof of Lemma 15. J

4.3 TBDBT-DAGs: Constant Factor Approximation Algorithm
We now put together the different transformations and establish a constant factor approxima-
tion algorithm for TBDBT DAGs. Combining Lemma 14 and 15, we can convert the optimal
LP solution σin into a hierarchical solution σh. A procedure for converting any hierarchical
solution into an integral solution is implicit in prior work [1].

I Lemma 17. Any hierarchical solution σh can be converted into an integral solution σout
such that cost(σout) ≤ 136 · cost(σh).

The above procedure works by reducing the task to an issue of rounding LP solutions of a
capacitated vertex cover instance, for which Saha and Khuller[11] present a 34-approximation.
The proof is omitted.

Using the cost analysis as stated in the lemmas, we see that cost(σout) ≤ 136 ·cost(σh) =
136 · (costσh

(R) + costσh
(P)) ≤ 136 · (costσps

(R) + (max{t, 1}+ 2) · costσps
(P)) ≤ 136 ·

((d+ 2) · cost(σin) + (max{t, 1}+ 2) · cost(σin)) = 136 · (d+ max{t, 1}+ 4) · cost(σin)
We have thus established the following theorem.

I Theorem 18. Any LP solution σin for a TBDBT-DAG instance can be transformed into
an integral solution σout such that cost(σout) ≤ 136 · (d+ max{t, 1}+ 4) · cost(σin), where
d and t are respectively the maximum degree bound and the maximum tree-width bound of
any component BDBT-DAG of the TBDBT-DAG.

This yields a factor 680 approximation algorithm for the case of trees (substituting d = 0
and t = 0), improving upon the approximation ratio obtained in prior work[1].

References
1 S. Arora, V.T. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal. Replica place-

ment via capacitated vertex cover. FSTTCS, 2013.
2 A. Benoit, H. Larchevêque, and P. Renaud-Goud. Optimal algorithms and approximation

algorithms for replica placement with distance constraints in tree networks. In IPDPS,
pages 1022–1033, 2012.

3 A. Benoit, V. Rehn-Sonigo, and Y. Robert. Replica placement and access policies in tree
networks. IEEE Trans. on Parallel and Dist. Systems, 19:1614–1627, 2008.

4 J. Chuzhoy and J. Naor. Covering problems with hard capacities. SIAM Journal Computing,
36(2):498–515, 2006.

5 I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Computer
Networks, 40:205–218, 2002.

6 U. Feige. A threshold of ln n for approximating set cover. JACM, 45(4):634–652, 1998.
7 R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan. An improved approx-

imation algorithm for vertex cover with hard capacities. JCSS, 72(1), 2006.

S. Arora, V. T. Chakaravarty, K. Gupta, N. Gupta, and Y. Sabharwal 225

8 K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in trees with
read, write, and storage costs. IEEE Trans. on Parallel and Dist. Sys., 12:628–637, 2001.

9 M. J. Kao and C. S. Liao. Capacitated domination problem. Algorithmica, pages 1–27,
2009.

10 Y.F. Lin, P. Liu, and J. J. Wu. Optimal placement of replicas in data grid environments
with locality assurance. In ICPADS, 2006.

11 B. Saha and S. Khuller. Set cover revisited: Hypergraph cover with hard capacities. In
ICALP, 2012.

12 L. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 2(4):385–393, 1982.

13 J. J. Wu, Y. F. Lin, and P. Liu. Optimal replica placement in hierarchical data grids with
locality assurance. J. of Parallel and Dist. Computing, 68:1517–1538, 2008.

FSTTCS 2014

Maintaining Approximate Maximum Matching in
an Incremental Bipartite Graph in Polylogarithmic
Update Time
Manoj Gupta∗

Xerox Research, India
manoj.gupta@xerox.com, gmanoj@cse.iitd.ac.in

Abstract
A sparse subgraph G′ of G is called a matching sparsifier if the size or weight of matching in G′
is approximately equal to the size or weight of maximum matching in G. Recently, algorithms
have been developed to find matching sparsifiers in a static bipartite graph. In this paper, we
show that we can find matching sparsifier even in an incremental bipartite graph.

This observation leads to following results:
1. We design an algorithm that maintains a (1 + ε) approximate matching in an incremental

bipartite graph in O(log2 n
ε4) update time.

2. For weighted graphs, we design an algorithm that maintains (1 + ε) approximate weighted
matching in O(logn log(nN)

ε4) update time where N is the maximum weight of any edge in the
graph.

1998 ACM Subject Classification E.1 [Data Structures]: Graphs and Networks, F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems, G.2.2 [Graph
Theory]: Graph Algorithms

Keywords and phrases Graph Algorithm, Dynamic Graph

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.227

1 Introduction

A matching is a set of vertex disjoint edges in the graph. Finding a matching of maximum
size in a graph is one of the most important question in combinatorial optimization. For
static graph, Hopcroft and Karp [12] designed an algorithm that found maximum matching
in a bipartite graph in O(m

√
n) time. However, extending this result to general graph turned

out to be a challenging problem. Micali and Vazirani [14, 18] were the first to show that a
maximum matching in a general graph can be found in O(m

√
n) time.

In recent years, there has been a lot of activity for maintaining approximate/exact
matching in a dynamic graph. In a dynamic graph, at each update step an edge is added
or deleted from the graph. If only insertions are allowed, then the graph is said to be an
incremental dynamic graph. If only deletions are allowed, then the graph is said to be a
decremental dynamic graph. If both insertions and deletions are allowed, then the graph is
said to be fully dynamic graph.

For the analysis, we assume that an adversary executes a sequence of addition and
deletion of edges in a graph with the objective of maximizing the update time of a given
algorithm. An adversary is oblivious if he/she knows the code of the algorithm but does

∗ The work was done when the author was a student at IIT Delhi.

© Manoj Gupta;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 227–239

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.227
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

228 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

not have access to the random bits used in the algorithm. In the literature, there are some
randomized algorithm that assumes an oblivious adversary which means that the adversary
has no knowledge of the matched edges maintained by the algorithm. If the algorithm is
deterministic, then the adversary can run this algorithm on an input sequence and find the
matched edges at each update step of the algorithm. In the following literature survey, all
the randomized algorithm assume oblivious adversary model.

Ivković and Llyod[13] were the first to investigate matching in dynamic graphs. They
designed a deterministic algorithm that maintains a maximal matching with O((n+m)

√
2

2)
update time. Sankowski[17] designed a deterministic algorithm that maintains maximum
matching in O(n1.495) update time. Onak and Rubinfeld[16] designed a randomized algorithm
that maintains a c-approximation of maximum matching in O(log2 n) update time, where c
is a large unspecified constant. Baswana, Gupta and Sen[5] showed that maximal matching
can be maintained in a dynamic graph in an amortized O(logn) update time with high
probability. Subsequently, Anand et al. {[2, 3]} extended this work to the weighted case, and
designed a randomized algorithm that maintains a matching with a weight that is expected
to be at least 1/4.9108 ≈ 0.2036 of the optimum. Neiman and Solomon[15] designed a
deterministic algorithm that maintains a matching of size at least 2/3 of the size of optimum
matching in O(

√
m) time per update in general graphs. Gupta and Peng [11] generalized

this result — they designed a deterministic algorithm that maintains a (1 + ε) approximate
maximum matching in O(

√
mε−2) update time. They also extended this result to a weighted

graph by designing a deterministic algorithm that maintains a (1 + ε)-approximate weighted
matching in O(mε−O(1/ε) logN) update time where the edges have weights in the range
[1, N].

We investigate the problem of finding maximum matching in an incremental bipartite
graph. To the best of our knowledge, there are no results for maintaining near approximate
maximum matching in incremental bipartite graphs. However, the results of Gupta and
Peng [11] also applies to a bipartite graph. Note that their result applies for matching in
fully dynamic graph which seems to be a harder problem than maintaining matching in
an incremental graph. However, the running time they obtain have a dependence on (

√
m)

where m is the maximum number of edges in the graph at any point of time.
To obtain better bounds, we look for inspiration from the field of streaming algorithms.

Recently, there has been much interest[9, 10, 8] in the study of graph problems in a semi-
streaming environment. In this model, the algorithm has to work with O(n poly logn) space
and the one of the aim of the algorithm is to minimize the total number of passes over the
stream. Ahn and Guha [1] showed that there exists a semi-streaming algorithm that find
a (1 + ε)-approximate bipartite matching in an unweighted/weighted graph in O(logn/ε3)
passes. One of the ingredients they use is what we call as matching sparsifier.

I Definition 1. A subgraph G′ of G is said to be a (ε, β)-sparsifier if the size or weight of
matching in G′ is at least β

1+ε whenever the size or weight of maximum matching in G is
equal to β.

Ahn and Guha [1] showed that a (O(ε), β)-sparsifier can be found in O(m logn/ε3) time.
We show that this algorithm works even for an incremental bipartite graph. This observation
helps us in showing the following results:

I Theorem 2. For any ε ≤ 1/2, there exists an algorithm that maintains a (1+ε) approximate
maximum cardinality matching in an incremental bipartite graph in an amortized O(log2 n

ε4)
update time.

We extend the above result to weighted graphs:

M. Gupta 229

I Theorem 3. For any ε ≤ 1/2, there exists an algorithm that maintains a (1+ε) approximate
maximum weighted matching in an incremental weighted bipartite graph in an amortized
O(logn log(nN)

ε4) update time where each edge has weight in the range [1, N].

2 Preliminaries

An undirected graph is represented by G = (V,E), where V represents the set of vertices and
E represents the set of edges in the graph. We will use n to denote the number of vertices
|V | and m to denote the number of edges |E|.

A matching in a graph is a set of independent edges in the graph. The maximum
cardinality matching(MCM) in a graph is the matching of maximum size. LetM denote
a maximum matching in the graph. Similarly, given a set of weights w : E → [1, N], we
can denote the weight of a matching M as w(M) =

∑
e∈M w(e). The maximum weight

matching(MWM) in a graph is in turn the matching of maximum weight.
For measuring the quality of approximate matching, we will use the notation of α-

approximation, which indicates that the objective (either cardinality or weight) given by the
current solution is at least 1/α of the optimum. Specifically, a matching M is called α-MCM
if |M | ≥ 1

α (size of MCM), and α-MWM if w(M) ≥ 1
α (weight of MWM).

Finding or approximating MCMs and MWMs in the static setting have been intensely
studied. Near linear time algorithms have been developed for finding (1 + ε) approximations
and we will make crucial use of these algorithms in our data structure. For maximum
cardinality matching, such an algorithm for bipartite graph was introduced by Hopcroft and
Karp[12].

I Lemma 4. [12] For any ε < 1, there exists an algorithm ApproxMCM that finds a
(1 + ε)-MCM in a static unweighted bipartite graph G in O(mε−1) time where there are m
edge in G.

For approximate MWM, there has been some recent progress. Duan et al.[6, 7] designed an
algorithm that finds a (1 + ε) approximate maximum weighted matching in O(mε−1 log(ε−1))
time.

I Lemma 5. [6, 7] For any ε < 1, there exists an algorithm ApproxMWM that finds a
(1 + ε)-MWM in a static weighted graph G in O(mε−1 log(ε−1)) time where there are m edge
in G.

In Section 3, we reproduce the results of [1] that finds a (O(ε), β)-sparsifier in a static
bipartite graph. In section 4, we design an algorithm that finds a (O(ε), β)-sparsifier in an
incremental bipartite graph and use this algorithm to maintain a (1 + ε)-MCM. In Section
5, we reproduce the algorithm in [1] that finds a (O(ε), β)-sparsifier in a static weighted
bipartite graph. In Section 6, we design an algorithm that finds a (O(ε), β)-sparsifier in an
incremental weighted bipartite graph and use this algorithm to maintain a (1 + ε)-MWM.

3 Background

Consider the following primal-dual for bipartite matching. Here the dual(LP2) is the linear
program for bipartite matching and the primal(LP1) is the linear program for vertex cover.

FSTTCS 2014

230 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

u1
i = 1 ∀i ∈ V ;

for t = 1 to T do
Call find-admissible-solution(t)
Let M(i,yt) =

∑
j:(i,j)∈E yij − 1 ∀i

∀i, set ut+1
i = uti(1 + ε)M(i,yt)/ρ if M(i,yt) ≥ 0

uti(1− ε)−M(i,yt)/ρ if M(i,yt) < 0

Output y =
(1

1+4δ
) 1
T

∑
t yt;

Figure 1 Multiplicative-Weight-Update(): The Multiplicative weight update method.

Primal
min

∑
i
xi

s. t. xi + xj ≥ 1 ∀(i, j) ∈ E LP1
xi ≥ 0

Dual
max

∑
i
yij

s. t.
∑

j:(i,j)∈E yij ≤ 1 ∀i ∈ V LP2
yij ≥ 0

We follow the algorithm of Ahn and Guha [1] in this section. We will use the multi-
plicative weight update method of Arora, Hazan and Kale [4]. Consider the multiplicat-
ive weight update method Multiplicative-Weight-Update in Figure 1. The aim of
Multiplicative-Weight-Update is to find a feasible solution y such that

∑
yij ≈ α, i.e,

the aim of our algorithm is to find a matching of a size approximately α. The algorithm runs
for T iterations where we will calculate T at the end of the analysis. For each constraint
associated with a vertex i in the dual LP, we associate it with a value ui. Initially u1

i = 1. In
each iteration of the algorithm, we find an admissible dual solution (by calling the procedure
find-admissible-solution). We will define the notion of admissibility in Definition 6. Let
yt be an admissible solution in iteration t. Define M(i,yt) =

∑
j:(i,j)∈E y

t
ij − 1 for each

constraint associated with vertex i. Then comes the step which justifies the name of the
method, i.e., we update the weights of each ui based on the value of M(i,yt). Note that ρ
and ε are parameters in this update step which we will calculate in the analysis.

We now define the notion of admissibility.

I Definition 6. Define E(yt) to be the expected value of M(i,yt) if constraint i is chosen
with probability uti∑

j
ut
j

, i.e, E(yt) =
∑
i

uti∑
j
ut
j

M(i,yt). The dual solution yt is admissible if

E(yt) ≤ δ and
∑
i,j yij ≥ α and M(i,yt) ∈ [l, ρ] where δ, ρ, l are parameter dependent on ε.

In [1], the following theorem calculates the number of iterations for which Multiplicative-
Weight-Update needs to run.

I Theorem 7. Let ε ≤ 1/2,δ = 4εl. If find-admissible-solution returns an admissible
solution in all T = 2ρ logn

δε iterations , then for all constraints i,M(i,y) ≤ 1

Theorem 7 implies that if find-admissible-solution returns an admissible solution for
T iteration, then we can find a feasible solution y. Since y =

(1
1+4δ

) 1
T

∑
t yt and

∑
ij y

t
ij ≥ α,∑

ij yij ≥
(1

1+4δ
)
α. So we obtain a feasible fractional solution of a value approximately equal

to α.

M. Gupta 231

∀i, let xti = αuti∑
j
ut
j

;

Let Etviolated = {(i, j) : xti + xtj < 1}
Find a maximal matching St in Etviolated.
if |St| < δα then

For each (i, j) ∈ St, increase xti and xtj by 1
return failure

else
Return ytij = α

|St| for (i, j) ∈ St and 0 otherwise

Figure 2 find-admissible-solution(t): The procedure that finds an admissible solution.

3.1 MCM
The multiplicative weight update method mandates that an admissible solution is found at
each iteration. We now reproduce find-admissible-solution designed by Ahn and Guha
[1] which finds an admissible solution.

find-admissible-solution starts by setting xi values for all vertices in the graph. The
value of xti is α times the probability of choosing a vertex i under the probability distribution
ut. We look at the edges which violated the dual LP constraint using the assignment xt,
i.e., all the edges e = (i, j) such that xti + xtj < 1. Let the set of all violated edge be denoted
by Eviolated. We find a maximal matching St in the set Eviolated. If |St| < δα, we return a
failure, else we return yt by setting ytij = α/|St| for all the edges in the matching.

We reproduce the following lemma from [1]

I Lemma 8. [1] If |St| < δα, then find-admissible-solution returns a feasible solution
for LP 2 with a value at most (1 + 2δ)α.

Proof. For each edge (i, j) such that xti + xtj < 1, at least one of the endpoint is in the
maximal matching (since St is a maximal matching). We increase xti and xtj by 1 to satisfy
this constraint. So all the violated constraints are satisfied. Initially,

∑
i x

t
i = α and since we

have increased the value of all the vertices in the maximal matching, the total increase is
< 2δα. So the total value of the solution of LP1 is at most (1 + 2δ)α. J

I Lemma 9. [1] If |St| ≥ δα, then find-admissible-solution returns an admissible
solution with l = 1 and ρ = 1/δ and E(yt) ≤ δ.

Proof. Since yti,j = α/|St|, for all (i, j) ∈ St, so∑
(i,j)∈St

yti,j = α∑
(i,j)∈St

yti,j(xti + xtj) < α { For each (i, j) ∈ St, xti + xtj < 1 }∑
(i,j)∈E y

t
i,j(xti + xtj) = α { Since yti,j = 0 for all other edges }∑

i
xti
∑

j:(i,j)∈E y
t
i,j =

∑
i
xti∑

i
xti
(∑

j:(i,j)∈E y
t
i,j − 1

)
= 0∑

i
xtiM(i, yt) = 0∑
i

xti∑
j
xt
j

M(i, yt) = 0

This implies E(yt) ≤ 0 ≤ δ. Also, if (i, j) ∈ St, ytij = 1/δ, this implies M(i,yt) = 1/δ, so
ρ = 1/δ. If (i, j) /∈ St, M(i,yt) = −1, so l = 1. J

Now comes the crucial step of the algorithm. We never want find-admissible-solution
to fail. This implies that the size of the maximal matching found by our algorithm should

FSTTCS 2014

232 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

always be greater than or equal to δα. To achieve this, we set a suitable value of α. Let M
be any matching in the graph such that |M | = β. Suppose that we set αi = (1 + ε)i for
i ≥ 0. Let αj be the smallest value above β. So αj ≥ β ≥ αj−1. We now prove the following
lemma:

I Lemma 10. If β ≥ αj−1 and if we set α = αj/(1+ε)9 in multiplicative-weight-update
procedure, then find-admissible-solution never fails.

Proof. Suppose the algorithm fails. By Lemma 8, this implies that there exists a feasible
solution of LP1 with value (1 + 2δ)α. Since ε = δ/4 (since δ = 4εl and l = 1), this value is
≤ (1 + 8ε)α = (1 + 8ε)αj/(1 + ε)9 ≤ (1 + 8ε)β/(1 + ε)8 < β. This leads to a contradiction
since the minimum value of LP1 is ≥ β (as the size of maximum matching is ≥ β). This
implies that find-admissible-solution never fails. J

Using Theorem 7, if we set α = αj/(1 + ε)9, then after T iterations, we will find
a feasible fractional solution y. In multiplicative-weight-update procedure, we set
y =

(1
1+4δ

) 1
T

∑
t yt. Since find-admissible-solution returns an admissible solution of

value = α in each iteration, we have
∑
ytij =

(1
1+4δ

)
α. Since δ = 4εl and l = 1, δ = 4ε. So,∑

yij =
(

1
1+16ε

)
α

=
(

1
1+16ε

)
αj/(1 + ε)9

≥ 1
(1+16ε)(1+ε)9αj

≥ 1
(1+16ε)(1+75ε)αj

(
if ε ≤ 1/2, then 1

(1+ε)9 ≥ 1
1+75ε

)
≥ 1

(1+1200ε)αj

≥ 1
(1+1200ε)β

(
since β ≤ αj

)
Thus, we have proved the following lemma:

I Lemma 11. If find-admissible-solution returns an admissible solution for T iterations,
then the size of the fractional matching returned by Multiplicative-Weight-Update is
≥ 1

1+1200εαj ≥
1

(1+1200ε)β

So if we set ε′ = 1/1200ε, we get a feasible solution y such that the size of this fractional
solution y is ≥ (1 − ε′)β. Also note that at each iteration t, find-admissible-solution
selects at most n edges and sets ytij > 0 for these n edges. Since there are at most T = 2ρ logn

δε

iterations, the total number of edges selected by find-admissible-solution with yij > 0
is ≤ 2ρ logn

δε n. We have the following lemma:

I Theorem 12. There exists an algorithm which finds a (O(ε), β)-sparsifier G′ of G of size
O(n logn/ε3). Moreover, the time taken to find such a graph is O(m logn/ε3),

Proof. From the above discussion, we claim the total number of edges selected by
find-admissible-solution is O(2ρ logn

δε n) = O(n logn
ε3) (since δ = 4ε and ρ = 1/δ). By

Lemma 11, the size of fractional matching in G′, i.e.,
∑

yij is ≥ 1
(1+1200ε)β. Using the

integrality of bipartite matching polytope, we claim that the size of maximum matching
in G′ is ≥ 1

(1+1200ε)β. Regarding the running time, note that each iteration is dominated
by the running time of find-admissible-solution — which is O(m). Since ρ = 1/δ and
δ = 4ε, there are at most T = 2ρ logn

δε = O(logn
ε3) iterations and the total running time is

O(m logn/ε3). J

M. Gupta 233

4 Incremental MCM

Overview
In this section, we show that we can find a (O(ε), β)-sparsifier in an incremental bipartite
graph. This observation is then used to maintain a (1 + ε)-MCM in the following way: We
run many versions of the algorithm in Theorem 12 in parallel such that in the kth run, we set
α = αk/(1 + ε)9 in the multiplicative-weight-update procedure where αk = (1 + ε)k and
k ≥ 9. Since the size of maximum matching is ≤ n, k ≤ logn

log(1+ε) = O(logn
ε). In the kth run,

we want to find a (O(ε), αk)-sparsifier. Note that initially a (O(ε), αk)-sparsifier may not
exist as the size of maximum matching itself may be < αk. So our algorithm returns failure
till the size of maximum matching is approximately equal to αk. At any given update step,
say l, let i be the highest numbered version for which multiplicative-weight-update has
not failed. We find a (1 + ε)-MCM Mi in the (O(ε), αi)-sparsifier found in the ith run. We
will show that Mi is a (1 +O(ε))-MCM in Gl, i.e., the ratio between the size of Mi and the
maximum matching at the lth update step is 1 +O(ε).

Consider an incremental graph where at the update step l, an edge el is added to the
graph, i.e., the graph at lth update step Gl = Gl−1 ∪ el. We use the incremental version of
multiplicative-weight-update and find-admissible-solution (see Figure 3 and 4).

Fix a value of k. We describe our adaptation of the algorithm in the previous section for
kth run of the algorithm when α = αk/(1 + ε)9. Consider the procedure incremental-find-
admissible-solution. Before calling this procedure, we set u1

i = 1 for all the constraints
of LP1. Since the graph is empty initially, the procedure incremental-find-admissible-
solution fails in the first iteration. At update step l, el is added to the graph Gl−1, and the
procedure incremental-multiplicative-weight-update is run. The procedure finds the
iteration (say t), where incremental-find-admissible-solution has failed. Since a new
edge is added to the graph, the procedure calls incremental-find-admissible-solution
hoping that there exists an admissible solution after the addition of this new edge. If
incremental-find-admissible-solution returns failure, then there is still no admissible
solution found at iteration t. Else, incremental-find-admissible-solution successfully
finds an admissible solution. We increment t and try to find an admissible solution in iteration
t+ 1. If t = T + 1, then using Lemma 11, we claim that the size of maximum matching in
our sparsifier is at least 1

(1+1200ε)αk. This implies that we have found a (O(ε), αk)-sparsifier
at this update step. We then run ApproxMCM on this (O(ε), αk)-sparsifier. We then stop
the kth run of our algorithm.

We now describe the incremental version of the algorithm find-admissible-solution
(see Figure 4). If procedure incremental-multiplicative-weight-update calls procedure
incremental-find-admissible-solution for the first time in the iteration t, then we
initialize all xtu’s and find a maximal matching St as in procedure find-admissible-solution.
Else we need to update St with respect to this newly added edge el = (u, v). If xtu + xtv is
less than 1 and u and v are not adjacent to any edge in St, then the edge el is added to
St. If St < δα, then find-admissible-solution was unable to find an admissible solution
and returns failure. Else we return an admissible solution yt(this part is same as in the
find-admissible-solution). The important thing to note is that we return an admissible
solution as soon as |St| is equal to δα.

We now prove the following lemma:

I Lemma 13. If the size of maximum matching crosses αk−1 at update step l, then the kth
run of incremental-multiplicative-weight-update stops before or at update step l.

FSTTCS 2014

234 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

Let the current update step be l with el being added to graph Gl−1.
Let t be the iteration in which incremental-find-admissible-solution has
previously failed.
while incremental-find-admissible-solution(t) does not return failure do

t← t+ 1
if t = T+1 then

Run ApproxMCM on the sparsifier found by the kth run
Stop the kth run of the algorithm

else
Let M(i,yt) =

∑
j:(i,j)∈E yij − 1 ∀i

∀i, set ut+1
i = uti(1 + ε)M(i,yt)/ρ if M(i,yt) ≥ 0

uti(1− ε)−M(i,yt)/ρ if M(i,yt) < 0

Figure 3 incremental-multiplicative-weight-update(): The incremental version of Multi-
plicative Weight Update Method.

if this is the first call to incremental-find-admissible-solution in iteration t then
∀w, let xtw = αutw∑

j
ut
j

;

Let Etviolated = {(u, v) : xtu + xtv < 1}
Find a maximal matching St in Etviolated.

else
if xtu + xtv < 1 and u and v are free with respect to St then

St ← St ∪ ei
if |St| < δα then

return failure
else

Return ytij = α
|S| for (i, j) ∈ St and 0 otherwise

Figure 4 incremental-find-admissible-solution(t): The incremental version find-admissible-
solution that finds an admissible solution.

Proof. Suppose that the procedure incremental-multiplicative-weight-update does
not stop at or before the update step l. This implies that there exists an iteration t at
which incremental-find-admissible-solution is unable to find an admissible solution.
Note that incremental-find-admissible-solution incrementally maintains a maximal
matching St. This implies that |St| < δα. At the lth update step, the size of maximum
matching is ≥ αk−1, so Lemma 10 mandates that find-admissible-solution (and therefore
incremental-find-admissible-solution) never fails. This lead to a contradiction thus
proving the lemma. J

At an update step l, let i be the highest numbered version for which the procedure
incremental-multiplicative-weight-update has stopped. This implies that the size of
maximum matching at this update step is less than αi — if not then by Lemma 13, even
(i+ 1)th run of incremental-multiplicative-weight-update should have stopped. After
the ith run stops, we use ApproxMCM to find a (1 + ε)-MCM in the sparsifier found at the
ith run. Using Lemma 11, we claim that the size of matching in the sparsifier is 1

(1+1200ε)α
i.

M. Gupta 235

∀i, let xti = αuti∑
j
ut
j

;

Let Etviolated,k = {(i, j) : xti + xtj < wij , α/2k ≤ wij ≤ α/2k−1}
Find a maximal matching Skt in Etviolated,k for each k = 1, 2, . . . , dlog n

δ e = O(logn).
Let St = ∪kSk, ∆ = w(St)
if ∆ < δα then

For each (i, j) ∈ St, increase xi and xj by 2wij .
Further increase every xi by δα
Return x and report failure.

else
S′ ← ∅
while St 6= ∅ do

Pick the heaviest edge (i, j) from St and add it to S′
Remove all the edges adjacent to i and j from St

Return ytij = α
w(S′) for (i, j) ∈ S′ and 0 otherwise

Figure 5 find-admissible-solution(t): The oracle which finds an admissible solution.

So, ApproxMCM finds a matching of size at least αi

(1+1200ε)(1+ε) ≥
1

(1+1202ε)α
i. If we use

the matching obtained at the ith run as our current matching, the approximation ratio of
our matching with respect to the maximum matching is ≤ αi

αi/(1+1202ε) = 1 + 1202ε.
Now we analyze the running time of the kth run of incremental-multiplicative-

weight-update. The running time of incremental-multiplicative-weight-update is
dominated by the procedure incremental-find-admissible-solution. We claim that the
running time of this procedure at the tth iteration is at most O(m) where m is the number
of edges at the end of all updates. This is true because the initialization step takes at most
O(m) time and processing each update el takes O(1) time. Since there are T = O(logn/ε3)
iterations, the total running time for the kth run of our algorithm is O(m logn/ε3).

Since we run O(logn/ε) versions of incremental-multiplicative-weight-update in
parallel, the total time taken is O(m log2 n/ε4). This implies an amortized update time of
O(log2 n

ε4). Thus, we have proved the following theorem:

I Theorem 14. For any ε ≤ 1/2, there exists an algorithm that maintains a (1 + ε)-MCM
in an incremental bipartite graph in amortized O(log2 n

ε4) update time.

5 MWM

In this section, we follow the algorithm in [1] that finds a (1 + ε)-MWM in a static weighted
graph. Consider the maximum weighted matching problem where each edge (u, v) has
weight wuv such that the weight of every edge in the graph is ≤ N . As before we use
the Multiplicative-Weight-Update procedure in Figure 1. If the procedure find-
admissible-solution returns an admissible solution in each of the T iterations, then the
procedure Multiplicative-Weight-Update finds a feasible solution. We reproduce the
procedure find-admissible-solution for weighted graphs from [1].

The procedure starts by partitioning the edges across logn levels. If an edge (i, j) has
weight between α/2k−1 and α/2k, then it is at level k where k ≤ dlog n

δ e. We ignore the
edges with weight ≤ α/2log n

δ . We find a maximal matching at all the k levels and let St be
the union of these matchings. Let ∆ be the sum of weight of all the edges in St. If ∆ < δα,

FSTTCS 2014

236 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

then we report failure, else we find a matching S′ from St. This procedure adds the heaviest
edge (i, j) in St in S′ and remove all the edges adjacent to i and j from St. The procedure
then returns an admissible solution yt.

Ahn and Guha [1] proved the following:

I Lemma 15. [1] If ∆ > δα, then find-admissible-solution returns an admissible solution
with ρ = 5

δ and l = 1.

I Lemma 16. [1] If ∆ ≤ δα, then find-admissible-solution finds a feasible solution of
vertex cover with value (1 + 5δ)α and returns failure.

Now comes the crucial step of the algorithm. We never want find-admissible-solution
to fail. This implies that the weight of St found by our algorithm should always be greater
than equal to δα. Now we set a suitable value of α to achieve this. Let M be any matching
in the graph such that the weight of M , w(M) = β. Suppose that we set αi = (1 + ε)i for
i ≥ 0. Let αj be the smallest value above β. So αj ≥ β ≥ αj−1. We now prove the following
lemma:

I Lemma 17. If β ≥ αj−1 and if we set α = αj/(1 + ε)21, then find-admissible-solution
never fails

Proof. Suppose that find-admissible-solution fails. By Lemma 16, this implies that
there exists a feasible solution of vertex cover with value (1 + 5δ)α. Since δ = 4εl and l = 1,
this value is ≤ (1 + 20ε)α = (1 + 20ε)αj/(1 + ε)21 = (1 + 20ε)β/(1 + ε)20 < β. This leads
to a contradiction since the minimum weight of the vertex cover is ≥ β (as the weight of
maximum matching is ≥ β). This implies that the oracle find-admissible-solution never
fails. J

Using Lemma 7, if we set α = αj/(1 + ε)21, then after T iterations, we will find a feasible
solution y. In the multiplicative-weight-update procedure, we set y =

(1
1+4δ

) 1
T

∑
t yt.

Since find-admissible-solution returns an admissible solution of value = α in each
iteration, we have

∑
ytij =

(1
1+4δ

)
α. Since δ = 4εl and l = 1, δ = 4ε. So,∑

yij =
(

1
1+16ε

)
α

=
(

1
1+16ε

) αj
(1+ε)21

≥ 1
(1+16ε)(1+10000ε)αj

(
if ε ≤ 1/2, then 1

(1+ε)21 ≥ 1
1+10000ε

)
≥ 1

(1+160000ε)αj (2)
≥ 1

(1+160000ε)β
(
since β ≤ αj

)
We can state the following lemma:

I Lemma 18. If find-admissible-solution returns an admissible solution for T iterations
then the size of fractional matching return by our algorithm is ≥ 1

1+160000εαj ≥
1

(1+160000ε)β

If we set ε′ = 1/160000ε, we get a feasible solution y such that the size of this fractional
solution y is ≥ (1 − ε′)β. Also note that at each iteration t, find-admissible-solution
selects at most n edges and sets ytij > 0 for these n edges. Since there are at most T = 2ρ logn

δε

iterations, the total number of edges selected by find-admissible-solution with yij > 0
is ≤ 2ρ logn

δε n. Since ρ = 5/δ and δ = 4εl, we have the following lemma:

I Theorem 19. There exists an algorithm which finds a (O(ε), β)-sparsifier G′ of G of size
O(n logn/ε3). Moreover, the time taken to find such a graph is O(m logn/ε3).

Proof. The proof is identical to the proof of Theorem 12. J

M. Gupta 237

6 Incremental MWM

In this section, we show that we can find a (O(ε), β)-sparsifier in an incremental weighted
bipartite graph where the weight of any edge is ≤ N . This observation is then used to maintain
a (1 + ε)-MWM in the following way: We run many versions of algorithm in Theorem 19 in
parallel such that in the kth run, we set α = αk/(1 + ε)21 in the multiplicative-weight-
update where αk = (1 + ε)k and k ≥ 21. Since the size of maximum matching is ≤ nN ,
k ≤ log(nN)

log(1+ε) = O(log(nN)
ε). In the kth run, we want to find a (O(ε), αk)-sparsifier. Note that

initially a (O(ε), αk)-sparsifier may not exist as the size of maximum weighted matching
itself may be < αk. So our algorithm returns failure till the size of maximum matching is
approximately equal to αk. At any given update step, say l, let i be the highest numbered
version for which multiplicative-weight-update has not failed. We find a (1 + ε)-MWM
Mi in the (O(ε), αi)-sparsifier found in the ith run. We will show that the ratio between the
weight of Mi and the weight of maximum matching at the lth update step is 1 +O(ε).

Consider an incremental weighted graph where at the update step l, an edge el = (i, j)
with weight wij is added to the graph, i.e., the graph at lth update step Gl = Gl−1 ∪ el.
We use the incremental version of multiplicative-weight-update in Figure 3. Now, we
design an incremental version of find-admissible-solution (see Figure 6).

Fix a value of k. We describe our adaptation of the algorithm in the previous section for
kth run of the algorithm when α = αk/(1+ε)21. If procedure incremental-multiplicative-
weight-update calls procedure incremental-find-admissible-solution for the first
time in the iteration t, we initialize all xtu’s and find a maximal matching St as in procedure
find-admissible-solution. Else we need to update St with respect to this newly added
edge el = (u, v). If (u, v) ∈ Eviolated,k and u and v are free with respect to maximal matching
in Eviolated,k, edge el is added to St. If St < δα, then the oracle was unable to find an
admissible solution and returns failure. Else we return an admissible solution yt (this part is
same as in find-admissible-solution). Again note that we return an admissible solution
as soon as |St| is equal to δα.

We now prove the following lemma:

I Lemma 20. If the size of maximum matching crosses αk−1 at update step l, then the kth
run of incremental-multiplicative-weight-update stops before or at update step l.

Proof. Similar to the proof of Lemma 13. J

Similar to our analysis in Section 4, we claim that our algorithm maintains a (1+ε)-MWM
at every update step.

Now we analyze the running time of our algorithm. Consider the ith run of the algorithm.
The running time of the algorithm is dominated by the procedure incremental-find-
admissible-solution. We claim that the running time of this procedure at the tth iteration
is at most O(m) where m is the number of edges at the end of all updates. This is true
because the initialization step takes at most O(m) time and processing each update el takes
O(1) time. Since there are T = O(logn

ε3) iterations, the total running time for the ith run
of our algorithm is O(m logn/ε3). Since there are O(log(nN)/ε) version of our algorithm,
the total time taken by the algorithm is O(m logn log(nN)/ε4). This implies an amortized
update time of O(logn log(nN)/ε4).

We claim the following theorem:

I Theorem 21. For any ε ≤ 1/2, there exists an algorithm that maintains a (1 + ε)-MWM
in an incremental weighted bipartite graph in amortized O(logn log(nN)

ε4) update time where
each edge has weight in the range [1, N].

FSTTCS 2014

238 Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph

if this is the first call to incremental-find-admissible-solution in iteration t then
∀i, let xti = αuti∑

j
ut
j

;

Let Etviolated,k = {(i, j) : xti + xtj < wij , α/2k ≤ wij ≤ α/2k−1}
Find a maximal matching Skt in Etviolated,k for each k = 1, 2, . . . , dlog n

δ e = O(logn).
Let St = ∪kSk, ∆ = w(St)

else
if (u, v) ∈ Etviolated,k and u and v are free with respect to the maximal matching in
Etviolated,k then

St ← St ∪ el
if |St| < δα then

return failure
else

S′ ← ∅
while St 6= ∅ do

Pick the heaviest edge (i, j) from S and add it to S′
Remove all the edges adjacent to i and j from St

Return ytij = α
w(S′) for (i, j) ∈ S′ and 0 otherwise

Figure 6 incremental-find-admissible-solution(el, t): The incremental version of the oracle
that finds an admissible solution.

References

1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. Inf. Comput., 222:59–79, 2013.

2 Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining Approx-
imate Maximum Weighted Matching in Fully Dynamic Graphs. In IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2012), volume 18 of Leibniz International Proceedings in Informatics (LIPIcs), pages 257–
266, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3 Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining approx-
imate maximum weighted matching in fully dynamic graphs. CoRR, abs/1207.3976, 2012.

4 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

5 S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(logn) update
time. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium
on, pages 383–392. IEEE, 2011.

6 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J.
ACM, 61(1):1:1–1:23, January 2014.

7 Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for approximate and exact
maximum weight matching. CoRR, abs/1112.0790, 2011.

8 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1-2):490–508, June 2012.

9 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216,
December 2005.

M. Gupta 239

10 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM J. Comput., 38(5):1709–1727, December
2008.

11 Manoj Gupta and Richard Peng. Fully dynamic (1 + ε)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, 2013.

12 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

13 Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In WG ’93:
Proceedings of the 19th International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 99–111, London, UK, 1994. Springer-Verlag.

14 S. Micali and V.V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum matching in

general graphs. In Foundations of Computer Science, 1980., 21st Annual Symposium on,
pages 17–27. IEEE, 1980.

15 Ofer Neiman and Shay Solomon. Deterministic algorithms for fully dynamic maximal
matching. CoRR, abs/1207.1277, 2012.

16 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex
cover. In STOC, pages 457–464, 2010.

17 Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In SODA, pages
118–126, 2007.

18 Vijay V. Vazirani. An improved definition of blossoms and a simpler proof of the MV
matching algorithm. CoRR, abs/1210.4594, 2012.

FSTTCS 2014

The Complexity of Counting Models of
Linear-time Temporal Logic∗

Hazem Torfah and Martin Zimmermann

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany
{torfah, zimmermann}@react.uni-saarland.de

Abstract
We determine the complexity of counting models of bounded size of specifications expressed
in Linear-time Temporal Logic. Counting word-models is #P-complete, if the bound is given
in unary, and as hard as counting accepting runs of nondeterministic polynomial space Turing
machines, if the bound is given in binary. Counting tree-models is as hard as counting accepting
runs of nondeterministic exponential time Turing machines, if the bound is given in unary. For
a binary encoding of the bound, the problem is at least as hard as counting accepting runs of
nondeterministic exponential space Turing machines. On the other hand, it is not harder than
counting accepting runs of nondeterministic doubly-exponential time Turing machines.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Model Counting, Temporal Logic, Model Checking, Counting Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.241

1 Introduction

Model counting, the problem of computing the number of models of a logical formula,
generalizes the satisfiability problem and has diverse applications: many probabilistic inference
problems, such as Bayesian net reasoning [13], and planning problems, such as computing
the robustness of plans in incomplete domains [15], can be formulated as model counting
problems of propositional logic. Model counting for Linear-time Temporal Logic (LTL) has
been recently introduced in [8]. LTL is the most commonly used specification logic for
reactive systems [16] and the standard input language for model checking [2, 5] and synthesis
tools [3, 4, 6]. LTL model counting asks for computing the number of transition systems that
satisfy a given LTL formula. As such a formula has either zero or infinitely many models
one considers models of bounded size: for a formula ϕ and a bound k, the problem is to
count the number of models of ϕ of size k. This is motivated by applications like bounded
model checking [2] and bounded synthesis [7], where one looks for short error paths and small
implementations, respectively, by iteratively increasing a bound on the size of the model.
Just like propositional model counting generalizes satisfiability, by considering two types
of bounded models, namely, word-models (of length k) and tree-models (of height k), the
authors of [8] introduced quantitative extensions of model checking and synthesis.

Word-models are ultimately periodic words of the form u.vω of bounded length |u.v|,
which are used to model computations of a system. Counting word-models can be used
in model checking to determine not only the existence of computations that violate the
specification, but also the number of such violations. To this end, one turns the model

∗ This work was partially supported by the German Research Foundation (DFG) as part of SFB/TR 14
AVACS and by the Deutsche Telekom Foundation.

© Hazem Torfah and Martin Zimmermann;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 241–252

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.241
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

242 The Complexity of Counting Models of Linear-time Temporal Logic

checking problem into an LTL satisfiability problem by encoding the transition system and
the negation of the specification into a single LTL formula. Its models represent erroneous
computations of the system, i.e., counting them gives a quantitative notion of satisfaction.

Tree-models are finite trees (of fixed out-degree) of bounded height with back-edges at the
leaves, i.e., tree-models can be exponentially-sized in the bound. They are used to describe
implementations of the input-output behavior of reactive systems (see, e.g., [7]), namely the
edges of a tree-model represent the input behavior of the environment and the nodes represent
the corresponding output behavior of the system. In synthesis, counting tree-models can be
used to determine not only the existence of an implementation that satisfies the specification,
but also the number of such implementations. This number is a helpful metric to understand
how much room for implementation choices is left by a given specification, and to estimate
the impact of new requirements on the remaining design space.

For safety LTL specifications [17], algorithms solving the word- and the tree-model
counting problem were presented in [8]. The running time of the algorithms is linear
in the bound and doubly-exponential respectively triply-exponential in the length of the
formula. The high complexity in the formula is, however, not a major concern in practice,
since specifications are typically small while models are large (cf. the state-space explosion
problem).

Here, we complement these algorithms by analyzing the computational complexity of
the model counting problems for full LTL by placing the problems into counting complexity
classes. These classes are based on counting accepting runs of nondeterministic Turing
machines. In his seminal paper on the complexity of computing the permanent [20], Valiant
introduced the class #P of counting problems associated with counting accepting runs of
nondeterministic polynomial time Turing machines: a function f : Σ∗ → N is in #P if there
is a nondeterministic polynomial time Turing machine M such that f(w) is equal to the
number of accepting runs ofM on w. Furthermore, for a class C of decision problems, he
defined1 #oC to be the class of counting problems induced by counting accepting runs of a
nondeterministic polynomial time Turing machine with an oracle from C.

A nondeterministic polynomial time Turing machineM (with or without oracle) has at
most O(2p(n)) different runs on inputs of length n for some polynomial p. This means that
there is an exponential upper bound on functions in #P and in #oC for every C. However,
an LTL tautology has exponentially many word-models of length k and more than doubly-
exponentially many tree-models of height k. This means, that no function in any of the
counting classes defined above can capture the counting problems for LTL.

To overcome this, we consider counting classes obtained by lifting the restriction on
considering only nondeterministic polynomial time (oracle) machines: a function f : Σ∗ → N
is in #Pspace, if there is a nondeterministic polynomial space Turing machine M such
that f(w) is equal to the number of accepting runs of M on w. The classes #Exptime,
#Expspace, and #2Exptime are defined analogously2. Some of these classes appeared
in the literature, e.g., #Pspace was shown to be equal to FPspace [11] (if the output is
encoded in binary). Also, computing a specific entry of a matrix power An is in #Pspace, if
A is represented succinctly and n in binary [14], and counting self-avoiding walks in succinctly
represented hypercubes is complete for #Exptime [12] under right-bit-shift reductions.

1 Valiant originally used the notation #C, but we added the subscript to distinguish the oracle-based
classes from the classes introduced below.

2 Following the “satanic” [9] tradition of naming counting classes, we drop the N (standing for nondeter-
ministic) in the names of the classes, just as it is done for #P.

H. Torfah and M. Zimmermann 243

We place the LTL model counting problems in these classes. Unsurprisingly, the encoding
of the bound k is crucial: for unary bounds, we show counting word-models to be #P-complete
and show counting tree-models to be #Exptime-complete. For binary bounds, the word-
model counting problem is #Pspace-complete and counting tree-models is #Expspace-hard
and in #2Exptime. The upper bounds hold for full LTL while the formulas for the lower
bounds define safety properties (using only the temporal operators next and release). Thus,
the lower bounds already hold for the fragment considered in [8].

The algorithms we present to prove the upper bounds are not practical since they are
based on guessing a word (tree) and then model checking it. Hence, a deterministic variant of
these algorithms would enumerate all words (trees) of length (height) k and then run a model
checking algorithm on them. In particular, the running time of the algorithms is exponential
(or worse) in the bound k, which is in stark contrast to the practical algorithms [8]. Our lower
bounds are reductions from the problem of counting accepting runs of a Turing machine.
For the word counting problem, the reductions are slight strengthenings of the reduction
proving Pspace-hardness of the LTL model checking problem [18]. However, the reductions
in the tree case are more involved (and to the best of our knowledge new), since we have
to deal with exponential time respectively exponential space Turing machines. The main
technical difficulties are to encode runs of exponential length and with configurations of
exponential size into tree-models of “small” LTL formulas and to ensure that there is a
one-to-one correspondence between accepting runs and models of the constructed formula.

All proofs omitted due to space restrictions can be found in the full version [19].

2 Preliminaries

We represent models as labeled transition systems. For a given finite set Υ of directions and
a finite set Σ of labels, a Σ-labeled Υ-transition system is a tuple S = (S, s0, τ, o), consisting
of a finite set of states S, an initial state s0 ∈ S, a transition function τ : S × Υ → S,
and a labeling function o : S → Σ. A path in S is a sequence π : N → S × Υ of states
and directions that follows the transition function, i.e., for all i ∈ N if π(i) = (si, ei) and
π(i + 1) = (si+1, ei+1), then si+1 = τ(si, ei). We call the path initial if it starts with the
initial state: π(0) = (s0, e) for some e ∈ Υ.

We use Linear-time Temporal Logic (LTL) [16], with the usual temporal operators Next
, Until U , Release V , and the derived operators Eventually and Globally . We use i to

refer to i nested next operators. LTL formulas are defined over a set of atomic propositions
AP = I ∪ O, which is partitioned into a set I of input propositions and a set O of output
propositions. We denote the satisfaction of an LTL formula ϕ by an infinite sequence
σ : N→ 2AP of valuations of the atomic propositions by σ |= ϕ. A 2O-labeled 2I -transition
system S = (S, s0, τ, o) satisfies ϕ, if for every initial path π the sequence σπ : i 7→ o(π(i)),
where o(s, e) = (o(s) ∪ e), satisfies ϕ. Then S is a model of ϕ.

A k-word-model of an LTL formula ϕ over AP is a pair (u, v) of finite words over 2AP

such that |u.v| = k and u.vω |= ϕ. We call u the prefix and v the period of (u, v). Note that
an ultimately periodic word might be induced by more than one k-word-model, i.e., {a}ω is
induced by the 2-word-models ({a}, {a}) and (ε, {a}{a}). a

b c

e1 e2
e1

e2 e2
e1

Figure 1 A tree-model.

A k-tree-model of an LTL formula ϕ over AP = I ∪ O is a
2O-labeled 2I -transition system that forms a tree (whose root
is the initial state) of height k with added back-edges from the
leaves (for each leaf and direction, there is an edge to a state on
the branch leading to the leaf) that satisfies ϕ. Figure 1 shows a tree-model of height one.

FSTTCS 2014

244 The Complexity of Counting Models of Linear-time Temporal Logic

Fix AP = I ∪O. For a formula ϕ and k ∈ N, the k-word (k-tree) counting problem asks
to compute the number of k-word-models (k-tree-models up to isomorphism) of ϕ over AP.

3 Counting Complexity Classes

We use nondeterministic Turing machines with or without oracle access to define counting
complexity classes, which we assume (without loss of generality) to terminate on every input.
For background on (oracle) Turing machines and counting complexity we refer to [1].

A function f : Σ∗ → N is in the class #P [20] if there is a nondeterministic polynomial
time Turing machineM such that f(w) is equal to the number of accepting runs ofM on w.
Similarly, for a given complexity class C of decision problems, a function f is in #oC [20, 9]
if there is a nondeterministic polynomial time oracle Turing machineM with oracle in C
such that f(w) is equal to the number of accepting runs ofM on w. As a nondeterministic
polynomial time Turing machineM (with or without oracle) has at most O(2p(n)) runs on
inputs of length n for some polynomial p (that only depends onM), we obtain an exponential
upper bound on functions in #P and #oC for every C, which explains the need for larger
counting classes to characterize the model counting problems for LTL.

A function f : Σ∗ → N is in #Pspace, if there is a nondeterministic polynomial space
Turing machine M such that f(w) is equal to the number of accepting runs of M on w.
#Exptime, #Expspace, and #2Exptime are defined by counting accepting runs of non-
deterministic exponential time, exponential space, and doubly-exponential time machines.

I Proposition 1.
1. #P ⊆ #oPspace ⊆ #oExptime ⊆ #oNExptime ⊆ #oExpspace ⊆ #o2Exptime.
2. #Pspace ⊆ #Exptime (#Expspace ⊆ #2Exptime.
3. f ∈ #Exptime implies f(w) ∈ O(22p(|w|)) for a polynomial p.
4. f ∈ #2Exptime implies f(w) ∈ O(222p(|w|)

) for a polynomial p.
5. w 7→ 22|w| is in #Pspace
6. w 7→ 222|w| is in #Expspace.

We continue by relating the oracle-based and the generalized classes introduced above.

I Lemma 1. #oC (#C for C ∈ {Pspace,Exptime,Expspace, 2Exptime}.

Proof. We show #oPspace (#Pspace, the other claims are proven analogously. Let
f ∈ #oPspace, i.e., there is a nondeterministic polynomial time Turing machineM with
oracle A ∈ Pspace such that f(w) is equal to the number of accepting runs ofM on w. Note
that all oracle queries are polynomially-sized in the length |w| of the input toM, sinceM is
polynomially time-bounded. Hence, in nondeterministic polynomial space one can simulate
M and evaluate the oracle calls explicitly by running a deterministic machine deciding A in
polynomial space. Since the oracle queries are evaluated deterministically, the simulation
has as many accepting runs asM has. Thus, f ∈ #Pspace.

Now, consider the function |w| 7→ 22|w| , which is in #Pspace, but not in #oPspace. J

We use parsimonious reductions to define hardness and completeness, i.e., the most
restrictive notion of reduction for counting problems. A counting problem f is #P-hard, if
for every f ′ ∈ #P there is a polynomial time computable function r such that f ′(x) = f(r(x))
for all inputs x. In particular, if f ′ is induced by counting the accepting runs ofM, then
r depends onM (and possibly on its time-bound p(n)). Furthermore, f is #P-complete,
if f is #P-hard and f ∈ #P. Hardness and completeness for the other classes are defined
analogously.

H. Torfah and M. Zimmermann 245

4 Counting Word-Models

In this section, we provide matching lower and upper bounds for the complexity of counting
k-word-models of an LTL specification.

Our hardness proofs are based on constructing an LTL formula ϕwM for a given Turing
machineM and an input w that encodes the accepting runs ofM on w. Constructing such
an LTL formula is straightforward and can be done in polynomial time for Turing machines
with polynomially-sized configurations [18]. However, the challenge is to construct ϕwM such
that the number of accepting runs on w is equal to the number of k-word-models of ϕwM for
a fixed bound k. To this end, we have to enforce that each accepting run is represented by a
unique k-word-model, i.e., by a unique prefix and period of total length k. We choose k such
that a run on w of maximal length can be encoded in k − 1 symbols and define ϕwM such
that it has only k-word-models whose period has length one. If a run ofM is shorter than
the maximal-length run we repeat the final configuration until reaching the maximal length,
which is achieved by accompanying the configurations in the encoding with consecutive id’s.

For the upper bounds we show that there are appropriate nondeterministic Turing
machines that guess an ultimately-periodic word and model check it against ϕ, i.e., the
number of accepting runs on k and ϕ is equal to the number of k-word-models of ϕ.

The Case of Unary Encodings. We show that counting word-models for unary bounds is
#P-complete.

I Theorem 2. The following problem is #P-complete: Given an LTL formula ϕ and a
bound k (in unary), how many k-word-models does ϕ have?

Proof. We start with the hardness proof. LetM = (Q, qι, QF ,Σ, δ) be a one-tape nondeter-
ministic polynomial time Turing machine, where Q is the set of states, qι is the initial state,
QF is the set of accepting states, Σ is the alphabet, and δ : (Q \QF) × Σ → 2Q×Σ×{−1,1}

is the transition function, where -1 and 1 encode the directions of the head. Note that the
accepting states are terminal and thatM rejects by terminating in a nonaccepting state. Let
M be p(n)-time bounded for some polynomial p, and let w = w0 · · ·wn−1 be an input toM.
We construct an LTL formula ϕwM and define a bound k, both polynomial in |w| and |M|,
such that the number of accepting runs ofM on w is equal to the number of k-word-models
of ϕwM.

A run ofM on w is encoded by a finite alternating sequence of id’s idi and configurations ci
that is followed by an infinite repetition of a dummy symbol:

$ id0 # c0 $ id1 # c1 $ id2 # c2 $ · · · $ idp(n) # cp(n) (⊥)ω (1)

Note that the period of the word-model is of the form ⊥` for some ` > 0. We will define k
such that maximal-length runs ofM on w can be encoded in the prefix, and such that the
only possible period has length one by ensuring that exactly p(n) configurations are encoded
(by repeating the final configuration if necessary). This ensures that an accepting run is
encoded by exactly one k-word-model.

Let lr = p(n) be the maximal length of a run ofM on w. The size of a configuration
of M on w is also bounded by lr. For the id’s we use an encoding of a binary counter
with lc = dlog lre many bits. Let AP = (Q ∪ Σ) ·∪{b1, . . . , blc , $,#,⊥} be the set of atomic
propositions. The atomic propositions in Q ∪ Σ are used to encode the configuration ofM
by encoding the tape contents, the state of the machine, and the head position. The atomic
propositions b1, . . . , blc represent the bit values of an id. The symbols $ and # are used as

FSTTCS 2014

246 The Complexity of Counting Models of Linear-time Temporal Logic

separators between id’s and configurations, and ⊥ is a dummy symbol for the model’s period.
The distance between two $ symbols and also between two # symbols in the encoding is
given by d = lr + 3 (see (1)). Then, ϕwM is the conjunction of the following formulas:

Id encodes the id’s of the configurations. It uses a formula Inc(b1, . . . , blc , d) that asserts
that the number encoded by the bits bj after d steps is obtained by incrementing the
number encoded at the current position. This formula will be reused in the tree case.
Init asserts that the run ofM starts with the initial configuration.
Accept asserts that the run must reach an accepting configuration.
Config declares the consistency of two successive configurations with the transition
relation of M. Here, we use d many next operators to relate the encoding of the two
configurations.
Repeat asserts that the encoding of an accepting configuration is repeated until the
maximal id is reached
Loop defines the period of the word-model, which may only contain ⊥.

All these properties can be expressed with polynomially-sized formulas, which can be
found in the full version [19]. Furthermore, we need a formula to specify technical details:
atomic propositions encoding the id’s are not allowed to appear in the configurations and
vice versa, symbols such as $ and # only to appear as separators, each separator appears
p(n) times every d positions, configuration encodings are represented by singleton sets of
letters in Σ with the exception of one set that contains a symbol from Q to determine the
head position and the state ofM, etc.

For k = lr · (lr + 3) + 1, each accepting run of M on w corresponds to exactly one
k-word-model of ϕwM that encodes the run in its prefix. Thus, the number of k-word-models
is equal to the number of accepting runs ofM on w. The formula ϕwM can be obtained in
polynomial time in |w| + |M|, and k (thus also its unary encoding) is polynomial in |w|.

To show that the problem is in #P we define a nondeterministic polynomial time Turing
machineM as follows. M guesses a prefix u and a period v of an ultimately periodic word
u.vω with |u.v| = k, and checks deterministically in polynomial time [10], whether u.vω
satisfies ϕ. Hence, for each k-word-model (u, v) of ϕ there is exactly one accepting run of
M. Thus, counting the k-word-models of ϕ can be done by counting the accepting runs of
M on the input (k, ϕ). J

The Case of Binary Encodings. Now, we consider the word counting problem for binary
bounds. As the input is more compact, we have to deal with a larger complexity class.

I Theorem 3. The following problem is #Pspace-complete: Given an LTL formula ϕ and
a bound k (in binary), how many k-word-models does ϕ have?

Proof. The hardness proof is similar to the one for Theorem 2: for a nondeterministic
polynomial space Turing machineM bounded by a polynomial p(n) and an input word w
we can define a formula ϕwM in the same way as in Theorem 2. The reason lies in that the
size of configurations remains polynomial and the exponential number of configurations in a
run can still be counted with a binary counter of polynomial size, i.e., we only have to use
more bits bj to encode the id’s. Furthermore, we have to choose k = 2p′(n)(p(n) + 3) + 1
which can still be encoded using polynomially many bits. Here, p′(n) is a polynomial (which
only depends onM) such thatM terminates in at most 2p′(n) steps on inputs of length n.

For the proof of the upper bound we cannot just guess a k-model in polynomial space
as in Theorem 2, since the bound k is encoded in binary. Instead, we guess and verify the
model on-the-fly relying on standard techniques for LTL model checking.

H. Torfah and M. Zimmermann 247

Formally, we construct a nondeterministic polynomial space Turing machineM which
guesses a k-word-model (u, v) by guessing u$v = w(0) · · ·w(i− 1)$w(i) · · ·w(k − 1) symbol
by symbol in a backwards fashion. Here, $ is a fresh symbol to denote the beginning of the
period. To meet the space requirement,M only stores the currently guessed symbol w(j),
discards previously guessed symbols, and uses a binary counter to guess exactly k symbols.

To verify whether u.vω satisfies ϕ,M also creates for every j in the range 0 ≤ j < k a
set Cj of subformulas of ϕ with the intention of Cj containing exactly the subformulas which
are satisfied in position j of u.vω. Due to space-requirements,M only stores the set Ck−1
as well as the sets Cj and Cj+1, if w(j) is the currently guessed symbol. The set Ck−1 is
guessed byM and the sets Cj for j < k − 1 are uniquely determined by the following rules:

The membership of atomic propositions in Cj is determined by w(j), i.e., Cj ∩AP = w(j).
Conjunctions, disjunctions, and negations can be checked locally for consistency, e.g.,
¬ψ ∈ Cj if and only if ψ /∈ Cj .
-formulas are propagated backwards using the following equivalence: ψ ∈ Cj if and

only if ψ ∈ Cj+1 (recall thatM stores Cj and Cj+1).
U-formulas are propagated backwards using the following equivalence: ψ0Uψ1 ∈ Cj if
and only if ψ1 ∈ Cj or ψ0 ∈ Cj and ψ0Uψ1 ∈ Cj+1.
V-formulas can be rewritten into U-formulas.

OnceM has guessed the complete period v = w(i) · · ·w(k − 1) it also checks that the guess
of Ck−1 is correct (recall that Ck−1 is not discarded), which is the case if the following two
requirements are met:

For every subformula ψ we have ψ ∈ Ck−1 if and only if ψ ∈ Ci.
For every subformula ψ0Uψ1 we have ψ0Uψ1 ∈ Ck−1 if and only if ψ1 ∈ Ck−1 or ψ0 ∈ Ck−1
and ψ0Uψ1 ∈ Ci. Furthermore, we have to require that ψ0Uψ1 ∈ Cj for some j in the
range i ≤ j < k implies ψ1 ∈ Cj′ for some j′ in the range i ≤ j′ < k. The latter condition
can be checked on-the-fly while computing the Cj ’s.

A straightforward structural induction over the construction of ϕ shows that we have ψ ∈ Cj
if and only if w(j)w(j + 1) · · ·w(k − 1)vω |= ψ for every subformula ψ of ϕ. Hence, u.vω is a
model of ϕ if and only if ϕ ∈ C0. Thus,M accepts if this is the case. J

5 Counting Tree-Models

In this section, we consider the tree counting problem for unary and binary bounds. There
are at least doubly-exponentially many trees of height k. Hence, if k is encoded in binary,
there are at least triply-exponentially many (in the size of the encoding of k) k-tree-models of
a tautology. In order to capture these cardinalities using counting classes, we have to consider
machines with that many runs, i.e., exponential time and exponential space machines.

In our hardness proofs, we again construct formulas ϕwM that encode accepting runs ofM
on w in trees. We choose binary trees, i.e., we consider a singleton set I of input propositions.
Recall that the power set of I is used to (deterministically) label the edges in the tree. In
the following, we identify the two elements of 2I with the directions left and right. Note
that we have to formalize the structure of our models and have to encode the runs of the
machines using LTL. The semantics require a formula to be satisfied on all paths, which
requires us to write conditional formulas of the form “if the path has a certain form, then
some property is satisfied”. We use two types of formulas: the ones of the first type describe
the structure of the tree (e.g., it is complete and the targets of the back-edges) while the
ones of the second type encode the actual run relying on this structure. The formulas of
type one often assign addresses to nodes (sequences of bits that uniquely identify a leaf).

FSTTCS 2014

248 The Complexity of Counting Models of Linear-time Temporal Logic

In the word case, we encoded runs of Turing machines whose configurations are of
polynomial length. Hence, the distance between encodings of a tape cell in two successive
configurations could be covered by a polynomial number of next-operators. Here, configura-
tions are of exponential size. Thus, the challenge is to encode a run in a tree-model such
that properties of two successive configurations can still be encoded by an LTL formula of
polynomial size. We present two such encodings, one for unary and one for binary bounds.

For the upper bounds we show that there are appropriate nondeterministic machines that
guess a finite tree with back-edges and model check it deterministically against ϕ, i.e., the
number of accepting runs on k and ϕ is equal to the number of k-tree-models of ϕ.

The Case of Unary Encodings. First, we consider tree-model counting for unary bounds.

I Theorem 4. The following problem is #Exptime-complete: Given an LTL formula ϕ
and a bound k (in unary), how many k-tree-models does ϕ have?

Proof. We start with the hardness proof. LetM = (Q, qι, QF ,Σ, δ) be a one-tape nondeter-
ministic exponential time Turing machine. LetM be 2p(n)-time bounded for a polynomial p
and let w = w0 · · ·wn−1 be an input toM. We construct an LTL formula ϕwM and define a
bound k, both polynomial in |w| and |M|, such that the number of accepting runs ofM on
w is equal to the number of k-tree-models of ϕwM.

A run of M is encoded in the leaves of a binary tree-model. Let lr = 2p(n) be the
maximal length of a run of M on w, which also bounds the size of a configuration. We
choose k = 2p(n) to be the height of our tree-models. By using a formula labeling each of the
first k levels of the tree by a unique proposition we enforce that every model of height k is
complete. Thus, it has l2r many leaves, enough to encode a run of maximal length. Figure 2
shows the structure of our tree-model.

Each configuration in the run is encoded in the leaves of a subtree of height p(n), referred
to as a lower-tree (depicted by the light gray trees). The lower-trees are uniquely determined
by a leaf of the upper-tree (depicted in dark gray), which is the root of the lower-tree. By
giving the leaves of the upper-tree id’s, we also obtain unique id’s for each of the lower-
trees. These id’s are used to enumerate the configurations of the run, i.e., two neighboring
lower-trees encode two successive configurations of the run. The id’s can be determined by a
binary counter with polynomially many bits. We also provide each leaf in a lower-tree with
a unique id within this lower-tree. This is used to compare the contents of a tape cell in
two successive configurations by comparing the labels of leaves with the same leaf id in two
successive lower-trees. Thus, every leaf stores the id encoding of the configuration it is part
of and the number of the cell it encodes.

Recall that in a tree-model each leaf has a back-edge for every direction. For the direction
left we require a transition to the root of the upper-tree, and for right a transition to the
root of the own lower-tree. This enables us to compare two leaves in a lower-tree, or two
leaves with the same id in two different lower-trees, with polynomially large formulas.

The following formulas define the structure of our tree-models as explained above and
also provide the nodes of the tree with correct id’s. We begin with Addr(root,a1, . . . , ad)
which specifies a unique id for each leaf of a complete binary tree of height d using bits
a1, . . . , ad, and provides the root of the tree with a label root. The id of a node depends
on the sequence of left and right edges on the path from the root to this node, which is
encoded in the bits a1, . . . , ad:

Addr(root, a1, . . . , ad) = root ∧
d−1∧
i=0

(
i(left→ d−i ¬ai+1) ∧ i(right→ d−i ai+1)

)
.

H. Torfah and M. Zimmermann 249

We use the formula Addr(upper,u1, . . . , up(n)) to address the upper-tree. This gives
each lower-tree a unique id via the id of its root. We also supply each node in a lower-tree
with the id of its root in the upper-tree:

∧
p(n)≤i<k

i(
∧p(n)
j=1 (uj ↔ uj)). Furthermore, we

use the formula p(n) Addr(lower, l1, . . . , lp(n)) to assign every leaf in a lower-tree a unique
id within its lower-tree which essentially encodes the number of the tape cell it encodes.
The next two formulas define the back-edges of the lower-trees. From each leaf, the left
transition leads back to the root of the upper-tree (recall that back-edges lead from a leaf
to an ancestor), i.e., k(left → upper), and the right transition to the root of the
lower-tree, i.e., k(right→ lower). After setting up the structure of the trees, it remains
to show how we encode a run in the leaves. We proceed with the same scheme as in the word
case, and use the formula ∆h(a1, . . . , am) which is satisfied, if and only if the bits a1, . . . , am
encode the number h < 2m.

The formula Init encodes the initial configuration in the lower-tree with id 0.
k
[
∆0(u1, . . . , up(n))→

(
(∆0(l1, . . . , lp(n))→ qι)∧

∧
0≤j<n

(∆j(l1, . . . , lp(n))→ wj)

∧((
∧

0≤j<n
¬∆j(l1, . . . , lp(n)))→ ␣)

)]
.

The formula Accept checks whether the rightmost lower-tree encodes an accepting config-
uration: k((∆lr (u1, . . . , up(n)) ∧

∨
q∈Q q)→

∨
q∈QF

q).
The formulas configq,α and configα for states q and symbols α encode the transition relation.
For a leaf with labels q and α (leaf 1 in Figure 2) and a transition (q, α, q′, β, dir), we
have to check three leaves in the next lower-tree, namely, the leaf with the same id (leaf
2) has to be labeled with β, and depending on dir either the successor leaf (leaf 3) or the
predecessor leaf (leaf 4) has to be labeled with q′. The premise of the following formula
only holds for paths that visit these leaves in the order given above, i.e., paths that lead
to a leaf in a lower-tree, loop back to the root of the full tree and then lead to the same
leaf id in the successor lower-tree (this takes k + 1 edges), loop back to the root of this
lower-tree and visit the leaf to the right (this takes p(n) + 1 edges), back to the root of
this lower-tree again and then to the leaf to the left (this takes p(n) + 1 edges). To specify
such a path, we use the formula Inc to reach the successor leaf and a dual formula called
Dec to reach the predecessor leaf. This formula implements a decrement of a nonzero
counter. Note that we have to require the paths to visit the successor and predecessor
leaf in the next lower-tree, i.e., we have to check the bits uj to reach the next lower-tree
and the bits lj to reach the leaves. Thus, configq,α for q ∈ Q \QF is given by:

k
[
q ∧ α∧Inc(u1, . . . , up(n), k + 1) ∧

∧p(n)

i=1
li ↔ k+1 li)

∧Inc(u1, . . . , up(n), k + p(n) + 2) ∧ Inc(l1, . . . , lp(n), k + p(n) + 2)
∧Inc(u1, . . . , up(n), k + 2p(n) + 3)) ∧Dec(l1, . . . , lp(n), k + 2p(n) + 3)

→
∨

(q′,β, dir)∈δ(q,α)
(k+1 β ∧ (k+1)+cdir(p(n)+1) q′)

]
.

Here, we have cdir = 1, if dir = 1, and cdir = 2, if dir = −1.
The formula configα determines the relation between the other tape cells’ contents, namely
where the head is not pointing to:

k(
p(n)∨
i=1
¬ui ∧ (

∧
q∈Q\QF

¬q) ∧ α ∧ Inc(u1, . . . , up(n), k + 1) ∧ (
p(n)∧
i=1

li ↔ k+1 li)→ k+1 α) .

FSTTCS 2014

250 The Complexity of Counting Models of Linear-time Temporal Logic

The formula Repeat repeats accepting states in the next lower-tree, if the id of the current
lower-tree is not maximal. The repetition of the letters is being taken care of by configα.

k
[(p(n)∨

i=1
¬ui ∧ Inc(u1, . . . , up(n), k + 1) ∧

p(n)∧
i=1

(li ↔ k+1 li)
)
→
(∧
qf∈QF

qf → k+1 qf
)]
.

Similar to the word case we need some additional formulas to prevent atomic propositions
of configurations to appear elsewhere in the tree to guarantee the one-to-one relation between
runs and tree-models. For example to prevent a state label from appearing twice in a
configuration we use a formula that asserts that from a leaf in which a state is encoded, no
other leaf with a state label is reachable within p(n) + 1 steps, i.e., in the same lower-tree.
This ensures that every configuration has exactly one state.

To show that the problem is in #Exptime we define a nondeterministic exponential time
Turing machineM as follows. M guesses a tree of height k (which is of exponential size)
and checks whether it satisfies ϕ using the classical model checking algorithm: M constructs
the Büchi automaton recognizing the language of ¬ϕ and checks whether the product of
the tree and the automaton has an empty language. The automaton and the product are
of exponential size and the emptiness check can be performed in deterministic polynomial
time (in the size of the product). Hence,M runs in exponential time in k and the size of ϕ.
For each k-tree-model of ϕ, there is exactly one accepting run inM. Thus, counting the
k-tree-models of ϕ can be done by counting the accepting runs ofM on the input (k, ϕ). J

upper

lower

lr

︸ ︷︷ ︸C1 C2

Clr−2

_

_

-
p(n)

p(n)

left

right
1 24 3

Figure 2 Encoding an exponentially long run in a
tree-model of polynomial height. The configurations
are encoded in the lower-trees (light gray subtrees).

The Case of Binary Encodings. In this
section, we consider tree-model counting
for binary bounds. Since the bound is
encoded compactly, the trees we work
with have exponential height and there-
fore doubly-exponential size. Unfortu-
nately, our upper and lower bounds do
not match (see the discussion in the next
section).

I Theorem 5. The following problem
is #Expspace-hard and in #2Exptime:
Given an LTL formula ϕ and a bound k (in binary), how many k-tree-models does ϕ have?

Proof. LetM = (Q, qι, QF ,Σ, δ) be a one-tape nondeterministic exponential space Turing
machine and let w = w0 · · ·wn−1 be an input toM. Furthermore, let lc = 2p(n) − 2 be the
maximal configuration length (for some polynomial p) and let lr = 22p′(n) be the maximal
length of a run ofM on w (p′ is a polynomial which only depends onM).

We choose k = m · 2p′(n) to be the height of our tree-models, where m is the smallest
power of two greater than p(n). Figure 3 shows the main structure of our tree-models. We
use nonbalanced binary trees that are composed of trees of height m. We refer to the latter
trees as the inner-trees. The outermost leaves of an inner-tree are inner nodes and the
others are leaves in the tree-model. Hence, each inner-tree has two children, which are again
inner-trees rooted at the leftmost respectively the rightmost leaf.

In each inner-tree, we will encode a configuration in a similar way as in the unary case
(Theorem 4), namely in the leaves (except the two leaves serving as roots for other inner
trees, which explains the −2 in the definition of lc). We encode the configurations of a run

H. Torfah and M. Zimmermann 251

C1

C2

C3

C4 C5

C6

C7 C8

C9

C10

C11 C12

C13

C14 C15

left

right

_

_

- 3m

- 2m

- m

Figure 3 Tree-model with DFS structure.

in the tree-model such that we traverse the inner-trees in a depth-first search manner (DFS).
In Figure 3, we can see how a run of 16 configurations can be encoded in a tree-model with
four layers of inner-trees. To encode the DFS structure, we label each root of an inner-tree
with its level (the number of inner-tree ancestors) and with its so-called right-child-depth:
the number of right-child-inner-trees visited since the last left child to reach this tree (e.g.,
this value is 0 for the left children C1, C2, C3, C7; it is 1 for C6 and 3 for C15). This will
help to determine the next inner-tree in line in the DFS structure. We need a polynomial
number of bits to encode these addresses. With the right transition we allow the leaves of
an inner-tree to reach its root and we use left in the inner-tree of maximal level to reach the
parent of the next inner-tree in DFS order. In this way, the distance between the encoding
of a tape cell in two successive configurations is polynomial.

As the distance between an inner-tree and its successor is polynomial, the formulas for
encoding the run in the tree-model adapt the ideas of the formulas in the unary case with
slight modifications that deal with the DFS order of inner-trees. A detailed description of
the construction can be found in the full version [19].

The upper bound is proved using the same algorithm as in the proof of Theorem 4. J

6 Discussion

We investigated the complexity of the model counting problem for specifications in Linear-
time temporal logic. The word-model counting problems are #P-complete (for unary bounds)
respectively #Pspace-complete (for binary bounds) while the tree-model counting problems
are #Exptime-complete respectively #Expspace-hard and in #2Exptime, i.e., the exact
complexity of the tree-model counting problem for binary bounds is open.

The problem we face trying to lower the upper bound is that we cannot guess the complete
tree-model in nondeterministic exponential space. To meet the space-requirements, we have
to construct it step by step, as in the proof of the corresponding upper bound in the word
case. However, the correctness of the on-the-fly model checking procedure described there
relies on the fact that the model is an ultimately-periodic word. It is open whether the
technique can be extended to tree-models. On the other hand, if we try to raise the lower
bound, we have to encode doubly-exponential time Turing machines, which seems challenging
using polynomially-sized LTL formulas.

To conclude, let us mention another variation of the model counting problem: counting
arbitrary transition systems, where the bound k now refers to the size of the transition
system. For unary bounds, the problem is #P-hard, which can be shown by strengthening
Theorem 2, and in #oPspace, since LTL model checking is in Pspace. For binary bounds,
the construction presented in Theorem 4 yields #Exptime-hardness and the problem is in
#Exptime, which can be shown by adapting the algorithm presented in the theorem.

FSTTCS 2014

252 The Complexity of Counting Models of Linear-time Temporal Logic

Acknowledgments. We would like to thank Markus Lohrey and an anonymous reviewer
for bringing Ladner’s work on polynomial space counting [11] to our attention.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, New York, NY, USA, 1st edition, 2009.
2 Armin Biere. Bounded model checking. In Handbook of Satisfiability, pages 457–481. IOS

Press, 2009.
3 Roderick Bloem, Hans-Jürgen Gamauf, Georg Hofferek, Bettina Könighofer, and Robert

Könighofer. Synthesizing robust systems with RATSY. In Doron Peled and Sven Schewe,
editors, SYNT, volume 84 of EPTCS, pages 47–53. Open Publishing Association, 2012.

4 Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin.
Acacia+, a tool for LTL synthesis. In P. Madhusudan and Sanjit A. Seshia, editors, CAV,
volume 7358 of LNCS, pages 652–657. Springer, 2012.

5 Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

6 Rüdiger Ehlers. Unbeast: Symbolic bounded synthesis. In TACAS, volume 6605 of LNCS,
pages 272–275. Springer-Verlag, 2011.

7 Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International Journal on Software
Tools for Technology Transfer, 15(5-6):519–539, 2013.

8 Bernd Finkbeiner and Hazem Torfah. Counting models of linear-time temporal logic. In
Adrian Horia Dediu, Carlos Martín-Vide, José Luis Sierra-Rodríguez, and Bianca Truthe,
editors, LATA, volume 8370 of LNCS, pages 360–371. Springer, 2014.

9 Lane A. Hemaspaandra and Heribert Vollmer. The satanic notations: counting classes
beyond #P and other definitional adventures. SIGACT News, 26(1):2–13, 1995.

10 Lars Kuhtz and Bernd Finkbeiner. LTL path checking is efficiently parallelizable. In Su-
sanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas, and Wolf-
gang Thomas, editors, ICALP, volume 5556 of LNCS, pages 235–246. Springer, 2009.

11 Richard E. Ladner. Polynomial space counting problems. SIAM J. Comput., 18(6):1087–
1097, 1989.

12 Maciej Liśkiewicz, Mitsunori Ogihara, and Seinosuke Toda. The complexity of counting
self-avoiding walks in subgraphs of two-dimensional grids and hypercubes. Theor. Comput.
Sci., 1–3(304):129–156, 2003.

13 Michael L. Littman, Stephen M. Majercik, and Toniann Pitassi. Stochastic boolean satis-
fiability. Journal of Automated Reasoning, 27:2001, 2000.

14 Markus Lohrey and Manfred Schmidt-Schauß. Processing succinct matrices and vectors.
In Edward A. Hirsch, Sergei O. Kuznetsov, Jean-Éric Pin, and Nikolay K. Vereshchagin,
editors, CSR, volume 8476 of LNCS, pages 245–258. Springer, 2014.

15 Daniel Morwood and Daniel Bryce. Evaluating temporal plans in incomplete domains. In
Jörg Hoffmann and Bart Selman, editors, AAAI. AAAI Press, 2012.

16 Amir Pnueli. The temporal logic of programs. In STOC, SFCS’77, pages 46–57, Washington,
DC, USA, 1977. IEEE Computer Society.

17 A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of Com-
puting, 6(5):495–511, 1994.

18 A.Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

19 Hazem Torfah and Martin Zimmermann. The complexity of counting models of linear-time
temporal logic. ArXiv e-prints, abs/1408.5752, 2014.

20 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

Extending Temporal Logics with Data Variable
Quantifications∗

Fu Song1 and Zhilin Wu2,3

1 Shanghai Key Laboratory of Trustworthy Computing and National Trusted
Embedded Software Engineering Technology Research Center,
East China Normal University, P. R. China
fsong@sei.ecnu.edu.cn

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, P. R. China
wuzl@ios.ac.cn

3 LIAFA, Université Paris Diderot, France

Abstract
Although data values are available in almost every computer system, reasoning about them is a
challenging task due to the huge data size or even infinite data domains. Temporal logics are
the well-known specification formalisms for reactive and concurrent systems. Various extensions
of temporal logics have been proposed to reason about data values, mostly in the last decade.
Among them, one natural idea is to extend temporal logics with variable quantifications ranging
over an infinite data domain. In this paper, we focus on the variable extensions of two widely used
temporal logics, Linear Temporal Logic (LTL) and Computation Tree Logic (CTL). Grumberg,
Kupferman and Sheinvald recently investigated the extension of LTL with variable quantifications.
They defined the extension as formulas in the prenex normal form, that is, all the variable
quantifications precede the LTL formulas. Our goal in this paper is to do a relatively complete
investigation on this topic. For this purpose, we define the extensions of LTL and CTL by allowing
arbitrary nestings of variable quantifications, Boolean and temporal operators (the resulting
logics are called respectively variable-LTL, in brief VLTL, and variable-CTL, in brief VCTL),
and identify the decidability frontiers of both the satisfiability and model checking problem.
In particular, we obtain the following results: 1) Existential variable quantifiers or one single
universal quantifier in the beginning already entails undecidability for the satisfiability problem
of both VLTL and VCTL, 2) If only existential path quantifiers are used in VCTL, then the
satisfiability problem is decidable, no matter which variable quantifiers are available. 3) For
VLTL formulas with one single universal variable quantifier in the beginning, if the occurrences
of the non-parameterized atomic propositions are guarded by the positive occurrences of the
quantified variable, then its satisfiability problem becomes decidable. Based on these results of
the satisfiability problem, we deduce the (un)decidability results of the model checking problem.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.1 Specifying and Verifying and
Reasoning about Programs

Keywords and phrases Temporal logics with variable quantifications, satisfiability and model
checking, alternating register automata, data automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.253

∗ Fu Song is supported by the NSFC under Grant No. 61402179, STCSM Pujiang Talent Project under
Grant No. 14PJ1403200, SHMEC&SHEDF ChenGuang Project under Grant No. 13CG21, the Open
Project of Shanghai Key Laboratory of Trustworthy Computing under Grant No. 07dz22304201301,
and Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213.
Zhilin Wu is supported by the NSFC under Grant No. 61100062, 61272135, and 61472474, and partially
supported by the visiting researcher program of China Scholarship Council.

© Fu Song and Zhilin Wu;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 253–265

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.253
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

254 Extending Temporal Logics with Data Variable Quantifications

1 Introduction

Context. Data values are ubiquitous in computer systems. To see just the tip of the iceberg,
we have the following scenarios: data variables in sequential programs, process identifiers in
concurrent parameterized systems where an unbounded number of processes interact with
each other, records in relational databases, attributes of elements of XML documents or nodes
of graph databases. On the other hand, reasoning about data values is a very challenging
task. Either their sizes are huge, e.g. one single 4-byte integer variable in C programs may
take values from −2, 147, 483, 64 to 2, 147, 483, 647, or they are even from an infinite domain,
e.g. process identifiers in parameterized systems.

Temporal logics are the widely used specification formalisms. They were originally
introduced to formally specify and reason about the behaviors of concurrent and reactive
systems. But later on, they also became popular in reasoning about the behaviors of sequential
programs. Linear temporal logic (LTL) and computation tree logic (CTL) are the two most
widely used temporal logics. Since temporal logics are targeted to specify the behaviors of
finite state systems, various extensions of temporal logics have been proposed to deal with
the data values, mostly in the last decade. Hodkinson et al. initiated the investigation of
first-order extensions of temporal logics, that is, first-order logic over relational structures
extended with temporal operators ([14, 13]). Their motivation is theoretical and they focused
on the decidability issues. Vianu and his coauthors used the first-order extensions of LTL
to specify and reason about the behaviors of database-driven systems ([22, 3]). Demri and
Lazic extended LTL with freeze quantifiers which can store data values into registers and
compare the data values with those stored in the registers ([6]). Schwentick et al., Demri et
al. , and Decker et al. considered extensions of LTL with navigation mechanisms for data
values or tuples over multi-attributed data words, that is, data words where each position
carries multiple data values ([16, 5, 4]).

Another natural idea is to extend temporal logics with variable quantifications over an
infinite data domain, which is our focus in this paper. There have been some work on this
topic. Grumberg et al. investigated the extension of LTL with variable quantifications.
They defined the extension as the formulas in prenex normal form, that is, all the variable
quantifications are in the beginning and are followed by LTL formulas, and investigated
the decidability of the satisfiability and the model checking problem over Kripke structures
extended with data variables ([10, 11]). Figueira proposed an extension of LTL with freeze
quantifiers of only one register, by quantifications over the set of data values occurring before
or after the current position of data words ([8]).

Contribution. Our goal in this paper is to do a relatively complete investigation on this
topic. For this purpose, we consider the extensions of both LTL and CTL with variable
quantifications (denoted by VLTL and VCTL) where the variable quantifiers can be nested
arbitrarily with temporal and Boolean operators, and the quantifications are not over the set
of data values occurring before or after the current position, but over the full data domain.
In addition, we investigate the decidability and complexity of both the satisfiability and the
model checking problem. More specifically, we obtain the following results.
1. Existential variable quantifiers or one single universal quantifier in the beginning already

entails undecidability for the satisfiability problem of both VLTL and VCTL.
2. If the existential variable quantifiers are not nested, then the satisfiability problem

becomes decidable for both VLTL and VCTL. The proof is obtained by a reduction to
the nonemptiness problem of alternating one register automata ([8]).

F. Song and Z. Wu 255

Table 1 Summary of the results: U: Undecidable, D: Decidable, T: Theorem, C: Corollary.

∃∗-VLTL ∀∗-VLTL NN-∃∗-VLTL NN-∀∗-VLTL ∃∗-VLTLpnf

SAT U (T. 3) U (T. 6) D (T. 15) U (T. 6) D (T. 22, [10])
MC U (C. 7) U (C. 4) U (C. 7) D (C. 16) U (C. 7)

∀∗-VLTLpnf ∃-VLTLpnf ∀-VLTLpnf ∃-VLTLgdap
pnf ∀-VLTLgdap

pnf

SAT U (T. 6) D (T. 22, [10]) U (T. 6) D (T. 22, [10]) D (T. 26)
MC D (T. 22, [10]) U (C. 7) D (T. 22, [10]) D (C. 27) D (T. 22, [10])

∃∀-VLTLnoap
pnf ∀∃-VLTLnoap

pnf ∃∃-VLTLnoap
pnf ∀∀–VLTLnoap

pnf

SAT U (T. 10) U (T. 10) D (T. 22, [10]) ?
MC U (C. 12) U (C. 12) U (T. 9) D (T. 22, [10])

∃∗-VCTL ∀∗-VCTL NN-∃∗-VCTL NN-∀∗-VCTL ∃∗-VLTLpnf

SAT U (C. 5) U (C. 8) D (T. 17) U (Cor. 8) D (T. 23)
MC U (T. 9) U (T. 9) U (T. 9) D (Cor. 19) U (T. 9)

∀∗-VCTLpnf ∃-VCTLpnf ∀-VCTLpnf ∃-VCTLgdap
pnf ∀-VCTLgdap

pnf

SAT U (C. 8) D (T. 23) U (C. 8) D (T. 23) ?
MC D (T. 24) ? D (T. 24) ? D (T. 24)

∃∀-VCTLnoap
pnf ∀∃-VCTLnoap

pnf ∃∃-VCTLnoap
pnf ∀∀-VCTLnoap

pnf EVCTL
SAT U (C. 11) U (C. 11) D (T. 23) ? D (T. 20)
MC U (T. 9) U (T. 9) U (T. 9) D (T. 24) U (T. 9)

3. If only existential path quantifiers are used in VCTL, then the satisfiability problem is
decidable (NEXPTIME), no matter whatever variable quantifiers are available. This
result is proved by a small model property.

4. For the fragment of VLTL with one single universal variable quantifier in the beginning,
if the occurrences of the non-parameterized atomic propositions are guarded by the
positive occurrences of the universally quantified variable, then the satisfiability problem
becomes decidable. The proof is obtained by a reduction to the nonemptiness of extended
data automata ([1]). This decidability result is tight in the sense that adding one more
existential variable quantifier before or after the universal one implies undecidability.

5. Based on the above results of the satisfiability problem, we also deduce the (un)decidability
results of the model checking problem.

The results obtained in this paper are summarized into Table 1 (where ∃,∀mean existential
and universal variable quantifier, pnf means prenex normal form, NN means non-nested,
the question mark means that the decidability is open). The reader can refer to Section 2 for
the definitions of the fragments of VLTL and VCTL.

Related Work. Emerson and Namjoshi proposed indexed CTL∗\X to specify and reason
about parameterized systems ([7]). The indexed CTL∗\X formulas they considered are in
prenex normal form and their main goal is to prove the “cutoff” results. Song and Touili
considered some extensions of LTL and CTL to detect the malware where the variable
quantifications can be nested arbitrarily with the other operators, but the variables range
over a finite domain ([20, 19]). The temporal logics extended with variable quantifications
ranging over an infinite data domain are the formalisms over infinite alphabets. Researchers
have proposed many such formalisms. To cite a few, nondeterministic register automata
([15]), first-order logic with two variables ([2]), XPath with data value comparisons ([9]).

FSTTCS 2014

256 Extending Temporal Logics with Data Variable Quantifications

Very recently, independently of this work, Sheinvald et al. considered the characterization of
simulation pre-order in VCTL∗ ([18]). VCTL∗ extends CTL∗ by unrestricted data variable
quantifications, thus subsumes VLTL and VCTL considered in this paper. But they have
not investigated the satisfiability and model checking problem for VCTL∗ yet.

The rest of this paper is organized as follows: Preliminaries are given in the next section,
Section 3 and 4 present respectively the undecidability and decidability results. All the
missing proofs will appear in the journal version of this paper.

2 Preliminaries

Let D be an infinite set of data values, AP a finite set of (non-parameterized) atomic
propositions, and T with AP ∩ T = ∅ a finite set of parameterized atomic propositions,
where each of them carries one parameter (data value). Let V ar be a countable set of data
variables which range over D. Let [k] denote the set {0, . . . , k − 1}, for all k ∈ N.

A word (resp. data word) w over AP (resp. AP ∪ T) is a finite sequence from (2AP)∗
(resp. (2AP∪T×D)∗). Given k ≥ 1, a k-ary tree is a set Z ⊆ [k]∗ s. t. for all zi ∈ Z: z ∈ Z
and zj ∈ Z for all j ∈ [i]. The node ε is called the root of the tree. For every z ∈ Z, the
nodes zi ∈ Z for i ∈ [k] are called the successors of z, denoted by suc(z). Let Leaves(Z)
denote the set of leaves of Z. A path π of a tree Z is a set π ⊆ Z s. t. ε ∈ π and ∀z ∈ π,
either z is a leaf, or there is a unique i ∈ [k] s. t. zi ∈ π. A k-ary labeled tree (resp. data
tree) t over AP (resp. AP ∪ T) is a tuple (Z,L), where Z is a k-ary tree and L : Z → 2AP
(resp. L : Z → 2AP∪T×D) is the labeling function. Given a labeled or data tree t = (Z,L),
let z ∈ Z and π be a path of t, then tz denotes the labeled or data subtree t rooted at z,
and wπ denotes the word or data word on the path π of t. For z ∈ Z in a tree or data tree
t = (Z,L), define the tree type of z in t, denoted by typet(z), as the set {l0, . . . , lk−1} s. t.
for every j ∈ [k], if zj ∈ Z, then lj = Oj , otherwise lj = Oj(Oj means the j-th child exists).

A variable Kripke structure1 (VKS) K is a tuple (AP ∪ T,X, S,R, S0, I, L, L
′), where

AP and T are defined as above, X and S are finite sets of variables and states respectively,
R ⊆ S × S is the set of edges, S0 ⊆ S is the set of initial states, I is the invariant function
that assigns to each state a formula which is a positive Boolean combination of xi = xj and
xi 6= xj for xi, xj ∈ X, L : S → 2AP∪T×X is the state labeling function, L′ : R→ 2{reset}×X
is the edge labeling function. Intuitively, if (reset, x) ∈ L′((s, s′)), then the value of the
variable x is reset (to any value) when going from s to s′.

The set of (finite) computation traces and computation trees can be defined similar to
Kripke structures. The difference is that the data values are added to positions or nodes of
computation traces or trees, while respecting the state invariants and the edge labelings. Let
L(K) and T (K) denote the set of computation traces and computation trees of K respectively.

For any VKS K with the set of variables X, it holds that in every computation trace w
or computation tree t of K, the number of data values occurring in each position of w or
each node of t is at most |X|. Since we are interested in reasoning about the computations
of variable Kripke structures, we restrict our attention in this paper to the language of data
words (or data trees) s. t. there is a bound K satisfying that each position or node of data
words or data trees carries at most K data values.

For the convenience of discussions, we represent data words with at most K data values in
each position as K-attributed data words from

(
2AP × (2T ×D)K

)∗ (If the number of data

1 Variable Kripke structure defined here is the same as that in [10], except that the global invariants are
replaced by local state invariants.

F. Song and Z. Wu 257

values at some position is less than K, then we just copy them). For a K-attributed data word
w = (A0, ((B0,0, d0,0), . . . , (B0,K−1, d0,K−1))) . . . (An, ((Bn,0, dn,0), . . . , (Bn,K−1, dn,K−1))),
let prj(w) denote the sequence (A0, (B0,0, . . . , B0,K−1)) . . . (An, (Bn,0, . . . , Bn,K−1)). Simil-
arly, we represent data trees with at most K data values in each node as K-attributed data
trees. From now on, when we say data words or data trees, we always mean K-attributed
data words or data trees. Let η = (A, ((B1, d1), . . . , (BK , dK))) ∈ 2AP × (2T ×D)K , p ∈ AP
and (τ, d) ∈ T ×D. By abuse of notations, we use p ∈ η to mean p ∈ A, and use (τ, d) ∈ η
to denote (τ, d) ∈ ∪1≤i≤KBi × {di}.

The syntax of Variable-LTL (VLTL)2 is defined by the following rules,

ϕ := p | ¬p | τ(x) | ¬τ(x) | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Xϕ | ϕUϕ | ϕRϕ | ∃xϕ | ∀xϕ,

where p ∈ AP, τ ∈ T, x ∈ V ar, and X is the dual operator of X such that Xϕ ≡ ¬X¬ϕ.
Let var(ϕ) and free(ϕ) denote respectively the set of variables occurring in ϕ and the

set of free variables of ϕ. VLTL formulas without free variable are called sentences.
VLTL formulas are interpreted over K-attributed data words. Let w = w0 . . . wn ∈(

2AP × (2T ×D)K
)∗, ϕ a VLTL formula, λ : free(ϕ) → D, and for every i : 0 ≤ i ≤ n,

wi = wi . . . wn. We define the satisfaction relation as w |=λ ϕ in an obvious way. In particular,
w |=λ ∀xϕ1 if for all d ∈ D, w |=λ[d/x] ϕ1, where λ[d/x] is the same as λ, except assigning d
to x; w |=λ ∃xϕ1 if there is d ∈ D s. t. w |=λ[d/x] ϕ1. If ϕ is a VLTL sentence, we will drop
λ from |=λ. Let LK(ϕ) denote the set of K-attributed data words w satisfying ϕ.

Let K be a VKS and ϕ a VLTL sentence. Then K satisfies ϕ, denoted by K |= ϕ, if for
every computation trace w of K, w |= ϕ.

Let ∃∗-VLTL (resp. ∀∗-VLTL) denote the set of VLTL formulas without using ∀ (resp.
∃) quantifier, NN-∃∗-VLTL denote the set of ∃∗-VLTL formulas where no ∃ quantifiers are
nested (in a strict sense), more precisely, for any pair of subformulas ∃xψ1 and ∃yψ2 s. t.
x 6= y, if ∃yψ2 is a subformula of ψ1, then x 6∈ free(ψ2). NN-∀∗-VLTL is defined similarly.
Let VLTLpnf denote the set of VLTL formulas in prenex normal form θ1x1 . . . θkxk ψ, where
θ1, . . . , θk ∈ {∃,∀}, and ψ is a quantifier-free VLTL formula. Suppose θ = θ1 . . . θk ∈ {∀,∃}∗,
let θ-VLTLpnf denote the set of VLTLpnf formulas of the form θ1x1 . . . θkxkψ. Note that in
general VLTL formulas cannot be turned into equivalent prenex normal forms3. Suppose
Θ ⊆ {∀,∃}∗, let Θ-VLTLpnf = ∪θ∈Θ θ-VLTLpnf . For θ ∈ {∃,∀}∗ (resp. Θ ⊆ {∃,∀}∗), let
θ-VLTLnoappnf (resp. Θ-VLTLnoappnf) denote the set of θ-VLTLpnf (resp. Θ-VLTLpnf) formulas
without using atomic propositions from AP . Let θ ∈ {∃,∀}. Then θ-VLTLgdappnf denote the set
of θ-VLTLpnf formulas where each occurrence of the atomic propositions from AP is guarded
by the positive occurrences of the (unique) quantified variable. More specifically, θ-VLTLgdappnf

is the set of θ-VLTLpnf formulas θxψ s. t. for every p ∈ AP , each occurrence of p (resp. ¬p)
in ψ is in the formula p∧ τ(x) (resp. ¬p∧ τ(x)) for some τ ∈ T . For example, ∀x(open(x)→
close(x)) is a ∀-VLTLgdappnf formula, while ∀x(open(x)→ (p ∧ ¬write(x)) U close(x)) is not.

The syntax of variable-CTL (VCTL) is defined similarly to VLTL, by adding the path
quantifiers A and E before every temporal operator in the syntax rules of VLTL.

VCTL formulas are interpreted over K-attributed data trees. The semantics of VCTL are
defined similarly to VLTL. The syntactic fragments of VCTL can also be defined similarly to

2 VLTL defined in [10] is a fragment of VLTL defined here. In addition, we disallow explicit data variable
comparisons (e.g. equality and inequality). We believe that VLTL without any data variable comparison
is a kind of first-order extensions of temporal logics of the minimum first-order feature.

3 For instance, we conjecture that there are no VLTLpnf formulas equivalent to the VLTL formula
G(∃xτ(x)). But at present we do not know how to prove this.

FSTTCS 2014

258 Extending Temporal Logics with Data Variable Quantifications

VLTL, with the additional distinction between EVCTL and AVCTL, that is, the fragment
of VCTL using only E and A respectively. Let LK(ϕ) denote the set of K-attributed data
trees t satisfying ϕ.

Let K be a VKS and ϕ be a VCTL sentence. Then K satisfies ϕ, denoted by K |= ϕ, if
for every computation tree t of K, t |= ϕ.

For a VLTL or VCTL formula ϕ, let ϕ denote the negation of ϕ, where p = ¬p, ¬p = p,
τ(x) = ¬τ(x), ¬τ(x) = τ(x), Xϕ1 = Xϕ1, Aϕ1 = Eϕ1, and so on. Let |ϕ| denote the size of
ϕ, that is, the number of symbols in ϕ. We will use ϕ1 → ϕ2 to mean ϕ1 ∨ ϕ2. A VLTL or
VCTL formula that does not contain subformulas of the form ψ1 → ψ2 is called normalized.

We consider the following two decision problems for VLTL and VCTL.
Satisfiability problem: Given a VLTL (resp. VCTL) sentence ϕ, decide whether ϕ is
satisfiable, that is, whether there is a data word w (resp. there are k ≥ 1 and a k-ary
data tree t) s. t. w |= ϕ (resp. t |= ϕ).
Model checking problem: Given a VKS K and a VLTL/VCTL sentence ϕ, decide whether
K |= ϕ.

I Remark. We interpret VLTL and VCTL formulas over finite data words and finite data
trees, and leave the investigations on infinite data words and infinite data trees as future work.
The considerations of temporal logics interpreted over finite words and trees are normally
motivated by the verification of safety properties of concurrent systems (cf. e.g. [17]) as well
as the verification of properties of sequential programs.

We next define alternating register automata over k-ary 1-attributed data trees by
adapting the definition of alternating register automata over unranked data trees in [8].

An alternating register automaton over k-ary 1-attributed data trees (ATRA) is a tuple
A = (AP ∪ T,Q, q0, δ), where AP (resp. T) is a finite set of atomic propositions (resp.
parameterized atomic propositions), Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q→ Φ is the transition function, where Φ is defined by the following grammar4,

p | ¬p | τ | ¬τ | Oi? | Oi? | eq | eq | q ∨ q′ | q ∧ q′ | store(q) | guess(q) | Oiq,

where p ∈ AP , τ ∈ T , q, q′ ∈ Q, and i ∈ [k]. Intuitively, p,¬p, τ,¬τ are used to detect the
occurrences of (parameterized) atomic propositions. Oi?,Oi? are used to describe the types
of nodes in trees, eq, eq are used to check whether the data value in the register is equal to
the current one, q ∨ q′ makes a nondeterministic choice, q ∧ q′ creates two threads with the
state q and q′ respectively, store(q) stores the current data value to the register and transfers
to the state q, guess(q) guesses a data value for the register and transfers to the state q, Oiq
moves to the i-th child of the current node and transfers to the state q.

An ATRA A = (AP ∪T,Q, q0, δ) is called alternating register automaton over 1-attributed
data words (AWRA) if k = 1.

The semantics of ATRA over k-ary 1-attributed data trees are defined in a completely
analogous way as those of ATRA over unranked trees in [8]. Let L(A) denote the set of all
k-ary 1-attributed data trees accepted by A.

The closure properties of ATRA and the decidability of the nonemptiness of ATRA can
be proved in the same way as the alternating register automata over unranked trees, by
utilizing well-structured transition systems (cf. [8]).

I Theorem 1. ATRAs are closed under intersection and union. The emptiness problem of
ATRAs is decidable and non-primitive recursive.

4 The spread mechanism in [8] is dropped, since it is not used in this paper.

F. Song and Z. Wu 259

We also introduce extended data automata ([1]), another automata model over (1-
attributed) data words. Extended data automata is an extension of the seminal model of
data automata ([2]) over 1-attributed data words.

An extended data automaton (EDA) D is a tuple (AP ∪ T,A,B) s. t. AP and T are
as above, A is a nondeterministic letter-to-letter transducer from the alphabet 2AP × 2T
to some output alphabet Σ, and B is a finite automaton over Σ ∪ {0} (where 0 6∈ Σ). Let
w = (A0, (B0, d0)) . . . (An, (Bn, dn)) be a 1-attributed data word. Then w is accepted by D
if over prj(w), A outputs a word w′ = σ0 . . . σn over the alphabet Σ, s. t. for every data
value d ∈ D, cstrd(w′′) is accepted by B, where w′′ = (σ0, d0) . . . (σn, dn) and cstrd(w′′) is
defined as σ′0 . . . σ′n, satisfying that for every i : 0 ≤ i ≤ n, σ′i = σi if di = d, and σ′i = 0
otherwise. Note that for every data value d not occurring in w, cstrd(w′′) = 0n+1.

I Theorem 2 ([2, 1]). EDAs are closed under intersection and union. The nonemptiness
problem of EDAs is decidable.

3 Undecidability

This section is devoted to the various undecidability results for the satisfiability and model
checking problem of VLTL and VCTL.

I Theorem 3. The satisfiability problem of ∃∗-VLTL is undecidable.

Proof sketch. We show this by a reduction from the PCP problem. We illustrate the proof
by considering the special case K = 1. Let (ui, vi)1≤i≤n be an instance of the PCP problem
over an alphabet Σ. A solution of the PCP problem is a sequence of indices i1 . . . im s. t.
ui1 . . . uim = vi1 . . . vim .

Let Σ′ = Σ ∪ {a | a ∈ Σ} ∪ {1, . . . , n} ∪ {1, . . . , n} ∪ {#}. Then Σ′ can be encoded by
dlog(|Σ′|)e bits. Let AP be a set of atomic propositions of size dlog(|Σ′|)e. For each σ ∈ Σ′,
let atom(σ) denote the subset of AP corresponding to the binary encoding of σ, and type(σ)
denote the conjunction of atomic propositions or negated atomic propositions from AP

corresponding to the binary encoding of σ. For instance, if the binary encoding of σ is 10,
let AP = {p1, p2}, then atom(σ) = {p1} and type(σ) = p1 ∧ ¬p2. The definition of atom(σ)
can be naturally extended to atom(u) for words u ∈ (Σ′)+. In addition, let T = {τ}. We
use atom′(σ) to denote (atom(σ), {τ}). Similarly, the definition atom′(·) can be extended to
words u ∈ (Σ′)+.

We intend to encode a solution of the PCP problem, say i1 . . . im, as the 1-attributed
data word over 2AP × 2T of the form wi1wi2 . . . wim(atom′(#), d) wi1 . . . wim s. t.

prj(wij) = atom′(ij)atom′(uij) and prj(wij) = atom′(ij)atom′(uij) for every 1 ≤ j ≤ m,
the two sequences of data values corresponding to respectively atom′(i1) . . . atom′(im)
and atom′(i1) . . . atom′(im) are the same,
the two sequences of data values corresponding to respectively atom′(ui1) . . . atom′(uim)
and atom′(ui1) . . . atom′(uim) are the same.

The data word encodings of the solutions of the PCP problem can be expressed by
a ∃∗-VLTL formula ϕ. For instance, during the reduction, we express as the following
∃∗-VLTL formula ϕ1 the fact that for every two consecutive occurrences of letters from
{atom′(σ) | σ ∈ Σ}, there are two consecutive occurrences of letters from {atom′(σ) | σ ∈ Σ}
with the same letters (by viewing atom′(σ) the same as atom′(σ)) and the same data
values, ϕ1 = G ∧σ1,σ2∈Σ [ψ0 → ∃x∃y(ψ1 ∧ Xψ2 ∧ F (ψ3 ∧ Xψ4))], where ψ0 = type(σ1) ∧
X[type(σ2)∨∨1≤j≤n(type(j)∧Xtype(σ2)))], ψ1 = type(σ1)∧ τ(x), ψ2 = (type(σ2)∧ τ(y))∨

FSTTCS 2014

260 Extending Temporal Logics with Data Variable Quantifications

∨1≤j≤n[type(j) ∧ X(type(σ2) ∧ τ(y))], ψ3 = type(σ1) ∧ τ(x), ψ4 = (type(σ2) ∧ τ(y)) ∨
∨1≤j≤n[type(j) ∧X(type(σ2) ∧ τ(y))]. J

Since a VKS can be defined to accept the set of all 1-attributed data words, we deduce
the following result.

I Corollary 4. The model checking problem of ∀∗-VLTL is undecidable.

By adding a universal path quantifier A before every temporal operator of ϕ in the proof
of Theorem 3, we get a reduction to the satisfiability problem of ∃∗-AVCTL.

I Corollary 5. The satisfiability problem of ∃∗-AVCTL formulas is undecidable.

By a similar reduction from the nonemptiness of two-counter machines as that in Theorem
4.1 of [8], we can show the following result.

I Theorem 6. The satisfiability problem of ∀-VLTLpnf is undecidable.

I Remark. The above theorem demonstrates that the claim in [11] that the satisfiability
problem of ∃∗∀-VLTLpnf is decidable is incorrect. We confirmed this observation in an e-mail
with Grumberg, Kupferman and Sheinvald ([12]). On the other hand, we will show that the
satisfiability problem of ∀-VLTLgdappnf , that is, ∀-VLTLpnf formulas where all the occurrences
of (negated) atomic propositions are guarded, is decidable (cf. Theorem 26).

I Corollary 7. The model checking problem of ∃-VLTLpnf is undecidable.

I Corollary 8. The satisfiability problem of ∀-AVCTLpnf is undecidable.

I Remark. From the undecidability result of the satisfiability of a fragment of VCTL, we
do not immediately deduce the undecidability of the model checking problem of the dual
fragment. The reason is that there does not exist a VKS to define the set of all K-attributed
computation trees, or define the set of k-ary K-attributed data trees even for a fixed k.

I Theorem 9. The model checking problem is undecidable for the following fragments:
∀∗-AVCTL, ∀∗-EVCTL, ∃∃-VCTLnoappnf , ∃∀-VCTLnoappnf , ∀∃-VCTLnoappnf , NN-∃∗-VCTL.

Proof sketch. We prove the theorem by reductions from the satisfiability problem of ∃∗-VLTL
and ∀-VLTL over 1-attributed data words.

We illustrate the proof by considering the model checking problem of ∀∗-AVCTL and
∃∃-VCTLnoappnf . The arguments for the other cases use the similar idea.

We first consider the model checking problem of ∀∗-AVCTL.
Let ϕ be a ∃∗-VLTL formula over AP ∪ T . We will construct a VKS K and a ∃∗-EVCTL

formula ϕ′ s. t. ϕ is satisfiable iff K 6|= ϕ′. Note that ϕ′ is a ∀∗-AVCTL formula.
The idea of the reduction is as follows: We construct a VKS K which is a single loop

(without branchings). Thus each computation tree of K is in fact a data word. Then we
obtain from ϕ by adding existential path quantifiers E before every temporal operator
occurring in ϕ (plus some other modifications) to obtain ϕ′. Since K is a structure without
branchings, the satisfaction of ϕ′ over the computation trees of K mimics the satisfaction of
ϕ over data words.

Suppose AP = {p1, . . . , pm}, T = {τ1, . . . , τn−m} (where m ≤ n), and τ ′0, τ ′1 6∈ AP ∪ T .
Define the VKS K = (AP ′ ∪ T ′, {x}, S,R, S0, I, L, L

′) as follows: AP ′ = ∅, T ′ = {τ ′0, τ ′1},
S = {s0, s1, . . . , s2n+1}, R = {(si, si+1 mod 2n+2) | 0 ≤ i ≤ 2n + 1}, S0 = {s0}, for every
si ∈ S, I(si) = true, L(s0) = {(τ ′0, x)}, and L(si) = {(τ ′1, x)} for every i : 1 ≤ i ≤ 2n + 1,
L′((si, si+1 mod 2n+2)) = {(reset, x)} for every i : 0 ≤ i ≤ 2n+ 1.

F. Song and Z. Wu 261

s0 s1 s2n s2n+1· · ·
{(reset, x)} {(reset, x)} {(reset, x)} {(reset, x)}

{(reset, x)}

{τ ′0(x)} {τ ′1(x)} {τ ′1(x)} {τ ′1(x)}

Figure 1 The Variable Kripke Structure.

Notice that in K, T ′ only contains two parameterized atomic propositions. The set of
atomic propositions AP ∪ T will be encoded by equalities and inequalities between the
data values of two adjacent τ ′1-labeled positions in K. Thus each position (A,B, d) in a
1-attributed data word over AP ∪ T will be encoded by a segment of computation traces in
K of length 2n+ 2 s. t. the position 0 is labeled by τ ′0, the position (2i− 1) and (2i) encode
the satisfaction on A ∪B of the i-th atomic proposition from AP ∪ T , and the last position
has the data value d. In addition, x is reset on each edge (si, si+1 mod 2n+2) (0 ≤ i ≤ 2n+ 1)
so that an arbitrary data value can be assigned to x on each position s0, s1, . . . , s2n+1.

We use an example to illustrate the construction of the ∃∗-EVCTL formula ϕ′ from ϕ.
Suppose AP = ∅ and T = {τ1, τ2} and n = 2. Then the ∃∗-EVCTL formula corresponding to
the ∃∗-VLTL formula ∃xG(¬τ1(x) ∨XFτ2(x)) is ∃y[τ ′0(y) ∧ ϕ′0 ∧ ∃xEG(ψ1 ∨ (EX)6EFψ2)],
where ϕ′0 = EG(τ ′0(y)→ [(EX)6τ ′0(y)∧EXτ ′1(y)∧ (EX)3τ ′1(y)]) requires that the data value
of the position 0 occurs in all the positions i s. t. i ≡ 0, 1, 3 mod 6, ψ1 = τ ′0(y)→ [EX(τ ′1(y)∧
EX¬τ ′1(y)))∨ (EX)5¬τ ′1(x)], and ψ2 = τ ′0(y)∧ (EX)3(τ ′1(y)∧EXτ ′1(y))∧ (EX)5τ ′1(x). The
formula ψ1 is satisfied in a position if either τ ′0(y) does not occur, or τ ′0(y) occurs and one of
the following conditions holds: the next two positions have different data values, or τ ′1(x)
does not occur in the 5th position after the current position. Similarly for ψ2.

For the model checking problem of ∃∃-VCTLnoappnf , we reduce from the satisfiability problem
of ∀-VLTL over 1-attributed data words. The reduction is similar to that of ∀∗-AVCTL. J

By using the similar idea as in the proof of Theorem 9, we can get the following result.

I Theorem 10. The satisfiability problem of ∃∀-VLTLnoappnf (resp. ∀∃-VLTLnoappnf) is undecid-
able.

I Corollary 11. The satisfiability problem of ∃∀-VCTLnoappnf (resp. ∀∃-VCTLnoappnf) is unde-
cidable.

I Corollary 12. The model checking problem of ∃∀-VLTLnoappnf (resp. ∀∃-VLTLnoappnf) is
undecidable.

4 Decidability

We first present the encodings of K-attributed data words and data trees into 1-attributed
ones, which will be used in the proofs of this section.

Suppose that w = w0 . . . wn is a K-attributed data word over AP ∪ T s. t. for every
i : 0 ≤ i ≤ n, wi = (Ai, ((Bi,0, di,0), . . . , (Bi,K−1, di,K−1))). Let p′ 6∈ AP ∪ T and
AP ′ = AP ∪ {p′}. A 1-attributed encoding of w, denoted by enc(w), is a data word
w′ = w′0,0 . . . w

′
0,K−1 . . . w

′
n,0 . . . w

′
n,K−1 over AP ′ ∪ T s. t. for every i : 0 ≤ i ≤ n,

w′i,0 = (Ai ∪ {p′}, (Bi,0, di,0)), and for every j : 1 ≤ j ≤ K − 1, w′i,j = (Ai, (Bi,j , di,j)).
The 1-attributed encoding of K-attributed data trees can be defined similarly. The definition
of enc(·) can be naturally extended to the languages of K-attributed data words and data
trees.

FSTTCS 2014

262 Extending Temporal Logics with Data Variable Quantifications

Suppose ϕ is a normalized VLTL formula. Then enc(ϕ) = ϕ′1 ∧ ϕ′2, where ϕ′1 and ϕ′2 are
defined as follows.

ϕ′1 is a quantifier free VLTL formula enforcing the following constraints: p′ occurs in
the first position, for every occurrence of p′ in some position, p′ will occur in the K-th
position after it if there is such a position, but does not occur in between, moreover, for
every p ∈ AP , either p occurs in all the positions between two adjacent occurrences of p′,
or occurs in none of them.
ϕ′2 is obtained from ϕ by replacing X(resp. X) by XK(resp. XK), and applying some
proper replacements for the (parameterized) atomic propositions. For instance, the
occurrence of p1 in Fp1 is replaced by p′ ∧ ∨0≤i≤K−1X

ip1.
Here is an example for enc(ϕ): enc(Fp1) = ϕ′1 ∧ F (p′ ∧ ∨0≤i≤K−1X

ip1).
Similarly, enc(ϕ) can be defined for VCTL formulas.

I Proposition 13. For every VLTL (resp. VCTL) formula ϕ, enc(LK(ϕ)) = L1(enc(ϕ)).

4.1 Non-nested existential variable quantifiers

I Proposition 14. Let K be a VKS . Then enc(L(K)) (resp. enc(T (K))) can be defined by
an AWRA (resp. ATRA).

I Theorem 15. The satisfiability problem of NN-∃∗-VLTL is decidable and non-primitive
recursive.

Proof sketch. The decidability proof is by a reduction to the nonemptiness problem of
AWRAs. Since quantifiers are not nested, w.l.o.g. we assume that there is only one variable,
say x, used in ϕ. Note that the variable x may be reused and existentially quantified for many
times. The AWRA Aenc(ϕ) can be constructed by induction on the syntax of NN-∃∗-VLTL
formulas similar to the construction of alternating automata from LTL formulas (cf. [21]),
by using guess(q) to deal with the existential quantifiers ∃x.

The lower bound is obtained by a reduction from the nonemptiness problem of two-counter
machines with incrementing errors (cf. e.g. [6]). The reduction is similar to that in Theorem
6, with all the four conditions, except the last one, expressed in NN-∃∗-VLTL. J

I Corollary 16. The model checking problem of NN-∀∗-VLTL is decidable and non-primitive
recursive.

I Theorem 17. The satisfiability problem of NN-∃∗-VCTL is decidable and non-primitive
recursive.

Theorem 17 is proved in the same way as Theorem 15, by utilizing the following result.

I Lemma 18. For every ∃∗-VCTL sentence ϕ, if ϕ is satisfiable over a 1-attributed data
tree, then there is a (2|ϕ|)-ary 1-attributed data tree satisfying ϕ.

Similar to Corollary 16, we deduce the following result from Theorem 17.

I Corollary 19. The model checking problem of NN-∀∗-VCTL formulas is decidable and
non-primitive recursive.

F. Song and Z. Wu 263

4.2 Existential path quantifiers for VCTL
I Theorem 20. The satisfiability problem of EVCTL is in NEXPTIME.

Theorem 20 can be deduced from the following lemma.

I Lemma 21. Let ϕ be an EVCTL formula, t be a data tree, and λ : free(ϕ) → D s. t.
t |=λ ϕ. Then a data tree t′ can be constructed from (t, λ) s. t. t′ |=λ ϕ and (t′, λ) contains
at most |ϕ| data values.

Proof sketch. The proof is by induction on the syntax of EVCTL formulas. The induction
base ϕ := p,¬p, τ(x),¬τ(x) is trivial. For induction step, we show the cases ∃xϕ1 and ∀xϕ1.

ϕ := ∃xϕ1: Suppose t |=λ ∃xϕ1. Then there is d ∈ D s. t. t |=λ[d/x] ϕ1. By the induction
hypothesis, t1 can be constructed from (t, λ[d/x]) s. t. t1 |=λ[d/x] ϕ1 and (t1, λ[d/x]) contains
at most |ϕ1| data values. Then (t1, λ) is the desired pair.

ϕ := ∀xϕ1: Suppose t |=λ ∀xϕ1. Then for every d ∈ D, t |=λ[d/x] ϕ1. Suppose the
range of λ is {d1, . . . , dk}. Let d0 be a data value not occurring in t. In addition, if
D(t) \ {d1, . . . , dk} contains at least |ϕ1| − k data values, let dk+1, . . . , d|ϕ1| be a sequence
of |ϕ1| − k distinct data values from D(t) \ {d0, d1, . . . , dk}; otherwise let dk+1, . . . , d|ϕ1| be
a sequence of |ϕ1| − k distinct data values from D \ {d0, d1, . . . , dk} that include all the
data values in D(t) \ {d0, . . . , dk}. Then from t |=λ[di/x] ϕ1 (where i = 0, . . . , |ϕ1|) and the
induction hypothesis, we know that ti can be constructed from (t, λ[di/x]) s. t. ti |=λ[di/x] ϕ1,
(ti, λ[di/x]) contains at most |ϕ1| data values. Since for every i : 0 ≤ i ≤ |ϕ1|, ti contains at
most |ϕ1| data values, we could replace the data values of ti that are from D \ {d0, . . . , d|ϕ1|}
by data values in {d1, . . . , d|ϕ1|}, to get t′i s. t. all the data values of t′i are from {d1, . . . , d|ϕ1|}
and t′i |=λ[di/x] ϕ1. Note that d0 does not occur in any of t′0, . . . , t′|ϕ|. Without loss of
generality, we may assume that the roots of t′0, . . . , t′|ϕ1| have the same label. Let t′ be the
data tree obtained from t′0 by adding all the subtrees of the roots of t′1, . . . , t′|ϕ1| as the new
subtrees of the root of t′0 (with the original subtrees of the root of t′0 untouched). We claim
that t′ |=λ ∀xϕ1. At first, for every di with i : 0 ≤ i ≤ |ϕ1|, we have t′i |=λ[di/x] ϕ1, thus
t′ |=λ[di/x] ϕ1 since ϕ1 contains only existential path quantifiers. Let d 6∈ {d0, . . . , d|ϕ1|}.
Since t′0 |=λ[d0/x] ϕ1 and neither d nor d0 occurs in t′0, assigning d to x has the same impact
as assigning d0 to x for the satisfaction of ϕ1 on t′0. Therefore, t′0 |=λ[d/x] ϕ1. We deduce
that t |=λ[d/x] ϕ1, since ϕ1 contains only existential path quantifiers. From the fact that
d is an arbitrary data value not in {d0, . . . , d|ϕ1|}, we conclude that t′ |=λ ∀xϕ1 and (t′, λ)
contains at most |ϕ1|+ 1 ≤ |ϕ| data values. J

4.3 Variable quantifications in the beginning
I Theorem 22. ([10]) The following two problems are PSPACE-complete: The satisfiability
problem of ∃∗-VLTLpnf and the model checking problem of ∀∗-VLTLpnf .5

I Theorem 23. The satisfiability problem of ∃∗-VCTLpnf is EXPTIME-complete.

The proof of the upper bound is similar to the proof of the satisfiability problem of
∃∗-VLTLpnf . The lower bound follows from the satisfiability problem of CTL.

I Theorem 24. The model-checking problem of ∀∗-VCTLpnf is decidable in EXPTIME.

5 In [10], only model checking problem of ∀∗-VLTLpnf is considered. The result for the satisfiability
problem of ∃∗-VLTLpnf can be shown by following the same idea.

FSTTCS 2014

264 Extending Temporal Logics with Data Variable Quantifications

Theorem 24 can be easily deduced from the following lemma.

I Lemma 25. Let K = (AP,X, S,R, S0, I, L, L
′) be a VKS and ∀x1...∀xnψ be a ∀∗-VCTLpnf

sentence. Then there is a computation tree t = (Z,L) of K s. t. t |= ∃x1...∃xnψ iff there is
a computation tree t′ = (Z,L′) of K s. t. t′ |= ∃x1...∃xnψ and t′ contains at most |X|+ n

different values.

We next consider the satisfiability and model checking problem of ∀-VLTLgdappnf .

I Theorem 26. The satisfiability problem of ∀-VLTLgdappnf is decidable.

Proof sketch. Suppose ϕ = ∀xψ is a ∀-VLTLgdappnf formula over AP ∪ T .
From the definition of enc(·), we know that enc(ϕ) = ϕ′1 ∧ ϕ′2 and ϕ′2 = ∀xψ′ for

some quantifier free VLTL formula ψ′. Then enc(ϕ) can be rewritten into ∀x(ϕ′1 ∧ ψ′),
since no variables occur in ϕ′1. So enc(ϕ) is a ∀-VLTLpnf formula over AP ′ ∪ T , where
AP ′ = AP ∪ {p′}.

It is not hard to observe that if ϕ is a ∀-VLTLgdappnf formula, then ψ′ can be rewritten into
a quantifier free VLTL formula where all the occurrences of p and ¬p for p ∈ AP are guarded
by the positive occurrences of τ(x) for some τ ∈ T . For instance, an occurrence of p ∧ τ(x)
in ψ s. t. p ∈ AP and τ ∈ T is transformed into (p′ ∧

∨
0≤i≤K−1

Xip) ∧ (p′ ∧
∨

0≤i≤K−1
Xiτ(x)),

which is equivalent to p′ ∧
∨

0≤i≤K−1
Xi(p ∧ τ(x)), since either none of Xip holds or all of

them hold. By abuse of notations, we still denote the resulting formula by ψ′. Note that the
formula ∀x(ϕ′1 ∧ψ′) is not a ∀-VLTLgdappnf formula since the occurrences of p′ are not guarded.

To continue the proof, we introduce the following notation. Suppose w = w0 . . . wn is a
1-attributed data word over AP ′ ∪ T s. t. wi = (Ai, (Bi, di)) for every i : 0 ≤ i ≤ n. Then
prjAP (w) = w0|AP . . . wn|AP , where for every i : 0 ≤ i ≤ n, wi|AP = (Ai∩AP, (Bi, di)). The
definition of prjAP (·) can be naturally generalized to languages of 1-attributed data words.

From Proposition 13, we know that the satisfiability of ϕ over K-attributed data words is
reduced to the nonemptiness of the language L1(enc(ϕ)). The nonemptiness of L1(enc(ϕ))
is then reduced to the nonemptiness of prjAP (L1(enc(ϕ))).

In addition, it is not hard to show that an EDA Denc(ϕ) can be constructed from enc(ϕ)
s. t. L(Denc(ϕ)) = prjAP (L1(enc(ϕ))). The decidability then follows from the decidability of
the nonemptiness of EDA. J

I Corollary 27. The model checking problem of ∃-VLTLgdappnf is decidable.

References
1 R. Alur, P. Cerny, and S. Weinstein. Algorithmic analysis of array-accessing programs.

ACM Trans. Comput. Logic, 13(3):27:1–27:29, 2012.
2 M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic

on data words. ACM Trans. Comput. Log., 12(4), 2011.
3 E. Damaggio, A. Deutsch, R. Hull, and V. Vianu. Automatic verification of data-centric

business processes. In BPM, 2011.
4 N. Decker, P. Habermehl, M. Leucker, and D. Thoma. Ordered navigation on multi-

attributed data words. In CONCUR, 2014.
5 S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter

systems. In LICS, 2013.
6 S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Logic, 10(3):16:1–16:30, 2009.

F. Song and Z. Wu 265

7 E.A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J. Found. Comput. Sci.,
14(4):527–550, 2003.

8 D. Figueira. Alternating register automata on finite words and trees. Logical Methods in
Computer Science, 8(1), 2012.

9 D. Figueira. Decidability of downward XPath. ACM Trans. Comput. Log., 13(4):34, 2012.
10 O. Grumberg, O. Kupferman, and S. Sheinvald. Model checking systems and specifications

with parameterized atomic propositions. In ATVA, 2012.
11 O. Grumberg, O. Kupferman, and S. Sheinvald. An automata-theoretic approach to reas-

oning about parameterized systems and specifications. In ATVA, 2013.
12 O. Grumberg, O. Kupferman, and S. Sheinvald. Personal communication, June 2014.
13 I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable and undecidable fragments

of first-order branching temporal logics. In LICS, 2002.
14 I.M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragment of first-order

temporal logics. Ann. Pure Appl. Logic, 106(1-3):85–134, 2000.
15 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–

363, 1994.
16 A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple data values.

In FSTTCS, 2010.
17 O. Kupferman. Variations on safety. In TACAS, 2014.
18 O. Sheinvald, S. Grumberg and O. Kupferman. A game-theoretic approach to simulation

of data-parameterized systems. In ATVA, 2014.
19 F. Song and T. Touili. LTL model-checking for malware detection. In TACAS, 2013.
20 F. Song and T. Touili. Pushdown model checking for malware detection. STTT, 16(2):147–

173, 2014.
21 M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In Conference on

Logics for Concurrency : Structure Versus Automata, pages 238–266, 1996.
22 V. Vianu. Automatic verification of database-driven systems: a new frontier. In ICDT,

2009.

FSTTCS 2014

Generalized Data Automata and Fixpoint Logic∗

Thomas Colcombet and Amaldev Manuel

LIAFA, Université Paris-Diderot
{thomas.colcombet, amal}@liafa.univ-paris-diderot.fr

Abstract
Data ω-words are ω-words where each position is additionally labelled by a data value from an
infinite alphabet. They can be seen as graphs equipped with two sorts of edges: ‘next position’
and ‘next position with the same data value’. Based on this view, an extension of Data Automata
called Generalized Data Automata (GDA) is introduced. While the decidability of emptiness of
GDA is open, the decidability for a subclass class called Büchi GDA is shown using Multicounter
Automata. Next a natural fixpoint logic is defined on the graphs of data ω-words and it is shown
that the µ-fragment as well as the alternation-free fragment is undecidable. But the fragment
which is defined by limiting the number of alternations between future and past formulas is shown
to be decidable, by first converting the formulas to equivalent alternating Büchi automata and
then to Büchi GDA.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Data words, Data Automata, Decidability, Fixpoint Logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.267

1 Introduction

Data words are words that can use symbols ranging over an infinite alphabet of ‘data values’.
Data values are meant to be tested for equality only. Hence, one is typically interested in
languages such as ‘no data value appears twice’, or ‘all consecutive data values in the word
are distinct’, etc. We can already see in these examples one specificity of data words, which
is that the exact domain of data values does not matter, and these can be permuted without
affecting the membership to a language.

Data values are particularly interesting in several modelling contexts. In particular, data
values can be understood as identifiers in a database. The exact content of an identifier does
not really matter. What is interesting is to be able to refer easily to the other places in
the database/document where this identifier occurs. Another situation in which the data
abstraction particularly makes sense is when considering the log of a system, say a server [1].
Such a log is a sequence (potentially infinite) of events that are generated by the different
clients. The events produced by the various clients can be interleaved in any manner. Hence,
a standard language theoretic approach does not help in verifying meaningful properties
of such a log. Indeed, if the events of the sequence are anonymous – in the sense that the
identity of the client that has produced it is not retained – then the interleaving obfuscates
all relevant behavior of a specific client. Data languages, by annotating each action in this
sequence by the unique identifier (the data) representing the client that has produced this
action, give access to much more precise information. An interesting way to analyze the
structure of the log is then the ability to navigate in its structure. Properties that we are

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 259454.

© Thomas Colcombet and Amaldev Manuel;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 267–278

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.267
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

268 Generalized Data Automata and Fixpoint Logic

interested to express would typically consists of combinations of queries such as ‘what is
the next event in the log?’, ‘what is the next event in the log generated by the same user?’,
‘what is the last event that the client has generated?’, ‘has this client ever generated a given
event before?’, etc.

There are many different formalisms for describing properties of data words, i.e., for
defining data languages. They include Data Automata [3], Register Automata [13, 7], Pebble
Automata [17], Class Memory Automata [1], Class Automata [4], Walking Automata [16],
Variable Automata [11], First-Order logic with two variables [3], Monadic Second Order logic
[5], DataLTL [14], Freeze-LTL [7] and Freeze-µ [12], Logic of Repeating Values [6], XPath
[8, 9], Regular expressions [15], Data Monoids [2], among others. As opposed to the case
of the classical theory of regular languages, none of these formalisms can be considered to
be a faithful data word counterpart of the notion of regular languages. This is due to the
fact that undecidability arises very quickly in this context, and that many formalisms that
turn out to be equivalent for standard words happen to have distinct expressiveness in the
case of data words (a typical example is — data monoids [2], deterministic register automata
and non-deterministic register-automata [13], that all have different expressiveness). In
this contribution we are more interested in the kind of formalisms following the temporal
logic approach. Temporal logics (LTL, CTL, CTL∗ and the µ-calculus) are formalisms that
can describe properties of graphs (Kripke structures), by using operators that ‘walk’ in the
structure, and can use all the Boolean connectives. This approach is particularly suitable for
instance when one is interested in analysing the log of a system as described above: basic
walking constructs are ‘go to the next event’, ‘go to the next event of the same client’, ‘go to
the previous event’, and ‘go to the previous event of the client’. More complex properties have
also to be expressible such as ‘go to the first event generated by the client’. Such advanced
navigation can be achieved either using dedicated constructs (such as the ‘since’ and ‘until’
modalities of LTL), or using explicit fixpoints as done in µ-calculus. In practice, a data
word consists of a linear order of positions together with an equivalence relation expressing
that two given positions in the word carry the same data values (i.e., a binary relation that
expresses that two events were generated by the same client). The walking modalities are
then ‘next’, ‘previous’ (that we call the global modalities), ‘next in the same class’, and
‘previous in the same class’ (that we call the class modalities).

Formalisms that describe properties of data languages using temporal logics have been
introduced in [7] and [14]. These two incomparable formalisms, namely DataLTL and Freeze-
LTL, are related to two well-studied notions of automata, respectively Data Automata [3]
and Register Automata[13, 7]. The logic in this paper is a notion along the lines of DataLTL.
It is subsumed by Freeze-µ (which is undecidable over data ω-words) and is incomparable
with the logics in [7, 6]. DataLTL is equipped with the four modalities described above, as
well as until and since operators that can be used either with respect to global modalities
or class modalities. Satisfiability of this logic is decidable by reduction to the decidability
of the emptiness of Data Automata. This work was itself a continuation of another one [3]
in which the satisfiability of first-order with two variables is shown, and Data Automata
are introduced for this purpose. Though this logic is not syntactically a temporal logic, its
behavior is in fact the one of a temporal logic.

Contribution. Our contributions are two fold. First, we introduce a generalization of Data
Automata, called Generalized Data Automata. While the emptiness problem of GDA is
open, we prove the decidability of a subclass of automata, namely the class of Büchi GDA
via a reduction to Multicounter Automata. Secondly we generalize the notion of DataLTL by

T. Colcombet and A. Manuel 269

introducing a natural fixpoint logic. It is shown that the µ-fragment, as well as alternation-
free fragment, of this logic is undecidable. For this reason, we restrict our attention to
the class of formulas in which the alternation between backward and forward modalities is
bounded (this can be syntactically enforced very easily). It is shown that the satisfiability of
the alternation-free fragment of this subclass is decidable by first translating the formula
into an alternating automaton and then by simulating the alternating automaton by a Büchi
GDA using games.

Organization of the paper. In Section 2 we introduce the basics of data ω-words and
languages. In Section 3 we introduce generalized data automata and discuss their closure
properties and subsequently prove the decidability of the emptiness problem for Büchi
GDA. In Section 4 we define µ-calculus on data words and introduce the bounded-reversal
alternation-free fragment. We then introduce alternating parity automata and prove the
simulation theorem, which is followed by the decidability of the bounded reversal alternation-
free fragment. Finally in Section 5 we discuss future work and conclude.

2 Data ω-words and Data Automata

We begin by recalling the basics of data words and Data Automata. Let Σ be a finite alphabet
of letters and D be an infinite set. The elements of D, often denoted by d1, d2, etc., are
called data values. A data word is a finite sequence of pairs from the product alphabet Σ×D.
Likewise a data ω-word is a sequence of length ω of pairs from Σ×D. A data language is a
set of data words and likewise a data ω-language is a set of data ω-words.

We recall some standard notions related to data words. Let w=(a1, d1)(a2, d2). . .(an, dn)
be a data word. The data values impose a natural equivalence relation ∼ on the positions
in the data word, namely positions i and j are equivalent, i.e. i ∼ j, if di = dj . An
equivalence class of the relation ∼ is called simply a class. The set of all positions in a data
word is partitioned into classes. The global successor and global predecessor of a position
i are the positions i+ 1 and i− 1 respectively (if they exist). For convenience we use g(i)
and g−1(i) to denote the global successor and global predecessor of position i. The class
successor of a position i (if it exists), denoted as c(i), is the leftmost position after i in its
class. Symmetrically class predecessor of a position i (if it exists), denoted as c−1(i), is the
rightmost position before i in its class. These notions are naturally extended to the case of
data ω-words.

To simplify the discussion we assume that all classes in a data ω-word are infinite. This
assumption is similar to the one on infinite trees (that all maximal paths are infinite); by
this assumption global successor and class successor relations become total functions. All
the results presented later hold without this proviso as well.

Next we recall the notion of Data Automaton (DA for short) introduced in [3]. Originally
it is formulated as a composition of two finite state automata. The definition here follows
an equivalent presentation due to [1]. Intuitively it is a finite state machine that reads
input pairs from Σ × D and updates the state as follows. During the run the state after
reading the pair at position i depends on the state at the class predecessor position of i
in addition to the state and input letter at the position i. Formally a Data Automaton
A is a tuple (Q,Σ,∆, I, Fc, Fg) where Q is a finite set of states, Σ is the finite alphabet,
∆ ⊆ Q× (Q ∪ {⊥})× Σ×Q is the transition relation, I is the set of initial states, Fc is the
set of class Büchi states, and Fg is the set of global Büchi states.

Next we define the run of a Data Automaton. A run ρ ∈ (Q × D)ω of the automaton

FSTTCS 2014

270 Generalized Data Automata and Fixpoint Logic

A on a data ω-word w = (a1, d1)(a2, d2) . . . is a relabelling of w by the states in Q, i.e.
ρ = (q1, d1)(q2, d2) . . . such that the tuple (q0,⊥, a1, q1) is a transition in ∆ for some q0 ∈ I
and, for each position i > 1 with a class predecessor, say j, the tuple (qi−1, qj , ai, qi) is
a transition in ∆, otherwise if i > 1 does not have a class predecessor, then the tuple
(qi−1,⊥, ai, qi) is in ∆. The run ρ is accepting if there is a global Büchi state that occurs
infinitely often in the sequence q1q2 . . ., and for every class {i1, i2, . . .} there is a class Büchi
state occurring infinitely often in the sequence qi1qi2 The data ω-word w is accepted if
the automaton A has an accepting run on w. The set of all data ω-words accepted by the
automaton A is called the language of A.

3 Generalized Data Automata

In this section we introduce a generalization of Data Automaton. For this purpose we view
a data ω-word as a directed graph with positions as vertices and the global successor and
class successor relations as edges. For convenience we refer to these edges as global and class
edges. Since both global successor and class successor relations are functions any path in this
graph is completely specified by the starting position and a sequence over the alphabet {g, c}
denoting which edge is taken. Formally a path π = e1e2 . . . en ∈ {g, c}∗ from the position i
connects the sequence of vertices i, e1(i), e2(e1(i)), . . . en(. . . e1(i)). Similarly an infinite path
is an ω-sequence over the alphabet {g, c}.

A given run of the Data Automaton is accepted or rejected based on two ω-regular
conditions; one on the global path (composed only of global edges) and one on each class
(composed only of class edges). Next we introduce a generalization of Data Automaton where
an ω-regular condition is checked on all paths.

First we need the following definition. Let w = (a1, d1)(a2, d2) . . . be a data ω-word
and π = e1e2 . . . ∈ {g, c}ω be an infinite path starting from the first position. Let i0 =
1, i1, i2, i3, . . . be the sequence of positions that lie along the path π. The path projection of
the data ω-word w w.r.t. the path π is the ω-word ai0ai1ai2 The marked path projection
of the data ω-word w w.r.t. the path π, denoted as mppw(π) ∈ (Σ× {ε, g, c})ω, is obtained
by annotating the path projection of w w.r.t. π by the path π, that is to say

mppw(π) =
(
ai0
ε

)(
ai1
e1

)(
ai2
e2

)
. . .

Next we introduce the notion of Generalized Data Automaton that has the same transition
structure as that of a Data Automaton but a more general acceptance criterion. A generalized
data automaton A (for short GDA) A is a tuple (Q,Σ,∆, I, L) where Q is the finite set of
states, Σ is the finite alphabet, ∆ ⊆ Q× (Q ∪ {⊥})×Σ×Q is the transition relation, and I
is the set of initial states and L ⊆ (Q× {ε, g, c})ω is an ω-regular language.

Given a data ω-word w = (a1, d1)(a2, d2) . . . a run ρ ∈ (Q × D)ω of the automaton A
on w is a relabelling (q1, d1)(q2, d2) . . . of w with states in Q that obeys all the consistency
conditions as in the case of Data Automaton. The only difference is in the criterion of
acceptance. The run ρ is accepting if for all paths π in the data ω-word ρ, the marked path
projection mppρ(π) is in L. The set of all data ω-words on which A has an accepting run is
called the language of A.

The definition of GDA presented above is not concrete, however the acceptance criterion
L can be presented as a Büchi automaton which we recall next. A Büchi automaton B is a
tuple (S,A, T, sin, G) where S is a finite set of states, A is the input alphabet, T ⊆ S×A×S
is the transition relation, sin is the initial state and G is the set of Büchi states. A run r

T. Colcombet and A. Manuel 271

of the automaton B on an ω-word a1a2 . . . ∈ Aω is a sequence of states s0s1 . . . ∈ Qω such
that s0 = sin and for each i ∈ N the tuple (si−1, ai, si) is a transition in T . The run r is
accepting if there is a state in G that occurs infinitely often in it. To finitely present the
GDA A it is enough to provide a Büchi automaton over the alphabet Q × {ε, g, c} that
accepts the language L. Next we introduce an important subclass of GDA, namely the class
of Büchi GDA. A Büchi GDA is a special case of GDA where the acceptance criterion L
is an ω-regular language that is furthermore accepted by a deterministic Büchi automaton;
a deterministic Büchi automaton is a Büchi automaton whose transition relation T is a
function, i.e. T : S × A→ S. By definition Büchi GDA are subsumed by GDA. Our next
lemma says that for every Data Automaton there is an equivalent Büchi GDA (hence a GDA
as well).

I Lemma 1. For every Data Automaton there is an equivalent Büchi GDA.

In the following we briefly discuss the closure properties of GDA and Büchi GDA. The
class of data languages accepted by Data Automata are closed under union, intersection (but
not under complementation). The class of languages accepted by GDA and Büchi GDA also
exhibit similar closure properties. The union of two GDA (as well as Büchi GDA) accepted
languages is recognized by the disjoint union of the respective (Büchi) GDA. Closure under
intersection is by usual product construction. (Both GDA and Büchi GDA are not closed
under complementation, this follows from the fact that over finite data words GDA are
equivalent to Data Automata.)

Two additional closure properties that are relevant for GDA (as well as for DA) are the
closure under renaming and closure under composition which we recall now. For a map
h : Σ→ Γ and a data ω-word w over Σ×D, the renaming of w under h, denoted as h(w), is
obtained by replacing each letter a ∈ Σ occurring in w by h(a). For a language L of data
ω-words over Σ×D, the renaming of L under h, in notation h(L), is simply the set of all
renamings h(w) of each word w ∈ L.

Assume A,B,C are letter alphabets. A GDA over the alphabet (A × B) × D can be
thought of as a machine that reads a data ω-word over the alphabet A×D and applying
a labelling of each position by a letter from the set B. In other words the machine can
be thought of as a letter-to-letter transducer. The composition of languages correspond
to the operation of cascading (feeding the output label of one machine into the input of
another) the respective automata. Let L1 and L2 be two data ω-languages over the alphabets
(A × B) × D and (B × C) × D respectively. The composition Comp(L1, L2) of L1 and
L2 is the set of data ω-words ((a1, c1), d1), ((a2, c2), d2) . . . over the alphabet (A× C)×D
such that there exists a data ω-word ((a1, b1), d1), ((a2, b2), d2) . . . ∈ (A×B)×D in L1 and
((b1, c1), d1), ((b2, c2), d2) . . . ∈ (B×C)×D in L2. The closure of GDA and Büchi GDA under
renaming and composition can be shown by standard constructions (renaming of transitions
and product construction respectively) as in the case of finite state automata. The following
lemma summarizes the closure properties discussed above.

I Lemma 2. GDA as well as Büchi GDA are closed under union, intersection, renaming
and composition.

3.1 Emptiness of Büchi GDA
The rest of this section is devoted to the emptiness problem of GDA, namely is the language
of a given GDA empty?. We don’t know if the emptiness of GDA is decidable. However, by
extending the decidability proof of emptiness problem of Data Automata it can be shown

FSTTCS 2014

272 Generalized Data Automata and Fixpoint Logic

that the emptiness problem for Büchi GDA is decidable. As in the case of Data Automata
[3], the emptiness problem of GDA is reduced to the emptiness problem of Multicounter
Automata which is decidable.

The general idea is as follows. Given a Büchi GDA A we construct a Multicounter
Automaton that guesses a data ω-word w and simulates the automaton A on w and accepts
if and only if A accepts w. Since a data ω-word is an infinite object the Multicounter
Automaton cannot guess the whole word w. Instead it guesses a finite data word satisfying
certain conditions that guarantees the existence of a data ω-word in the language of the
automaton A.

Now we proceed with the proof. Fix a Büchi GDA A = (Q,Σ,∆, I, L) and a deterministic
Büchi automaton B = (S,A = Q× {ε, g, c}, T, sin, G) accepting the language L.

Let w = (a1, d1)(a2, d2) . . . be a data ω-word accepted by the automaton A and let
ρ = (q1, d1)(q2, d2) . . . be a successful run of A on w. Therefore for every infinite path π the
ω-word mppρ(π) is accepted by the Büchi automaton B. Let π1 and π2 be two infinite paths.
Their respective marked path projections agree on the common prefix of π1 and π2. Since
the automaton B is deterministic the (unique) runs of B on mppρ(π1) and mppρ(π2) agree
on the common prefix as well. This allows us to represent the runs of the automaton B on
the marked path projections of ρ by a labelling by subsets of S in the following way.

Let π = e1. . .en∈{g, c}∗ be a finite path connecting the sequence of positions j0 = 1,
j1, . . . , jn= i. The marked path projection of ρ w.r.t. π is the word (qj0 , ε)(qj1 , e1) . . . (qjn

, en)
over the alphabet Q×{ε, g, c}. By P(S) we denote the power set of S. Let S1S2 . . . ∈ (P(S))ω
be such that Si is the set of all states q such that there is a finite path π ∈ {g, c}∗ ending in
position i and the unique partial run of the automaton B on the marked path projection
of π ends in state q. The ω-word S1S2 . . . ∈ (P(S))ω can be seen as the superposition
runs of the automaton B on each of the marked string projections. We call the data word
ζ = ((q1, S1), d1)((q2, S2), d2) . . . ∈ ((Q×P(S))×D)ω the annotated run.

As we mentioned earlier a witness for non-emptiness of the language of the automaton A
is an infinite object. Hence it is not possible to compute the witness algorithmically. Instead
one has to define a finite object that witnesses the non-emptiness. In the case of a Büchi
automaton over infinite words this finite object is a word of the form u · v such that u · vω is
in the language of the automaton. In the case of Büchi GDA, u and v are two finite data
words such that u · v1 · v2 . . . is in the language of the automaton where v, v1, v2, . . . all have
the same string projections and identical classes, in other words v1, v2, . . . are obtained from
v by renaming of data values.

We fix some notation. Let w = (a1, d1) . . . (an, dn) be a finite data word over the alphabet
Σ. A position with no class successor is called a class-maximal position. Similarly a position
with no class predecessor is called a class-minimal position. The class vector of w is vector
C(w) : Σ→ N that maps each letter a in Σ to the number of class-maximal positions labelled
by a.

Next we formally define the notion of the finite witness in the case of Büchi GDA. Let
u, v ∈ (Σ×D)∗ be two finite data words and let w = u·v. Let ρ = ρu·ρv ∈ (∆×D)∗ be a partial
run of the Büchi GDA on the finite data word w (A partial run is a finite prefix/infix/suffix
of some run of the automaton under consideration). Let ζ = ζu · ζv ∈ ((Q × P(S)) × D)∗
be the annotated run of the automaton A on the data word w. (Note that the definition of
annotation extends to finitely data words naturally). We aim at constructing a data ω-word
in the language of the automaton A by repeatedly appending the data word v (with possible
renaming of data values) to the end of w. Therefore the ‘configuration’ of the automata A
and B, namely the states at which the partial runs of both automata end, have to be the same

T. Colcombet and A. Manuel 273

at the end of the data words u and w. Moreover the number of class-maximal positions in
ζw annotated with a pair (q, S′) ∈ Q×P(S) has to be at least the number of class-maximal
positions in ζu annotated with the same pair for the pumping to work correctly. Finally for
the acceptance criterion to be satisfied every partial run of the automaton B on the marked
path projection of ρ w.r.t a path starting from a class-maximal position in u and ending in a
class-maximal position in v (including the last position) has to see a Büchi state (in G). All
these conditions are summarized below;

The triple w, ρ, ζ forms a regular witness if the following conditions are met.
(i) The state at the end of the partial runs ρu and ρw are the same.
(ii) Su = Sw where Su and Sw are annotations at the last positions of ζu and ζw respectively.
(iii) Let Cu and Cw be the class vectors of ζu and ζwrespectively. Then,

(a) Cu ≤ Cw in the componentwise ordering,
(b) for all (q, S′) ∈ Q×P(S), if Cu((q, S′)) = 0 then it is the case that Cw((q, S′)) = 0.
(c) Every partial run of the automaton B on the marked path projection of ρ w.r.t a

path starting from a class-maximal position in u and ending in a class-maximal
position in v (including the last position) has to see a Büchi state (in G).

In the subsequent lemma we prove the necessity and sufficiency of regular witnesses for
deciding the nonemptiness. The proof rests on the following two standard lemmas.

I Lemma 3 (Dickson’s lemma). Fix a k ∈ N. Every infinite sequence of vectors v0, v1, . . .

where vi ∈ (N0)k contains an infinite nondecreasing subsequence vi0 ≤ vi1 ≤ . . . where the
ordering ≤ is componentwise.

I Lemma 4 (König’s lemma for words). If A is a finite set and L ⊆ A∗ is infinite then there
exists x ∈ Aω such that x has infinitely many prefixes in L.

I Lemma 5. Automaton A accepts some data ω-word if and only if there is a regular witness
for the non-emptiness of A.

Using Lemma 5 it is possible to decide if a given GDA accepts a non-empty language.
This is achieved by a reduction to the non-emptiness problem of Multicounter Automata. A
Multicounter Automata is a finite state machine equipped with a finite set [k] of counters
which hold positive integer values. During each step the machine reads a letter from the
input and depending on the letter just read and the current state it performs a counter
action and moves to a new state. The allowed operations on the counters are increment
counter i and decrement counter i, but no zero tests are allowed. During the execution if a
counter holding a zero value is decremented then the machine halts erroneously. Initially
the machine starts in a designated initial state with all the counters set to value zero. An
execution is accepting if the machine terminates in a state which belongs to a designated set
of final states with all the counters being zero. We will be crucially making use of this final
zero test. Non-emptiness of Multicounter Automata is decidable which implies by virtue of
the following theorem that non-emptiness of Büchi GDA is decidable.

I Theorem 6. Given a Büchi GDA A one can effectively construct an exponentially-sized
Multicounter Automaton which accepts a word if and only if A has a regular witness.

4 µ-calculus on data ω-words

In this section, we introduce µ-calculus over data words. Let Prop = {p, q, . . .} be a set of
propositional variables. The formulas in the logic are the following. The atomic formulas are,
p ∈ Prop, ¬p, and S,P, firstc, firstg which are zeroary modalities. Also, Xgϕ, Xcϕ, Ygϕ, Ycϕ

FSTTCS 2014

274 Generalized Data Automata and Fixpoint Logic

[[p]]w = `(p) [[¬p]]w = ω \ `(p)
[[P]]w = {i | g−1(i) = c−1(i)} [[S]]w = {i | g(i) = c(i)}

[[firstg]]w = {1} [[firstc]]w = {i | @j = c−1(i)}
[[Xgϕ]]w = {i ∈ ω | g(i) ∈ [[ϕ]]w} [[Xcϕ]]w = {i ∈ ω | c(i) ∈ [[ϕ]]w}
[[Ygϕ]]w = {i ∈ ω | g−1(i) ∈ [[ϕ]]w} [[Ycϕ]]w = {i ∈ ω | c−1(i) ∈ [[ϕ]]w}

[[µp.ϕ]]w =
⋂{

S ⊆ ω | [[ϕ]]w[`(p):=S] ⊆ S
}

[[ϕ1 ∧ ϕ2]]w = [[ϕ1]]w ∩ [[ϕ2]]w

[[νp.ϕ]]w =
⋃{

S ⊆ ω | S ⊆ [[ϕ]]w[`(p):=S]

}
[[ϕ1 ∨ ϕ2]]w = [[ϕ1]]w ∪ [[ϕ2]]w

Figure 1 Semantics of µ-calculus on a ω-word w = (ω, `, g, c).

are formulas whenever ϕ is a formula, and ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 are formulas whenever ϕ1 and
ϕ2 are formulas. Finally, µp.ϕ, νp.ϕ are formulas whenever ϕ is a formula and the variable p
occurs positively in ϕ (i.e. ¬p is not a subformula of ϕ).

Next we disclose the semantics; as usual, on a given structure each formula denotes the
set of positions where it is true. The modality firstg holds (only) on the first position and
firstc holds exactly on all the first positions of classes. The modality S is true at a position i
if the successor and class successor of i coincide. Similarly P is true at i if the predecessor
and class predecessor of i coincide. The modalities Xgϕ, Xcϕ, Ygϕ, Ycϕ hold if ϕ holds on the
successor, class successor, predecessor and class predecessor positions respectively. Coming to
the fix-point formulas, each formula ϕ(p), where p occurs positively, defines a function from
sets of positions to sets of positions that is furthermore monotone. We define the semantics
of µp.ϕ(p) and νp.ϕ(p) to be the least and greatest fix-points of ϕ(p) that exists due to
Knaster-Tarski theorem. To formally define the semantics we consider a data ω-word as a
Kripke structure w = (ω, `, g, c) where ` : Prop → P(ω) is valuation function giving for each
p ∈ Prop the set of positions where p holds, g is the global successor relation and c is the
class successor relation. For S ∈ P(ω) by w[`(p) := S] we mean w with the new valuation
function `′ that is defined as `′(p) = S and `′(q) = `(q) for all q ∈ Prop, q 6= p. The formal
semantics [[ϕ]]w of a formula ϕ over a data word w is described in Figure 1.

Note that we allow negation only on atomic propositions. However it is possible to negate
a formula in the logic. For this, define the dual modalities X̃g, Ỹg, X̃c, Ỹc of Xg, Yg, Xc, Yc

respectively and such that M̃ϕ = ¬M¬ϕ, where ¬ stands for set complement. Since successor
and class successor relations are total functions it follows that X̃gϕ ≡ Xgϕ, X̃cϕ ≡ Xcϕ.
Similarly since predecessor and class predecessor relations are partial functions it follows
that Ỹgϕ ≡ firstg ∨ Ygϕ, Ỹcϕ ≡ firstc ∨ Ycϕ. To negate a formula ϕ we take the dual of ϕ; this
means exchanging in the formula ∧ and ∨, µ and ν, p and ¬p, and all the modalities with
their dual.

If ϕ(p1, . . . , pn) is a formula then by ϕ(ψ1, . . . , ψn) we mean the formula obtained by
substituting ψi for each pi in ϕ. As usual the bound variables of ϕ(p1, . . . , pn) may require a
renaming to avoid the capture of the free variables of ψi’s. For a formula ϕ and a position i
in the word w, we denote by w, i |= ϕ if i ∈ [[ϕ]]w. The notation w |= ϕ abbreviates the case
when i = 1. The data language of a sentence ϕ is the set of data words w such that w |= ϕ,
while the data ω-language of a sentence ϕ is the set of data ω-words w such that w |= ϕ.

Unfortunately, even the fragment of the logic containing only µ-fixpoints itself is undecid-
able.

T. Colcombet and A. Manuel 275

I Theorem 7. Satisfiability of the µ-fragment is undecidable.

This also implies the undecidability of the alternation-free fragment (recalled below). One of
the sources of undecidability is the presence of both future and past modalities, or in other
words the two-way-ness of the logic. Therefore we can reclaim decidability of the logic if we
restrict the number of times a formula is allowed to change direction. Next we formally define
this fragment, namely the bounded reversal alternation-free fragment. We first recall the
operation of composition of formulas. Let Ψ be a set of formulas. Define the set Compi(Ψ)
inductively as Comp0(Ψ) = ∅ and

Compi(Ψ) = {ψ(ϕ1, . . . , ϕn) | ψ(p1, . . . , pn) ∈ Ψ, ϕ1, . . . , ϕn ∈ Compi−1(Ψ)} .

The set of formulas Comp(Ψ) is defined as Comp(Ψ) =
⋃
i∈N Compi(Ψ). For a formula

ψ ∈ Comp(Ψ) we define the Comp-height of ψ in Comp(Ψ) as the least i such that ψ ∈
Compi(Ψ).

For λ ∈ {µ, ν} let Formulas(λ) denote the formulas which uses only the fixpoint op-
erator λ. Then the alternation-free fragment, denoted as AF, is the set of formulas
AF = Comp (Formulas (µ) ∪ Formulas (ν))); intuitively there does not exist a µ-subformula
and a ν-subformula with intersecting scope in any formula of AF. We call the set of all
µ-calculus formulas which does not use the modalities {Yc, Yg} (resp. {Xc, Xg}) the forward
(resp. backward) fragment. Forward (resp. backward) alternation-free fragment, denoted as
AFX (resp. AFY) is the set of all formulas in the alternation-free fragment which are also in
the forward (resp. backward) fragment. The bounded reversal alternation-free fragment of
µ-calculus, denoted as BR, is the set of formulas BR = Comp(AFX ∪AFY). An example of a
formula in AF but not expressible in the fragment BR (we do not prove it) is µx.a∨YgXcx. It
tests whether an a-letter is reachable by successive steps of advancing to the next in the class,
and going backward globally. An example of a formula that is in BR is µy.(νx.a∨ Xcx)∨ Ygy.

Next we prove that the fragment BR is decidable by reducing the satisfiability problem
for BR to the emptiness problem for Büchi GDA. Since both BR and Büchi GDA are closed
under composition it is enough to prove that for every formula in the fragment AFX and AFY

there is a Büchi GDA that labels each position with the set of (sub)formulas true at that
position.

I Lemma 8. Given a formula ϕ in the backward fragment there is a Data Automaton that
labels each position with the set of subformulas of ϕ true at that position.

Next we show that for every formula in the forward alternation-free fragment there is
a Büchi GDA that labels each position with the set of satisfied subformulas. For this, we
recall the notion of alternating parity automaton over graphs (See [10] for a comprehensive
presentation). First we need the basics of two player (namely Adam and Eve) games played on
graphs. An arena A = (V,E) is a set of positions V = VE∪VA partitioned into those of Adam
(VA) and those of Eve (VE) along with a set of moves E ⊆ (VA×VE)∪ (VE ×VA) (we assume
that there are no dead-ends in the game). A partial play (v0, v1)(v1, v2) . . . (vk, vk+1) ⊆ E∗ is
a finite sequence of moves performed by the players. The position v0 is the starting position
of the play and vk+1 is the ending position of the play. A strategy for a player Eve (resp.
Adam) σ maps a partial play ending in a position in VE (resp. VA) to a move in E. A play
π = (v0, v1)(v1, v2) . . . ∈ Eω is an ω-sequence of moves. We say π is a play according to
the strategy σ of Eve if on all finite prefixes of π ending in VE she plays according to σ.
A winning condition W ⊆ Eω is a set of plays which are winning for Eve. A game G is a
triple G = (A = (V,E), v,W) where A is an arena, v ∈ V is the initial position and W is the
winning condition. The strategy σ is a winning strategy for Eve if all the plays according

FSTTCS 2014

276 Generalized Data Automata and Fixpoint Logic

to σ are winning for Eve. The strategy is positional if for all partial plays ending on the
same vertex the strategy σ agrees on the next move. A parity game is a game where W is
presented by means of a parity condition Ω : V → {0, . . . , k} for some k ∈ N. Given Ω, the
winning condition W is defined as the union of all plays π = (v0, v1)(v1, v2) . . . such that
the maximal number occurring infinitely often in the sequence Ω(v0),Ω(v1), . . . is even. It
is well-known that parity games are positionally determined. i.e. one of the players has a
positional winning strategy.

Let P be a set of propositional variables. A positive conjunction p1 ∧ p2 . . . ∧ pk, k ≥ 1
over P is identified with the subset {p1, . . . , pk} of P . A DNF formula over P is a disjunction
ϕ1∨ϕ2 . . .∨ϕl, l ≥ 1, where each ϕj is a positive conjunction over P , which is identified with
a subset of the powerset of P , namely {ϕ1, . . . , ϕl}. The set of all DNF formulas over P is
denoted by DNF+(P). LetM be the set {S,¬S,P,¬P}. For a given a data ω-word w and
a position i in w the type of i, denoted by tp (i), is the subset ofM satisfied at position i.

An alternating parity automaton on data ω-words A is a tuple (Q,Σ,∆, q0,Ω) where Q
is the finite set of states, Σ is the alphabet, q0 is the initial state, ∆ : Q × Σ × P(M) →
DNF+({Xgp, Xcp | p ∈ Q}) is the transition relation and Ω : Q → {0, . . . , k} is the parity
condition. When Ω is such that all states have parity either 1 or 2 the automaton is called
Büchi.

Fix an automaton A. Given a data ω-word w = (ω, λ, g, c) (for convenience we let
the labelling function λ : ω → Σ map each position to its label), the acceptance of w by
A is defined, as usual, in terms of a two-player parity game GA,w (sometimes called the
membership game) played between Adam and Eve on the arena with positions V = VE ∪ VA
where VE = Q× ω and VA = co-Dom(∆)× ω. The moves E are the following. On every Eve
position (p, i) she can make a move to an Adam position (ϕ, i) where ϕ is a conjunction over
the set {Xgp, Xcp | p ∈ Q} such that ϕ ∈ ∆(p, λ(i), tp (i)). On every Adam position (ϕ, i) he
can make a move to an Eve position (p, j) if j is the successor (resp. class successor) of i and
Xgp (resp. Xcp) is in ϕ. Observe that there are no dead-ends in the game. The parity of the
game positions are defined as follows. For all Adam positions the parity is 0 and for all Eve
positions (p, i) the parity is Ω(p). We say the automaton A accepts the data word w if in
the game GA,w the player Eve has a winning strategy from the position (q0, 1).

The following lemma follows from canonical connection between µ-calculus and alternating
parity automata on any fixed class of graphs ([10]).

I Fact 9. For every formula in the forward (resp. alternation-free) fragment there is an
equivalent (which is effectively obtained) alternating parity (resp. Büchi) automaton. Moreover
the states of the automaton are precisely the subformulas of the given formula.

If a data ω-word w is accepted by A then there is a winning strategy for Eve in the
game GA,w which in turn implies that Eve has a positional winning strategy for the game.
A positional strategy for Eve in GA,w is a function σ : ω → (Q → co-Dom(∆)) such that
for all i and for all p ∈ Q, (σ(i))(p) ∈ ∆(p, λ(i), tp (i)). Once a strategy σ for Eve is
fixed the game GA,w can be seen as a game played by a single player (namely Adam) in
the following way. Define GσA,w as the subgame where the moves of Eve are limited to
{(p, i) → ((σ(i))(p), i) | i ∈ ω}. Since the moves of Eve are fixed in the game GσA,w (?)
she wins if and only all the infinite paths in the graph GσA,w are winning. A local strategy
is a partial function f : Q → co-Dom(∆) such that there exist a ∈ Σ, τ ∈ P(M) such
that for all p ∈ Dom(f), f(p) = ∆(p, a, τ). A local strategy f is consistent at position i if
f(p) ∈ ∆(p, λ(i), tp (i)) for all p ∈ Dom(f). Observe that a positional strategy for Eve is
a sequence of local strategies (fi)i∈ω such that each fi is consistent at position i. Now we
restate (?) in terms of local strategies. Let F be the set of local strategies.

T. Colcombet and A. Manuel 277

A local strategy annotation of a data ω-word w is a sequence of local strategies (fi)i∈ω
which are consistent at each position i and furthermore satisfy the following conditions. Let
(Di)i∈ω be the sequence of subsets of states Q (called the set of reachable states) such that
the local strategy fi has domain Di.

1. D1 = {q0}.
2. q ∈ DM(i) iff there exists p ∈ Di such that fi(p) = ϕ and Mq ∈ ϕ [When M = Xg (resp.

M = Xc) we use M(i) to denote the successor (resp. class successor) of i]. In this case we
say that there is an edge between (p, i) and (q, M(i)) in the strategy annotation.

A path in the strategy annotation is a sequence (p1, i1) . . . (pn, in) such that each successive
tuples has an edge between them. The local strategy annotation (fi)i∈ω is accepting if for
all infinite paths (starting from (q0, 1)) it is the case that the maximal infinitely occurring
parity is even.

It is straight-forward to see that Eve has a (positional) winning strategy σ in the game
GA,w iff all the paths in the GσA,w are winning iff there is a local strategy annotation in which
all paths are accepting. Thus we get,

I Lemma 10. A data ω-word w is accepted by the automaton A if and only if there exist a
local strategy annotation (fi)i∈ω of w which is accepting.

Next we show the goal of this section namely that for every alternating Büchi automaton
there is an equivalent Büchi GDA. Since we are converting an alternating automata to a
non-deterministic automata (though not of the same kind) it can be seen as an analogue
of the simulation theorem for alternating tree automata. A technicality here is that in the
definition of GDA we don’t have access to the type of a position. Therefore the GDA has
to synthesize the type of every position. This is achieved by the following lemma due to
Schwentick and Björklund.

I Lemma 11 ([1]). There is a Data automaton A which reads a data ω-word and outputs
the type of each position.

Now we present the simulation theorem. The proof is using the standard technique. The
GDA guesses a local strategy annotation and verifies that all paths in the annotation are
accepting. The only technicality is that the automaton has to rely on the marked path
projection to verify that the paths are accepting.

I Proposition 12. Given an alternating parity (resp. Büchi) automaton A there is an
equivalent (resp. Büchi) GDA A′.

Finally we prove the main theorem of this section.

I Theorem 13. Satisfiability of bounded-reversal alternation-free µ-calculus is decidable on
data ω-words.

5 Conclusion and future work

In this paper we have introduced a generalization of Data Automata. While the emptiness
problem for GDA is open it is shown that the decidability of emptiness of a subclass, namely
the class of Büchi GDA, is decidable. Next, a natural fixpoint logic on data words is defined
and it is shown that the µ-fragment as well as the alternation-free fragment is undecidable.
Then, by limiting the number of change of directions of formulas the class of bounded reversal
alternation-free fragment is defined which subsumes other logics such DataLTL and FO2.

FSTTCS 2014

278 Generalized Data Automata and Fixpoint Logic

It is shown that satisfiability problem for the bounded-reversal alternation-free fragment is
decidable by extending the results for Data automata. In fact the latter result easily extends
to the case of formulas with alternation depth νµ.

Regarding future work, there are two interesting questions; namely the decidability of
the non-emptiness problem for GDA and the satisfiability problem of the forward fragment.
However these two problems are effectively equivalent since given a GDA A (resp. Büchi)
there is an effectively constructed universal parity (resp. Büchi) automaton A′ accepting the
accepting runs of automaton A. It is also interesting to know if DA is strictly included in
(Büchi) GDA.

References
1 H. Björklund and T. Schwentick. On notions of regularity for data languages. Theor.

Comput. Sci., 411(4-5):702–715, 2010.
2 M. Bojańczyk. Data monoids. In STACS, pages 105–116, 2011.
3 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic

on data words. ACM Trans. Comput. Log., 12(4):27, 2011.
4 M. Bojańczyk and S. Lasota. An extension of data automata that captures xpath. In Logic

in Computer Science (LICS), 2010, pages 243–252, July 2010.
5 T. Colcombet, C. Ley, and G. Puppis. On the use of guards for logics with data. In MFCS,

volume 6907 of LNCS, pages 243–255. Springer, 2011.
6 S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter

systems. In Logic in Computer Science (LICS), 2013, pages 33–42, June 2013.
7 S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM

Transactions on Computational Logic, 10(3), April 2009.
8 D. Figueira. Alternating register automata on finite data words and trees. Logical Methods

in Computer Science, 8(1), 2012.
9 D. Figueira. Decidability of downward XPath. ACM Transactions on Computational Logic,

13(4), 2012.
10 E. Grädel, W. Thomas, and T. Wilke, editors. Automata Logics, and Infinite Games: A

Guide to Current Research. Springer-Verlag New York, Inc., New York, NY, USA, 2002.
11 O. Grumberg, O. Kupferman, and S. Sheinvald. Variable automata over infinite alphabets.

In Language and Automata Theory and Applications, pages 561–572. Springer, 2010.
12 M. Jurdziński and R. Lazic. Alternating automata on data trees and xpath satisfiability.

ACM Trans. Comput. Log., 12(3):19, 2011.
13 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–

363, 1994.
14 A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple data values.

In FSTTCS, volume 8 of LIPIcs, pages 481–492, 2010.
15 L. Libkin and D. Vrgoc. Regular expressions for data words. In LPAR, volume 7180, pages

274–288, 2012.
16 A. Manuel, A. Muscholl, and G. Puppis. Walking on data words. In Computer Science

Theory and Applications, volume 7913 of LNCS, pages 64–75. 2013.
17 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite

alphabets. 5(3):403–435, 2004.

Consistency of Injective Tree Patterns
Claire David1, Nadime Francis2, and Filip Murlak3

1 Université Paris-Est Marne, Claire.David@univ-mlv.fr
2 ENS Cachan, francis@lsv.ens-cachan.fr
3 University of Warsaw, fmurlak@mimuw.edu.pl

Abstract
Testing if an incomplete description of an XML document is consistent, that is, if it describes a
real document conforming to the imposed schema, amounts to deciding if a given tree pattern can
be matched injectively into a tree accepted by a fixed automaton. This problem can be solved
in polynomial time for patterns that use the child relation and the sibling order, but do not use
the descendant relation. For general patterns the problem is in NP, but no lower bound has been
known so far. We show that the problem is NP-complete already for patterns using only child
and descendant relations. The source of hardness turns out to be the interplay between these
relations: for patterns using only descendant we give a polynomial algorithm. We also show that
the algorithm can be adapted to patterns using descendant and following-sibling, but combining
descendant and next-sibling leads to intractability.

1998 ACM Subject Classification H.2.1 [Database Management]: Logical Design – Data models,
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems

Keywords and phrases XML, incomplete information, injective tree patterns, consistency

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.279

1 Introduction

It is convenient to think that a database instance is a faithful representation of a fragment
of reality; but, in fact, it almost never is. Pieces of information are not available, or
classified, or get lost on the way due to storage and transmission failures. Additional
sources of incompleteness are complex data management tasks, like data integration [11] or
data exchange [6]. Since the seminal work of Imielinski and Lipski [8], incompleteness of
information has been an important topic in relational database theory [7]. More recently, the
need to deal with incomplete information has increased dramatically, due to large amounts
of data on the Web [1]. This data tends to be more prone to errors than data stored in
traditional DBMSs, and transformation, integration, and exchange of data between different
applications is inherent to this context. Dealing with data on the Web also means facing new
data models such as XML documents or graph databases, and scenarios involving incomplete
information for such models have been considered [4, 9].

Incompleteness brings new difficulties into classical tasks such as query answering (what
does it mean to answer a query over an incomplete database?), but it also gives rise to
new tasks. One of such problems is consistency: is there a real instance that matches the
incomplete description? A systematic study of problems related to incomplete XML data
was undertaken in [2]. XML documents are modelled as unranked labelled trees. For such
a tree there are several kinds of information that can be missing in the description: nodes
can be missing, or their labels, or their relative position in the tree. Thus an incomplete
tree can be seen as a tree with some labels missing, and some edges representing descendant
relation, rather than child relation (one can also allow partial information about sibling order).

© Claire David, Nadime Francis, and Filip Murlak;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 279–290

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.279
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

280 Consistency of Injective Tree Patterns

Assuming the so-called DOM semantics, nodes of XML documents have their identity, which
is never lost (if it gets lost, the node is considered to be lost). On its own, such description
is always consistent: we obtain a proper document by turning all edges to child edges and
filling in the labels arbitrarily. Typically, however, the setting also involves a schema (DTD,
XSM, RelaxNG), that describes the shape of correct documents. The structural restrictions
of the schema can always be expressed by a tree automaton. Thus, the consistency problem
for a fixed schema amounts to deciding if there is a tree accepted by the automaton, that
matches the given incomplete description.

The incomplete descriptions of [2] coincide with the notion of tree patterns, originally
introduced as an elegant formalism to express acyclic conjunctive queries over trees and
extensively studied in connection with the XPath query language [3, 12, 13, 14, 15]. Our
consistency problem is a variant of the satisfiability problem for tree patterns with respect to
a fixed automaton [3]. The difference lies in the semantics. Classically, a pattern is satisfied in
a tree if its nodes can be mapped to the tree nodes in such a way that the labels and relations
are preserved. In our setting, the DOM semantics imposes an additional requirement: the
mapping has to be injective. This makes the existing results on patterns inapplicable. We
also cannot use the variant of the injective semantics considered in [5], where it is additionally
assumed that if two pattern nodes are incomparable (neither is descendant of the other),
they must be mapped to incomparable nodes in the tree.

Already in [2] it is noticed that the consistency problem is in NP, but the exact complexity
is left open. For a special case of patterns (incomplete descriptions) that do not involve
descendant edges, a polynomial algorithm is given. In a highly nontrivial extension of this
result, Kopczynski [10] gives a polynomial procedure for patterns that contain at most one
descendant edge on each branch.1

In this paper we close the gap: we show that the consistency problem is NP-complete.
In fact our result is tight with respect to Kopczynski’s polynomial algorithm: the problem
is NP-hard already for patterns with at most two descendant edges per branch. We also
investigate further the sources of hardness and find out that for descendant-only patterns
the problem can be solved in PTime. Finally, we consider possible extensions involving
the sibling order. Combining next-sibling with descendant leads to intractability, but for
patterns using only descendant and following-sibling an adaptation of our proof techniques
gives tractability.

2 Preliminaries

For an unranked Σ-labelled tree T , we write nodesT for the set of nodes, rootT for the root
of T , and labT (v) for the label of a node v in T . We also use the notation u ↓ v and u ↓+ v

to indicate that node v is, respectively, a child or a descendant of node u. We write Tv for
the subtree of tree T rooted at node v.

An antichain in a tree is any sequence of nodes such that no two of them are in the
descendant relation (they can be siblings). A frontier is a maximal antichain that does not
contain the root of the tree.

I Definition 1. A tree pattern π over the alphabet Σ is a finite unranked Σ-labelled tree,
whose edges are of one of two kinds: child edges, denoted ↓, and descendant edges, denoted

1 In fact, Kopczynski gives an algorithm for the general problem, but under his own semantics, resembling
that of [5]. For patterns with at most one descendant per branch, this semantics coincides with the
standard injective semantics.

C. David, N. Francis, and F. Murlak 281

↓+. We write labπ(v) for the label of v in π. We also use notation u ↓ v and u ↓+ v to
indicate that the nodes are connected with a ↓-edge or ↓+-edge, respectively.

I Definition 2. A tree pattern π is satisfied in a tree T , written as T |= π, if there exists an
injective homomorphism h : π → T , that is, an injective function mapping the nodes of π to
nodes of T that preserves the labels and the relations, that is, for all nodes u, v in π

labT (h(v)) = labπ(v);
if u ↓ v in π, then h(u) ↓ h(v) in T ;
if u ↓+ v in π, then h(u) ↓+ h(v) in T .

I Definition 3. A tree automaton A = (Σ, Q, δ, F) consists of an alphabet Σ, a finite set of
states Q, a set of final states F ⊆ Q, and a transition function δ : Σ×Q→ P(Q∗), assigning
regular languages over Q (represented as regular expressions) to each label and state.

A run of A over a tree T is a labelling ρ of the nodes of T with elements of Q such that
for each node of v, if v has children v1, v2, . . . , vk, then ρ(v1)ρ(v2) . . . ρ(vk) ∈ δ(labT (v), ρ(v)).
If v is a leaf, this amounts to ε ∈ δ(labT (v), ρ(v)).

A run ρ is accepting if the root’s label is in F . If T admits an accepting run, we say that
T is accepted by A. We write L(A) for the language recognized by A, i.e., the set of trees
accepted by A. A state q is productive if it occurs in some accepting run.

Let A be a tree automaton. We are interested in the complexity of the following problem.

Problem: ConsA

Input: Tree pattern π.
Question: Is there a tree T ∈ L(A) such that T |= π?

Note that the automaton A is not part of the input. The complexity is measured in terms
of the size of the pattern π. In the context of the incomplete information scenario, where
π represents information about an XML document, this corresponds to data complexity of
consistency.

3 NP-hardness

We first consider the problem for patterns with full vertical navigation, that is, with ↓ and
↓+ edges.

I Theorem 4. There is an automaton A such that ConsA is NP-complete. Moreover,
ConsA is NP-hard already for patterns with at most two occurrences of ↓+ per branch.

Proof. The NP upper bound can be proved by a standard guess and check technique [2].
The rest of this proof is devoted to showing that the problem is NP-hard.

Consider the language K defined in Figure 1. It is straightforward to construct an
automaton recognizing K. We claim that for any automaton A recognizing K, ConsA is
NP-hard (even for patterns with at most two occurrences of ↓+ per branch).

We reduce from CNF-Sat. Let ϕ = c1 ∧ c2 ∧ · · · ∧ cm be a conjunction of clauses over
variables x1, x2, . . . , xn. We build a pattern πϕ such that the formula ϕ is satisfiable if and
only if the pattern πϕ is satisfiable in a tree T from K.

The pattern πϕ can be decomposed in two parts. One part ensures that the tree T
represents precisely the formula ϕ. The rest of the pattern represents a valuation of the
variables x1, x2, . . . , xn and the proof that this valuation satisfies the formula ϕ. The idea of
the encoding of the formula into a tree T from K is to associate each variable xi with an

FSTTCS 2014

282 Consistency of Injective Tree Patterns

xbeg

x

. . .
x

x′

x′
x

. . .
x

xend

x′
x′

x′
x′

x′
x′

cbeg

c

...
c

...
c

cend

...

...

c′

abeg

a

. . .
a

b

. . .
b

aend

a′

a′

b′

b′

xbeg has child x or xend

x has children x′, x′, and either x or xend

x′ has child cbeg

xend has no children

cbeg has child c or cend

c has children c′ and either c or cend

c′ has child abeg

cend has no children

abeg has child a or aend

a has children a′ and either a or b or aend

b has children b′ and either b or aend

a′, b′, and aend have no children

Figure 1 The tree language recognized by the automaton A used in the reduction of CNF-Sat
to ConsA.

x node and encode in the two corresponding x′-rooted subtrees two lists of clauses: those
satisfied when xi is true, and those satisfied when it is false.

The full pattern πϕ is given in Figure 2. Notice that subpattern F ij depends on whether
literal x̄i occurs in the clause cj or not; subpattern T ij is defined analogously, with literal x̄i
replaced with xi. Let π′ϕ be the pattern obtained from πϕ by removing subpatterns V i and
Cj for all i and j. In other words, we keep the blue nodes, but remove the green and red
nodes. Observe that whenever π′ϕ is matched in a tree T ∈ K, the subpatterns T i and F i
must be matched at the grandchildren of the ith x node. Indeed, for Tn and Fn there is no
choice. Consequently, since the matching must be injective, for Tn−1 and Fn−1 there is no
choice either, etc. A similar argument applies to the subpatterns T ij and F ij . This implies
that (up to the ordering of x′ siblings) there is exactly one tree in K satisfying π′ϕ: the
tree Tϕ obtained from π′ϕ by filling in the missing nodes with labels x′, c′, a′, b′. Moreover,
there is exactly one injective homomorphism from π′ϕ to Tϕ, that is the one induced by the
construction of Tϕ.

Intuitively, the subpattern T i lists the clauses of ϕ that are made true by setting xi to

C. David, N. Francis, and F. Murlak 283

xbeg

x

(1)

. . .
x

(i)

. . .
x

(n)

xend

. . .

. . .
cbeg

F i

c

...
c

...
c

cend

F i1

F ij

F im

︷ ︸︸ ︷
x̄i /∈cj x̄i∈cj
abeg

aend

abeg

a

(1)

. . .
a

(j)

b

(j + 1)

. . .
b

(m)

aend

cbeg

T i

c

...
c

...
c

cend

(1)

(j)

(m)

T i1

T ij

T im

c′

...
c′

...
c′

x′

V i

a′

. . .
a′

b′

. . .
b′

c′

Cj

C1 Cm

Figure 2 The pattern encoding a CNF formula c1 ∧ c2 ∧ · · · ∧ cm over variables x1, x2, . . . , xn.
Single and double lines represent child and descendant edges, respectively.

true, and F i lists the ones made true by setting xi to false. Whether clause cj is true or not
is encoded by subpatterns T ij and F ij : a sequence of j labels a and m− j labels b is inserted
between abeg and aend if and only if clause cj is made true.

It remains to show that this homomorphism can be extended to the full pattern πϕ if
and only if ϕ is satisfiable. There are two ways of matching V i in Tϕ: at the parent of the
image of T i or at the parent of the image of F i. In either case, the matching uses all c′
nodes in the corresponding subtree, while the nodes in the other subtree remain unused.
Thus, choosing T i should be interpreted as setting xi to false, since c′ nodes under F i remain
unused, and choosing F i as setting xi to true, since c′ nodes under Ti remain unused. When
all subpatterns V i have been matched, subpattern Cj can be matched if and only if the
associated valuation makes clause cj true.

It follows that Tϕ |= πϕ if and only if there exists a valuation of the variables x1, x2, . . . , xn
that makes true every clause of ϕ. J

FSTTCS 2014

284 Consistency of Injective Tree Patterns

4 Descendant-only patterns

In the previous section we have proved that ConsA is NP-complete in general. We know
that the problem is tractable for some restricted classes of patterns such as patterns using
only child relation [2] or the class considered by Kopczynski [10]. In this section, we prove
that ConsA is also tractable for tree patterns that only use the descendant relation.

I Theorem 5. Let A be a fixed tree automaton. Then ConsA is solvable in PTime for
↓+-only tree patterns.

The key argument to prove Theorem 5 is that consistency of a descendant-only tree
pattern with respect to an automaton A can be reduced to membership of the underlying
tree of the pattern in a regular tree language that depends only on A. When the automaton
A is fixed, the latter can be checked in time polynomial in the size of π. This stronger
result is proved in Lemma 14. The remaining of the section is dedicated to a fine analysis of
descendant-only tree patterns together with a tree automaton, providing the tools needed to
state and prove this lemma.

Our goal is to build concise representations of trees in L(A) that satisfy some descendant-
only pattern π, in such a way that the size of these representations does not depend on π.
The first step is to omit nodes that are not used to satisfy π. The notion of descendant count
introduced in Definition 6 provides a concise way to represent the set of possible frontiers
that are reachable starting from a given label-state pair in a run of A.

I Definition 6. Let A = (Σ, Q, δ, F) be a tree automaton. A count for A is a function
α : Σ×Q→ N, where N = N ∪ {∗}, with the natural order extended with i ≤ ∗ for all i ∈ N.
We say that count α is smaller than count β if α(a, q) ≤ β(a, q) for all pairs (a, q) ∈ Σ×Q.

We say that a count α is realized at (a, q) if for all n ∈ N, there exists a tree T , a run ρ
of A on T , and a frontier w in T such that

the root v of T has label a and ρ(v) = q;
for all (a′, q′) ∈ Σ×Q such that α(a′, q′) ∈ N, w contains at least α(a′, q′) nodes v with
label a′ and such that ρ(v) = q′;
for all (a′, q′) ∈ Σ×Q such that α(a′, q′) = ∗, w contains at least n nodes v with label a′
and such that ρ(v) = q′.

Finally, given (a, q) ∈ Σ × Q, the descendant count of a and q, denoted by DCA(a, q), is
defined as the set of all maximal counts for A that are realized at (a, q).

I Remark. The sets DCA(a, q) are finite and can be computed. Indeed, we can easily
compute a context-free grammar recognizing the set FrA(a, q) ⊆ (Σ × Q)∗ of sequences
of letter-state pairs yielded by the frontiers occurring in the definition of DCA(a, q). As
FrA(q, a) is closed under subsequences, its Parikh image is a (finite) union of linear sets of
the form {β ∈ NΣ×Q

∣∣ β ≤ α}, where α is a count. Since a semilinear representation of the
Parikh image of a context-free language can be computed effectively, the involved counts α
can be deduced as well. DCA(a, q) consists of the maximal ones among them.

Using descendant counts, we define the notion of skeleton for a tree automaton A which
can be seen as a sparse representation of a tree in L(A), where some nodes are omitted. We
show that if a tree pattern π is satisfied by a skeleton s for A, then it is consistent with A.

I Definition 7. Let A = (Σ, Q, δ, F) be a tree automaton. A skeleton s for A is a tree whose
nodes carry a label from Σ×Q and can optionally be flagged as starred. Additionally, for
each node v of s with label (a, q), there exists α ∈ DCA(a, q) such that for all (a′, q′)

C. David, N. Francis, and F. Murlak 285

if α(a′, q′) ∈ N, then v has at most α(a′, q′) children with label (a′, q′), all non-starred;
if α(a′, q′) = ∗, then v has an arbitrary number of children with label (a′, q′), all starred;
if v is the root, then v is not starred, and q is productive.

We say that s satisfies a ↓+-only tree pattern π if the underlying tree of s satisfies π.

Descendant counts are used to build skeletons and ensure that each level of the skeleton
is consistent with A and can indeed be simulated by a tree in L(A). This is more precisely
shown in the following lemma, where we prove that, starting from a skeleton s, we can build
a tree T in L(A) that features the same nodes as s, arranged in the same descendant order.

I Lemma 8. Let A = (Σ, Q, δ, F) be a tree automaton and s be a skeleton for A. Then there
exists a tree T , a run ρ of A on T and an injective mapping i : nodess → nodesT such that,
for all nodes u, v of s,

if labs(u) = (a, q), then labT (i(u)) = a and ρ(i(u)) = q;
if u ↓ v in s, then i(u) ↓+ i(v) in T ;
if u is the root of s, then i(u) is the root of T .

Proof. We prove this by induction on the structure of s.
Assume that s consists of a single node u with label (a, q). By Definition 7, there exists

a count α ∈ DCA(a, q). Since α is realized at (a, q), the tree T of Definition 6 satisfies the
requirements of the lemma.

Assume that u is the root of s, with children s1, . . . , sn. Let (a, q) be the label of u, and
(ai, qi) be the label of the root of si. Then, by definition of s, there exists a count α that is
realized at (a, q) and fits the definition of s at u. Then, by Definition 6, there exists a tree T
and a run ρ on T such that T has root v with labT (v) = a, ρ(v) = q, and with some frontier
v1 . . . vn with labT (vi) = ai and ρ(vi) = qi. Then we can build from T the required tree
by replacing the nodes of this frontier with the trees T1, . . . , Tn produced by the induction
hypothesis applied to s1, . . . , sn. J

Since the root of a skeleton is always labeled by a productive state and our patterns only
use ↓+, Lemma 8 implies the following result.

I Corollary 9. Let A be an automaton, s a skeleton for A and π a ↓+-only pattern. If a
skeleton s satisfies π, then there exists a tree T ∈ L(A) that satisfies π.

Note that, even though skeletons can be sparser than trees, there is still an infinite
number of them. We show that we can represent all skeletons considering only the finite set
of reduced skeletons.

I Definition 10. Let A = (Σ, Q, δ, F) be a tree automaton. A reduced skeleton s for A is a
skeleton that additionally satisfies the following two properties:

each pair label-flag appears at most once in each branch of s;
each node of s has at most one starred child of each label.

Note that the number of reduced skeletons is finite for any automaton A. Indeed, reduced
skeletons are both bounded in depth, as there are a finite number of labels and they are not
allowed to repeat along a branch, and in width, since the maximum number of non-starred
children of any given label is bounded by the largest value different from ∗ taken by any of
the counts in

⋃
(a,q)∈Σ×QDCA(a, q).

Intuitively these skeletons correspond to minimal ones and can be obtained by pruning
long branches and large siblings sets in some larger skeleton. Moreover, reduced skeletons
contain enough information to recover the whole skeletons, by means of the horizontal and
vertical pumping properties of tree automata.

FSTTCS 2014

286 Consistency of Injective Tree Patterns

I Definition 11. Skeleton s reduces to skeleton s′ if s′ can be obtained from s by applying
a (possibly empty) sequence of the following reductions:

(H) Remove any starred node of s that has the same label as some of its starred siblings.
(V) Assume that a node u of s and its descendant v carry the same labels and flags.

Then reduce s to a skeleton obtained by replacing in s the subtree su with sv.

We write red(s) for the set of skeletons to which s reduces, that cannot be further reduced.

Note that the label and flag of the root of s are preserved by both reduction steps. Also,
if s reduces to s′, and s is a skeleton for A then s′ is also a skeleton for A. Moreover if s
cannot be reduced by either (H) or (V), then s is a reduced skeleton. This implies that
red(s) is the set of all reduced skeletons s′ such that s reduces to s′.

The reductions (H) and (V) give a way to simplify a skeleton. The final ingredient we
need is a way of combining skeletons without losing information. To this end we define the
notion of injection of a skeleton into another. Intuitively an injection of s2 into s1 can be
viewed as a skeleton s expanding s1 such that s2 can be matched disjointly from s1 into s.

I Definition 12. Let s, s1 and s2 be skeletons. Then s is an injection of s2 into s1 if there
exists two injective mappings i1 : nodess1 → nodess and i2 : nodess2 → nodess such that

if u is the root of s1, then i1(u) is the root of s;
the images of i1 and i2 are disjoint;
mappings i1 and i2 preserve labels and flags as well as descendant relation.

I Remark. Note that if s1 satisfies a pattern π1 and s2 satisfies a pattern π2, then any
injection of s2 into s1 satisfies π1 and π2 simultaneously, that is, we can match π1 and π2 in
such a way that their images are disjoint.

We are now ready to define the tree automaton AΠ and prove that it recognizes the set
of all descendant-only tree patterns that are consistent with a given tree automaton A. As
explained in the beginning of the section Theorem 5 follows directly from this result.

I Definition 13. Let A = (Σ, Q, δ, F) be a tree automaton. Then we define the pattern
automaton AΠ = (Σ, QΠ, δΠ, FΠ) of A as follows.

QΠ = FΠ is the set of all reduced skeletons for A.
Let s be a reduced skeleton for A and a ∈ Σ, then s1 . . . sn ∈ δ(s, a) if and only if there
exist skeletons t0, . . . , tn such that
t0 is the root of s and is labeled (a, q) for some q;
for all i > 0, there exists an injection of si into ti−1 that reduces to ti;
tn = s (or t0 = s if s1 . . . sn is ε.)

It is easy to check that AΠ is a properly defined tree automaton. Indeed, the three
properties defining δ(s, a) actually define the initial states, transitions and final states of a
finite automaton, hence δ(s, a) is regular.

I Lemma 14. Let A be a tree automaton and π be a ↓+-only tree pattern. Then π is
consistent with respect to A if and only if π ∈ L(AΠ).

Proof. (⇒) Assume that π is consistent with respect to A. We want to exhibit an accepting
run ρ of AΠ on π.

Let T ∈ L(A) such that T |= π, which means that there is an injective homomorphism h

from π to T . Let µ be an accepting run of A on T . Combining, the tree T , the run µ and
the pattern π, we build a skeleton s as follows:

C. David, N. Francis, and F. Murlak 287

the nodes of s correspond to the nodes in h(π);
for each node v of π with label a, the corresponding node in s has label (a, µ(h(v)));
the father of a node v in s is its closest ancestor in T that also belongs to h(π);
for each node v of s of label (a, q), choose α ∈ DCA(a, q) such that the number of v’s
children of label (a′, q′) is at most α(a′, q′), and flag the children as starred accordingly.

Regardless of the choices of α, the resulting s is indeed a properly defined skeleton for A, as
T and µ witness all the required descendant counts. Note also that s satisfies π through the
same injective homomorphism h.

For all nodes v of π, we define πv as the subpattern of π rooted at v. For V , a subset of
the set of nodes of π, we deduce s0

V from s by keeping only the least common ancestor of
nodes in V as well as all the nodes of s that appear in h(πv) for all v ∈ V , and linking nodes
to their closest ancestor, as it is done for s. For s0

V to be a proper skeleton, we also unflag
its root in case it is flagged as starred. We also define sV as any skeleton arbitrarily chosen
in red(s0

V). If V consists of a single node v, we simply write s0
v and sv.

We are now ready to exhibit an accepting run ρ of AΠ on π. For each node v of π,
we define ρ(v) = sv. It remains to show that ρ is a properly defined run of AΠ; it will
immediately be accepting, as all states of AΠ are final. We show by induction on the structure
of π that, for all nodes v of π, the partial run defined by ρ on πv is a correct run for AΠ.

Let v be a leaf node of π with label a. Then s0
v is a skeleton consisting of a single node

labeled (a, q) for some q, and is thus reduced. Hence, ρ(v) = sv = s0
v, ε ∈ δΠ(a, sv) and ρ is

a properly defined run on πv.
Let v be an internal node of π with label a. Let u1, . . . , un be the children of v. By

the induction hypothesis, we know that ρ is a properly defined run on all πui
. Let t0 be

the root of sv. As h(v) = t0, then t0 has label (a, q) for some q. For all i > 0, we define
Vi = {u1, . . . , ui} and ti = sVi

. Then, this sequence of skeletons satisfies the definition of AΠ.
The injection of sui

into ti−1 is simply s0
Vi
, which reduces to ti by definition. Hence, ρ is a

properly defined run on πv.
(⇐) Assume that π ∈ L(AΠ). Let ρ be an accepting run of AΠ on π. For each node v

of π, we define πv as the subpattern of π rooted at v. We now prove by induction on the
structure of π that, for all nodes v of π, there exists a skeleton s that satisfies πv and that
reduces to ρ(v).

Let v be a leaf node of π with label a. By definition of AΠ, the reduced skeleton ρ(v) is
a single node labeled (a, q) for some q. Then ρ(v) satisfies πv and is already reduced. Hence,
we can choose s = ρ(v).

Let v be an internal node of π labeled a. Assume that v has only two children, v1 and v2,
as other cases are similar. Let u be the root of ρ(v). By definition of AΠ, there is an injection
t of ρ(v1) and ρ(v2) into u that reduces to ρ(v). By induction, there are two skeletons s1
and s2 that respectively reduce to ρ(v1) and ρ(v2) and respectively satisfy πv1 and πv2 .

We can build from t a skeleton s by reverting in t all the reductions steps that are used
to reduce each si to ρ(vi), as well as adding enough copies of starred nodes of t so that s is
an injection of s1 and s2 into u. Thus, s satisfies both πv1 and πv2 simultaneously without
using the root node. Moreover, it is easy to check that s reduces to ρ(v), since all new
nodes can simply be removed by reductions steps. Let h be an injective homomorphism that
witnesses the fact that s satisfies πv1 and πv2 simultaneously and without using the root
node. Then we can extend h by mapping v to u. This extended mapping witnesses the fact
that s satisfies πv, as u has label (a, q) for some q, since it is the root of ρ(v).

By applying this induction to the root v of π, we deduce that there exists a skeleton s
that reduces to ρ(v) and satisfies π. We conclude using Lemma 8 and Corollary 9. J

FSTTCS 2014

288 Consistency of Injective Tree Patterns

5 Extending the pattern language

In this section we briefly discuss possible extensions of the pattern language. Let us first
observe that we can add wildcard to our language for free, that is, we can costlessly allow
nodes in patterns that do not have a specified label and can match a tree node with any
label. Indeed, our automaton can simply guess the label for each processed wildcard, and
then proceed as before.

A more interesting extension is to add horizontal relations. Patterns with horizontal
relations are defined just like {↓, ↓+}-patterns we have seen so far, except that they have
two additional kinds of edges, denoted by → and →+, and interpreted respectively as the
next sibling and the following sibling.

As soon as we add the next sibling relation, the consistency problem becomes NP-hard. A
reduction can be obtained via a simple modification of the one in Theorem 4. Specifically, it
suffices to modify the encoding so that the x nodes, c nodes, and a and b nodes are arranged
horizontally, rather than vertically. After this modification the pattern in Figure 2 only uses
child relation between x and x′ nodes. Given that the only descendants of any x node that
have label x′ are its children, we can replace the child relation with the descendant relation.

I Theorem 15. There is an automaton A s. t. ConsA is NP-complete for {↓+,→}-patterns.

When only the following sibling is added, we can get a polynomial algorithm.

I Theorem 16. For each automaton A, ConsA is in PTime for {↓+,→+}-patterns.

In fact, we can again construct a tree automaton recognizing {↓+,→+}-patterns consistent
with an automaton A. In the following, we explain the main ideas of this construction.

We first explain how to extend the notion of skeleton. Let A = (Σ, Q, δ, F) be a tree
automaton. We assume that horizontal languages in the automaton are given in disjunctive
normal form, that is, for each (a, q) ∈ Σ×Q, the language δ(a, q) is given by a disjunction
of disjunction-free regular expressions. We shall refer to these disjunction-free expressions as
clauses of δ(a, q). Note that turning a regular expression into this form usually involves an
exponential blow-up, but since the automaton is considered to be fixed, this does not change
the complexity bound. In the definition below, a letter-state pair (a, q) is reachable if there
exists a tree T with label a in the root and a run over T that assigns state q to the root. A
state q is reachable if there exists a run on any tree that assigns q to the root. Without loss
of generality we can assume that all states of A are reachable.

I Definition 17. A {↓+,→+}-skeleton (in this section, just skeleton) for an automaton
A = (Σ, Q, δ, F) is a forest labelled with disjunction-free regular expressions over reachable
letter-state pairs from Σ×Q such that

each label is either a single letter-state pair (non-starred node) or a disjunction-free
regular expression of the form e∗ (starred node);
starred nodes have no children;
for each node of label (a, q) the concatenation of the labels of its children forms a
disjunction-free regular expression w1u1(e1)∗v1w2u2(e2)∗v2 . . . wnun(en)∗vnwn+1 such
that ui, vi are generated by ei and the projection overQ of w1(e1)∗w2(e2)∗ . . . wn(en)∗wn+1
is a clause of δ(a, q);
similarly for the concatenation of labels of the roots, except that the projection over Q of
w1(e1)∗w2(e2)∗ . . . wn(en)∗wn+1 is a suffix of a clause of δ(a′, q′) for some productive q′.

Additionally, non-starred nodes can be flagged as used.

C. David, N. Francis, and F. Murlak 289

A skeleton is reduced if no letter-state pair repeats on a branch, and the words ui and
vi in the definition above are all empty. A reduced skeleton has its branching bounded by
the size of the clauses of the horizontal languages (which are polynomial in the original
representation of the languages), and its height bounded by the number of states of the
automaton A. Hence, the set of reduced skeletons is finite and each of them is of size at
most exponential in the size of A.

Like for ↓+-skeletons, we can reduce skeleton s by repeatedly applying the following rules

(H) remove any non-starred node (together with its subtree) whose label occurs in the
regular expression e∗ labelling its next or previous sibling;

(V) if u and its descendant v are non-starred and carry the same label, then the subtree
rooted at u (excluding u) can be replaced by the subtree rooted at v (excluding v).

The automaton recognizing consistent patterns essentially proceeds like before: it assigns
reduced skeletons to nodes of the pattern π in a bottom-up fashion, ensuring that they are
consistent with each other. More precisely, a node v gets a skeleton that summarizes a way
to satisfy the subpattern of π rooted at v. Note that in this subpattern some nodes are
connected to v via ↓+-edges, and others via →+-edges. Thus, the subpattern talks about a
certain subforest, which explains why our skeletons are forests. We always assume that v is
mapped to the first root of the skeleton.

Suppose that we want to assign a reduced skeleton to a node v. First, we guess a reduced
skeleton for a single-node pattern consisting of v alone. This skeleton has at most one
used node. Next, we aggregate it with the skeletons assigned to v’s children, one by one,
using appropriately adjusted injections. Since v’s children are now connected to v via ↓+ or
→+, we need two variants of the notion. In both variants, we add to Definition 12 an item
guaranteeing preservation of the sibling order: if v →+ v′ in sk, then ik(v)→+ ik(v′) in s.
In the variant for ↓+, we require that the first root of the second skeleton is mapped to a
descendant of the first root of s, and in the variant for →+, it is mapped into a following
sibling of the first root of s.

We close this section by commenting that the reasoning above could be extended to
cover limited use of child and next-sibling relations: it can be done for patterns, where the
maximal length of paths that do not use ↓+-edge is bounded.

6 Conclusions

We have shown that under injective semantics, the consistency problem for tree patterns
with respect to a fixed automaton is NP-complete by showing the problem to be NP-hard
already for child/descendant patterns with at most two descendant edges per branch. This
closes an open problem from [2]. Moreover our result is tight with respect to the result of
Kopczynski [10], showing tractability for patterns with at most one descendant per branch.

On the positive side, we have provided a polynomial time algorithm in the case of
descendant-only tree patterns. The key ingredient is to show that the set of all patterns that
are consistent with a given tree automaton A is a regular tree language. This language only
depends on A and we can effectively construct a tree automaton AΠ recognizing it. Hence,
consistency is equivalent to testing whether the pattern belongs to this language, which can
be done in polynomial time. Thus, our algorithm is not only polynomial for fixed A, but
also fixed-parameter tractable with the size of A as the parameter.

The involved constant is essentially the size of the automaton AΠ, which is double
exponential in the size of A. This may seem suboptimal, since the problem is known to be in

FSTTCS 2014

290 Consistency of Injective Tree Patterns

NP even when A is a part of the input. However, while we are guaranteed to find a witness
polynomial in the size of the pattern and the automaton, it may be arbitrarily large with
respect to the automaton itself. It happens so that these witnesses can be summarized as
objects exponential in the size of the automaton (double exponential complexity comes from
handling sets of such summaries), but we can see no way to do better than exponential.

We have also examined patterns with additional features: wildcard can be added effort-
lessly, but horizontal relations pose more problems. We adapted our techniques to show that
one can combine descendant and following-sibling without losing tractability, but combining
descendant with next-sibling makes the problem NP-complete (for some automata).

Given that without descendant the problem is known to be tractable [2], this charts out
completely the tractability frontier for the consistency of injective tree patterns. A question
we find interesting and challenging is which of the tractability results can be extended to
patterns that are DAGs, rather then trees. For instance, what is the complexity of the
consistency problem for descendant-only DAG patterns?

Acknowledgements. We thank the anonymous referees for their comments. The third
author was supported by Poland’s National Science Centre grant no. UMO-2013/11/D/ST6/
03075.

References
1 Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann, 1999.
2 Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo. XML with incom-

plete information. J. ACM, 58(1):4, 2010.
3 Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the presence of

DTDs. J. ACM, 55(2), 2008.
4 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Semi-structured data

with constraints and incomplete information. In Description Logics, 1998.
5 Claire David. Complexity of data tree patterns over XML documents. In MFCS, pages

278–289, 2008.
6 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:

semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.
7 Gösta Grahne. The Problem of Incomplete Information in Relational Databases, volume

554 of Lecture Notes in Computer Science. Springer, 1991.
8 Tomasz Imielinski and Witold Lipski Jr. Incomplete information in relational databases.

J. ACM, 31(4):761–791, 1984.
9 Yaron Kanza, Werner Nutt, and Yehoshua Sagiv. Querying incomplete information in

semistructured data. J. Comput. Syst. Sci., 64(3):655–693, 2002.
10 Eryk Kopczynski. Trees in trees: Is the incomplete information about a tree consistent?

In CSL, pages 367–380, 2011.
11 Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246,

2002.
12 Maarten Marx. XPath with conditional axis relations. In EDBT, pages 477–494, 2004.
13 Gerome Miklau and Dan Suciu. Containment and equivalence for a fragment of XPath.

J. ACM, 51(1):2–45, 2004.
14 Frank Neven and Thomas Schwentick. On the complexity of XPath containment in the

presence of disjunction, DTDs, and variables. Log. Meth. Comput. Sci., 2(3), 2006.
15 Peter T. Wood. Containment for XPath fragments under DTD constraints. In ICDT, pages

297–311, 2003.

Asymptotically Optimal Encodings for Range
Selection∗

Gonzalo Navarro1, Rajeev Raman2, and Srinivasa Rao Satti3

1 Department of Computer Science, University of Chile, Chile
gnavarro@dcc.uchile.cl

2 Department of Computer Science, University of Leicester, UK
r.raman@leicester.ac.uk

3 School of Computer Science & Engg, Seoul National University, S. Korea
ssrao@cse.snu.ac.kr

Abstract
We consider the problem of preprocessing an array A[1..n] to answer range selection and range
top-k queries. Given a query interval [i..j] and a value k, the former query asks for the position of
the kth largest value in A[i..j], whereas the latter asks for the positions of all the k largest values
in A[i..j]. We consider the encoding version of the problem, where A is not available at query
time, and an upper bound κ on k, the rank that is to be selected, is given at construction time.
We obtain data structures with asymptotically optimal size and query time on a RAM model
with word size Θ(lgn): our structures use O(n lg κ) bits and answer range selection queries in
time O(1 + lg k/ lg lgn) and range top-k queries in time O(k), for any k ≤ κ.

1998 ACM Subject Classification F.2.2. Nonnumerical Algorithms and Problems, E.2 Data
Storage Representations, E.4 Coding and Information Theory

Keywords and phrases Data Structures, Order Statistics, Succinct Data Structures, Space-
efficient Data Structures

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.291

1 Introduction

We consider the problem of preprocessing an array A[1..n] over a totally ordered universe, so
that the following queries can be efficiently answered:

Range selection: select(i, j, k) returns the position of the kth largest element in A[i..j].
Range top-k: top(i, j, k) returns the positions of the k largest elements in A[i..j].

We can assume that A is a permutation of [n], since replacing each element A[i] by its
rank in A yields correct answers to those queries. The range selection problem has received
a lot of interest in recent years [4, 3, 13, 5]. Following a series of earlier papers, Brodal
and Jørgensen [4] presented a structure using linear space and O(lgn/ lg lgn) time, for any
k given at query time. The model used for this result, as well as the other results in this
paper, is the word RAM model with word size w = Θ(logn) bits. Jørgensen and Larsen
[13] improved the time to O(lg k/ lg lgn+ lg lgn), still within linear space, and proved that
Ω(lg k/ lg lgn) time is needed when using n lgO(1) n space. Finally, Chan and Wilkinson [5]

∗ Navarro funded in part by Millennium Nucleus Information and Coordination in Networks ICM/FIC
P10-024F; Satti partly supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant
number 2012-0008241).

© Gonzalo Navarro, Rajeev Raman, and Srinivasa Rao Satti;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 291–301

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.291
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

292 Asymptotically Optimal Encodings for Range Selection

matched this lower bound, obtaining O(1 + lg k/ lg lgn) time using linear space1. This result
implies, via a reduction first observed in [4], an optimal O(k)-time solution to the range
top-k problem as well.

In this paper, we are interested in the encoding model, where the array A is not available
at query time, and therefore the data structure must contain enough information to answer
queries by itself. One can always use a non-encoding data structure such as that of Chan and
Wilkinson [5], on a copy A′ of A, and thus trivially avoid access to A at query time. This
yields an encoding that uses O(n) words, or O(n logn) bits, and has time equal to that of
the best non-encoding data structure. We aim to find non-trivial encodings of size o(n logn)
bits (from which, of course, it is not possible to recover the sorted permutation, but one can
still answer any select query).

Existing non-trivial solutions for this problem in the encoding model are as follows. In
the case k = 1, both queries boil down to the well-known range maximum query (RMQ),
which can be answered in constant time and 2n+ o(n) bits, matching the lower bound of
2n − O(lgn) bits to within lower-order terms [9]. Note that the space usage is O(n/ lgn)
words, or sublinear. The case k = 2 was recently considered by Davoodi et al. [7]. Grossi et
al. [11] considered encodings for general k, showing that Ω(n lg k) bits are needed to encode
answers to either selection or top-k queries. Therefore, interesting encodings can only exist if
an upper bound κ on k is given at construction time—the so-called κ-bounded rank variant
of this problem [13]. For general k, Grossi et al. [11] gave an asymptotically optimal-space
and O(1) time solution for the (much simpler) case where k is fixed at construction time and
furthermore, only one-sided queries (i.e. query intervals of the form A[1, j]) are supported.
Optimal-space encodings for the two-sided range selection problem can be obtained via
encodings of the range top-k problem given by Grossi et al. [11] described below; these
however have poor running times. Chan and Wilkinson gave a (bounded-rank) range selection
encoding for general k that answers select queries in O(1 + lg k/ lg lgn) time. Its space usage,
however, is O(n(lg κ+ lg lgn+ (lgn)/κ)) bits, which is non-optimal.

In this paper we show that the same optimal time can be obtained in the encoding model,
using asymptotically optimal space.

I Theorem 1. Given an array A[1..n] and a value κ, there is an encoding of A that uses
O(n lg κ) bits and supports the query select(i, j, k) in O(1 + lg k/ lg lgn) time for any k ≤ κ.

Furthermore, our development allows us to obtain asymptotically optimal time and space
for the encoding range top-k problem.

I Theorem 2. Given an array A[1..n] and a value κ, there is an encoding of A that uses
O(n lg κ) bits and supports the query top(i, j, k) in time O(k), for any k ≤ κ.

Grossi et al. [11] gave a range top-k encoding using O(n lg κ) bits that answers top-k
queries in O(κ) time, for any k ≤ κ. To achieve the optimal O(k) time, they require O(n lg2 κ)
bits. Note that Grossi et al.’s result implies an optimal-space (bounded-rank) range selection
encoding with running time O(κ).

In general, the low space usage of encoding data structures is useful when the values in A
themselves are uninteresting, and one just wants to query about their relative magnitudes.
An example of range top-k queries used for autocompletion search is given by Grossi et

1 Chan and Wilkinson claim a bound of O(1 + logw k) for the “trans-dichotomous” model where the word
size w = Ω(log n); this is, however, based on an incorrect application [17] of a result of Grossi et al. [12],
and the proof presented in [5] only yields a time bound of O(1 + log k/ log log n).

G. Navarro, R. Raman, and S. R. Satti 293

al. [11]; the problem arises frequently in data and log mining applications as well. In addition,
our result for range selection allows, for example, delivering the top-k results in sorted order.
It is also useful for interfaces where, say, the top-k results are displayed and then, upon
user request, the (k + 1)th to 2kth results are displayed, and so on. Even when A is needed,
the sub-linear space usage of encoding data structures means that multiple copies of range
selection data structures can be built over one copy of A, and still take less space than A
(this trick is used already in the non-encoding result of [5]).

The next section gives some basic concepts and the roadmap of the paper.

2 Preliminaries

Grossi et al. [11] build their results on top of the shallow cutting technique [13, 5]. We revisit
(a slight variant of) this construction, as we also build on it.

Let A[1..n] be a permutation on [n]. Furthermore, consider each entry A[i] as a point
(x, y) = (i, A[i]), and set a parameter κ. A horizontal line sweeps the space [1, n]× [1, n] from
y = n to y = 1. The points hit are included in a single root cell, which spans a three-sided
area called a slab, of the form [1, n] × [y, n], including all the points of the cell. Once we
reach a point (x∗, y∗) that makes the root cell contain 2κ points, we close the cell and leave
its final slab as [1, n]× [y∗, n]. Then we create two children cells of κ points as follows. Let
xsplit be the κth x-coordinate in the root cell. This is called the split point. Then the new
cells contain the points whose x-coordinates are ≤ xsplit and > xsplit, respectively, and their
initial slabs are thus [1, xsplit]× [y∗, n] and [xsplit + 1, n]× [y∗, n] (these will grow downwards
as we continue with the sweeping process, independently on each cell). When those cells
reach size 2κ, they are split again, and so on. A binary tree TC is created to reflect the cell
refinement process. The root cell is associated with the root node of TC , the first two children
cells to the left and right children of the root, and so on. The leaves of TC are associated
with the final cells, which have not been split and contain κ to 2κ− 1 points (unless n < κ).

At any moment of the sweeping process, there is a sequence of split points x1, x2, . . ., which
grows as further cells are split. The current leaves of TC cover an interval of x-coordinates
[xi + 1, xi+1] (we implicitly assume split points 0 and n at the extremes). When the next
split occurs, within the cell covering interval [xi + 1, xi+1], we split the cell into two new
cells covering the x-coordinate intervals [xi + 1, xsplit] and [xsplit + 1, xi+1]. We associate the
keys [xi + 1, xsplit] and [xsplit + 1, xi+1] and the extents [xi−1 + 1, xi+1] and [xi + 1, xi+2],
respectively, with the two new cells. After the sweep finishes, the sequence of split points
is of the form 0 = x0 < x1 < x2 < . . . < xn′ = n. In the following, we will use xi to refer
to this final sequence of split points. Then we add n′ further keyless cells with extents
[xi−1 + 1, xi+1] for all 1 ≤ i ≤ n′. Note that κ ≤ xi+1 − xi ≤ 2κ for all i (if n ≥ κ).

This construction has useful properties [13]: (i) it creates O(n′) = O(n/κ) cells, each
containing κ to 2κ points (if n ≥ κ); (ii) if c is the cell of the highest (closest to the root)
node v ∈ TC whose key is contained in a query range [i..j], then [i..j] is contained in the
extent of c; and (iii) the top-κ values in [i..j] belong to the union of the points in the 3 cells
comprising the extent of c.

With these properties, Chan and Wilkinson [5] reduce the O(lgn/ lg lgn) time of Brodal
and Jørgensen [4] as follows. At each node v ∈ TC , they store the structure of Brodal and
Jørgensen for the array Av[1..O(κ)] of the y-coordinates of the points in the extent of v.
Actually, they store in Av the local permutation in [O(κ)] induced by the relative ordering
in A, thus Av requires O(κ lg κ) bits in each v and O(n lg κ) bits in total. The structure for
range selection also uses O(κ lg κ) bits and answers queries in time O(1 + lgw κ). They also

FSTTCS 2014

294 Asymptotically Optimal Encodings for Range Selection

store an array Pv[1..O(κ)], so that Pv[i] is the position in A[1..n] of the value stored in Av[i].
Property (iii) above implies that the kth largest element of A[i..j], for any k ≤ κ,

is also the kth largest value in Av[l, r], where v is the node that corresponds to interval
[i..j] by property (ii) and Pv[l − 1] < i ≤ j < Pv[r + 1] are the elements in the extent
of node v enclosing [i..j] most tightly. Thus query select(i, j, k) on A is mapped to query
p = select(l, r, k) on Av. Once the local answer is found in Av[o], the global answer is Pv[o].
Chan and Wilkinson [5] manage to store all the Pv arrays in O(n lg(κ lgn) + (n/κ) lgn) bits,
which gives O(n lgn) bits when added over a set of suitable κ values. This is linear space,
but too large for an encoding.

Grossi et al. [11] use an O(n′)-bit representation of the topology of TC [16] that carries
out a number of operations in constant time, plus a bit-vector of length n to mark the xi
values. With these and some additional structures of total size O(n) bits, they show how
to find the appropriate node v ∈ TC , as well as the cell and extent limits, corresponding to
a range A[i..j], in constant time. They can also map between i and xi, and compute the
interval [xl, xr] of splitting points contained in any node v, all in constant time.

In the sequel we build a space- and time-optimal encoding for range selection:
1. In Section 3 we provide constant-time access to any Pv using only O(n lg κ) bits in the

encoding model. This yields an O(lg κ) time algorithm for range selection, as we can
first find the node v in constant time, then binary search for l and r in Pv, then run the
range selection query on Av in time O(1 + lg κ/ lg lgn), to finally return Pv[o] in O(1)
time. This is obtained by a hierarchical marking of nodes plus a color-based encoding of
the inheritance of points along cells in paths of unmarked nodes in TC .

2. In Section 4 we address the bottleneck of the previous solution: we replace the binary
search by fast predecessor queries on Pv, so as to obtain O(1 + lg κ/ lg lgn) time. This is
obtained by storing succinct string B-trees (succinct SB-trees) [12] on some nodes, which
enable a denser marking, and searches on the color information along (now shorter) paths
of unmarked nodes, using global precomputed tables.

3. In Section 5 we wrap up the results in order to prove Theorem 1. Then we show how
to answer top-k queries by first finding the kth element in Av and then using existing
techniques [15] to collect all the values larger than the kth. This proves Theorem 2.

3 Constant-time Access to Pv

We describe a data structure that gives constant-time access to the values Pv[1..O(κ)] in any
node v.

3.1 Marking Nodes
Let s(v) be the number of descendants of v in TC . We define a decreasing sequence of sizes
as follows: t0 = n′ and t`+1 = dlg t`e, until reaching a z such that tz = 1. Node v will be of
level ` if t2` ≤ s(v) < t2`−1. For any ` ≥ 1, we mark a node v ∈ TC if it is of level ` and:
C1. it is a leaf or both its children are of level > `; or
C2. both its children are of level `; or
C3. it is the root or its parent is of level < `.

I Lemma 3. The number of marked nodes of level ` is O(n′/t2`).

Proof. The key property is that the descendants of v are of the same level of v or less. So
nodes marked by C1 above cannot descend from each other, thus each such marked node
has at least t2` descendants not shared with another. As TC has at most 2n′ nodes, there

G. Navarro, R. Raman, and S. R. Satti 295

cannot be more than 2n′/t2` nodes marked by this condition. By the same key property,
nodes marked by C2 form a binary tree whose leaves are those marked by C1, thus there are
at most other 2n′/t2` nodes marked by C2. For C3, note that all unmarked nodes of level `
are in disjoint paths (otherwise the parent of two nodes of level ` would be marked by C2),
and the path terminates in a node already marked by C1 or C2 (contrarily, a node of level `
marked by C3 must be a child of a node of level < `, and thus cannot descend from nodes of
level `, by the key property). Therefore, C3 marks the highest node of each such isolated
path leading to a node marked by C1 or C2, and thus the number of nodes marked this way
is limited by those marked by C1 or C2. J

3.2 Handling Marked Nodes
Marked nodes, across all the levels, are few enough to admit an essentially naive storage of the
array Pv. If a marked node v represents a slab with left boundary xl+ 1, we store all its Pv[o]
values as the integers Pv[o]− xl. As explained, from v we can determine xl, and thus obtain
Pv[o] in constant time. Since a node of level ` contains less than t2`−1 descendants (leaves, in
particular), its slab spans O(t2`−1) consecutive split points xi, and thus O(κ t2`−1) positions
in A. Thus, each such integer Pv[o]− xl can be represented using lgO(κ t2`−1) = O(t` + lg κ)
bits. The second term adds up to O(κ lg κ) bits per node and O(n lg κ) overall. Since, by
Lemma 3, there are O(n′/t2`) marked nodes of level `, the first term, O(t`), adds up to
O((n′/t2`) · (κ t`)) = O(n/t`) bits over all marked nodes of level `. Adding over all the levels
` we have O(n)

∑z
`=0 1/t`. Since tz = 1 and t`−1 > 2t`−1, it holds tz−s > 2s for s ≥ 4, and

thus O(n)
∑z
`=0 1/t` ≤ O(n)(O(1) +

∑
s≥0 1/2s) = O(n) bits overall.

3.3 Handling Unmarked Nodes
While the problem of supporting constant-time access to Pv is solved for marked nodes,
TC may have Θ(n′) unmarked nodes. To deal with unmarked nodes, we first observe that
an unmarked node v at level ` has exactly one level ` child and one child x at level > `

(otherwise v would be marked by C2). Furthermore, x is marked by C3. Finally, the marked
parent of an unmarked level ` node must be the root or at level ` itself. Thus, as already
observed, level ` unmarked nodes form disjoint paths in TC , and all nodes adjacent to such a
path are marked.

Now consider the points in slabs corresponding to unmarked nodes. When a cell is closed
and split into two, the leftmost (rightmost) κ points in its slab become part of its left (right)
child slab.

Thus, each child slab starts out with κ inherited points which are in common with its
parent slab and κ further original points will be added to it before it is itself closed and
split. For each point of node v, in x-coordinate order, we use a bit to specify if the point is
inherited or original. Let ov[1..2κ] be this bit-vector.

Let π be a path of unmarked nodes of level `, let u be the marked parent of the topmost
unmarked node, and let v be an unmarked node in π. Each original point p of v must be an
inherited point of some marked descendant v′ that is adjacent to π (recall that v′ represents
all its points explicitly). Thus the coordinate of each such original point p can be specified
by recording which marked descendant v′ contains it, and the rank of p among the points
of v′. Suppose that the j-th original point in v is in v’s marked descendant at distance dj
along π. Then we write down the bit-string bv = 1d1−101d2−10 . . .1dκ−10. We claim that,
summed across all nodes v in the path π, this adds 2|π|κ bits: there are |π|κ 0 bits, each 1
bit represents an inherited point in a slab on the path π, and there are |π|κ inherited points

FSTTCS 2014

296 Asymptotically Optimal Encodings for Range Selection

in π. Thus,
∑
v∈TC |bv| = O(n′κ) = O(n) bits. As explained, we also store O(lg κ) bits for

each original point in v telling which rank to pick in the marked node, in an array rv. This
adds O(n′κ lg κ) = O(n lg κ) bits, which completes the information necessary to identify any
original point. Section 3.4 has the details of how to obtain the point value in O(1) time.

Unfortunately, we cannot apply the same approach to the inherited points in v, as we
cannot bound the size of the bit-strings as we did for bv. For any inherited point p in v,
we instead specify which ancestor of v on π has p as an original point (we specify u if this
ancestor is outside π), and then retrieve the point as an original point in the ancestor. This
is done by coding points using 4κ colors. Of these colors, 2κ are original colors and 2κ are
inherited colors. For each original color g there is a corresponding inherited color g′. All the
points in u are given arbitrary distinct original colors. Then we traverse the nodes v in π
top to bottom. If point p in v is inherited (from its parent v′), we look at the color of p in v′.
If p has an original color g in v′, we give p color g′ in v. Otherwise, if p is also inherited in
v′, having color g′, it will also have color g′ in v. On the other hand, if point p is original in
v, we give it one of the currently unused original colors. Note that no colors g and g′ can be
present simultaneously in any v′, thus writing g′ in v unambiguously determines which color
is inherited from v′. Then any other color g such that g′ is not among the κ inherited colors
of v can be used as an original color for v.

This scheme gives sufficient information to track the inheritance of points across π: when
a new, original, point p appears in v, it is given an original color g. Then the point is inherited
along the descendants of v as long as color g′ exists below v. Thus, to find the appropriate
ancestor of v that contains a given inherited point p of color g′, as an original point, we
concatenate all the colors on π into a string, and ask for the nearest preceding occurrence
of color g. The path can be encoded in O(|π|κ lg κ) bits, which adds up to O(n lg κ) bits
overall. The position of g in the nearest ancestor also tells which of the original points does
p correspond to.

3.4 Technicalities
Let us fix a representation for TC using O(n′) bits and supporting a large number of
operations in constant time [16], in particular the preorder rank r(v) of any node v. We also
use structures that support two operations on bit-vectors and sequences X: ranka(X, i) is
the number of occurrences of symbol a in X[1..i], and selecta(X, j) is the position of the jth
occurrence of letter a in X.

We store a bit-vector M [1..O(n′)] in the same preorder of the nodes, where M [r(v)] = 1
iff node v is marked. Further, we store a string S[1..O(n′)] where we write down the
level of each marked node, that is, S[rank1(M, r(v))] = ` iff v is marked and of level `.
Operations rank and select on M can be supported in constant time and o(|M |) further
bits [6, 14]. Since there are lg∗ n′ distinct values of `, the alphabet of S is small and S can
be represented within |S|H0(S) + o(n′) bits so that operations rank and select on S can
be carried out in constant time [8]. Here H0(S) is the zeroth-order empirical entropy of S,
defined as |S|H0(S) =

∑
` n` lg(|S|/n`), where n` is the number of occurrences of symbol

` in S. Since n` lg(|S|/n`) is increasing2 with n` and n` = O(n′/t2`) by Lemma 3, we have
|S|H0(S) = O(n′)

∑
` lg(t2`)/t2` = O(n′)

∑
` lg(t`)/t2` ≤ O(n′)

∑
` 1/t` = O(n′).

With M and S we can create separate storage areas per level for the explicit Pv arrays of

2 At least for n` ≤ |S|/e. When n` is larger we can simply bound n` lg(|S|/n`) = O(n`), thus we can
remove all those large n` terms from the sum and add an extra O(n′) term to absorb them all.

G. Navarro, R. Raman, and S. R. Satti 297

marked nodes, each of which uses the same space for nodes of the same level: if a node v is
marked (i.e., M [r(v)] = 1) and is of level ` = S[rank1(M, r(v))], then we store its array Pv
as the rth one in a separate sequence for level `, where r = rank`(S, `).

Now consider unmarked nodes. The vectors ov, rv and bv are concatenated in the same
preorder of the nodes. While vectors ov and rv are of fixed size, vectors bv are not. Their
starting positions are thus indicated with 1s in a second bit-vector B[1..O(n)]. Given any
original point ov[i] = 1, it is the jth original point for j = rank1(ov, i); recall that j is used
to find dj in bv. Now bv starts at position select1(B, r(v)) in the concatenation of all the
bv’s. Finally, we recover dj as select0(bv, j)− select0(bv, j − 1).

Now we have to find the marked node v′ leaving π at distance dj from v. The strategy
is to find the node u′ that is “at the end” of π. More precisely, u′ is a child of the lowest
node of π and is the only node leaving π that is of the same level ` of v. Indeed, u′ is the
highest marked node of level ` in the subtree of v. Since we can compute node depth and
level ancestors in constant time [16], we can compute the ancestor a of u′ that is at depth
depth(v) + dj − 1, and find v′ as the child of a that is not in π, that is, is not an ancestor of
u′.

Now, to find u′, we calculate the subtree size of v (in constant time [16]) and hence its
level `.3 If the nodes are arranged in preorder, u′ is the first node appearing after r(v),
r(u′) > r(v), which is marked M [r(u′)] = 1 and whose level is S[rank1(M, r(u′))] = `. This
corresponds to the first occurrence of ` in S after position rank1(M, r(v)). This is found in
constant time with rank and select operations on S, and then r(u′) is found with select on
M . Finally, the tree representation gives us u′ from its rank r(u′) in constant time as well.

The sequence of colors cπ of path π is also associated with the last node u′ of π, and all
are concatenated in preorder of those nodes u′. As before, a bitmap is used to mark the
starting position of each sequence cπ, and another bitmap is used to mark the preorders of
the involved nodes u′.

Now let cπ be the sequence of 2|π|κ colors for path π, writing from highest to lowest node
the 2κ colors of each node. The subarray corresponding to each v is easily found in cπ by
knowing the depth of v and of u′. In order to find, given a position cπ[i] = g′, the largest
i′ < i such that cπ[i′] = g, we build a monotone minimum perfect hash function (MMPHF)
[1] for each original color g, recording the set of positions where either g or g′ occur in cπ. A
MMPHF can be regarded as a support for the limited operation rankg,g′(cπ, i) that counts
the number of occurrences of g or g′ in cπ[1..i], provided cπ[i] ∈ {g, g′}. This is answered in
constant time and using O(|π|κ lg lg κ) bits. In addition, for each g we store a bit-vector cgπ
so that cgπ[rankg,g′(cπ, i)] = 1 iff cπ[i] = g. Then, after computing r = rankg,g′(cπ, i), we use
rank and select on cgπ to find the latest 1 in cgπ[1..r]. This corresponds to the last occurrence
of g preceding cπ[i] = g′. The position is mapped back from cgπ[o] to cπ using a sequence
c′π that identifies g′ with g, so that the answer is selectg(c′π, o). We use a representation for
c′π that requires O(|π|κ lg κ) bits and gives constant select time [10]. Thus the structures
representing paths π use space O(|π|κ lg κ), which is independent of the path level `.

Extending access from cells to extents

We have shown how to provide constant-time access to the points in a cell. In order to extend
this to the extent of a node v, we use the technique of [11] to find in constant time the 3
cells that form the extent of v, and simulate the concatenation of the 3 arrays P .

3 To find the level in constant time from the subtree size, we can check directly for the case ` = 0, and
store the other answers in a small table of lg n′ cells.

FSTTCS 2014

298 Asymptotically Optimal Encodings for Range Selection

4 Predecessor Queries on Pv

Having constant-time access to Pv enables binary searching for the desired limits of the array
Av where the selection query is to be run. However the binary search time becomes the
bottleneck. In this section we obtain fast predecessor searches that replace the binary search.

A classical predecessor structure uses O(κ lgn) bits, as the universe is the set of positions
in A, and this adds up to O(n lgn) bits (note that this structure is needed in all the O(n′)
nodes of TC , not only the marked ones). A low-space predecessor structure when one has
independent access to the sequence is the succinct SB-tree [12, Lem. 3.3]. For κ elements over
a universe of size m, this structure supports predecessor queries in time O(1 + lg κ/ lg lgm)
using O(κ lg lgm) bits, and a precomputed table of size o(m) that depends only on m.

On a node v of level `, the universe of positions is of size O(κ s(v)) = O(κ t2`−1), thus the
succinct SB-tree would use O(κ lg lg(κ t`−1)) = O(κ lg t` + κ lg lg κ) bits. The first term is
still too large, as just considering the nodes with ` = 1 we add up to O(n lg lgn) bits.

To improve on this, we will use a marking that is denser than that used in Section 3 (this
marking is only used for the predecessor structures). We will further mark every (t`/ lg2 t`)th
node in the paths π of unmarked nodes of level `. All marked nodes will store a succinct
SB-tree. The number of marked nodes of level ` is now O(n′ lg2 t`/t`), so storing a succinct
SB-tree in a each marked node of level ` adds up to O(n lg3 t`/t`) bits. Adding up over all
the levels ` we have O(n)

∑
` lg3 t`/t` ≤ O(n)(O(1) +

∑
s≥0 s

3/2s) = O(n) bits. The second
term of the succinct SB-tree space, O(κ lg lg κ), adds up to O(n lg lg κ) bits.

As a result, the paths of unmarked nodes of level ` have length O(t`/ lg2 t`) = O(t`).
Consider one such path. The nodes leaving the path are of level > `, except the node u′
leaving π at the bottom, which is of level `. Therefore, we can divide the range of s(v) split
points covered by v into three areas: (1) the area covered by the subtrees that leave π to the
left, (2) the area covered by the subtrees that leave π to the right, and (3) the area covered
by u′. Each of those areas is contiguous, (1) preceding (3) preceding (2). Since there are
O(t`) nodes of type (1) and each is of level at least `+ 1, the total area covered by those is of
size O(t` · κ t2`) = O(κ t3`). The case of (2) is analogous. Therefore, for the (unmarked) nodes
on π we store a succinct SB-tree for the values in area (1) and another for the values in area
(2), both using O(κ lg lg(κ t3`)) = O(κ lg lg(κ t`)) bits. Given a predecessor request, we first
find the node u′ below π as in Section 3, and determine in constant time whether the query
falls in the area (1), (2), or (3) (by obtaining the limits [xl + 1, xr] of u′, as explained). If it
falls in areas (1) or (2) we use the corresponding succinct SB-tree of v, otherwise we use the
succinct SB-tree of u′ (which is marked and hence stores a regular succinct SB-tree). We use
the same techniques as in Section 3 to store and access the (variable-sized) representations
of the succinct SB-trees.

With this twist, the space over a node of level ` is O(κ lg lg(κ t`)) bits, adding up to at
most O(n lg lg lgn+ n lg lg κ) bits, again dominated by the nodes of level ` = 1. This gives
a total space of O(n(lg κ + lg lg lgn)) and a time of O(lg κ/ lg lgn). Note that the time is
improved from O(lg κ/ lg lg t`) to O(lg κ/ lg lgn) by using the same precomputed table over
a universe of size n for all the nodes, and this table requires o(n) further bits. This result is
already as desired if lg κ = Ω(lg lg lgn). In the sequel we address the case κ = O(lg lgn).

4.1 Handling Small κ Values
When κ = O(lg lgn) we will not use the mechanism of storing succinct SB-trees for areas (1)
and (2) of unmarked nodes as before, but a different mechanism. Let π be a path of unmarked
nodes of level `. Let u1, u2, . . . be the nodes that leave π from the left, reading their areas in

G. Navarro, R. Raman, and S. R. Satti 299

left-to-right order (i.e., top-down in π), and v1, v2, . . . be the nodes that leave π from the right,
also reading them in left-to-right order (i.e., bottom-up in π). Then the area of A covered by
π can be partitioned into the |π| consecutive areas covered by u1, u2, . . . , u

′, v1, v2, All
those nodes are marked and thus store their own succinct SB-tree.

Our problem is to determine, given a node v in π, which is the predecessor in Pv of a
given position p. A first predecessor structure, associated with π, determines in which of
those |π| areas p belongs (the node containing that area will descend from v). Let `i be the
level of node ui. Then the area covered by ui is of length O(κ t2`i−1). Thus we can encode
those lengths with, say, γ-codes [2], within O(

∑
i lg(κ t2`i−1)) = O(|π| lg κ+

∑
i t`i) bits.

From a space accounting point of view, this space can be afforded because we can charge
O(lg κ+ t`i) bits to the storage of ui. As ui’s level is larger than p, it is a marked node (see
Section 3). Thus there are O(n′/t2`i) such nodes overall, each of which will be charged O(t`i)
bits only once, from the path π it leaves, for a total of O(n′/t`i) bits, adding up to O(n′)
bits overall. For the other term, note that we can always afford lg κ bits of space per node.

On the other hand, we note that, since `i > `, it holds O(|π| lg κ+
∑
i t`i) = O(|π| lg κ+

|π| lg t`). Since |π| = O(t`/ lg2 t`), t` = O(lgn) even for ` = 1, and κ = O(lg lgn), the space
is O(lgn/ lg lgn) = o(lgn), and thus the whole description of the ui areas fits in a single
computer word, and a global precomputed table of o(n) bits can be used to answer any
predecessor query in constant time.

We proceed analogously with the areas of v1, v2, Now, a predecessor query for the
areas u1, u2, . . . , u

′, v1, v2, . . . can be answered as before: We first determine whether the
answer is u′ with a constant number of comparisons, and if not, we use the global precomputed
table with the description of the lengths of the areas of the ui or the vi nodes. This takes
O(1) time. Once we know the area where the answer lies, we use the succinct SB-tree of the
corresponding node v′ (which we remind it is marked) to find the position of the predecessor
in its Pv′ array. Node v′ is found by first computing its parent v′′ with level ancestor queries
from u′ (found as in Section 3) and then v′ is the child of v′′ not in π.

Once we have that the predecessor of p in v′ is Pv′ [o′], the final challenge is to map that
position in v′ to the corresponding position in v. We will reuse the encoding of 4κ colors
described in Section 3. Note that, in the string of 2|π|κ colors associated with the path π,
we have sufficient information to determine which of the points in v are inherited in v′: if
the color of the point is g or g′, we track g′ downwards in π until it does not appear in some
node v′′, then the point is inherited in the sibling v′ of v′′ not in π. Note that all the points
of v that are inherited in v′ are contiguous in Pv.

In addition to the color information cv, we store associated with v a sequence of numbers
nv[1..2κ], so that nv[i] is the rank of the ith point of v among the points stored in v′, where
v′ is the first node leaving π that inherits the ith point of v. With the information of cv and
nv, and given the predecessor of a point in Pv′ , we have sufficient information to determine
the predecessor of the point in Pv: only some of the points of Pv′ are inherited from Pv.

The set of all cv and nv arrays in π add up to O(|π|κ lg κ) bits, and since |π| = O(t`/ lg2 t`),
t` = O(lgn), and κ = O(lg lgn), this is O(lgn lg lg lgn/ lg lgn) = o(lgn). Thus a global
precomputed table of o(n) bits can precompute all the process of determining the predecessor
in any v given that the answer is at any position in any descendant v′.

Predecessors on extents

Once again, Pv refers to the extent of v, not only to its cell, whereas we support predecessors
only on the points of the cell. With a couple of comparisons we determine whether the
predecessor query must be run on the cell of v or on the cell of a neighboring node.

FSTTCS 2014

300 Asymptotically Optimal Encodings for Range Selection

5 Wrapping Up

We can now describe a structure that, given a value κ, uses O(n lg κ) bits and answers a
query select(i, j, k) for any k ≤ κ in time O(1 + lg κ/ lg lgn), as follows:
1. We find the maximal interval [l, r] such that i ≤ xl + 1 ≤ xr ≤ j, using rank/select on a

bit-vector that marks the split points xs [11].
2. If the interval is empty, then A[i..j] is contained in a leaf of TC , which covers O(κ)

consecutive values of A. Then the query can be directly run on plain range selection
structures [4] associated with each leaf (these structures add up to O(n lg κ) bits).

3. Otherwise, we find the highest node v ∈ TC containing [xl + 1, xr], as well as the other
two neighbor nodes that span the extent of v, all in constant time [11].

4. Using the structures of Section 4, we find the predecessor Pv[r] of j, and the successor
Pv[l] of i (the successor needs structures analogous to the predecessor), in time O(1 +
lg κ/ lg lgn).

5. We use the range selection structure [4] associated with Pv to run the query o =
select(l, r, k). The time is O(1 + lgw κ).

6. We use the structures of Section 3 to compute the final answer Pv[o], in O(1) time, adding
to it the starting offset of node v.

In order to reduce the time to O(1 + lg k/ lg lgn), we build our data structures for values
κt = 22t , for t = 0, 1, . . . , τ , where τ is such that 22τ−1

< κ ≤ 22τ . The space for those
structures is O(n)

∑τ
t=0 lg κt = O(n)

∑τ
t=0 2t = O(n 2τ) = O(n lg κ). A query select(i, j, k)

is run on the structure for κt such that κt−1 < k ≤ κt, that is, 2t−1 < lg k ≤ 2t,4 and thus
its query time is O(1 + lg κt/ lg lgn) = O(1 + 2t/ lg lgn) = O(1 + lg k/ lg lgn). This proves
Theorem 1.

Answering the query top(i, j, k)

We proceed as for query select(i, j, k) until we find the kth largest element in Av[l..r], let it be
Av[o]. Now we must find all the elements Av[s] in Av[l..r] where Av[s] ≥ Av[o]. With an RMQ
structure over Av we can do this using Muthukrishnan’s algorithm [15]: find the maximum
in Av[l..r], let it be Av[m1], then continue recursively with Av[l..m1 − 1] and Av[m1 + 1..r]
stoping the recursion when the maximum found at Av[m] satisfies Av[m] < Av[o]. Recall
that Av is a permutation on O(κ) symbols and thus we can afford storing it directly. Finally,
when we have the positions m1, . . . ,mk of the top-k elements, we return Pv[m1], . . . , Pv[mk].
The overall time is O(lg k/ lg lgn+ k) = O(k). This proves Theorem 2.

Note that we deliver the top-k elements in unsorted order. On the other hand, after
O(1 + lg k/ lg lgn) time, each new result is delivered in O(1) time.

6 Conclusions

We have shown how to build an encoding data structure that uses asymptotically optimal
space of O(n lg κ) bits that answers κ-bounded rank range selection queries in time O(1 +
lg k/ lg lgn), and range top-k queries in O(k) time for any k ≤ κ. It would be interesting to
obtain exactly optimal space (to within lower-order terms), but the precise lower bound is
unknown even for k = 2 [7]. It would also be interesting to obtain optimal time bounds for
the general case w = Ω(lgn).

4 The search for the right t can be done in constant time by computing lg lg k and consulting a small
precomputed table of lg lg K ≤ lg lg n entries.

G. Navarro, R. Raman, and S. R. Satti 301

References
1 D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone minimal perfect hashing:

searching a sorted table with o(1) accesses. In Proc. 20th SODA, pages 785–794, 2009.
2 T. Bell, J. Cleary, and I. Witten. Text compression. Prentice Hall, 1990.
3 G. S. Brodal, B. Gfeller, A.G. Jørgensen, and P. Sanders. Towards optimal range medians.

Theor. Comp. Sci., 412(24):2588–2601, 2011.
4 G. S. Brodal and A.G. Jørgensen. Data structures for range median queries. In Proc. 20th

ISAAC, LNCS 5878, pages 822–831, 2009.
5 T. Chan and B.T. Wilkinson. Adaptive and approximate orthogonal range counting. In

Proc. 24th SODA, pages 241–251, 2013.
6 D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996.
7 P. Davoodi, G. Navarro, R. Raman, and S. Srinivasa Rao. Encoding range minima and

range top-2 queries. Philosphical Transactions of the Royal Society A, 372:20130131, 2014.
8 P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of

sequences and full-text indexes. ACM Trans. Alg., 3(2):article 20, 2007.
9 J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum queries

on static arrays. SIAM J. Comp., 40(2):465–492, 2011.
10 A. Golynski, I. Munro, and S. Rao. Rank/select operations on large alphabets: a tool for

text indexing. In Proc. 17th SODA, pages 368–373, 2006.
11 R. Grossi, J. Iacono, G. Navarro, R. Raman, and S. Srinivasa Rao. Encodings for range

selection and top-k queries. In Proc. 21st ESA, LNCS 8125, pages 553–564, 2013.
12 R. Grossi, A. Orlandi, R. Raman, and S. Srinivasa Rao. More haste, less waste: Lowering

the redundancy in fully indexable dictionaries. In Proc. 26th STACS, pages 517–528, 2009.
13 A.G. Jørgensen and K.G. Larsen. Range selection and median: Tight cell probe lower

bounds and adaptive data structures. In Proc. 22nd SODA, pages 805–813, 2011.
14 I. Munro. Tables. In Proc. 16th FSTTCS, LNCS 1180, pages 37–42, 1996.
15 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc 13th

SODA, pages 657–666, 2002.
16 K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proc. 21st SODA, pages

134–149, 2010.
17 B.T. Wilkinson. Personal Communication, 2014.

FSTTCS 2014

Output-Sensitive Pattern Extraction in Sequences
Roberto Grossi1, Giulia Menconi1, Nadia Pisanti1, Roberto Trani1,
and Søren Vind∗2

1 Università di Pisa, Dipartimento di Informatica
grossi@di.unipi.it, menconigiulia@gmail.com, pisanti@di.unipi.it,
tranir@cli.di.unipi.it

2 Technical University of Denmark, DTU Compute
sovi@dtu.dk

Abstract
Genomic Analysis, Plagiarism Detection, Data Mining, Intrusion Detection, Spam Fighting and
Time Series Analysis are just some examples of applications where extraction of recurring patterns
in sequences of objects is one of the main computational challenges. Several notions of patterns
exist, and many share the common idea of strictly specifying some parts of the pattern and
to don’t care about the remaining parts. Since the number of patterns can be exponential in
the length of the sequences, pattern extraction focuses on statistically relevant patterns, where
any attempt to further refine or extend them causes a loss of significant information (where the
number of occurrences changes). Output-sensitive algorithms have been proposed to enumerate
and list these patterns, taking polynomial time O(nc) per pattern for constant c > 1, which is
impractical for massive sequences of very large length n.

We address the problem of extracting maximal patterns with at most k don’t care symbols
and at least q occurrences. Our contribution is to give the first algorithm that attains a stronger
notion of output-sensitivity, borrowed from the analysis of data structures: the cost is proportional
to the actual number of occurrences of each pattern, which is at most n and practically much
smaller than n in real applications, thus avoiding the aforementioned cost of O(nc) per pattern.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases Pattern Extraction, Motif Detection, Pattern Discovery, Motif Trie

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.303

1 Introduction

In pattern extraction, the task is to extract the “most important” and frequently occurring
patterns from sequences of “objects” such as log files, time series, text documents, datasets
or DNA sequences. Each individual object can be as simple as a character from {A, C, G, T}
or as complex as a json record from a log file. What is of interest to us is the potentially
very large set of all possible different objects, which we call the alphabet Σ, and sequence S

built with n objects drawn from Σ.
We define the occurrence of a pattern in S as in pattern matching but its importance

depends on its statistical relevance, namely, if the number of occurrences is above a certain
threshold. However, pattern extraction is not to be confused with pattern matching. The
problems may be considered inverse of each other: the former gets an input sequence S from
the user, and extracts patterns P and their occurrences from S, where both are unknown

∗ Supported by a grant from the Danish National Advanced Technology Foundation.

© Roberto Grossi, Giulia Menconi, Nadia Pisanti, Roberto Trani, and Søren Vind;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 303–314

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.303
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

304 Output-Sensitive Pattern Extraction in Sequences

to the user; the latter gets S and a given pattern P from the user, and searches for P ’s
occurrences in S, and thus only the pattern occurrences are unknown to the user.

Many notions of patterns exist, reflecting the diverse applications of the problem [11, 4,
19, 21]. We study a natural variation allowing the special don’t care character ? in a pattern
to mean that the position inside the pattern occurrences in S can be ignored (so ? matches
any single character in S). For example, TA ? C ? ACA ? GTG is a pattern for DNA sequences.

A motif is a pattern of any length with at most k don’t cares occurring at least q times
in S. In this paper, we consider the problem of determining the maximal motifs, where any
attempt to extend them or replace their ?’s with symbols from Σ causes a loss of significant
information (where the number of occurrences in S changes). We denote the family of all
motifs by Mqk, the set of maximal motifsM⊆Mqk (dropping the subscripts inM) and let
occ(m) denote the number of occurrences of a motif m inside S. It is well known that Mqk

can be exponentially larger thanM [16].

Our Results. We show how to efficiently build an index that we call a motif trie which is a
trie that contains all prefixes, suffixes and occurrences ofM, and we show how to extract
M from it. The motif trie is built in level-wise, using an oracle Generate(u) that reveals
the children of a node u efficiently using properties of the motif alphabet and a bijection
between new children of u and intervals in the ordered sequence of occurrences of u. We
are able to bound the resulting running time with a strong notion of output-sensitive cost,
borrowed from the analysis of data structures, where the cost is proportional to the actual
number occ(m) of occurrences of each maximal motif m.

I Theorem 1. Given a sequence S of n objects over an alphabet Σ, and two integers q > 1
and k ≥ 0, there is an algorithm for extracting the maximal motifs M ⊆ Mqk and their
occurrences from S in O

(
n(k + log Σ) + (k + 1)3 ×

∑
m∈M occ(m)

)
time.

Our result may be interesting for several reasons. First, observe that this is an optimal
listing bound when the maximal number of don’t cares is k = O(1), which is true in many
practical applications. The resulting bound is O(n log Σ +

∑
m∈M occ(m)) time, where the

first additive term accounts for building the motif trie and the second term for discovering
and reporting all the occurrences of each maximal motif.

Second, our bound provides a strong notion of output-sensitivity since it depends on
how many times each maximal motif occurs in S. In the literature for enumeration, an
output-sensitive cost traditionally means that there is polynomial cost of O(nc) per pattern,
for a constant c > 1. This is infeasible in the context of big data, as n can be very large,
whereas our cost of occ(m) ≤ n compares favorably with O(nc) per motif m, and occ(m)
can be actually much smaller than n in practice. This has also implications in what we
call “the CTRL-C argument,” which ensures that we can safely stop the computation for a
specific sequence S if it is taking too much time1. Indeed, if much time is spent with our
solution, too many results to be really useful may have been produced. Thus, one may stop
the computation and refine the query (change q and k) to get better results. On the contrary,
a non-output-sensitive algorithm may use long time without producing any output: It does
not indicate if it may be beneficial to interrupt and modify the query.

Third, our analysis improves significantly over the brute-force bound: Mqk contains
pattern candidates of lengths p from 1 to n with up to min{k, p} don’t cares, and so has size

1 Such an algorithm is also called an anytime algorithm in the literature.

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 305

∑
p |Σ|p × (

∑min{k,p}
i=1

(
p
i

)
) = O(|Σ|nnk). Each candidate can be checked in O(nk) time (e. g.

string matching with k mismatches), or O(k) time if using a data structure such as the suffix
tree [19]. In our analysis we are able to remove both of the nasty exponential dependencies
on |Σ| and n in O(|Σ|nnk). In the current scenario where implementations are fast in practice
but skip worst-case analysis, or state the latter in pessimistic fashion equivalent to the
brute-force bound, our analysis could explain why several previous algorithms are fast in
practice. (We have implemented a variation of our algorithm that is very fast in practice.)

Related Work. Although the literature on pattern extraction is vast and spans many
different fields of applications with various notation, terminology and variations, we could
not find time bounds explicitly stated obeying our stronger notion of output-sensitivity,
even for pattern classes different from ours. Output-sensitive solutions with a polynomial
cost per pattern have been previously devised for slightly different notions of patterns. For
example, Parida et al. [15] describe an enumeration algorithm with O(n2) time per maximal
motif plus a bootstrap cost of O(n5 log n) time. 2 Arimura and Uno obtain a solution with
O(n3) delay per maximal motif where there is no limitations on the number of don’t cares
[4]. Similarly, the MadMX algorithm [11] reports dense motifs, where the ratio of don’t
cares and normal characters must exceed some threshold, in time O(n3) per maximal dense
motif. Our stronger notion of output-sensitivity is borrowed from the design and analysis
of data structures, where it is widely employed. For example, searching a pattern P in S

using the suffix tree [14] has cost proportional to P ’s length and its number of occurrences.
A one-dimensional query in a sorted array reports all the wanted keys belonging to a range
in time proportional to their number plus a logarithmic cost. Therefore it seemed natural to
us to extend this notion to enumeration algorithms also.

Applications. Although the pattern extraction problem has found immediate applications in
stringology and biological sequences, it is highly multidisciplinary and spans a vast number of
applications in different areas. This situation is similar to the one for the edit distance problem
and dynamic programming. We here give a short survey of some significant applications, but
others are no doubt left out due to the difference in terminology used (see [1] for further
references). In computational biology, motif discovery in biological sequences identifies areas
of interest[19, 21, 11, 1]. Computer security researches use patterns in log files to perform
intrusion detection and find attack signatures based on their frequencies [9], while commercial
anti-spam filtering systems use pattern extraction to detect and block SPAM [18]. In the
data mining community pattern extraction is used extensively [13] as a core method in web
page content extraction [7] and time series analysis [17, 20]. In plagiarism detection finding
recurring patterns across a (large) number of documents is a core primitive to detect if
significant parts of documents are plagiarized [6] or duplicated [5, 8]. And finally, in data
compression extraction of the common patterns enables a compression scheme that competes
in efficiency with well-established compression schemes [3].

As the motif trie is an index, we believe that it may be of independent interest for storing
similar patterns across similar strings. Our result easily extends to real-life applications
requiring a solution with two thresholds for motifs, namely, on the number of occurrences in
a sequence and across a minimum number of sequences.

2 The set intersection problem (SIP) in appendix A of [15] requires polynomial time O(n2): The recursion
tree of depth ≤ n can have unary nodes, and each recursive call requires O(n) to check if the current
subset has been already generated.

FSTTCS 2014

306 Output-Sensitive Pattern Extraction in Sequences

String TACTGACACTGCCGA

Quorum q = 2
Don’t cares k = 1

(a) Input and parameters for example.

Maximal Motif Occurrence List
A 2, 6, 8, 15
AC 2, 6, 8

ACTG?C 2, 8
C 3, 7, 9, 12, 13
G 5, 11, 14
GA 5, 14
G?C 5, 11
T 1, 4, 10

T?C 1, 10
(b) Output: Maximal motifs found (and their occur-
rence list) for the given input.

Figure 1 Example 1: Maximal Motifs found in string.

Reading Guide. Our solution has two natural parts. In Section 3 we define the motif trie,
which is an index storing all maximal motifs and their prefixes, suffixes and occurrences. We
show how to report only the maximal motifs in time linear in the size of the trie. That is, it
is easy to extract the maximal motifs from the motif trie – the difficulty is to build the motif
trie without knowing the motifs in advance. In Section 4 and 5 we give an efficient algorithm
for constructing the motif trie and bound its construction time by the number of occurrences
of the maximal motifs, thereby obtaining an output-sensitive algorithm.

2 Preliminaries

Strings. We let Σ be the alphabet of the input string S ∈ Σ∗ and n = |S| be its length. For
1 ≤ i ≤ j ≤ n, S[i, j] is the substring of S between index i and j, both included. S[i, j] is the
empty string ε if i > j, and S[i] = S[i, i] is a single character. Letting 1 ≤ i ≤ n, a prefix or
suffix of S is S[1, i] or S[i, n], respectively. The longest common prefix lcp(x, y) is the longest
string such that x[1, | lcp(x, y)|] = y[1, | lcp(x, y)|] for any two strings x, y ∈ Σ∗.

Tries. A trie T over an alphabet Π is a rooted, labeled tree, where each edge (u, v) is labeled
with a symbol from Π. All edges to children of node u ∈ T must be labeled with distinct
symbols from Π. We may consider node u ∈ T as a string generated over Π by spelling out
characters from the root on the path towards u. We will use u to refer to both the node and
the string it encodes, and |u| to denote its string length. A property of the trie T is that for
any string u ∈ T , it also stores all prefixes of u. A compacted trie is obtained by compacting
chains of unary nodes in a trie, so the edges are labeled with substrings: the suffix tree for a
string is special compacted trie that is built on all suffixes of the string [14].

Motifs. A motif m ∈ Σ (Σ ∪ {?})∗Σ consist of symbols from Σ and don’t care characters
? 6∈ Σ. We let the length |m| denote the number of symbols from Σ∪{?} in m, and let dc(m)
denote the number of ? characters in m. Motif m occurs at position p in S iff m[i] = S[p+i−1]
or m[i] = ? for all 1 ≤ i ≤ |m|. The number of occurrences of m in S is denoted occ(m).
Note that appending ? to either end of a motif m does not change occ(m), so we assume
that motifs starts and ends with symbols from Σ. A solid block is a maximal (possibly empty
ε) substring from Σ∗ inside m.

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 307

We say that a motif m can be extended by adding don’t cares and characters from Σ to
either end of m. Similarly, a motif m can be specialized by replacing a don’t care ? in m with
a symbol c ∈ Σ. An example is shown in Figure 1.

Maximal Motifs. Given an integer quorum q > 1 and a maximum number of don’t cares
k ≥ 0, we define a family of motifs Mqk containing motifs m that have a limited number
of don’t cares dc(m) ≤ k, and occurs frequently occ(m) ≥ q. A maximal motif m ∈ Mqk

cannot be extended or specialized into another motif m′ ∈Mqk such that occ(m′) = occ(m).
Note that extending a maximal motif m into motif m′′ 6∈Mqk may maintain the occurrences
(but have more than k don’t cares). We letM⊆Mqk denote the set of maximal motifs.

Motifs m ∈Mqk that are left-maximal or right-maximal cannot be specialized or extended
on the left or right without decreasing the number of occurrences, respectively. They may,
however, be prefix or suffix of another (possibly maximal) m′ ∈Mqk, respectively.

I Fact 1. If motif m ∈Mqk is right-maximal then it is a suffix of a maximal motif.

3 Motif Tries and Pattern Extraction

This section introduces the motif trie. This trie is not used for searching but its properties are
exploited to orchestrate the search for maximal motifs inM to obtain a strong output-sensitive
cost. Due to space constraints, all proofs have been omitted in the present version.

3.1 Efficient Representation of Motifs
We first give a few simple observations that are key to our algorithms. Consider a suffix
tree built on S over the alphabet Σ, which can be done in O(n log |Σ|) time. It is shown in
[21, 10] that when a motif m is maximal, its solid blocks correspond to nodes in the suffix
tree for S, matching their substrings from the root3. For this reason, we introduce a new
alphabet, the solid block alphabet Π of size at most 2n, consisting of the strings stored in all
the suffix tree nodes.

We can write a maximal motif m ∈Mqk as an alternating sequence of ≤ k + 1 solid blocks
and ≤ k don’t cares, where the first and last solid block must be different from ε. Thus we
represent m as a sequence of ≤ k + 1 strings from Π since the don’t cares are implicit. By
traversing the suffix tree nodes in preorder we assign integers to the strings in Π, allowing
us to assume that Π ⊆ [1, . . . , 2n], and so each motif m ∈Mqk is actually represented as a
sequence of ≤ k + 1 integers from 1 to |Π| = O(n). Note that the order on the integers in Π
shares the following grouping property with the strings over Σ.

I Lemma 2. Let A be an array storing the sorted alphabet Π. For any string x ∈ Σ∗, the
solid blocks represented in Π and sharing x as a common prefix, if any, are grouped together
in A in a contiguous segment A[i, j] for some 1 ≤ i ≤ j ≤ |Π|.

When it is clear from its context, we will use the shorthand x ∈ Π to mean equivalently a
string x represented in Π or the integer x in Π that represents a string stored in a suffix tree
node. We observe that the set of strings represented in Π is closed under the longest common
prefix operation: for any x, y ∈ Π, lcp(x, y) ∈ Π and it may be computed in constant time
after augmenting the suffix tree for S with a lowest common ancestor data structure [12].

Summing up, the above relabeling from Σ to Π only requires the string S ∈ Σ∗ and its
suffix tree augmented with lowest common ancestor information.

3 The proofs in [21, 10] can be easily extended to our notion of maximality.

FSTTCS 2014

308 Output-Sensitive Pattern Extraction in Sequences

A AC AC
TG

C G GA T

C C C

Figure 2 Motif trie for Example 1. The black nodes are maximal motifs (with their occurrence
lists shown in Fig. 1(b)).

3.2 Motif Tries
We now exploit the machinery on alphabets described in Section 3.1. For the input sequence S,
consider the family Mqk defined in Section 2, where each m is seen as a string m = m[1, `] of
` ≤ k + 1 integers from 1 to |Π|. Although each m can contain O(n) symbols from Σ, we get
a benefit from treating m as a short string over Π: unless specified otherwise, the prefixes and
suffixes of m are respectively m[1, i] and m[i, `] for 1 ≤ i ≤ `, where ` = dc(m) + 1 ≤ k + 1.
This helps with the following definition as it does not depend on the O(n) symbols from Σ
in a maximal motif m but it solely depends on its ≤ k + 1 length over Π.

I Definition 3 (Motif Trie). A motif trie T is a trie over alphabet Π which stores all maximal
motifsM⊆Mqk and their suffixes.

As a consequence of being a trie, T implicitly stores all prefixes of all the maximal motifs
and edges in T are labeled using characters from Π. Hence, all sub-motifs of the maximal
motifs are stored in T , and the motif trie can be essentially seen as a generalized suffix trie4
storingM over the alphabet Π. From the definition, T has O((k + 1) · |M|) leaves, the total
number of nodes is O(|T |) = O((k + 1)2 · |M|), and the height is at most k + 1.

We may consider a node u in T as a string generated over Π by spelling out the ≤ k + 1
integers from the root on the path towards u. To decode the motif stored in u, we retrieve
these integers in Π and, using the suffix tree of S, we obtain the corresponding solid blocks
over Σ and insert a don’t care symbol between every pair of consecutive solid blocks. When it
is clear from the context, we will use u to refer to (1) the node u or (2) the string of integers
from Π stored in u, or (3) the corresponding motif from (Σ ∪ {?})∗. We reserve the notation
|u| to denote the length of motif u as the number of characters from Σ ∪ {?}. Each node
u ∈ T stores a list Lu of occurrences of motif u in S, i. e. u occurs at p in S for p ∈ Lu.

Since child edges for u ∈ T are labeled with solid blocks, the child edge labels may be
prefixes of each other, and one of the labels may be the empty string ε (which corresponds
to having two neighboring don’t cares in the decoded motif).

3.3 Reporting Maximal Motifs using Motif Tries
Suppose we are given a motif trie T but we do not know which nodes of T store the
maximal motifs in S. We can identify and report the maximal motifs in T in O(|T |) =
O((k + 1)2 · |M|) = O((k + 1)2 ·

∑
m∈M occ(m)) time as follows.

4 As it will be clear later, a compacted motif trie does not give any advantage in terms of the output-
sensitive bound compared to the motif trie.

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 309

We first identify the set R of nodes u ∈ T that are right-maximal motifs. A characterization
of right-maximal motifs in T is relatively simple: we choose a node u ∈ T if (i) its parent
edge label is not ε, and (ii) u has no descendant v with a non-empty parent edge label such
that |Lu| = |Lv|. By performing a bottom-up traversal of nodes in T , computing for each
node the length of the longest list of occurrences for a node in its subtree with a non-empty
edge label, it is easy to find R in time O(|T |) and by Fact 1, |R| = O((k + 1) · |M|).

Next we perform a radix sort on the set of pairs 〈|Lu|, reverse(u)〉, where u ∈ R and
reverse(u) denotes the reverse of the string u, to select the motifs that are also left-maximal
(and thus are maximal). In this way, the suffixes of the maximal motifs become prefixes
of the reversed maximal motifs. By Lemma 2, those motifs sharing common prefixes are
grouped together consecutively. However, there is a caveat, as one maximal motif m′ could
be a suffix of another maximal motif m and we do not want to drop m′: in that case, we
have that |Lm| 6= |Lm′ | by the definition of maximality. Hence, after sorting, we consider
consecutive pairs 〈|Lu1 |, reverse(u1)〉 and 〈|Lu2 |, reverse(u2)〉 in the order, and eliminate u1
iff |Lu1 | = |Lu2 | and u1 is a suffix of u2 in time O(k + 1) per pair (i. e. prefix under reverse).
The remaining motifs are maximal.

4 Building Motif Tries

The goal of this section is to show how to efficiently build the motif trie T discussed in
Section 3.2. Suppose without loss of generality that enough new symbols are prepended and
appended to the sequence S to avoid border cases. We want to store the maximal motifs of S

in T as strings of length ≤ k + 1 over Π. Some difficulties arise as we do not know in advance
which are the maximal motifs. Actually, we plan to find them during the output-sensitive
construction of T , which means that we would like to obtain a construction bound close to
the term

∑
m∈Mocc(m) stated in Theorem 1.

We proceed in top-down and level-wise fashion by employing an oracle that is invoked
on each node u on the last level of the partially built trie, and which reveals the future
children of u. The oracle is executed many times to generate T level-wise starting from its
root u with Lu = {1, . . . , n}, and stopping at level k + 1 or earlier for each root-to-node path.
Interestingly, this sounds like the wrong way to do anything efficiently, e. g. it is a slow way
to build a suffix tree, however the oracle allows us to amortize the total cost to construct the
trie. In particular, we can bound the total cost by the total number of occurrences of the
maximal motifs stored in the motif trie.

The oracle is implemented by the Generate(u) procedure that generates the children
u1, . . . , ud of u. We ensure that (i) Generate(u) operates on the ≤ k + 1 length motifs from
Π, and (ii) Generate(u) avoids generating the motifs in Mqk \M that are not suffixes or
prefixes of maximal motifs. This is crucial, as otherwise we cannot guarantee output-sensitive
bounds because Mqk can be exponentially larger thanM.

In Section 5 we will show how to implement Generate(u) and prove:

I Lemma 4. Algorithm Generate(u) produces the children of u and can be implemented
in time O(sort(Lu) + (k + 1) · |Lu|+

∑d
i=1 |Lui

|).

By summing the cost to execute procedure Generate(u) for all nodes u ∈ T , we now
bound the construction time of T . Observe that when summing over T the formula stated in
Lemma 4, each node exists once in the first two terms and once in the third term, so the

FSTTCS 2014

310 Output-Sensitive Pattern Extraction in Sequences

latter can be ignored when summing over T (as it is dominated by the other terms)

∑
u∈T

(sort(Lu) + (k + 1) · |Lu|+
d∑

i=1
|Lui
|) = O

(∑
u∈T

(sort(Lu) + (k + 1) · |Lu|)
)

.

We bound

∑
u∈T

sort(Lu) = O

(
n(k + 1) +

∑
u∈T

|Lu|

)

by running a single cumulative radix sort for all the instances over the several nodes u at the
same level, allowing us to amortize the additive cost O(n) of the radix sorting among nodes
at the same level (and there are at most k + 1 such levels).

To bound
∑

u∈T |Lu|, we observe
∑

i |Lui | ≥ |Lu| (as trivially the ε extension always
maintains the number of occurrences of its parent). Consequently we can charge each leaf u

the cost of its ≤ k ancestors, so

∑
u∈T

|Lu| = O

(
(k + 1)×

∑
leaf u∈T

|Lu|

)
.

Finally, from Section 3.2 there cannot be more leaves than maximal motifs inM and their
suffixes, and the occurrence lists of maximal motifs dominate the size of the non-maximal
ones in T , which allows us to bound:

(k + 1)×
∑

leaf u∈T

|Lu| = O

(
(k + 1)2 ×

∑
m∈M

occ(m)
)

.

Adding the O(n log Σ) cost for the suffix tree and the LCA ancestor data structure of
Section 3.1, we obtain:

I Theorem 5. Given a sequence S of n objects over an alphabet Σ and two integers q > 1 and
k ≥ 0, a motif trie containing the maximal motifsM⊆Mqk and their occurrences occ(m)
in S for m ∈M can be built in time and space O

(
n(k + log Σ) + (k + 1)3×

∑
m∈M occ(m)

)
.

5 Implementing Generate(u)

We now show how to implement Generate(u) within the time bounds stated by Lemma 4.
The idea is as follows. We first obtain Eu, which is an array storing the occurrences in Lu,
sorted lexicographically according to the suffix associated with each occurrence. We can then
show that there is a bijection between the children of u and a set of maximal intervals in Eu.
By exploiting the properties of these intervals, we are able to find them efficiently through a
number of scans of Eu. The bijection implies that we thus efficiently obtain the new children
of u.

5.1 Nodes of the Motif Trie as Maximal Intervals
The key point in the efficient implementation of the oracle Generate(u) is to relate each
node u and its future children u1, . . . , ud labeled by solid blocks b1, . . . , bd, respectively, to
some suitable intervals that represent their occurrence lists Lu, Lu1 , . . . , Lud

. Though the
idea of using intervals for representing trie nodes is not new (e. g. in [2]), we use intervals to

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 311

expand the trie rather than merely representing its nodes. Not all intervals generate children
as not all solid blocks that extend u necessarily generate a child. Also, some of the solid
blocks b1, . . . , bd can be prefixes of each other and one of the intervals can be the empty
string ε. To select them carefully, we need some definitions and properties.

Extensions. For a position p ∈ Lu, we define its extension as the suffix ext(p, u) = S[p +
|u|+ 1, n] that starts at the position after p with an offset equivalent to skipping the prefix
matching u plus one symbol (for the don’t care). We may write ext(p), omitting the motif u

if it is clear from the context. We also say that the skipped characters skip(p) at position
p ∈ Lu are the d = dc(u) + 2 characters in S that specialize u into its occurrence p: formally,
skip(p) = 〈c0, c1, . . . , cd−1〉 where c0 = S[p− 1], cd−1 = S[p + |u|], and ci = S[p + ji − 1], for
1 ≤ i ≤ d− 2, where u[ji] = ? is the ith don’t care in u.

We denote by Eu the list Lu sorted using as keys the integers for ext(p) where p ∈ Lu.
(We recall from Section 3.1 that the suffixes are represented in the alphabet Π, and thus ext(p)
can be seen as an integer in Π.) By Lemma 2 consecutive positions in Eu share common
prefixes of their extensions. Lemma 6 below states that these prefixes are the candidates for
being correct edge labels for expanding u in the trie.

I Lemma 6. Let ui be a child of node u, bi be the label of edge (u, ui), and p ∈ Lu be an
occurrence position. If position p ∈ Lui

then bi is a prefix of ext(p, u).

Intervals. Lemma 6 states a necessary condition, so we have to filter the candidate prefixes
of the extensions. We use the following notion of intervals to facilitate this task. We call
I ⊆ Eu an interval of Eu if I contains consecutive entries of Eu. We write I = [i, j] if I covers
the range of indices from i to j in Eu. The longest common prefix of an interval is defined
as LCP(I) = minp1,p2∈I lcp(ext(p1), ext(p2)), which is a solid block in Π as discussed at the
end of Section 3.1. By Lemma 2, LCP(I) = lcp(ext(Eu[i]), ext(Eu[j])) can be computed in
O(1) time, where Eu[i] is the first and Eu[j] the last element in I = [i, j].

Maximal Intervals. An interval I ⊆ Eu is maximal if (1) there are at least q positions in I

(i. e. |I| ≥ q), (2) motif u cannot be specialized with the skipped characters in skip(p) where
p ∈ I, and (3) any other interval I ′ ⊆ Eu that strictly contains I has a shorter common
prefix (i. e. |LCP(I ′)| < |LCP(I)| for I ′ ⊃ I) 5. We denote by Iu the set of all maximal
intervals of Eu, and show that Iu form a tree covering of Eu. A similar lemma for intervals
over the LCP array of a suffix tree was given in [2].

I Lemma 7. Let I1, I2 ∈ Iu be two maximal intervals, where I1 6= I2 and |I1| ≤ |I2|. Then
either I1 is contained in I2 with a longer common prefix (i. e. I1 ⊂ I2 and |LCP(I1)| >

|LCP(I2)|) or the intervals are disjoint (i. e. I1 ∩ I2 = ∅).

The next lemma establishes a useful bijection between maximal intervals Iu and children
of u, motivating why we use intervals to expand the motif trie.

I Lemma 8. Let ui be a child of a node u. Then the occurrence list Lui
is a permutation

of a maximal interval I ⊆ Iu, and vice versa. The label on edge (u, ui) is the solid block
bi = LCP(I). No other children or maximal intervals have this property with ui or I.

5 In the full version we show that condition (2) is needed to avoid the enumeration of either motifs from
Mqk \M or duplicates from M.

FSTTCS 2014

312 Output-Sensitive Pattern Extraction in Sequences

5.2 Exploiting the Properties of Maximal Intervals
We now use the properties shown above to implement the oracle Generate(u), resulting in
Lemma 4. Observe that the task of Generate(u) can be equivalently seen by Lemma 8 as
the task of finding all maximal intervals Iu in Eu, where each interval I ∈ Iu corresponds
exactly to a distinct child ui of u. We describe three main steps, where the first takes
O(sort(Lu) + (k + 1) · |Lu|) time, and the others require O(

∑d
i=1 |Lui |) time. The interval

I = Eu corresponding to the solid block ε is trivial to find, so we focus on the rest. We
assume dc(u) < k, as otherwise we are already done with u.

Step 1. Sort occurrences and find maximal runs of skipped characters. We perform a
radix-sort of Lu using the extensions as keys, seen as integers from Π, thus obtaining array Eu.
To facilitate the task of checking condition (2) for the maximality of intervals, we compute for
each index i ∈ Eu the smallest index R(i) > i in Eu such that motif u cannot be specialized
with the skipped characters in skip(Eu[j]) where j ∈ [i, R(i)]. That is, there are at least two
different characters from Σ hidden by each of the skipped characters in the interval. (If R(i)
does not exist, we do not create [i, R(i)].) We define |PI | as the minimum number of different
characters covered by each skipped character in interval I, and note that |P[i,R(i)]| ≥ 2 by
definition.

To do so we first find, for each skipped character position, all indices where a maximal run
of equal characters end: R(i) is the maximum indices for the given i. This helps us because
for any index i inside such a block of equal characters, R(i) must be on the right of where the
block ends (otherwise [i, R(i)] would cover only one character in that block). Using this to
calculate R(i) for all indices i ∈ Eu from left to right, we find each answer in time O(k + 1),
and O((k + 1) · |Eu|) total time. We denote by R the set of intervals [i, R(i)] for i ∈ Eu.

I Lemma 9. For any maximal interval I ≡ [i, j] ∈ Iu, there exists R(i) ≤ j, and thus
[i, R(i)] is an initial portion of I.

Step 2. Find maximal intervals with handles. We want to find all maximal intervals
covering each position of Eu. To this end, we introduce handles. For each p ∈ Eu, its interval
domain D(p) is the set of intervals I ′ ⊂ Eu such that p ∈ I ′ and |PI′ | ≥ 2. We let `p be the
length of the longest shared solid block prefix bi over D(p), namely, `p = maxI′∈D(p) |LCP(I ′)|.
For a maximal interval I ⊆ Iu, if |LCP(I)| = `p for some p ∈ I we call p a handle on I.
Handles are relevant for the following reason.

I Lemma 10. For each maximal interval I ⊆ Iu, either there is a handle p ∈ Eu on I, or I

is fully covered by ≥ 2 adjacent maximal intervals with handles.

Let Hu denote the set of maximal intervals with handles. We now show how to find the
set Hu among the intervals of Eu. Observe that for each occurrence p ∈ Eu, we must find
the interval I ′ with the largest LCP(I ′) value among all intervals containing p.

From the definition, a handle on a maximal interval I ′ requires |PI′ | ≥ 2, which is exactly
what the intervals in R satisfy. As the LCP value can only drop when extending an interval,
these are the only candidates for maximal intervals with handles. Note that from Lemma
9, R contains a prefix for all of the (not expanded) maximal intervals because it has all
intervals from left to right obeying the conditions on length and skipped character conditions.
Furthermore, |R| = O(|Eu|), since only one R(i) is calculated for each starting position.
Among the intervals [i, R(i)] ∈ R, we will now show how to find those with maximum LCP
(i. e. where the LCP value equals `p) for all p.

We use an idea similar to that used in Section 3.3 to filter maximal motifs from the
right-maximal motifs. We sort the intervals I ′ = [i, R(i)] ∈ R in decreasing lexicographic

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 313

order according to the pairs 〈|LCP(I ′)|,−i〉 (i. e. decreasing LCP values but increasing indices
i), to obtain the sequence C. Thus, if considering the intervals left to right in C, we consider
intervals with larger LCP values from left to right in S before moving to smaller LCP values.

Consider an interval Ip = [i, R(i)] ∈ C. The idea is that we determine if Ip has already
been added to Hu by some previously processed handled maximal interval. If not, we expand
the interval (making it maximal) and add it to Hu, otherwise Ip is discarded. When C is
fully processed, all occurrences in Eu are covered by maximal intervals with handles.

First, since maximal intervals must be fully contained in each other (from Lemma 7), we
determine if Ip = [i, R(i)] ∈ C is already fully covered by previously expanded intervals (with
larger LCP values) – if not, we must expand Ip. Clearly, if either i or R(i) is not included
in any previous expansions, we must expand Ip. Otherwise, if both i and R(i) is part of a
single previous expansion Iq ∈ C, Ip should not be expanded. If i and R(i) is part of two
different expansions Iq and Ir we compare their extent values: Ip must be expanded if some
p ∈ Ip is not covered by either Iq or Ir. To enable these checks we mark each j ∈ Eu with
the longest processed interval that contains it (during the expansion procedure below).

Secondly, to expand Ip maximally to the left and right, we use pairwise lcp queries on
the border of the interval. Let a ∈ Ip be a border occurrence and b 6∈ Ip be its neighboring
occurrence in Eu (if any, otherwise it is trivial). When | lcp(a, b)| < |LCP(Ip)|, the interval
cannot be expanded to span b. When the expansion is completed, Ip is a maximal interval
and added to Hu. As previously stated, all elements in Ip are marked as being part of their
longest covering handled maximal interval by writing Ip on each of its occurrences.

Step 3. Find composite maximal intervals covered by maximal intervals with handles.
From Lemma 10, the only remaining type of intervals are composed of maximal intervals with
handles from the set Hu. A composite maximal interval must be the union of a sequence of
adjacent maximal intervals with handles. We find these as follows. We order Hu according to
the starting position and process it from left to right in a greedy fashion, letting Ih ∈ Hu be
one of the previously found maximal intervals with handles. Each interval Ih is responsible for
generating exactly the composite maximal intervals where the sequence of covering intervals
starts with Ih (and which contains a number of adjacent intervals on the right). Let I ′h ∈ Hu

be the interval adjacent on the right to Ih, and create the composed interval Ic = Ih + I ′h
(where + indicates the concatenation of consecutive intervals). To ensure that a composite
interval is new, we check as in Step 2 that there is no previously generated maximal interval
I with |LCP(I)| = |LCP(Ic)| such that Ic ⊆ I. This is correct since if there is such an
interval, it has already been fully expanded by a previous expansion (of composite intervals
or a handled interval). Furthermore, if there is such an interval, all intervals containing Ic

with shorter longest common prefixes have been taken care of, since from Lemma 7 maximal
intervals cannot straddle each other. If Ic is new, we know that we have a new maximal
composite interval and can continue expanding it with adjacent intervals. If the length of
the longest common prefix of the expanded interval changes, we must perform the previous
check again (and add the previously expanded composite interval to Iu).

By analyzing the algorithm described, one can prove the following two lemmas showing
that the motif trie is generated correctly. While Lemma 11 states that ε-extensions may
be generated (i. e. a sequence of ? symbols may be added to suffixes of maximal motifs), a
simple bottom-up cleanup traversal of T is enough to remove these.

I Lemma 11 (Soundness). Each motif stored in T is a prefix or an ε-extension of some
suffix of a maximal motif (encoded using alphabet Π and stored in T).

I Lemma 12 (Completeness). If m ∈M, T stores m and its suffixes.

FSTTCS 2014

314 Output-Sensitive Pattern Extraction in Sequences

References
1 Mohamed Ibrahim Abouelhoda and Moustafa Ghanem. String mining in bioinformatics.

In Scientific Data Mining and Knowledge Discovery, pages 207–247. Springer, 2010.
2 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. JDA, 2(1):53–86, 2004.
3 Alberto Apostolico, Matteo Comin, and Laxmi Parida. Bridging lossy and lossless com-

pression by motif pattern discovery. In General Theory of Information Transfer and Com-
binatorics, pages 793–813. Springer, 2006.

4 Hiroki Arimura and Takeaki Uno. An efficient polynomial space and polynomial delay
algorithm for enumeration of maximal motifs in a sequence. JCO, 2007.

5 Brenda S Baker. On finding duplication and near-duplication in large software systems. In
Proc. 2nd WCRE, pages 86–95, 1995.

6 Sergey Brin, James Davis, and Héctor García-Molina. Copy detection mechanisms for
digital documents. SIGMOD Rec., 24(2):398–409, May 1995.

7 Chia-Hui Chang, Chun-Nan Hsu, and Shao-Cheng Lui. Automatic information extraction
from semi-structured web pages by pattern discovery. Decis Support Syst, 34(1):129–147,
2003.

8 Xin Chen, Brent Francia, Ming Li, Brian Mckinnon, and Amit Seker. Shared information
and program plagiarism detection. IEEE Trans Inf Theory, 50(7):1545–1551, 2004.

9 Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(8):805–822, 1999.

10 Maria Federico and Nadia Pisanti. Suffix tree characterization of maximal motifs in biolo-
gical sequences. Theor. Comput. Sci., 410(43):4391–4401, 2009.

11 Roberto Grossi, Andrea Pietracaprina, Nadia Pisanti, Geppino Pucci, Eli Upfal, and Fa-
bio Vandin. MADMX: A strategy for maximal dense motif extraction. J. Comp. Biol.,
18(4):535–545, 2011.

12 D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
J. Comput., 13(2):338–355, 1984.

13 Nizar R. Mabroukeh and Christie I. Ezeife. A taxonomy of sequential pattern mining
algorithms. ACM CSUR, 43(1):3, 2010.

14 Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM, 23(2):262–272, April 1976.

15 L. Parida, I. Rigoutsos, and D.E. Platt. An output-sensitive flexible pattern discovery
algorithm. In Proc. 12th CPM, pages 131–142, 2001.

16 Laxmi Parida, Isidore Rigoutsos, Aris Floratos, Daniel E. Platt, and Yuan Gao. Pattern
discovery on character sets and real-valued data: linear bound on irredundant motifs and
an efficient polynomial time algorithm. In Proc. 11th SODA, pages 297–308, 2000.

17 Lukáš Pichl, Takuya Yamano, and Taisei Kaizoji. On the symbolic analysis of market
indicators with the dynamic programming approach. In Advances in Neural Networks-
ISNN, pages 432–441. Springer, 2006.

18 Isidore Rigoutsos and Tien Huynh. Chung-Kwei: a Pattern-discovery-based System for the
Automatic Identification of Unsolicited E-mail Messages. In CEAS, 2004.

19 Marie-France Sagot. Spelling approximate repeated or common motifs using a suffix tree.
In Proc. 3rd LATIN, pages 374–390. Springer, 1998.

20 Reza Sherkat and Davood Rafiei. Efficiently evaluating order preserving similarity queries
over historical market-basket data. In Proc. 22nd ICDE, pages 19–19, 2006.

21 Esko Ukkonen. Maximal and minimal representations of gapped and non-gapped motifs of
a string. Theor. Comput. Sci., 410(43):4341–4349, 2009.

Robust Proximity Search for Balls Using Sublinear
Space∗

Sariel Har-Peled1 and Nirman Kumar2

1 Department of Computer Science
University of Illinois
sariel@uiuc.edu

2 Department of Computer Science
University of Illinois
nkumar5@uiuc.edu

Abstract
Given a set of n disjoint balls b1, . . . , bn in IRd, we provide a data structure, of near linear
size, that can answer (1 ± ε)-approximate kth-nearest neighbor queries in O(logn + 1/εd) time,
where k and ε are provided at query time. If k and ε are provided in advance, we provide a
data structure to answer such queries, that requires (roughly) O(n/k) space; that is, the data
structure has sublinear space requirement if k is sufficiently large.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Approximate Nearest neighbors, algorithms, data structures

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.315

1 Introduction

The nearest neighbor problem is a fundamental problem in Computer Science [18, 1]. Here,
one is given a set of points P, and given a query point q one needs to output the nearest
point in P to q. There is a trivial O(n) algorithm for this problem. Typically the set of
data points is fixed, while different queries keep arriving. Thus, one can use preprocessing
to facilitate a faster query. There are several applications of nearest neighbor search in
computer science including pattern recognition, information retrieval, vector compression,
computational statistics, clustering, data mining and learning among many others, see
for instance the survey by Clarkson [10] for references. If one is interested in guaranteed
performance and near linear space, there is no known way to solve this problem efficiently
(i. e., logarithmic query time) for dimension d > 2, while using near linear space for the data
structure.

In light of the above, major effort has been devoted to develop approximation algorithms
for nearest neighbor search [6, 17, 10, 13]. In the (1 + ε)-approximate nearest neighbor
problem, one is additionally given an approximation parameter ε > 0 and one is required to
find a point u ∈ P such that d(q, u) ≤ (1 + ε)d(q,P). In d dimensional Euclidean space, one
can answer ANN queries in O(logn+ 1/εd−1) time using linear space [6, 12]. Unfortunately,
the constant hidden in the O notation is exponential in the dimension (and this is true for
all bounds mentioned in this paper), and specifically because of the 1/εd−1 in the query
time, this approach is only efficient in low dimensions. Interestingly, for this data structure,

∗ Work on this paper was partially support by NSF AF awards CCF-0915984 and CCF-1217462.

© Sariel Har-Peled and Nirman Kumar;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 315–326

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.315
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

316 Robust Proximity Search for Balls Using Sublinear Space

the approximation parameter ε need not be specified during the construction, and one
can provide it during the query. An alternative approach is to use Approximate Voronoi
Diagrams (AVD), introduced by Har-Peled [11], which is a partition of space into regions of
low total complexity, with a representative point for each region, that is an ANN for any
point in the region. In particular, Har-Peled showed that there is such a decomposition of
size O

(
(n/εd) log2 n

)
, see also [13]. This allows ANN queries to be answered in O(logn) time.

Arya and Malamatos [2] showed how to build AVDs of linear complexity (i. e., O(n/εd)).
Their construction uses WSPD (Well Separated Pairs Decomposition) [8]. Further trade-offs
between query time and space usage for AVDs were studied by Arya et al. [4].

A more general problem is the k-nearest neighbors problem where one is interested in
finding the k points in P nearest to the query point q. This is widely used in classification,
where the majority label is used to label the query point. A restricted version is to find only
the kth-nearest neighbor. This problem and its approximate version have been considered in
[3, 14].

Recently, the authors [14] showed that one can compute a (k, ε)-AVD that (1 + ε)-
approximates the distance to the kth nearest neighbor, and surprisingly, requires O(n/k)
space; that is, sublinear space if k is sufficiently large. For example, for the case k = Ω(

√
n),

which is of interest in practice, the space required is only O(
√
n). Such ANN is of interest

when one is worried that there is noise in the data, and thus one is interested in the distance
to the kth NN which is more robust and noise resistant. Alternatively, one can think about
such data structures as enabling one to summarize the data in a way that still facilitates
meaningful proximity queries.

In this paper we consider a generalization of the kth-nearest neighbor problem. Here, we
are given a set of n disjoint balls in IRd and we want to preprocess them, so that given a
query point we can find approximately the kth closest ball. The distance of a query point to
a ball is defined as the distance to its boundary if the point is outside the ball or 0 otherwise.
Clearly, this problem is a generalization of the kth-nearest neighbor problem by viewing
points as balls of radius 0. Algorithms for the kth-nearest neighbor for points, do not extend
in a straightforward manner to this problem because the distance function is no longer a
metric. Indeed, there can be two very far off points both very close to a single ball, and
thus the triangle inequality does not hold. The problem of finding the closest ball can also
be modeled as a problem of approximating the minimization diagram of a set of functions;
here, a function would correspond to the distance from one of the given balls. There has
been some recent work by the authors on this topic, see [15], where a fairly general class
of functions admits a near-linear sized data structure permitting a logarithmic time query
for the problem of approximating the minimization diagram. However, the problem that we
consider in this paper does not fall under the framework of [15]. The technical assumptions
of [15] mandate that the set of points which form the 0-sublevel set of a distance function,
i. e., the set of points at which the distance function is 0 is a single point (or an empty set).
This is not the case for the problem we consider here. Also, we are interested in the more
general kth-nearest neighbor problem, while [15] only considers the nearest-neighbor problem,
i. e., k = 1.

We first show how to preprocess the set of balls into a data structure requiring space
O(n), in O(n logn) time, so that given a query point q, a number 1 ≤ k ≤ n and ε > 0,
one can compute a (1± ε)-approximate kth closest ball in time O(logn+ ε−d). If both k
and ε are available during preprocessing, one can preprocess the balls into a (k, ε)-AVD,
using O(n

kεd log(1/ε)) space, so that given a query point q, a (k, ε)-ANN closest ball can be
computed, in O(log(n/k) + log(1/ε)) time.

S. Har-Peled and N. Kumar 317

Paper Organization. In Section 2, we define the problem, list some assumptions, and
introduce notations. In Section 3, we set up some basic data structures to answer approximate
range counting queries for balls. In Section 4, we present the data structure, query algorithm
and proof of correctness for our data structure which can compute (1 ± ε)-approximate
kth-nearest neighbors of a query point when k, ε are only provided during query time. In
Section 5 we present approximate quorum clustering, see [9, 14], for a set of disjoint balls.
Using this, in Section 6, we present the (k, ε)-AVD construction. We conclude in Section 7.

2 Problem definition and notation

We are given a set of disjoint1 balls B = {b1, . . . , bn}, where bi = b(ci, ri), for i = 1, . . . , n.
Here b(c, r) ⊆ IRd denotes the (closed) ball with center c and radius r ≥ 0. Additionally, we
are given an approximation parameter ε ∈ (0, 1). For a point q ∈ IRd, the distance of q to a
ball b = b(c, r) is d(q, b) = max

(
‖q− c‖ − r, 0

)
.

I Observation 1. For two balls b1 ⊆ b2 ⊆ IRd, and any point q ∈ IRd, we have d(q, b1) ≥
d(q, b2).

The kth-nearest neighbor distance of q to B, denoted by dk(q,B), is the kth smallest
number in d(q, b1) , . . . , d(q, bn). Similarly, for a given set of points P, dk(q,P) denotes the
kth-nearest neighbor distance of q to P.

We aim to build a data structure to answer (1± ε)-approximate kth-nearest neighbor
(i. e., (k, ε)-ANN) queries, where for any query point q ∈ IRd one needs to output a ball b ∈ B
such that, (1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B). There are different variants depending
on whether ε and k are provided with the query or in advance.

We use cube to denote a set of the form [a1, a1 + `]× [a2, a2 + `]× . . .× [ad, ad + `] ⊆ IRd,
where a1, . . . , ad ∈ IR and ` ≥ 0 is the side length of the cube.

I Observation 2. For any set of balls B, the function dk(q,B) is a 1-Lipschitz function; that
is, for any two points u, v, we have that dk(u,B) ≤ dk(v,B) + ‖u− v‖.

I Assumption 3. We assume all the balls are contained inside the cube
[
1/2− δ, 1/2 + δ

]d
,

which can be ensured by translation and scaling (which preserves order of distances), where
δ = ε/4. As such, we can ignore queries outside the unit cube [0, 1]d, as any input ball is a
valid answer in this case.

For a real positive number x and a point p = (p1, . . . , pd) ∈ IRd, define Gx(p) to be the
grid point (bp1/xcx, . . . , bpd/xcx). The number x is the width or side length of the grid Gx.
The mapping Gx partitions IRd into cubes that are called grid cells.

I Definition 4. A cube is a canonical cube if it is contained inside the unit cube U = [0, 1]d,
it is a cell in a grid Gr, and r is a power of two (i. e., it might correspond to a node in a
quadtree having [0, 1]d as its root cell). We will refer to such a grid Gr as a canonical grid.
Note that all the cells corresponding to nodes of a compressed quadtree are canonical.

1 Our data structure and algorithm work for the more general case where the balls are interior disjoint,
where we define the interior of a “point ball”, i. e., a ball of radius 0, as the point itself. This is not the
usual topological definition.

FSTTCS 2014

318 Robust Proximity Search for Balls Using Sublinear Space

I Definition 5. Given a set b ⊆ IRd, and a parameter δ > 0, let G≈(b, δ) denote the set
of canonical grid cells of side length 2blog2 δdiam(b)/

√
dc, that intersect b, where diam(b) =

maxp,u∈b ‖p− u‖ denotes the diameter of b. Clearly, the diameter of any grid cell of G≈(b, δ),
is at most δdiam (b). Let G≈(b) = G≈(b, 1). It is easy to verify that |G≈(b)| = O(1). The set
G≈(b) is the grid approximation to b.

Let B be a family of balls in IRd. Given a set X ⊆ IRd, let

B(X) =
{
b ∈ B

∣∣∣ b ∩X 6= ∅}
denote the set of all balls in B that intersect X.

For two compact sets X,Y ⊆ IRd, X � Y if and only if diam(X) ≤ diam(Y). For a set
X and a set of balls B, let B�(X) =

{
b ∈ B

∣∣∣ b ∩X 6= ∅ and b � X}. Let cd denote the
maximum number of pairwise disjoint balls of radius at least r, that may intersect a given
ball of radius r in IRd. Clearly, we have |B�(b)| ≤ cd for any ball b. The proof of the following
lemma appears in the full version [16].

I Lemma 6. 2 ≤ cd ≤ 3d for all d.

I Definition 7. For a parameter δ ≥ 0, a function f : IR+ → IR+ is δ-monotonic, if for
every x ≥ 0, f(x/(1 + δ)) ≤ f(x).

3 Approximate range counting for balls

I Data-structure 8. For a given set of disjoint balls B = {b1, . . . , bn} in IRd, we build the
following data structure, that is useful in performing several of the tasks at hand.
(A) Store balls in a (compressed) quadtree. For i = 1, 2, . . . , n, let Gi = G≈(bi), and

let G =
⋃n
i=1 Gi denote the union of these cells. Let T be a compressed quadtree

decomposition of [0, 1]d, such that all the cells of G are cells of T . We preprocess T to
answer point location queries for the cells of G. This takes O(n logn) time, see [12].

(B) Compute list of “large” balls intersecting each cell. For each node u of T , there is
a list of balls registered with it. Formally, register a ball bi with all the cells of Gi.
Clearly, each ball is registered with O(1) cells, and it is easy to see that each cell has
O(1) balls registered with it, since the balls are disjoint.
Next, for a cell � in T we compute a list storing B�(�), and these balls are associated
with this cell. These lists are computed in a top-down manner. To this end, propagate
from a node u its list B�(�) (which we assume is already computed) down to its
children. For a node receiving such a list, it scans it, and keep only the balls that
intersect its cell (adding to this list the balls already registered with this cell). For a
node ν ∈ T , let Bν be this list.

(C) Build compressed quadtree on centers of balls. Let C be the set of centers of the
balls of B. Build, in O(n logn) time, a compressed quadtree TC storing C.

(D) ANN for centers of balls. Build a data structure D, for answering 2-approximate
k-nearest neighbor distances on C, the set of centers of the balls, see [14], where k and
ε are provided with the query. The data structure D, returns a point c ∈ C such that,
dk(q, C) ≤ d(q, c) ≤ 2dk(q, C).

(E) Answering approximate range searching for the centers of balls. Given a query ball
bq = b(q, x) and a parameter δ > 0, one can, using TC, report (approximately), in
O(logn + 1/δd) time, the points in bq ∩ C. Specifically, the query process computes
O(1/δd) sets of points, such that their union X, has the property that bq ∩ C ⊆ X ⊆

S. Har-Peled and N. Kumar 319

(1 + δ)bq ∩ C, where (1 + δ)bq is the scaling of bq by a factor of 1 + δ around its
center. Indeed, compute the set G≈

(
bq
)
, and then using cell queries in TC compute the

corresponding cells (this takes O(logn) time). Now, descend to the relevant level of the
quadtree to all the cells of the right size, that intersect bq. Clearly, the union of points
stored in their subtrees are the desired set. This takes overall O(logn+ 1/δd) time.
A similar data structure for approximate range searching is provided by Arya and
Mount [5], and our description above is provided for the sake of completeness.

Overall, it takes O(n logn) time to build this data structure.

We denote the collection of data structures above by DS8 and where necessary, specific
functionality it provides, say for finding the large balls intersecting a cell, by DS8 (2).

3.1 Approximate range counting among balls
We need the ability to answer approximate range counting queries on a set of disjoint balls.
Specifically, given a set of disjoint balls B, and a query ball b, the target is to compute the size
of the set b ∩ B =

{
b′ ∈ B

∣∣∣ b′ ∩ b 6= ∅}. To make this query computationally fast, we allow

an approximation. More precisely, for a ball b a set b̃ is a (1 + δ)-ball of b, if b ⊆ b̃ ⊆ (1 + δ)b,
where (1 + δ)b is the (1 + δ)-scaling of b around its center. The purpose here, given a query
ball b, is to compute the size of the set b̃ ∩ B for some (1 + δ)-ball b̃ of b.

The proofs of the following two lemmas appear in the full version [16].

I Lemma 9. Given a compressed quadtree T of size n, a convex set X, and a parameter
δ > 0, one can compute the set of nodes in T , that realizes G≈(X, δ) (see Defnition 5), in
O
(
logn+ 1/δd

)
time. Specifically, this outputs a set XN of nodes, of size O

(
1/δd

)
, such

that their cells intersect G≈(X, δ), and their parents cell diameter is larger than δdiam(X).
Note that the cells in XN might be significantly larger if they are leaves of T .

I Lemma 10. Let X be any convex set in IRd, and let δ > 0 be a parameter. Using DS8,
one can compute, in O

(
logn+ 1/δd

)
time, all the balls of B that intersect X, with diameter

≥ δdiam(X).

3.2 Answering a query
Given a query ball bq = b(q, x), and an approximation parameter δ > 0, our purpose is to
compute a number N , such that

∣∣∣B(b(q, x)
)∣∣∣ ≤ N ≤ ∣∣∣B(b(q, (1 + δ)x)

)∣∣∣.
The query algorithm works as follows:
(A) Using Lemma 10, compute a set X of all the balls that intersect bq and are of radius

≥ δx/4.
(B) Using DS8, compute O(1/δd) cells of TC that corresponds to G≈

(
bq(1 + δ/4), δ/4

)
. Let

N ′ be the total number of points in C stored in these nodes.
(C) The quantity N ′+ |X| is almost the desired quantity, except that we might be counting

some of the balls of X twice. To this end, let N ′′ be the number of balls in X with
centers in G≈

(
bq(1 + δ/4), δ/4

)
(D) Let N ← N ′ + |X| −N ′′. Return N .

We only sketch the proof, as the proof is straightforward. Indeed, the union of the
cells of G≈

(
bq(1 + δ/4), δ/4

)
contains b(q, x(1 + δ/4)) and is contained in b(q, (1 + δ)x).

All the balls with radius smaller than δx/4 and intersecting b(q, x) have their centers
in cells of G≈

(
bq(1 + δ/4), δ/4

)
, and their number is computed correctly. Similarly, the

FSTTCS 2014

320 Robust Proximity Search for Balls Using Sublinear Space

“large” balls are computed correctly. The last stage ensures we do not over-count by 1 each
large ball that also has its center in G≈

(
bq(1 + δ/4), δ/4

)
. It is also easy to check that

|B(b(q, x))| ≤ N ≤ |B(b(q, x(1 + δ)))|. The same result can be used for x/(1 + δ) to get
δ-monotonicity of N .

We now analyze the running time. Computing all the cells of G≈
(
bq(1 + δ/4), δ/4

)
takes

O(logn+ 1/δd) time. Computing the “large” balls takes O
(
logn+ 1/δd

)
time. Checking for

each large ball if it is already counted by the “small” balls takes O(1/δd) by using a grid.
We denote the above query algorithm by rangeCount(q, x, δ).

The above implies the following.

I Lemma 11. Given a set B of n disjoint balls in IRd, it can be preprocessed, in O(n logn)
time, into a data structure of size O(n), such that given a query ball b(q, x) and approximation
parameter δ > 0, the query algorithm rangeCount(q, x, δ) returns, in O(logn+ 1/δd) time,
a number N satisfying the following:
(A) N ≤ |B(b(q, (1 + δ)x))|,
(B) |B(b(q, x))| ≤ N , and
(C) for a query ball b(q, x) and δ, the number N is δ-monotonic as a function of x, see

Defnition 7.

4 Answering k-ANN queries among balls

4.1 Computing a constant factor approximation to dk(q,B)
The proof of the following lemma appears in the full version [16].

I Lemma 12. Let B be a set of disjoint balls in IRd, and consider a ball b = b(q, r) that
intersects at least k balls of B. Then, among the k nearest neighbors of q from B, there are
at least max(0, k − cd) balls of radius at most r. The centers of all these balls are in b(q, 2r).

I Corollary 13. Let γ = min(k, cd). Then, dk−γ(q, C) /2 ≤ dk(q,B).

The basic observation is that we only need a rough approximation to the right radius, as
using approximate range counting (i. e., Lemma 11), one can improve the approximation.

Let xi denote the distance of q to the ith closest center in C. Let dk = dk(q,B). Let i
be the minimum index, such that dk ≤ xi. Since dk ≤ xk, it must be that i ≤ k. There are
several possibilities:
(A) If i ≤ k − cd (i. e., dk ≤ xk−cd

) then, by Lemma 12, the ball b(q, 2dk) contains at least
k − cd centers. As such, dk < xk−cd

≤ 2dk, and xk−cd
is a good approximation to dk.

(B) If i > k − cd, and dk ≤ 4xi−1, then xi−1 is the desired approximation.
(C) If i > k − cd, and dk ≥ xi/4, then xi is the desired approximation.
(D) Otherwise, it must be that i > k − cd, and 4xi−1 < dk < xi/4. Let bj = b(cj , rj) be the

jth closest ball to q, for j = 1, . . . , k. It must be that bi, . . . , bk are much larger than
b(q, dk). But then, the balls bi, . . . , bk must intersect b(q, xi/2), and their radius is at
least xi/2. We can easily compute these big balls using DS8 (2), and the number of
centers of the small balls close to query, and then compute dk exactly.

We build DS8 in O(n logn) time.
First we introduce some notation. For x ≥ 0, let N(x) denote the number of balls

in B that intersect b(q, x); that is N(x) =
∣∣∣{b ∈ B ∣∣∣ b ∩ b(q, x) 6= ∅

}∣∣∣, and C(x) denote
the number of centers in b(q, x), i. e., C(x) = |C ∩ b(q, x)|. Also, let #(x) denote the 2-
approximation to the number of balls of B intersecting b(q, x), as computed by Lemma 11;
that is N(x) ≤ #(x) ≤ N(2x).

S. Har-Peled and N. Kumar 321

We now provide our algorithm to answer a query. We are given a query point q ∈ IRd

and a number k.
Using DS8, compute a 2-approximation for the smallest ball containing k− i centers of B,

for i = 0, . . . , γ, where γ = min(k, cd), and let rk−i be this radius. That is, for i = 0, . . . , γ, we
have C(rk−i/2) ≤ k − i ≤ C(rk−i). For i = 0, . . . , γ, compute Nk−i = #(rk−i) (Lemma 11).

Let α be the maximum index such that Nk−α ≥ k. Clearly, α is well defined as Nk ≥ k.
The algorithm is executed in the following steps.
(A) If α = γ we return 2rk−γ .
(B) If #(rk−α/4) < k, we return 2rk−α.
(C) Otherwise, compute all the balls of B that are of radius at least rk−α/4 and intersect the

ball b(q, rk−α/4), using DS8 (2). For each such ball b, compute the distance ζ = d(q, b)
of q to it. Return 2ζ for the minimum such number ζ such that #(ζ) ≥ k.

The proof of the following lemma appears in the full version [16].

I Lemma 14. Given a set of n disjoint balls B in IRd, one can preprocess them, in O(n logn)
time, into a data structure of size O(n), such that given a query point q ∈ IRd, and a number
k, one can compute, in O(logn) time, a number x such that, x/4 ≤ dk(q,B) ≤ 4x.

We now show how to refine the approximation in the following lemma, whose proof
appears in the full version [16].

I Lemma 15. Given a set B of n balls in IRd, it can be preprocessed, in O(n logn) time, into
a data structure of size O(n). Given a query point q, numbers k, x, and an approximation
parameter ε > 0, such that x/4 ≤ dk(q,B) ≤ 4x, one can find a ball b ∈ B such that,
(1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B), in O

(
logn+ 1/εd

)
time.

4.2 The result

I Theorem 16. Given a set of n disjoint balls B in IRd, one can preprocess them in time
O(n logn) into a data structure of size O(n), such that given a query point q ∈ IRd, a number
k with 1 ≤ k ≤ n and ε > 0, one can find in time O

(
logn+ ε−d

)
a ball b ∈ B, such that,

(1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

5 Quorum clustering

We are given a set B of n disjoint balls in IRd, and we describe how to compute quorum
clustering for them quickly.

Let ξ be some constant. Let B0 = ∅. For i = 1, . . . ,m, let Ri = B \ (
⋃i−1
j=0 Bj), and let

Λi = b(wi, xi) be any ball that satisfies,
(A) Λi contains min(k − cd, |Ri|) balls of Ri completely inside it,
(B) Λi intersects at least k balls of B, and
(C) the radius of Λi is at most ξ times the radius of the smallest ball satisfying the above

conditions.
Next, we remove any k − cd balls that are contained in Λi from Ri to get the set Ri+1. We
call the removed set of balls Bi. We repeat this process till all balls are extracted. Notice
that at each step i, we only require that the Λi intersects k balls of B (and not Ri), but that
it must contain k − cd balls from Ri. Also, the last quorum ball may contain fewer balls.
The balls Λ1, . . . ,Λm, are the resulting ξ-approximate quorum clustering.

FSTTCS 2014

322 Robust Proximity Search for Balls Using Sublinear Space

5.1 Computing an approximate quorum clustering
I Definition 17. For a set P of n points in IRd, and an integer `, with 1 ≤ ` ≤ n, let
ropt(P, `) denote the radius of the smallest ball which contains at least ` points from P, i. e.,
ropt(P, `) = minq∈IRd d`(q,P).

Similarly, for a set R of n balls in IRd, and an integer `, with 1 ≤ ` ≤ n, let Ropt(R, `)
denote the radius of the smallest ball which completely contains at least ` balls from R.

I Lemma 18 ([14]). Given a set P of n points in IRd and integer `, with 1 ≤ ` ≤ n, one
can compute, in O(n logn) time, a sequence of dn/`e balls, o1 = b(u1, ψ1), . . . , odn/`e =
b(udn/`e, ψdn/`e), such that, for all i, 1 ≤ i ≤ dn/`e, we have
(A) For every ball oi, there is an associated subset Pi of min(`, |Qi|) points of Qi = P \

(Pi ∪ . . . ∪ Pi−1), that it covers.
(B) The ball oi = b(ui, ψi) is a 2-approximation to the smallest ball covering min(`, |Qi|)

points in Qi; that is, ψi/2 ≤ ropt(Qi,min(`, |Qi|)) ≤ ψi.

The algorithm to construct an approximate quorum clustering is as follows. We use
the algorithm of Lemma 18 with the set of points P = C, and ` = k − cd to get a list of
m = dn/(k − cd)e balls o1 = b(u1, ψ1), . . . , om = b(um, ψm), satisfying the conditions of
Lemma 18. Next we use the algorithm of Theorem 16, to compute (k, ε)-ANN distances
from the centers u1, . . . , um, to the balls of B.

Thus, we get numbers γi satisfying, (1/2)dk(ui,B) ≤ γi ≤ (3/2)dk(ui,B). Let ζi =
max(2γi, 3ψi), for i = 1, . . . ,m. Sort ζ1, . . . , ζm (we assume for the sake of simplicity of
exposition that ζm, being the radius of the last cluster is the largest number). Suppose the
sorted order is the permutation π of {1, . . . ,m} (by assumption π(m) = m). We output the
balls Λi = b(uπ(i), ζπ(i)), for i = 1, . . . ,m, as the approximate quorum clustering.

5.2 Correctness
The following lemmas prove the correctness of our approximate quorum clustering algorithm.
Their proofs appear in the full version [16].

I Lemma 19. Let B = {b1, . . . , bn} be a set of n disjoint balls, where bi = b(ci, ri), for
i = 1, . . . , n. Let C = {c1, . . . , cn} be the set of centers of these balls. Let b = b(c, r) be any
ball that contains at least ` centers from C, for some 2 ≤ ` ≤ n. Then b(c, 3r) contains the `
balls that correspond to those centers.

I Lemma 20. Let B = {b1 = b(c1, r1), . . . , bn = b(cn, rn)} be a set of n disjoint balls in
IRd. Let C = {c1, . . . , cn} be the corresponding set of centers, and let ` be an integer with
2 ≤ ` ≤ n. Then, ropt(C, `) ≤ Ropt(B, `) ≤ 3ropt(C, `).

I Lemma 21. The balls Λ1, . . .Λm computed above are a 12-approximate quorum clustering
of B.

I Lemma 22. Given a set B of n disjoint balls in IRd, such that (k − cd)|n, and a number
k with 2cd < k ≤ n, in O(n logn) time, one can output a sequence of m = n/(k − cd) balls
Λ1, . . . ,Λm, such that
(A) For each ball Λi, there is an associated subset Bi of k−cd balls of Ri = B\(B1∪. . .∪Bi−1),

that it completely covers.
(B) The ball Λi intersects at least k balls from B.
(C) The radius of the ball Λi is at most 12 times that of the smallest ball covering k − cd

balls of Ri completely, and intersecting k balls of B.

S. Har-Peled and N. Kumar 323

Proof. The correctness was proved in Lemma 21. To see the time bound is also easy as the
computation time is dominated by the time in Lemma 18, which is O(n logn). J

6 Construction of the sublinear space data structure for (k, ε)-ANN

Here we show how to compute an approximate Voronoi diagram for approximating the
kth-nearest ball, that takes O(n/k) space. We assume k > 2cd without loss of generality,
and we let m = dn/(k − cd)e = O(n/k). Here k and ε are prespecified in advance.

6.1 Preliminaries
The following notation was introduced in [14]. A ball b of radius r in IRd, centered at a point
c, can be interpreted as a point in IRd+1, denoted by b′ = (c, r). For a regular point p ∈ IRd,
its corresponding image under this transformation is the mapped point p′ = (p, 0) ∈ IRd+1,
i. e., we view it as a ball of radius 0 and use the mapping defined on balls. Given point
u =(u1, . . . , ud) ∈ IRd we will denote its Euclidean norm by ‖u‖. We will consider a point
u =(u1, u2, . . . , ud+1) ∈ IRd+1 to be in the product metric of IRd × IR and endowed with the
product metric norm

‖u‖⊕ =
√

u2
1 + · · ·+ u2

d + |ud+1| .

It can be verified that the above defines a norm, and for any u ∈ IRd+1 we have ‖u‖ ≤
‖u‖⊕ ≤

√
2 ‖u‖.

6.2 Construction
The input is a set B of n disjoint balls in IRd, and parameters k and ε.

The construction of the data structure is similar to the construction of the kth-nearest
neighbor data structure from the authors’ paper [14]. We compute, using Lemma 22,
a ξ-approximate quorum clustering of B with m = n/(k − cd) = O(n/k) balls, Σ =
{Λ1 = b(w1, x1), . . . ,Λm = b(wm, xm)}, where ξ ≤ 12. The algorithm then continues as
follows:
(A) Compute an exponential grid around each quorum cluster. Specifically, let

I =
m⋃
i=1

dlog(32ξ/ε)e⋃
j=0

G≈
(

b(wi, 2jxi),
ε

ζ1

)
(6.1)

be the set of grid cells covering the quorum clusters and their immediate environ, where
ζ1 is a sufficiently large constant (say, ζ1 = 256ξ).

(B) Intuitively, I takes care of the region of space immediately next to a quorum cluster2.
For the other regions of space, we can apply a construction of an approximate Voronoi
diagram for the centers of the clusters (the details are somewhat more involved). To
this end, lift the quorum clusters into points in IRd+1, as follows

Σ′ = {Λ′1, . . . ,Λ′m} ,

2 That is, intuitively, if the query point falls into one of the grid cells of I, we can answer a query in
constant time.

FSTTCS 2014

324 Robust Proximity Search for Balls Using Sublinear Space

where Λ′i = (wi, xi) ∈ IRd+1, for i = 1, . . . ,m. Note that all points in Σ′ belong
to U ′ = [0, 1]d+1 by Assumption 3. Now build a (1 + ε/8)-AVD for Σ′ using the
algorithm of Arya and Malamatos [2], for distances specified by the ‖·‖⊕ norm. The
AVD construction provides a list of canonical cubes covering [0, 1]d+1 such that in the
smallest cube containing the query point, the associated point of Σ′, is a (1 + ε/8)-ANN
to the query point. (Note that these cubes are not necessarily disjoint. In particular,
the smallest cube containing the query point q is the one that determines the assigned
approximate nearest neighbor to q.)
Clip this collection of cubes to the hyperplane xd+1 = 0 (i. e., throw away cubes that do
not have a face on this hyperplane). For a cube � in this collection, denote by nn′(�),
the point of Σ′ assigned to it. Let S be this resulting set of canonical d-dimensional
cubes.

(C) Let W be the space decomposition resulting from overlaying the two collection of cubes,
i. e. I and S. Formally, we compute a compressed quadtree T that has all the canonical
cubes of I and S as nodes, and W is the resulting decomposition of space into cells.
One can overlay two compressed quadtrees representing the two sets in linear time
[7, 12]. Here, a cell associated with a leaf is a canonical cube, and a cell associated
with a compressed node is the set difference of two canonical cubes. Each node in this
compressed quadtree contains two pointers – to the smallest cube of I, and to the
smallest cube of S, that contains it. This information can be computed by doing a BFS
on the tree.
For each cell � ∈ W we store the following.
(I) An arbitrary representative point �rep ∈ �.
(II) The point nn′(�) ∈ Σ′ that is associated with the smallest cell of S that contains

this cell. We also store an arbitrary ball, b(�) ∈ B, that is one of the balls
completely inside the cluster specified by nn′(�) – we assume we stored such a
ball inside each quorum cluster, when it was computed.

(III) A number βk(�rep) that satisfies dk(�rep,B)≤βk(�rep)≤(1 + ε/4)dk(�rep,B), and
a ball nnk(�rep) ∈ B that realizes this distance. In order to compute βk(�rep) and
nnk(�rep) use the data structure of Section 4, see Theorem 16.

6.3 Answering a query
Given a query point q, compute the leaf cell (equivalently the smallest cell) in W that
contains q by performing a point-location query in the compressed quadtree T . Let � be
this cell. Let,

λ∗ = min
(
‖q′ − nn′(�)‖⊕ , βk(�rep) + ‖q−�rep‖

)
. (6.2)

If diam(�) ≤ (ε/8)λ∗ we return nnk(�rep) as the approximate kth-nearest neighbor, else we
return b(�).

6.4 Correctness
I Lemma 23. The number λ∗ = min

(
‖q′ − nn′(�)‖⊕ , βk(�rep) + ‖q−�rep‖

)
satisfies,

dk(q,B) ≤ λ∗.

Proof. This follows by the Lipschitz property, see Observation 2. J

The proofs of the following lemmas appear in the full version [16].

S. Har-Peled and N. Kumar 325

I Lemma 24. Let � ∈ W be any cell containing q. If diam(�) ≤ εdk(q,B) /4, then nnk(�rep)
is a valid (1± ε)-approximate kth-nearest neighbor of q.

I Lemma 25. For any point q ∈ IRd there is a quorum ball Λi = b(wi, xi) such that (A) Λi
intersects b(q, dk(q,B)), (B) xi ≤ 3ξdk(q,B), and (C) ‖q− wi‖ ≤ 4ξdk(q,B).

I Definition 26. For a given query point, any quorum cluster that satisfies the conditions of
Lemma 25 is defined to be an anchor cluster. By Lemma 25 an anchor cluster always exists.

The following lemma, whose proof appears in the full version [16], gives a condition under
which the output of the algorithm is correct.

I Lemma 27. Suppose that among the quorum cluster balls Λ1, . . . ,Λm, there is some ball
Λi = b(wi, xi) which satisfies that ‖q− wi‖ ≤ 8ξdk(q,B) and εdk(q,B) /4 ≤ xi ≤ 8ξdk(q,B)
then the output of the algorithm is correct.

The next lemma, whose proof appears in the full version [16], proves the correctness for
the general case.

I Lemma 28. The query algorithm always outputs a correct approximate answer, i. e., the
output ball b satisfies (1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

6.5 The result
The following theorem encapsulates our main result for this section. Its proof appears in the
full version [16].

I Theorem 29. Given a set B of n disjoint balls in IRd, a number k, with 1 ≤ k ≤ n,
and ε ∈ (0, 1), one can preprocess B, in O

(
n logn+ n

k
Cε logn+ n

k
C ′ε

)
time, where Cε =

O
(
ε−d log ε−1) and C ′ε = O

(
ε−2d log ε−1). The space used by the data structure is O(Cεn/k).

Given a query point q, this data structure outputs a ball b ∈ B in O
(

log n

kε

)
time, such that

(1− ε)dk(q,B) ≤ d(q, b) ≤ (1 + ε)dk(q,B).

Note that the space decomposition generated by Theorem 29 can be interpreted as a space
decomposition of complexity O(Cεn/k), where every cell has two input balls associated with
it, which are the candidates to be the desired (k, ε)-ANN. That is, Theorem 29 computes a
(k.ε)-AVD of the input balls.

7 Conclusions

In this paper, we presented a generalization of the usual (1 ± ε)-approximate kth-nearest
neighbor problem in IRd, where the input are balls of arbitrary radius, while the query is
a point. We first presented a data structure that takes O(n) space, and the query time is
O(logn+ ε−d). Here, both k and ε could be supplied at query time. Next we presented an
(k, ε)-AVD taking O(n/k) space. Thus showing, surprisingly, that the problem can be solved
in sublinear space if k is sufficiently large.

References
1 A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. Commun. ACM, 51(1):117–122, 2008.

FSTTCS 2014

326 Robust Proximity Search for Balls Using Sublinear Space

2 S. Arya and T. Malamatos. Linear-size approximate Voronoi diagrams. In Proc. 13th
ACM-SIAM Symp. Discrete Algs., pages 147–155, 2002.

3 S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate spherical
range counting. In Proc. 16th ACM-SIAM Symp. Discrete Algs., pages 535–544, 2005.

4 S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest
neighbor searching. J. Assoc. Comput. Mach., 57(1):1–54, 2009.

5 S. Arya and D.M. Mount. Approximate range searching. Comput. Geom. Theory Appl.,
17:135–152, 2000.

6 S. Arya, D.M. Mount, N. S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions. J. Assoc. Comput. Mach.,
45(6):891–923, 1998.

7 M. de Berg, H. Haverkort, S. Thite, and L. Toma. Star-quadtrees and guard-quadtrees:
I/O-efficient indexes for fat triangulations and low-density planar subdivisions. Comput.
Geom. Theory Appl., 43:493–513, July 2010.

8 P.B. Callahan and S.R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach.,
42:67–90, 1995.

9 P. Carmi, S. Dolev, S. Har-Peled, M. J. Katz, and M. Segal. Geographic quorum systems
approximations. Algorithmica, 41(4):233–244, 2005.

10 K.L. Clarkson. Nearest-neighbor searching and metric space dimensions. In
G. Shakhnarovich, T. Darrell, and P. Indyk, editors, Nearest-Neighbor Methods for Learning
and Vision: Theory and Practice, pages 15–59. MIT Press, 2006.

11 S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annual
IEEE Symp. Found. Comput. Sci., pages 94–103, 2001.

12 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical Surveys
and Monographs. Amer. Math. Soc., 2011.

13 S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. Theory Comput., 8:321–350, 2012. Special issue in honor
of Rajeev Motwani.

14 S. Har-Peled and N. Kumar. Down the rabbit hole: Robust proximity search in sublinear
space. In Proc. 53rd Annual IEEE Symp. Found. Comput. Sci., pages 430–439, 2012.

15 S. Har-Peled and N. Kumar. Approximating minimization diagrams and generalized prox-
imity search. In Proc. 54th Annual IEEE Symp. Found. Comput. Sci., pages 717–726,
2013.

16 S. Har-Peled and N. Kumar. Robust proximity search for balls using sublinear space. CoRR,
abs/1401.1472, 2014.

17 P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. 30th Annual ACM Symp. Theory Comput., pages 604–613, 1998.

18 G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor Methods in Learning and
Vision: Theory and Practice (Neural Information Processing). The MIT Press, 2006.

The Benes Network is q(q−1)/2n-Almost
q-set-wise Independent∗

Efraim Gelman1 and Amnon Ta-Shma2

1 Tel-Aviv University, Tel-Aviv, Israel
efigelman@gmail.com.

2 Tel-Aviv University, Tel-Aviv, Israel
amnon@tau.ac.il

Abstract
A switching network of depth d is a layered graph with d layers and n vertices in each layer. The
edges of the switching network do not cross between layers and in each layer the edges form a
partial matching. A switching network defines a stochastic process over Sn that starts with the
identity permutation and goes through the layers of the network from first to last, where for each
layer and each pair (i, j) in the partial matching of the layer, it applies the transposition (ij)
with probability half. A switching network is good if the final distribution is close to the uniform
distribution over Sn.

A switching network is ε-almost q-permutation-wise independent if its action on any ordered
set of size q is almost uniform, and is ε-almost q-set-wise independent if its action on any set of size
q is almost uniform. Mixing of switching networks (even for q-permutation-wise and q-set-wise
independence) has found several applications, mostly in cryptography. Some applications further
require some additional properties from the network, e. g., the existence of an algorithm that
given a permutation can set the switches such that the network generates the given permutation,
a property that the Benes network has.

Morris, Rogaway and Stegers showed the Thorp shuffle (which corresponds to applying two
or more butterflies one after the other) is q-permutation-wise independent, for q = nγ for γ
that depends on the number of sequential applications of the butterfly network. The techniques
applied by Morris et al. do not seem to apply for the Benes network.

In this work we show the Benes network is almost q-set-wise independent for q up to about√
n. Our technique is simple and completely new, and we believe carries hope for getting even

better results in the future.

1998 ACM Subject Classification C.2 Computer-communication Networks

Keywords and phrases switching network, mixing, Benes

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.327

1 Introduction

The subject of this paper is the generation of a random permutation through the composition
of (few) simple building blocks. The question is quite old and appears in many different
contexts, one prominent example is the application to CCA-security in cryptography. Gener-
ating an almost random permutation on logn-bit strings in such a way, ensures CCA-security
to almost 2n queries (see for example [14]). The problem comes in two main flavors:

∗ Supported by the Israel science Foundation (grants no. 1090/10 and 994/14) and by the United States-
Israel Binational Science Foundation grant no. 2010120.

© Efraim Gelman and Amnon Ta-Shma;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 327–338

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.327
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

328 The Benes Network is q(q−1)/2n-Almost q-set-wise Independent

Mixing with simple permutations: Here, we have a small subset of (usually simple) per-
mutations, and we ask how fast the process of composing random elements from the
subset converges to the uniform distribution over Sn. Some typical examples are, e. g.,
when:

The subset that contains all transpositions,
The subset that contains all permutations whose cycle decomposition is 2n/2, i. .e.,
they are a product of n/2 disjoint transpositions, and,
The subset that contains all permutations in some conjugacy class of Sn.

A seminal result of Diaconis and Shahshahani [6] analyzes the case where the conjugacy
class is the set of all transpositions, and shows that the mixing time is about 1

2n logn+Θ(n)
steps. This result was later extended to the conjugacy class of r-cycles [11]. The technique
uses non-commutative Fourier transform and combinatorics of Young Tableaux, and has
been used with great success in many works.

Switching networks: A switching network of depth d is a layered graph with d layers and n
vertices in each layer. The edges of the switching network do not cross between layers and
in each layer the edges form a partial matching. A switching network defines a stochastic
process over Sn that starts with the identity permutation and goes through the layers
of the network from first to last, where for each layer and each pair (i, j) in the partial
matching of the layer, it applies the transposition (ij) with probability half. A switching
network is good if the final distribution is close to the uniform distribution over Sn.

One may view the switching network problem as a derandomized version of mixing
with simple permutations. For example, Diaconis and Shahshahani showed that composing
d = 1

2n logn + Θ(n) random transpositions is sufficient and necessary for getting a (close
to) uniform permutation. However, a switching network would show a specific sequence
σ1, . . . , σt, such that picking i1, . . . , it ∈ {0, 1} at random and applying σitt . . . σ

i1
1 would

generate a close to uniform distribution over Sn.
Similarly, the matching-exchange process goes as follows. A random perfect matching

on the n elements is chosen uniformly at random, and for each pair (i, j) in the matching,
the transposition (i, j) is applied with probability half. One way to analyze this process is
by choosing k (the number of transpositions) between 0 and n/2 according to the binomial
distribution, and then choosing a random permutation from the conjugacy class 2k1n−2k.
Using non-commutative Fourier analysis and character estimates [12] proved the process
converges to uniform in O(logn) time. Another proof of the same result, but with inferior
constants, was obtained using delayed path coupling [4].

Building a switching network would show a specific sequence of perfect matchings that
can be used in the matching-exchange process. Thus, constructing a switching network
essentially amounts to de-randomizing the matching-exchange process, thus limiting the use
of randomness to the bare minimum needed for generating a distribution close to uniform
over Sn.

Moreover, it turns out in some important applications (e. g., CCA security) it is crucial
to have the second variant (of a mixing network) rather than the first one (of mixing with
simple permutations). Another application is for the security of electronic voting and the
efficient zero knowledge proofs for the decryption of the encrypted votes (see for example:
[2, 1] and [10]). In this application both variants may be used.

However, the question whether good shallow switching networks exist is still wide open.
In 1981, David Chaum [3], suggested a cryptographic protocol that guarantees anonymous
communication, provided that shallow switching networks exist. In 1993, Rackoff and Simon
[15] claimed an explicit switching network of depth poly(logn) is good. Rackoff and Simon

E. Gelman and A. Ta-Shma 329

gave only a short sketch of the proof while the full proof of the theorem, which had been
delayed to the journal version of the paper, was never published. In 1999, Czumaj et
al. [4] claimed the existence of a good switching network of depth O(log2 n), however, the
correctness proof was deferred to the full version of the paper and has not appeared to date.
Finally, it has been proven in [5] using delayed path coupling that:

I Theorem 1 ([5]). There exists an explicit construction of a good switching network of
depth polylog(n).1

Morris [13] constructed, using totally different techniques, an explicit switching network
of depth O(log4 n) that builds upon Thorp shuffle. We expand on this shortly. Still, in our
current state of knowledge, it is not known whether good switching networks of logarithmic
depth exist.

1.1 q-wise independence

One way to visualize the action of a switching network is as follows. Assume we have a
switching network with n vertices and d layers. Put n numbered balls on the n vertices of
the first layer. Go through the layers from first to last, and for each layer, and each pair (i, j)
in the partial matching of the layer, with probability half switch the balls that are currently
at positions i and j. A network is good if the distribution of the n numbered balls at the
last layer is close to uniform.

One may weaken this definition by considering the action of the network on only q 6 n

numbered balls. Further weakening is considering the case where the balls are identical balls.
We say a network is ε-almost q-permutation-wise independent if for any possible way of
putting q numbered balls, the distribution of the balls at the last layer is ε-close to the
uniform distribution on all the n!

(n−q)! possible end configurations.
We say a network is ε-almost q-set-wise independent if for any possible way of putting
q identical balls, the distribution of the balls at the last layer is ε-close to the uniform
distribution on all the

(
n
q

)
possible end configurations.

A network that is q permutation–wise independent is in particular q set–wise independent.
Mathematically, the q-wise independence problem is natural. The permutation-wise

problem compares the action of the network and the action of Sn on the set X = [n]q of
all ordered subsets of size q, and the set-wise problem does the same for the set X =

([n]
q

)
of all subsets of size q. The q-wise question was extensively studied, e. g., by Gowers [7]
and later by Hoory et al. [8], who show, using canonical paths, that composing few random
simple permutations from a certain fixed family is ε-almost q-wise. Morris, Rogaway and
Stegers [14] showed the Thorp shuffle, that we soon discuss, is almost q permutation–wise
independent for a large q, and we soon expand on their result.

1.2 The Thorp shuffle and the butterfly network

We first introduce some notation. For 0 ≤ x < n let x = xlogn, . . . , x1 be its binary
representation. Let x (resp. x) be the integer that has the same binary representation as x
except that its most significant bit is 0 (resp. 1) independent of the most significant bit of x.

1 It seems that the constant in the exponent is currently at least 7.

FSTTCS 2014

330 The Benes Network is q(q−1)/2n-Almost q-set-wise Independent

I. e.,

x = 0, xlogn−1, . . . , x1

x = 1, xlogn−1, . . . , x1

For example, if n = 16, x = 11 then x = 3 and x = 11.
Now we introduce the Thorp shuffle. At each stage of the Thorp shuffle we do the

following:
For all 0 ≤ x < n/2, with probability half we switch the elements in cells number x and
x (and keep them in place with probability half).
We permute the elements as follows: an element that is at cell number x = xlogn, . . . , x1
is moved to cell number xlogn−1, . . . , x1, xlogn. Notice that this forms a permutation over
the n elements.

This process is equivalent to the butterfly switching network. In the butterfly switching
network we have logn layers with n vertices in each layer. We index the n elements by their
binary representation in {0, 1}logn. The edges of the i’th layer, for i = 1, . . . , logn, connect
x, y ∈ {0, 1}logn if and only if they differ only in the i’th coordinate. The Thorp shuffle
for T = r logn stages is equivalent to applying r butterfly switching networks one after the
other.

One way to visualize what the butterfly switching network does is as follows. Take the
(logn) dimensional cube with its usual edges, i. .e. x, y ∈ {0, 1}logn are neighbors if and only
if they differ only in one coordinate. For every i and edge (x, x + ei) color the edge with
color i. As before, put n numbered balls on the n vertices of the cube, go sequentially over
i = 1, . . . , logn, and for each edge (x, y) colored i, switch the balls on x, y with probability
half.

The butterfly switching network (or equivalently the thorp shuffle with logn stages)
induces a probability distribution over permutations of Sn. What can we say about it?

Clearly, the butterfly network is 1-wise (set and permutation) perfect, i. .e. if we put
one ball at any starting vertex x ∈ {0, 1}logn and apply the network, the ball will have the
same (1

n) probability to finish at any vertex. However, if we look at two balls, things are
not that good. Suppose we start with two balls on vertices x1, x2 that are connected by an
edge colored 1, i. .e., x2 = x1 + e1. Notice that after stage 1 the two balls have different
first coordinate, and this does not change later on. Thus, the two balls must end up at
vertices that differ in their first bit. A random permutation, however, would do that only
with probability half. Thus, the induced distribution over Sn is far from uniform (set and
permutation wise).

In [14] , Morris et al. analyze the Thorp shuffle. They show using a clever coupling
argument, that applying the Thorp shuffle T = 2r logn stages, is q

r+1 · (
4q logn
n)r-almost

q-wise-permutation independent. For example running the butterfly twice (i. .e., r = 1) we
get ε = 2q2 logn

n and we may have q almost as large as
√
n.

1.3 The Benes network
Another classical switching network is the Benes network. The Benes network is applying
the butterfly twice, first in its original order, and then in reversed order. Thus, the Benes
network is similar to the Thorp shuffle in that it repeatedly uses the butterfly network, but
it differs from it in the way it orders the layers. An example of the Benes network on eight
vertices is given in Figure 1.

E. Gelman and A. Ta-Shma 331

It is well known that the Benes network gives positive probability to each permutation
π ∈ Sn, see., e. g., [9, Section 3.2]. Other than that, not much was known about the
distribution induced over Sn by the Benes network. The techniques of Morris et al. do not
seem to work for the Benes network.2

The Benes network is mathematically very natural (as it makes the operator Hermitian,
see Sec 2.1). It also induces a clean recursive structure, i. .e., a Benes network on n elements
is composed of simple first and last layers, and two parallel Benes networks on n/2 elements,
see Section 2.1 and Figure 1. This clean recursive structure is also behind the proof that
every permutation may be obtained by the Benes network.

Also, the Benes network appears in many applications, and often the reason is exactly
this clean structure it possesses. For example, Abe [2] uses the Benes network for mixnets
(and electronic voting) and a key property that is required is the ability to easily route any
permutation on the network, a property that, as far as we know, the thorp shuffle lacks.

There are therefore two main reasons to study the Benes network: the first is that it
appears in protocols that require some specific property of it. The second is that it is
mathematically elegant, and the hope that one may be able to use its elegant recursive
structure to finally give a construction of a good logarithmic-depth switching network. In
particular, it is possible that applying sequentially a constant number of Benes networks,
defines a distribution that is close to uniform over Sn.

In this work we use the elegant structure of the network and prove that the Benes network
is ε-almost q-set-wise independent, for q up to about

√
n. Specifically, we prove:

I Theorem 2. The Benes network is q(q−1)
2n -almost q-set-wise independent.

Parameter-wise, the result we obtain is slightly better than the one obtained in [14] for the cor-
responding Thorp shuffle (with 2 logn stages). On the downside, [14] show q-permutation-
wise independent and also show that applying a series of Thorp shuffle sequentially significantly
reduces the error, while we do not show the corresponding fact for the Benes network.

More importantly, we believe the proof technique, that is completely different than the
one in [14], is of independent interest, and reveals the delicate and beautiful structure of the
Benes network. We give a recursive formula for the probability the Benes moves a given
set of q elements to another, and we identify the crucial parameters on which it depends.
The question then reduces to a combinatorial question, that can be solved by analyzing
two related experiments. Using this we prove that any set of q elements is obtained with
probability at least q!

nq (and notice how close this is to the uniform probability of 1
(nq)

) which
is a strong and surprising result by itself. We believe there might be a way to tighten the
analysis given in the paper and achieve much better results (e. g., proving q above

√
n). We

view this work as a first step of understanding the Benes switching network and believe it
sheds light on the way it operates and we hope it may possibly lead to solving the challenging
problem of constructing a good switching network of logarithmic depth.

2 Definitions and Notation

For a set S,
(
S
q

)
is the set of all q-subsets of S, i. .e., {A ⊆ S | |A| = q}. We let [n] denote

the set {0, . . . , n− 1}. The symmetric group Sn acts on
([n]
q

)
in a natural way, π(A) =

2 One key ingredient in the proof is the fact that using the update rule described in the paper, for time
t > log n − 1, the probability that any two elements are adjacent at time t is 6 21−log n. This does
not hold for the Benes network since with this update rule the probability can only be bounded by
6 21−0.5 log n.

FSTTCS 2014

332 The Benes Network is q(q−1)/2n-Almost q-set-wise Independent

{π(a) | a ∈ A}. Clearly the action is transitive.
Suppose Sn acts on a set X. We define πX to be the |X| × |X| matrix, where (πX)i,j =

δπ(xj),xi . We specify two special cases:
When X = Sn and the action is by left multiplication, we denote the matrix πX by π.
When X =

([n]
q

)
and the action is the natural action defined above, we denote the matrix

πX by πq.

For a distribution D over Sn we let DX denote the |X| × |X| matrix

DX =
∑
π∈Sn

D(π) · πX . (1)

If H is a subset of Sn, we identify it with the flat distribution over H, and let HX be the
corresponding matrix.

Notice that (DX)i,j = Prπ∈D [π(xj) = xi], i. .e., (DX) describes the transition matrix
of the stochastic process that picks π according to the distribution D and applies it on x (or
a distribution over X).

2.1 The Benes network
Given x, y ∈ [n], we say x i∼ y if their binary representation differs only on bit number i
(starting with the least significant bit). For example 13 2∼ 15 since their binary representations
are 1101 and 1111.

A Benes network is a layered graph with 2 logn layers, indexed from 1 to 2 logn and n
vertices in each layer. In layers i and 2 logn+ 1− i (for i = 1, . . . , logn), the matching is
formed by all the edges (x, y) s.t. x logn+1−i∼ y.

Alternatively, let Hi (for i = 1, 2, . . . , logn) be the abelian subgroup of Sn generated by
the set of n/2 disjoint transpositions{

(x y) | x i∼ y
}
.

A Benes network is a series H logn, . . . ,H1, H1, . . . ,H logn indexed by n.
A Benes network defines a distributionB(n) on Sn as follows: pick πlogn ∈ H logn, . . . , π1 ∈

H1, σ1 ∈ H1, . . . , σlogn ∈ H logn and output σlogn · . . . σ1 · π1 · . . . πlogn ∈ Sn. We denote

B
(n)
X = Σπ∈SnB(n)(π) · πX . (2)

As before, when X = Sn and the action is by left multiplication, we denote B(n)
X simply

by B(n), and if X =
([n]
q

)
and the action is the natural action, we denote B(n)

X by B(n)
q . When

n is clear from the context we omit it and write B, BX , Bq and B instead of B(n), B
(n)
X , B

(n)
q

and B(n) respectively. Notice that

BX = H logn
X · . . . ·H1

X ·H1
X . . . H

logn
X . (3)

Looking at Eq (3) we see that for every X, BX is Hermitian and positive. Looking at Eq
(2) we see that BX is stochastic. In particular BX is also doubly stochastic.

As BX is Hermitian we have that (BnX)α,β = (BnX)β,α for any α, β ∈ X. Since for any
π ∈ Sn and A ⊆ [n] we have that π(Ac) = (π(A))c, then (Bnq)α,β = (Bnn−q)αc,βc for any
A1, A2 ∈ [n], where c denotes set complement, i. .e., Ac = [n]−A.

E. Gelman and A. Ta-Shma 333

Figure 1 The Benes switching network on eight vertices. The nodes are the elements of {0, . . . , 7}
in binary representation. Notice that if we look at layers 2-5 and omit the most significant bit, we
get the Benes network on four vertices at the left half and right half of the network.

2.2 Almost q-set-wise independence
I Definition 3 (Almost q-set-wise Independence). Let D be a distribution over Sn, and q an
integer. We say D is ε–almost q–set-wise independent in norm `, if for any initial distribution
v0 over X =

([n]
q

)
,

‖DXv0 − UX‖` ≤ ε,

where DX is the |X| × |X| matrix defined in Eq (1) and UX is the uniform distribution over
X.

As usual, it is enough to show that

‖DXv0 − UX‖` ≤ ε,

for initial distributions v0 that are 1 on one element of X and zero otherwise and use the
convexity of the norm.

It is well known that B is perfectly one-wise independent, i.e

B1 = 1
n
J, (4)

where J is the all-one matrix.

FSTTCS 2014

334 The Benes Network is q(q−1)/2n-Almost q-set-wise Independent

3 Benes is q(q−1)
2n

-almost q-set-wise independent

I Theorem 4. For every q and n such that
(
q
2
)
6 n, the Benes network is q(q−1)

2n -almost
q-set-wise independent

Proof. Fix X =
([n]
q

)
. Take β ∈

([n]
q

)
and let v0 be the distribution that is 1 on β. By our

previous remark , it is enough to show that:

‖(Bnq)v0 − UX‖1
def

>
∑

α∈X: (Bnq)α,β<Uq

(Uq − (Bnq)α,β) ≤ ε,

where Uq = 1
(nq)

. The central ingredient in the proof is showing that:

I Lemma 5 (Main). For every q ≤ n where n is a power of 2 and every α, β ∈
([n]
q

)
we have

that (Bnq)α,β > q!
nq

Having the lemma we see that∑
α: (Bnq)α,β<Uq

(Uq − (Bnq)α,β) <
∑

α∈([n]
q)

(Uq −
q!
nq

)

=
∑

α∈([n]
q)
Uq −

∑
α∈([n]

q)

q!
nq

= 1−
(
n

q

)
q!
nq

= 1− (1− 1
n

)(1− 2
n

) . . . (1− q − 1
n

)

<

q−1∑
i=0

i

n
= q(q − 1)

2n .

Whereas the first inequality is using the lemma and summing over all α ∈
([n]
q

)
, the

equalities are simple algebra and the second inequality is simply inclusion-exclusion principle:
Think of independent events Ai, i = 1 . . .m ,with probabilities pi. Then the probability that
at least one of the event occurs is given by 1− (1− p1)(1− p2) . . . (1− pm) and is smaller
then

∑m
i=1 pi. Now take m = q − 1 and pi = i

n and the inequality follows. J

Before proving the main lemma we will look into the recursive structure of the Benes
network and obtain a recursive formula for (Bnq)α,β .

4 The recursive structure of the Benes network

Looking at the Benes network, we notice that if we take the series

H logn−1, . . . ,H1, H1, . . . ,H logn−1

where Hi (for i = 1, . . . , logn− 1) is the subgroup of Sn generated by the set of n/4 trans-
positions

{
(x y) | x i∼ y , x < n/2

}
, we get a Benes network on [n/2].

Taking H logn−1
, . . . ,H

1
, H

1
, . . . ,H

logn−1, where Hi (for i = 1, . . . , logn − 1) is the sub-
group of Sn generated by the set of n/4 transpositions

{
(x y) | x i∼ y , x > n/2

}
, gives us

a switching network on {n/2, . . . , n− 1} that is isomorphic to the Benes network on [n/2].

E. Gelman and A. Ta-Shma 335

We now want to use this recursive structure to get a recursive formula for (Bnq)α,β , which
is the probability that if we choose πlogn ∈ H logn, . . . , π1 ∈ H1, σ1 ∈ H1, . . . , σlogn ∈ H logn

(all with flat probability 1
2
n
2
) then σlogn · . . . σ1 · π1 · . . . πlogn(β) = α.

The first and last layers of the Benes network connect two inputs that differ only in the
most significant bit. We use the notation of x and x introduced earlier. We remind the
reader that x logn∼ x and that either x = x or x = x

Given α ⊆ [n], We denote

α = {x|x ∈ α}
α = {x|x ∈ α}

We say β ∈ X =
([n]
q

)
contains a pair (x, x) if both x, x belong to β. We observe that

if π ∈ H logn then π {x, x} = {x, x}. An element x ∈ [n] is called paired in β if β contains
(x, x).

I Proposition 1 (Recursive Formula). Fix α and β in X =
([n]
q

)
. Assume now β contains r

pairs (x, x) and α contains d such pairs. Denote R and D the set of paired elements in β

and α respectively. Either r or d may be zero. Denote by R1 the set of paired elements in
β that are on the left side of the network (i. .e. belong to [n/2]). Symmetrically denote by
R2 the set of paired elements in β that are on the right side of the network (i. .e. belong to
{n/2, . . . , n− 1}). Notice that R2 = R1 and that R = R1

⋃
R2 . We denote respectively the

sets D1, D2 for α. So |R1| = |R2| = r and |D1| = |D2| = d. In this setting we have:

(Bnq)α,β = 1
2q−2r ·

1
2q−2d

∑
βL:R1⊆βL⊆β−R2

∑
αL:D1⊆αL⊆α−D2

(B
n
2
|βL|)αL,βL(B

n
2
q−|βL|)α−αL,β−βL

Proof of Proposition 1. The action of the first layer of the Benes network on β is captured
by the set βL ⊆ β of elements of β that are moved by the first layer to the left side. Clearly,
for any πlogn ∈ H logn we have that πlogn(R) = R. Thus, paired elements in β are left in
place, so R1 stays on the left side and R2 on the right side. Non-paired elements, i. .e., the
set β −R can be either moved to the left or to the right, and each possibility occurs with
equal probability.

Thus, to transfer β to α through the Benes network we have to go over all the possibilities
to choose βL s.t. R1 ⊆ βL ⊆ β −R2. Once we choose βL, we have to route βL through the
left Benes network to some αL and β − βL through the right Benes network to α− αL. The
last layer then routes αL ∪ α− αL to α.

Let us see what paths are possible. First, as we saw before, we have freedom to choose
any R1 ⊆ βL ⊆ β −R2. Next, we have freedom to choose any αL such that |αL| = |βL| and
D1 ⊆ αL ⊆ α −D2. The probability of such an event is 1

2q−2r for the probability the first
layer is captured by βL, 1

2q−2d for the probability the last layer is captured by αL, and for
each αL, βL as above, (B

n
2
|βL|)αL,βL for the probability the left Benes network routes β

L
to

αL, and (B
n
2
q−|βL|)α−αL,β−βL

for the probability the right Benes network routes β − β
L
to

α− αL. J

We now prove the main lemma.

5 Proof of main lemma

Proof of Lemma 5. We prove the lemma by induction on q using the recursive structure of
the Benes network. The base case is q = 1 and arbitrary n and is very simple: (Bn1)α,β = 1

n

for every α, β ∈
([n]

1
)
. We now assume for all q ≤ q0 and we prove for q = q0 + 1.

FSTTCS 2014

336 The Benes Network is q(q−1)/2n-Almost q-set-wise Independent

We prove the case q = q0 + 1 by induction on n. The base case is for n = nq where nq is
the first power of 2 such that q 6 nq, i. .e. nq

2 < q 6 nq. In this case

(Bnqq)α,β = (Bnqnq−q)αc,βc >
(nq − q)!
n
nq−q
q

>
q!
nqq
,

where we have used the simple fact that nq − q ≤ q0 and the induction hypothesis on q.
Now, fix α and β in X =

([n]
q

)
with the same setting as proposition 1. We get:

(Bnq)α,β = 1
2q−2r ·

1
2q−2d

∑
βL:R1⊆βL⊆β−R2

∑
αL:D1⊆αL⊆α−D2

(B
n
2
|βL|)αL,βL(B

n
2
q−|βL|)α−αL,β−βL

= 1
2q−2r ·

1
2q−2d

q−r∑
i=r

∑
βL:R1⊆βL∈(β−R2

i)

∑
αL:D1⊆αL∈(α−D2

i)
(B

n
2
i)α

L
,β
L

(B
n
2
q−i)α−αL,β−βL

>
1

2q−2r ·
1

2q−2d

q−r∑
i=r

(
q − 2r
i− r

)(
q − 2d
i− d

)
i!

(n2)i
(q − i)!
(n2)q−i

= (q − 2d)!
nq

(d!)2

2q−2r−2d ·
q−r∑
i=r

(
q − 2r
i− r

)(
i

d

)(
q − i
d

)
where the inequality is by induction on n and the final equality is simple algebra.

We want to show that (q−2d)!
nq

(d!)2

2q−2r−2d ·
q−r∑
i=r

(
q − 2r
i− r

)(
i

d

)(
q − i
d

)
> q!

nq . This follows from

our main combinatorial lemma:

I Lemma 6 (Combinatorial Lemma). Let d 6 r then:

(q − 2d)! (d!)2

2q−2r−2d ·
q−r∑
i=r

(
q − 2r
i− r

)(
i

d

)(
q − i
d

)
> q!

J

We now prove the combinatorial lemma.

Proof of Lemma 6. We denote (N)l = N(N − 1) · . . . (N − l+ 1) = N !
(N−l)! , so if l > N then

(N)l = 0. The inequality is equivalent to

q−r∑
i=r

(
q−2r
i−r
)

2q−2r (i)d(q − i)d >
(q)2d

22d . (5)

We consider two experiments. In both experiments we have q numbered balls, and two
colors black and white. In the first experiment we color all the q balls uniformly at random.
In the second experiment r of the balls are already colored white and r are colored black and
we color the remaining q − 2r balls uniformly at random. In both experiments we define a
random variable X whose value is the number of possibilities to choose an ordered sequence
of d white balls and an ordered sequence of d black balls. I. e., if C is the random variable
counting the number of balls that are colored white, then X = (i)d(q − i)d given that C = i.
Now we compute the expected value of X in each of the two experiments.

E. Gelman and A. Ta-Shma 337

In the first experiment E(X) =
q−d∑
i=d

(
q
i

)
2q (i)d(q − i)d, and rearranging:

q−d∑
i=d

(
q
i

)
2q (i)d(q − i)d = 1

2q
q−d∑
i=d

q!
i!(q − i)! (i)d(q − i)d

= 1
2q

q−d∑
i=d

q!
(i− d)!(q − i− d)! = (q)2d

2q
q−d∑
i=d

(q − 2d)!
(i− d)!(q − i− d)!

= (q)2d

2q
q−d∑
i=d

(
q − 2d
i− d

)
= (q)2d

2q 2q−2d = (q)2d

22d .

Thus, this is exactly the right term in inequality (5). Also, in the second experiment

E(X) =
q−r∑
i=r

(
q−2r
i−r
)

2q−2r (i)d(q − i)d, which is the left term in the inequality. Thus, we need to

prove that E(X) in the second experiment is larger than E(X) in the first experiment.
Let ti (pi) denote the probability that C = i in the first (second) experiment respectively.

Namely, ti = (qi)
2q and pi = (q−2r

i−r)
2q−2r . Let Xi = (X|C = i) = (i)d(q − i)d. It is easy to see that:

I Claim 1. If i, j are integers, (d 6 i < j 6 q
2), then ti < tj and pi < pj.

Also:

I Lemma 7. If i, j are integers, (d 6 i < j 6 q
2) then Xi < Xj .

I Lemma 8. If d 6 i < j 6 q
2 then pj

pi
>

tj
ti

.

Both lemmas are proven easily by induction. Take j = i + 1, and by simple algebra
one can see that the inequalities in both lemmas are equivalent to 2i < q − 1 which is true
since i is an integer and i < q

2 . For example, pi
pi+1

= i+1−r
q−r−i and therefore pi < pi+1 iff

i+ 1− r < q − r − i iff 2i < q − 1.
Now, from these two lemmas together with the symmetry around q

2 of our variables and
probabilities (Xj = Xq−j , tj = tq−j , pj = pq−j), we get that there exists some index i0 6 q

2
such that pi > ti if and only if i ∈ S = {i0, i0 + 1 . . . , q − i0}. We also know that since
{Xi}, i = 1, . . . , q2 is monotonically increasing, it must be that for any i ∈ S, j ∈ Sc we have
that Xi > Xj . We now prove this implies that the expected value of the second experiment
is larger then that of the first experiment:

I Lemma 9. Let {Xi}i∈A be a set of non negative variables. Assume S ⊂ A such that:

For any i ∈ S, j ∈ Sc we have that Xi > Xj, i.e mini∈S{Xi} > maxi∈Sc{Xi} =
Xmax(Sc). And,
Let {pi}i∈A and {ti}i∈A be two distributions such that pi > ti if and only if i ∈ S.

Then
∑
i∈A piXi ≥

∑
i∈A tiXi.

To see the lemma, notice that:∑
i∈A

piXi =
∑
i∈S

piXi+
∑
i∈Sc

piXi =
∑
i∈S

tiXi +
∑
i∈S

(pi − ti)Xi +
∑
i∈Sc

tiXi +
∑
i∈Sc

(pi − ti)Xi

=
∑
i∈A

tiXi +
∑
i∈S

(pi − ti)Xi +
∑
i∈Sc

(pi − ti)Xi .

FSTTCS 2014

338 The Benes Network is q(q−1)/2n-Almost q-set-wise Independent

However, pi − ti is positive for i ∈ S and negative otherwise, and Xi ≥ Xmax(Sc) for
i ∈ S and Xi ≤ Xmax(Sc) for i ∈ Sc. Thus,∑

i∈A
piXi ≥

∑
i∈A

tiXi +
∑
i∈S

(pi − ti)Xmax(Sc) +
∑
i∈Sc

(pi − ti)Xmax(Sc) =
∑
i∈A

tiXi .

J

References
1 Masayuki Abe. Mix-networks on permutation networks. In Proceedings of the Interna-

tional Conference on the Theory and Applications of Cryptology and Information Security:
Advances in Cryptology, ASIACRYPT’99, pages 258–273, London, UK, UK, 1999. Springer-
Verlag.

2 Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network based on permutation
networks. In Kwangjo Kim, editor, Public Key Cryptography, volume 1992 of Lecture Notes
in Computer Science, pages 317–324. Springer Berlin Heidelberg, 2001.

3 David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

4 Artur Czumaj, Przemka Kanarek, Mirosław Kutyłowski, and Krzyztof Loryś. Delayed
path coupling and generating random permutations via distributed stochastic processes.
In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
271–280. Society for Industrial and Applied Mathematics, 1999.

5 Artur Czumaj, Przemka Kanarek, Krzysztof Lorys, and Miroslaw Kutylowski. Switching
networks for generating random permutations, 2001.

6 Persi Diaconis and Mehrdad Shahshahani. On the eigenvalues of random matrices. Journal
of Applied Probability, pages 49–62, 1994.

7 WT. Gowers. An almost m-wise independent random permutation of the cube. Combin-
atorics Probability and Computing, 5:119–130, 1996.

8 Shlomo Hoory, Avner Magen, Steven Myers, and Charles Rackoff. Simple permutations
mix well. In Automata, Languages and Programming, pages 770–781. Springer, 2004.

9 Frank Thomson Leighton. Introduction to parallel algorithms and architectures. Morgan
Kaufmann San Francisco, 1992.

10 Helger Lipmaa. Efficient nizk arguments via parallel verification of benes networks. In To
appear in SCN (9th Conference on Security and Cryptography for Networks) 2014, 2014.

11 Nathan Lulov. Random walks on the symmetric group generated by conjugacy classes. PhD
thesis, Harvard University, 1996.

12 Nathan Lulov and Igor Pak. Rapidly mixing random walks and bounds on characters of
the symmetric group. Journal of Algebraic Combinatorics, 16(2):151–163, 2002.

13 Ben Morris. Improved mixing time bounds for the thorp shuffle and l-reversal chain. The
Annals of Probability, pages 453–477, 2009.

14 Ben Morris, Phillip Rogaway, and Till Stegers. How to encipher messages on a small domain.
In Proceedings of the 29th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO’09, pages 286–302, Berlin, Heidelberg, 2009. Springer-Verlag.

15 Charles Rackoff and Daniel R Simon. Cryptographic defense against traffic analysis. In
Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pages 672–681.
ACM, 1993.

Notes on Counting with Finite Machines

Dmitry Chistikov

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany
dch@mpi-sws.org

Abstract
We determine the descriptional complexity (smallest number of states, up to constant factors) of
recognizing languages {1n} and {1tn : t = 0, 1, 2, . . .} with state-based finite machines of various
kinds. This task is understood as counting to n and modulo n, respectively, and was previously
studied for classes of finite-state automata by Kupferman, Ta-Shma, and Vardi (2001). We
show that for Turing machines it requires logn/ log logn states in the worst case, and individual
values are related to Kolmogorov complexity of the binary encoding of n. For deterministic
pushdown and counter automata, the complexity is logn and

√
n, respectively; for alternating

counter automata, we show an upper bound of logn. For visibly pushdown automata, i. e.,
if the stack movements are determined by input symbols, we consider languages {anbn} and
{atnbtn : t = 0, 1, 2, . . .} and determine their complexity, of

√
n and min(n1 + n2), respectively,

with minimum over all factorizations n = n1n2.

1998 ACM Subject Classification F1.1 Models of Computation, F4.3 Formal Languages

Keywords and phrases State complexity, Unary languages, Counting

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.339

1 Introduction

The task of counting is one of the most basic tasks that can be entrusted to computing
devices. In the framework of formal language theory, it is natural to associate counting with
finite machines that recognize singleton languages {1n}, where n = 0, 1, 2, . . . Since even
most primitive devices, namely finite automata, are expressive enough to perform this task,
questions from the realm of descriptional complexity arise.

A standard problem setting here can be traced back to a classic 1971 paper by Meyer and
Fischer [16] and can be stated as follows: given a specific class C of computational machines
(such as nondeterministic finite automata), estimate the function f(n), whose value on an
arbitrary non-negative integer n is defined as the smallest descriptional complexity of a
machine from this class that recognizes the language {1n}. One then says that machines
from C count to n with complexity f(n). All classes are usually expressive enough to contain
at least one appropriate machine for each n, and so it is always the case that f(n) <∞.

To the best of our knowledge, the most thorough account of the problems of counting
with finite machines can be found in a technical report from 2001 by Kupferman, Ta-Shma,
and Vardi [12], which coins the term counting to n to refer to the problem of recognizing the
language {1n}. Kupferman et al. study this problem for standard classes of finite machines:
deterministic, nondeterministic, universal, and alternating automata, and characterize the
smallest number of states sufficient to count to n within each of these classes. Disregarding
constant factors, this number is n for deterministic and nondeterministic automata,

√
n for

universal and logn for alternating automata.
© Dmitry Chistikov;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 339–350

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.339
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

340 Notes on Counting with Finite Machines

Our contribution

Our primary focus is on the problems of counting with more powerful devices, capable of
recognizing non-regular languages. As far as we know, these problems have never been
addressed systematically. Observe that although one of the goals of the study of descriptional
complexity is to compare the expressive power of machines from different classes, the notion of
complexity in the definition above is tied to a specific class of machines. As a consequence, for
different classes one has to use “matching” complexity measures. For all classes of machines
considered in this paper, we use measures that generalize state complexity of finite automata.

Our results are as follows. First, for Turing machines with tape alphabet {0, 1}, we show
in Section 3 that the complexity of counting is at most logn/ log logn. As a corollary, for
an arbitrary string s (not necessarily over the one-letter alphabet), the state complexity of
generating it with a Turing machine is asymptotically equal to K(s)/(|∆|−1) logK(s), where
K(·) denotes the standard Kolmogorov complexity and ∆ is the tape alphabet. (For |∆| ≥ 3,
this follows from a construction by Chaitin [4, sections 1.5–1.6], and we fill in the gap for
|∆| = 2.) In other words, whenever there exists a Turing machine that produces s when
run on empty tape and has binary encoding of length k, there always exists another Turing
machine with the same properties that has at most k/(|∆| − 1) log k states, and the latter
bound is asymptotically tight.

Second, we study the problems of counting for classes of pushdown automata (PDA). For
deterministic PDA, we show in Section 4 that matching upper and lower bounds of O(logn)
and Ω(logn) for all n follow from earlier results due to Pighizzini [19] and Chistikov and
Majumdar [7]. Subclasses of PDA, however, require separate consideration. For deterministic
counter automata, i. e., when the stack alphabet contains only one symbol apart from the
bottom-of-stack, we obtain an upper bound of O(

√
n) and show a matching lower bound

Ω(
√
n) by reducing to counting with deterministic finite automata (DFA). For alternating

counter automata, we prove an upper bound of O(logn) (here we use a complexity measure
that is more refined than just the number of states, so this result is not subsumed by the fact,
due to Kupferman et al., that alternating finite automata count to n with dlogne states).

Third, we consider another well-known subclass of PDA called visibly pushdown automata
(VPA, also known as nested word automata and input-driven PDA) in Section 5. While
counting (and, indeed, recognizing any unary language) for VPA is easily shown to be as hard
as for finite automata, we prove that deterministic VPA recognize languages {anbn}—another
problem interpreted as counting—with complexity Θ(

√
n). We also show that the complexity

of recognizing languages {atnbtn : t = 0, 1, 2, . . .} is Θ(min(n1 + n2)), where the minimum is
taken over all factorizations n = n1n2; this function ranges, for different values of n, between
Θ(
√
n) and Θ(n). By showing sequences for which its value is o(n), we refute a conjecture of

Salomaa [22] on the state complexity, with respect to VPA, of a related language.

Acknowledgements. This paper would be very different without many people’s help. I
would like to thank Rupak Majumdar for support and for sharing a reference to an earlier
version, from 1999, of the technical report by Kupferman, Ta-Shma, and Vardi [12]. I am
grateful to Alexander Shen, who pointed me to Chaitin’s work [4] upon hearing the result of
Corollary 2. Abuzer Yakaryılmaz asked a question on StackExchange that let me come up
with a construction of an alternating counter automaton recognizing a non-regular language
{1n : n = 2k, k = 0, 1, 2, . . .} [3] and lead to Theorem 5. I would also like to thank Rose
Hoberman for useful discussions.

D. Chistikov 341

2 Related work

As explained above, the starting point for our work is the technical report of Kupferman,
Ta-Shma, and Vardi [12], who build upon the results of Leiss [13], Birget [2], and Chrobak [8].
From the general language-theoretic perspective, the problems of counting are closely tied
to numerous phenomena of unary languages, that is, languages over a one-letter alphabet
(also known as tally languages). Classes of unary languages possess many properties that
cannot be observed in classes of languages over larger alphabets. Perhaps the most widely
known is the theorem saying that every unary context-free language is regular, first proved
by Ginsburg and Rice in 1962 [11].

Although the languages {1n} studied in the present paper are finite and therefore regular,
we are interested in their descriptional complexity with respect to classes of machines that
recognize, in general, non-regular languages. Hence, related are not only descriptional
complexity questions for machines specifying non-regular sets, but also questions of so-called
succinctness of representations, or economy of description. This term is associated with
the following question, first asked by Meyer and Fischer in 1971 [16]: suppose that some
language L belongs to a certain class C; how short a description can this language L have
with respect to C, compared to the shortest description within some specific subclass C′ C
such that L ∈ C′? Or, in other words, what is the largest blowup that can be observed when
translating a description from the class C into the “terms” of C′?

For general context-free and regular languages (with sizes of context-free grammars—
CFG—and deterministic finite automata—DFA—as complexity measures), the answer to
this question is given by Meyer and Fischer: the description of a DFA cannot be bounded by
any recursive function in the size of a CFG. For unary languages, translations from CFG (in
Chomsky normal form) into NFA and DFA are shown to be at most exponential [20].

One can easily see that using PDA instead of CFG also leaves the translation exponential.
Tight bounds on the size of the blowup in the case of unary nondeterministic PDA are
also given in [20], and the unary deterministic case is studied in [19]. A general connection
between unary deterministic PDA and grammar compression of binary words is established
in [7]. In the present paper, we use these results to obtain bounds on the size of PDA.

In general, descriptional complexity problems for general context-free languages per se
have so far been mostly associated with grammars and not with automata. As pointed out
above, however, PDA have been intensively studied in connection with questions of economy
of description. In this area, we wish to highlight the paper [10], which not only continues the
line of research started by Meyer and Fischer, but also proves exponential lower bounds for
descriptional complexity of PDA recognizing several natural finite languages.

For context-free grammars, we refer the reader to a recent paper [9], which obtains
strong lower bounds on the size of CFG for several specific finite languages. Counting
problems for context-free grammars are tightly related to the well-studied concept of an
addition chain (see, e. g., [6, Section V-B]), which is a restriction, to the unary alphabet, of
a context-free grammar that generates a single word. (A more general topic is, of course,
grammar compression of non-unary words, see also [21, 6, 15].) As an illustrative example,
one can easily show that the language {1n} can be generated by a context-free grammar
with at most O(logn) symbols in right-hand sides of productions, and prove that this bound
is tight.

For the subclass of context-free languages recognized by visibly pushdown automata,
descriptional complexity questions have been studied somewhat more extensively; see, e. g., [17,
18], where these machines are called “input-driven pushdown automata”.

FSTTCS 2014

342 Notes on Counting with Finite Machines

As for descriptional complexity for Turing machines, the number of states as a complexity
measure was studied by Chaitin [4]; his paper initiated the study of what is now known
as Kolmogorov complexity [14], but then the focus very quickly shifted towards a different
measure, the length of a binary string that encodes the description of a machine. In our
work, we fill in the remaining gap for the original measure, i. e., for the number of states.

3 Turing machines

A Turing machine (TM) with input alphabet Σ and tape alphabet ∆ ⊇ Σ is a tuple
M = (Σ,∆,�, Q, q0, H, δ), where � ∈ ∆ \Σ is the blank symbol, Q the set of states, q0 ∈ Q
the initial state, H the set of halting states, and δ ⊆ (Q×∆)× (Q×∆× {−1, 0,+1}) the
transition relation.

Configurations of M have the form (q, µ, n), where q ∈ Q, µ : Z → ∆, and n ∈ Z; the
interpretation is that cells of the infinite tape, indexed by Z, contain symbols from ∆ specified
by µ, with |µ−1(∆ \ {�})| < ∞, the control state of the machine is q, and the head of
the machine is at the nth cell of the tape. If M is run on input w ∈ Σ∗, then the initial
configuration is (q0, µw, 0) where µw(i) is w[i] for 0 ≤ i < |w| and � otherwise; halting
configurations are those with q ∈ H. The transition relation imparts a step-reachability on
configurations: if (q, σ, q′, τ, d) ∈ δ and q 6∈ H, then at a configuration (q, µ, n), if µ(n) = σ,
the machine can overwrite this σ with τ , change its control state to q′, and change the head’s
position by d. A machine is deterministic if from each configuration at most one configuration
is reachable in one step (i. e., δ defines a mapping from Q×∆ to Q×∆× {−1, 0,+1}).

Instead of the problem of recognizing the language {1n} with a Turing machine, we
consider the problem of generating this language; our results can be easily extended to
language recognition as well. A machine M outputs a word u ∈ (∆ \ {�})∗ when run
on w ∈ Σ∗ if from (q0, µw, 0) it reaches some configuration (q, µ, n) with q ∈ H such that
µ−1(∆ \ {�}) = [a, a+ |u| − 1] for some a ∈ Z and µ(a+ i) = u[i] for 0 ≤ i < |u|.

Let Q∆(s), s ∈ Σ∗ ∆∗, be the smallest number m such that there exists a deterministic
TM with m states and tape alphabet ∆ that outputs s when run on empty tape. The
interpretation is that TMs with tape alphabet ∆ count to n with complexity Q∆(1n).

I Theorem 1. Fix Σ = {1}, ∆ = {0, 1}, and � = 0. Then Q∆(1n) . logn/ log logn.1

Proof. We construct, for each n, a Turing machine Mn with tape alphabet {0, 1} that
has logn/ log logn (1 − o(1)) states and outputs 1n when run on empty tape. Let us
show the workings of Mn. Let n =

∑l−1
i=0 bik

l−1−i be the k-ary representation of n, with
bi ∈ {0, 1, . . . , k − 1}. The value of k will be fixed later. The TM will keep two counters
on the tape, denoted i and v, and written out in unary, as 1i and 1v respectively. Initially
v = 0 and i = 0. Next, the machine will get into the main loop and do the following, as long
as i < l: multiply v by k, add bi to v, and increment i. For multiplication, two auxiliary
counters u and j are needed: at first j = k and u = 0, then the machine will add v to u and
decrement j as long as j > 0; when j becomes 0, the value of u takes the place of v. In the
main loop, when i becomes l, the TM will terminate with output v.

It is easy to see that this procedure is correct: v = n at the end of the computation. Let
us count the number of states needed to implement it. For initial setup, O(1) states suffice.
In the main loop, all operations are fixed and take up O(1) states, with two exceptions: one
of setting j to k, and another of choosing (and generating) bi according to i (we also include

1 We write f(n) . g(n) iff f(n) ≤ g(n) · (1 + o(1)).

D. Chistikov 343

termination on i = l into this exception). For the former, k+O(1) states suffice; we focus on
the latter next. (We omit the description of how to keep all counters on the tape, because
this can be done with standard techniques.)

The choice of bi is implemented as follows: suppose on the tape there are only blanks
(i. e., 0s) to the right of the counter i. This counter is kept as 1i. Create a set of l + k states
ofMn, denoted q0, q1, . . . , ql−1 and p0, . . . , pk−1 (here q0 is not the initial state ofMn). Let
the machine transition to q0 and step on the leftmost 1 in 1i. At each of the states qj ,
j < l − 1, if the observed cell tape contains a 1, the machine moves its head one cell to the
right and goes to qj+1. If the observed cell is 0, then the value of the counter is j. In this
case,Mn also moves its head one cell to the right and goes to ps for s = bj ∈ {0, 1, . . . , k−1}.
At ql−1, if the machine observes 1, it invokes the termination procedure as i = l; otherwise,
it moves its head one cell to the right and goes to ps for s = bl−1. All these transitions are
hardwired inMn and encode, when taken together, the number n. At each of the states ps,
0 < s ≤ k − 1, the machine writes a 1, moves its head one cell to the right, and goes to ps−1;
there is no need to write anything at the state p0. As a result, if put in q0, the machine will
arrive at the state p0 with the unchanged counter i and with 1bi written to the right of 1i

and separated from it by a 0. This is indeed the desired result; the number of states used in
this gadget is l + k +O(1).

In total,Mn has |Q| ≤ l+ 2k+O(1) states. Notice that l = dlogk(n+ 1)e = logn/ log k+
O(1) and take k = logn/(log logn)2, then 2k = o(logn/ log logn) as n → ∞, and so
|Q| ≤ logn/ log logn (1− o(1)), which completes the proof. J

Corollary 2 below shows that the upper bound given by Theorem 1 is tight, i. e., that
lim supQ{0,1}(n)/(logn/ log logn) = 1. However, the lower bound of lognk/ log lognk (1 +
o(1)) only holds for certain sequences of naturals, and not for all n ≥ 0.

For individual values of n, we relate the complexity of counting to Kolmogorov complexity;
the following definitions are standard [14]. If some Turing machineM, when given input y,
halts and outputs x, then the string y is called a description of x with respect toM. Let us
also fix some universal Turing machine U ; given input (z, y), the TM U runs the machine
described by z on input y. Here we fix, in advance, some descriptional system for Turing
machines in which strings z ∈ {0, 1}∗ encode machines. Define the Kolmogorov complexity
of a string x ∈ {0, 1}∗ as the smallest number k such that x has some description of size k,
y ∈ {0, 1}k, with respect to U .

It follows from results of Chaitin [4, sections 1.5–1.6] that for any alphabets Σ ∆,
|∆| ≥ 3, and all strings s ∈ Σ∗ it holds that Q∆(s) ∼ K(s)/(|∆| − 1) logK(s) as K(s)→∞;
Theorem 1 allows us to extend this result to a quite different case |∆| = 2 (where, unlike
Chaitin, we have to use unary-encoded numbers). By bin(n) we denote the binary encoding
of a non-negative integer n; that is, a word over the alphabet {0, 1}.

I Corollary 2. Under conditions of Theorem 1, for all n ≥ 0 it holds that Q{0,1}(1n) ∼
K(1n)/ logK(1n) ∼ K(bin(n))/ logK(bin(n)) as K(bin(n))→∞.

Another way of stating the last result is as follows: whenever there exists a Turing
machine, with tape alphabet ∆, |∆| ≥ 2, that produces a string s when run on empty tape
and has an encoding of length k, there always exists another Turing machine with the same
properties that has at most k/(|∆| − 1) log k · (1 + o(1)) states; in other words, encodings of
Turing machines can always be fit into the smallest possible number of states.
I Remark. The lower bound of K(bin(n))/ logK(bin(n)) holds for all classes of machines
considered in this paper (including nondeterministic and alternating ones), provided that
the number of transitions leaving each control state is bounded by a constant.

FSTTCS 2014

344 Notes on Counting with Finite Machines

4 Pushdown and counter automata

A pushdown automaton (PDA) over an input alphabet Σ is a tuple A = (Σ, Q, q0, P,⊥, F, δ),
where Q is the set of (control) states, q0 ∈ Q the initial state, P the set of stack symbols,
⊥ ∈ P the bottom-of-the-stack symbol, F ⊆ Q the set of accepting states, and δ ⊆
(Q× P × (Σ ∪ {ε}))× (Q× P≤2) the transition relation.

Configurations of a PDA A are tuples of the form (q, s, u), where q ∈ Q is the current
state, s ∈ (P \ {⊥})∗⊥ the contents of the stack, and u ∈ Σ∗ the remaining input tape.
For an input word w ∈ Σ∗, the initial configuration is (q0,⊥, w). For every transition
(q, p, σ, q′, t) ∈ δ, the PDA can, consuming σ from the input, move from a configuration
(q, s, u) to a configuration (q′, s′, u′) such that u = σu′, s = pv and s′ = tv for some v ∈ P ∗.
If p = ⊥, then t ∈ (P \ {⊥})≤1⊥, otherwise t ∈ (P \ {⊥})≤2.

The PDA accepts a word w ∈ Σ∗ if from (q0,⊥, w) it can reach a configuration (q, s, ε)
with q ∈ F . The PDA is deterministic (DPDA) if from each configuration at most one
configuration is reachable in one step; it suffices that, first, for each q ∈ Q transitions
(q, p, σ, q′, t) ∈ δ either all have σ = ε or σ 6= ε, and, second, that δ defines a partial mapping
from Q× P × (Σ ∪ {ε}) to Q× P≤2.

The product |Q| · |P | shall be called the complexity of a deterministic PDA. We recall
that machines from a certain class are said to count to n with complexity f(n) if f(n) is the
smallest size of a machine from the class that recognizes the language {1n}; for a related
language {1tn : t = 0, 1, 2, . . .}, we use the term counting modulo n.

I Theorem 3. Deterministic pushdown automata count to n and modulo n with complexity
Θ(logn).

This result can be obtained as an application of Theorem 1 in Chistikov and Majumdar [7].
The theorem states that the size of the smallest DPDA recognizing a language R ⊆ {1}∗ is
within a constant factor of the smallest size of a pair of context-free grammars P , L generating
single words eval(P), eval(L) such that the ith element of the sequence c = eval(P)·(eval(L))ω

is 1 if 1i ∈ R and 0 if 1i 6∈ R. In our case c = 0n · 1 · 0ω for R = {1n} and c = (10n−1)ω for
R = {1tn : t = 0, 1, 2, . . .}; in both cases, logarithmic upper and lower bounds on the size of
(P,L) follow, because Θ(logn) constant-size productions are necessary and sufficient for a
CFG to generate a word of length n. The lower bound can also be deduced, under minor
structural assumptions about DPDA, from an earlier result of Pighizzini [19, Theorem 12].

A counter automaton (CA) is a pushdown automaton with |P | = 2, that is, with just one
stack symbol apart from ⊥. It is convenient to think of a CA as of a finite automaton with a
non-negative integer counter. Available operations on the counter are increment, decrement,
and zero test; the CA cannot directly distinguish between different non-zero counter values.

I Theorem 4. Deterministic counter automata count to n and modulo n with complexity
Θ(
√
n).

Proof. We first prove the upper bound. Denote r = b
√
nc. Let a deterministic counter

automaton An first consume n− r2 ≤ 2r letters from the input and then increase the counter
value to r; these operations require at most 3r + 1 states, the last of which we denote by q.
At this state q, the automaton An performs a zero test on the counter: if its value is zero,
An accepts and terminates; otherwise it decrements the counter, consumes r letters from the
input, and returns to q. It is easy to see that An has 4r +O(1) states and recognizes {1n};
if instead of termination it goes to the initial state, it will recognize {1tn : t = 0, 1, 2, . . .}.

To prove the lower bound, consider any deterministic counter automaton A. Suppose
its set of states is Q, with |Q| = m. Construct an auxiliary device: a deterministic finite

D. Chistikov 345

automaton D with states of the form (q, k), for q ∈ Q and 0 ≤ k ≤ m + 1. Direct the
transitions of D in such a way that D simulates A, keeping the value of the counter in the
component of the control state denoted k; do not add transitions from states (q,m+ 1) that
need to increase the counter.

If D recognizes the same language as A, then the desired bound holds, because DFA—even
with ε-transitions—need n states to count both to and modulo n. Now consider the only
alternative: suppose that a computation of the CA A on some input word 1s gets to a state q
with counter value m+ 1 and then increases the counter. For each i = 1, . . . ,m+ 1 consider,
in this computation, the last configuration before this point when the counter value is i.
Denote these configurations by (qi, i); they occur in the computation in the order with i = 1
first and i = m+ 1 last. Note that between (q1, 1) and (qm+1,m+ 1) the counter value is
always positive, and recall that the automaton cannot distinguish between different positive
values. By pigeonhole principle, there exist indices j < k such that qj = qk, so A essentially
gets into a loop: if the input tape provides it with infinitely many 1s, then it will be following
the transitions of this loop forever. In D, rerouting to (qk, j) = (qj , j) the transitions with
destination (qk, k) will make it simulate A faithfully, i. e., recognize the same language.

Let us now consider each counting task separately. First suppose that A recognizes the
language {1n}, then either the loop we have found does not contain any accepting state, or
it contains an accepting state but does not consume any letters from the input. (Indeed, if
neither of these two conditions held, then A would accept infinitely many words.) In both
cases it is possible to replace this loop with at most one state in the DFA. But then the
obtained DFA, possibly with ε-transitions, will accept {1n}, so it should contain at least
n+ 1 states. As a result, m(m+ 2) ≥ n+ 1, and the desired bound follows.

Now suppose that A recognizes {1tn : t = 0, 1, 2, . . .}. Since the constructed DFA, like A,
is trapped forever in the loop, the states in the loop should enable it to accept input words 1tn

and reject all other input words. This means that the loop should consume at least n letters
from the input; since it contains at most m2 + 1 transitions, we conclude that n ≤ m2 + 1.
This completes the proof. J

We next consider the alternating version of counter automata; we use the standard
definition of alternation, which is a little different from the one that appeared originally in
Chandra, Kozen, and Stockmeyer [5]. Informally, the machine is extended with the ability to
make guesses and, dually, assertions during the computation.

More formally, suppose each state q ∈ Q is labeled with either ∃ or ∀; consider the
computational tree imparted on configurations by step-reachability. A node in this tree is
accepting if, first, its state q belongs to F , or, second, its state is labeled by ∃ and has an
accepting successor, or, third, its state is labeled by ∀ and all its successors are accepting
(we use the least fixpoint here; i. e., only finite branches can count towards acceptance). An
input word is accepted if the root in the computational tree is accepting.

Note that whenever the syntax of a state-based machine allows an unbounded number
of transitions from a particular state (as sometimes needed by, e. g., nondeterministic and
alternating machines), the number of control states is no longer a good complexity measure.
For instance, alternating finite-state automata counting to n described by Kupferman
et al. [12] have O(logn) states but Ω(log2 n) transitions. To avoid this issue, we use the
number of transitions in δ as the complexity measure for alternating counter automata.

I Theorem 5. Alternating counter automata count to n with complexity O(logn).

Proof. Suppose n =
∑l−1

i=0 bi2i, with l = dlog2(n+ 1)e and all bi ∈ {0, 1}, and create control
states q0, q1, . . . , ql. The state q0 will be the initial state of the automaton A. Starting at a

FSTTCS 2014

346 Notes on Counting with Finite Machines

state qi, i < l, with a zero counter value, A will, if bi = 1, consume a letter from the input
tape, and then, regardless of the value of bi, get into a loop where it simultaneously reads
from the input and increases the value of the counter. It can nondeterministically choose
to exit the loop; the interpretation is that it guesses some value m and, with m iterations,
reads 1m from the input and increases the value of the counter to m. Upon exiting the
loop, A branches universally: the first branch verifies that the value of the counter is equal
to the number of remaining letters on the input tape, and the second branch goes to qi+1.
At the state ql, A accepts. It is easy to see that A indeed recognizes the language {1n};
O(1)-bounded branching ensures that A has O(logn) transitions. J

5 Visibly pushdown automata

A visibly pushdown automaton [1], or a VPA, A is a pushdown automaton that has the
following property: there exists a partition of the input alphabet Σ into three parts, Σ =
Σcall ∪ Σret ∪ Σint, such that A always pushes a symbol upon reading a letter from Σcall, pops
a symbol upon reading a letter from Σret, and does not use the stack on letters from Σint.
It is implied that, in a VPA, destinations of transitions driven by letters from Σcall ∪ Σint
cannot depend on the top symbol of the stack. Furthermore, a VPA is not allowed to have
ε-transitions—i. e., all transitions are required to consume at least one letter from the input.

It is easy to see that in the problem of counting, defined as recognizing languages {1n}
and {1tn : t = 0, 1, 2, . . .}, visibly pushdown automata cannot do better than standard finite
automata. So it is natural to consider different, although closely related languages {anbn}
and {atnbtn : t = 0, 1, 2, . . .}, where n = 0, 1, 2, . . . , with the restriction that a ∈ Σcall and
b ∈ Σret. Basically, we convert “linear” input words over Σ into nested words, as in [1],
which enables our automata to use the stack. Note that in the framework of nested words,
our languages {anbn} and {atnbtn : t = 0, 1, 2, . . .} translate to languages over a one-letter
alphabet, that is, to a unary language of nested words.

Salomaa [22] proved that every deterministic visibly pushdown automaton over the
alphabet Σ = Σcall ∪ Σret, with Σcall = {a1, a2} and Σret = {b1, b2}, recognizing a related
language

Ln = {ai1 . . . aik
bik

. . . bi1 : i1, . . . , ik ∈ {1, 2}, k = tn, t = 0, 1, 2, . . .}, (1)

should have at least
√
n states. The proof does not essentially use different kinds of push and

pop symbols, so the lower bound extends to {atnbtn : t = 0, 1, 2, . . .}. Moreover, the crucial
point is just that the word anbn is accepted, and all words ambm, 0 < m < n, rejected; as a
result, the lower bound of

√
n holds for the language {anbn} as well.

Salomaa also constructed a VPA with n + 1 states and 3 stack symbols for Ln, and
conjectured that this VPA is optimal in terms of |Q| + |P |. We refute this conjecture by
constructing a VPA with O(

√
n) states and O(1) stack symbols that recognizes Ln.

I Theorem 6. For every n ≥ 1, there exists a deterministic visibly pushdown automaton A
that recognizes the language {anbn} and satisfies |Q| ≤ O(

√
n) and |P | ≤ O(1). In contrast,

every (possibly nondeterministic) visibly pushdown automaton that recognizes this language
satisfies the inequality |Q| ≥

√
n.

I Theorem 7. If n = n1n2 ≥ 1, then there exists a deterministic visibly pushdown automaton
A that recognizes the language {atnbtn : t = 0, 1, 2, . . .} and satisfies |Q| ≤ O(n1 + n2) and
|P | ≤ O(1). In contrast, every deterministic visibly pushdown automaton that recognizes
this language satisfies the inequality |Q| ≥ Ω(min(n1 + n2)), where the minimum is over all
factorizations n = n1n2 with natural n1, n2 ≥ 1.

D. Chistikov 347

Theorem 7 shows that the smallest VPA counting modulo n have Θ(f(n)) control states,
with f(n) = min(n1 + n2) over all factorizations n = n1n2; here

√
n ≤ f(n) ≤ n+ 1 for all n,

the left-hand inequality is tight for perfect squares, n = k2, and the right-hand inequality for
prime numbers, n = p.

I Proposition 8. The results of Theorem 7 also hold for the language Ln, as defined
by (1). For n = k2, k = 1, 2, . . . , the automaton witnessing the upper bound satisfies
|Q| + |P | = O(k) = O(

√
n), which disproves the conjecture of Salomaa [22]. For n = p,

p prime, the lower bound shows that the construction of VPA for Ln given in [22] is optimal
up to a constant factor.

The rest of the section is devoted to the proofs of Theorems 6 and 7 and Proposition 8.

5.1 Main ingredients for upper bounds
The high-level idea for proving the upper bounds is simple and common for all three languages:
let the automaton first count blocks of a, each of size n1, and mark their starting positions
by pushing a special symbol on the stack. Then, as the automaton reads bs and pops from
the stack, it counts the number of blocks. Here it can count either to n2 or modulo n2,
and the bound on the total number of states is O(n1 + n2). So we will need an auxiliary
construction, that of a VPA recognizing the language

Lcycles = {asbt+d : n1 | s, n1n2 | t, s ≥ t+ d, 0 ≤ d < n1}. (2)

Let us define such a VPA, denoted V(n1, n2), as follows.
First take n1 control states and connect them in a single cycle such that reading an a

from the input moves the device one step along the cycle. Make one of these states, q1, the
initial state and let the device push 1 when it reads a at q1, and push 0 when it reads a
at any other state of the cycle. Now take new n2 control states and connect them into a
different cycle. The automaton will only use these states when reading bs from the input;
more specifically, demand that popping 0 from the stack not change the control state, and
popping 1 moves the device one state further along the cycle.

Now connect these two disjoint cycles in the following manner. Let the device, upon
reading b and popping 0 at q1, move to some specific state of the second cycle, q2. We shall
call this state q2 the entry point of the second cycle. Make q1 and q2 the only final states,
and turn all missing transitions into some (new) sink state.

I Lemma 9. The VPA V(n1, n2) has n1 + n2 +O(1) control states and 3 stack symbols and
recognizes Lcycles.

5.2 Proof of Theorem 6
As mentioned above, the lower bound is essentially shown in Salomaa [22, Theorem 4.1]; and
it is instructive to see that it holds even for nondeterministic VPA: it suffices to carry out
the reasoning for an accepting branch of the computation. So, in what follows we only need
to focus on the upper bound.

Given n, choose n1 = n2 = b
√
n− 1c and r = n− n2

1 > 0, construct the VPA V(n1, n2)
described above, and modify it in the following way. First, add a new stack symbol 2, make
a simple path of r transitions reading a and pushing 2, and attach it to the VPA so that the
last of these transitions leads to q1, the “entry point” of the first cycle in V(n1, n2). Mark
the source of the attached path, q0, as the initial state of the VPA. Next, consider the second

FSTTCS 2014

348 Notes on Counting with Finite Machines

cycle of the VPA and transform it into a path by changing the destination of the transition
that pops 1 and leads from a state q to q2, the “entry point” of the second cycle. Make this
transition lead from q to a new state q′ instead, and then add to q′ a path of r transitions
that read b from the input and pop 2 from the stack. Make the last state on this path the
only final state. (As previously, all missing transitions are sent to the sink state.) Now
it is easy to see that the obtained VPA accepts exactly the words asbs′ with s = r + kn1,
s′ = n2

1 + r, and s = s′—or, to put it differently, recognizes the language {anbn}. Since it
has n1 + n2 + 2r +O(1) ≤ 4

√
n+O(1) control states and 4 stack symbols, this completes

the proof of Theorem 6.

5.3 Main ingredients for lower bounds
We now turn our attention to the lower bound of Theorem 7, for the language {atnbtn : t =
0, 1, 2, . . .}. Our goal is to show that every deterministic VPA recognizing this language has
at least Ω(min(n1 + n2)) states, where min is taken over all factorizations n = n1n2 with
integers n1, n2 ≥ 1.

The key insight is the decomposition of a VPA for this language into two finite-state
transducers. The first transducer transforms the first part of the input into a sequence of
stack symbols, and the second transducer transforms the reversal of this sequence into a
sequence of accepting and non-accepting states. Periodic behaviour of these transducers
enables us to obtain the desired lower bound.

To use this idea, we need to go through some auxiliary constructions first. Take a
(deterministic) VPA A and denote by Q the set of its control states. First consider the
behaviour of A on words of the form as, s = 0, 1, 2, . . . ,—one can regard them all as prefixes
of the infinite sequence aω. Restricted to these words, the VPA A behaves as a deterministic
letter-to-letter finite-state transducer, with symbols pushed on the stack interpreted as output
letters. Since the input to this push-transducer is a prefix of the infinite sequence aω, it
is easy to see that the sequence of the states A gets into is eventually periodic with some
period k ≤ |Q|, and the word pushed on the stack is of the form uwmw′, where |w| = k and
w = w′w′′ for some w′′. That is, the push-transducer transforms aω into uwω; words u, w,
and w′ are uniquely determined by q, the state in which A arrives upon reading as. Denote
by Q′ the set of states that A visits infinitely often; |Q′| = k.

Now let A stop in some state q ∈ Q′ after an input as. Suppose this state q is fixed. If,
from this point on, the input tape supplies A with symbols b only, then A will operate as
another finite-state transducer, the pop-transducer : the symbols popped from the stack are
interpreted as input letters of the transducer, and the states from Q the device visits are the
output letters. Observe that the input to this transducer is (w̄)mū, for w̄ = (w′)R(w′′)R and
ū = (w′)R

uR, where by vR we denote the reversal of a word v. This input is a prefix of the
infinite periodic sequence αq = (w̄)ω augmented with the finite word ū. Note that the words
w̄ and ū are uniquely determined by q.

I Lemma 10. For each q ∈ Q′, the pop-transducer transforms the sequence αq into an
eventually periodic sequence with a period rq such that rq | tqk for some tq ≤ |Q|.

I Lemma 11. For each i, 0 ≤ i < k, the behaviour of A on words asbs with s mod k = i is
eventually periodic with period rq for some fixed q ∈ Q′: more precisely, for each i, 0 ≤ i < k,
there exists some q ∈ Q′ and an integer s(i) such that the VPA A either accepts or rejects
both words as1bs1 and as2bs2 , provided that s1, s2 ≥ s(i), the period rq divides |s1 − s2|, and
k divides |s1 − s2|.

D. Chistikov 349

I Lemma 12. If A recognizes {atnbtn : t = 0, 1, 2, . . .}, then n | g1g2 for some integers
g1, g2 ≤ |Q|.

As the proof shows, the conclusion of Lemma 12 holds for any VPA A that recognizes a
language L with L ∩ {asbs : s ≥ s0} = {atnbtn : t = t0, t0 + 1, . . .} for some fixed s0, t0 ∈ N.

5.4 Proofs of Theorem 7 and Proposition 8
Proof of Theorem 7. The lower bound can be obtained as a corollary of Lemma 12, by the
following argument. Since n|g1g2, there exists some f such that nf = g1g2. Therefore, we can
assume that n = n1n2 for some n1, n2 with n1 |g1 and n2 |g2. Furthermore, as g1, g2 ≤ |Q|, it
also holds that n1, n2 ≤ |Q|, that is, |Q| ≥ max{n1, n2}. But max{n1, n2} ≥ (n1 + n2)/2, so
it follows that |Q| ≥ (n1+n2)/2, and so |Q| ≥ min(n′1+n′2)/2, with min over all factorizations
n = n′1n

′
2. This concludes the proof of the lower bound.

As mentioned above, we use the same idea as in Theorem 6 to prove the upper bound.
Given a factorization n = n1n2, we show how to construct a VPA that accepts this language
and satisfies the stated bounds. First note that {atnbtn : t = 0, 1, 2, . . .} = Lbalanced ∩ Lcycles,
where Lbalanced = {asbs : s ≥ 0} and Lcycles is given by the definition in (2) on p. 347. It is
straightforward to construct a VPA for Lbalanced with 5 control states and 2 stack symbols,
and a VPA for the intersection of languages is easily obtained by taking the products of
control states and stack alphabets. Therefore, it suffices to show that Lcycles can be recognized
with a VPA with |Q| = n1 + n2 + O(1) and |P | ≤ 3, but we already know how to do this
with Lemma 9. This completes the proof of Theorem 7. J

Proof of Proposition 8. The lower bound holds, because the intersection Ln ∩ {a1, b1}∗
is essentially {atnbtn : t = 0, 1, 2, . . .}, just with a1, b1 in place of a, b. As a result, the
smallest VPA recognizing Ln can be at most a constant factor smaller than the smallest VPA
recognizing {atnbtn : t = 0, 1, 2, . . .}. As for the upper bound, it suffices to replace, in the VPA
V(n1, n2) for Lcycles, transitions reading a and b with pairs of transitions reading ai and bj , and
replace the VPA for Lbalanced with a VPA for {ai1 . . . aik

bik
. . . bi1 : i1, . . . , ik ∈ {1, 2}}. J

6 Open questions

Unanswered questions of a related nature abound. Probably the most natural is the following
one: for which classes of machines are other modes of operation (nondeterministic, universal,
and alternating ones) of help for the task of recognizing the language {1n} ? Kupferman
et al. [12] provide a comprehensive answer for the classes of finite-state machines. For other
classes, a short list of some specific problems follows:

1. Does nondeterminism or alternation make it possible for pushdown automata to count
to n with o(logn) states for all n? The arguments that lead to the lower bound of
Ω(logn) in Theorem 3 only work for deterministic PDA and seem tricky or impossible
to generalize. For other modes of operation, the only known lower bound is at most
logn/ log logn (1+o(1)), given by the Kolmogorov argument of Corollary 2 and Remark 3.

2. Can nondeterministic or universal counter automata count to n with o(
√
n) states? As

seen from the upper bound of Theorem 5, counter automata with unbounded alternation
can, but is it achievable with bounded alternation depth?

3. What is the state complexity of recognizing the language {atnbtn : t = 0, 1, 2, . . .} with
nondeterministic visibly pushdown automata?

Needless to say, many other related problem settings exist.

FSTTCS 2014

350 Notes on Counting with Finite Machines

References
1 Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1–

43, 2009. Revised version available at http://robotics.upenn.edu/~alur/Jacm09.pdf.
2 Jean-Camille Birget. Two-way automata and length-preserving homomorphisms. Mathem-

atical Systems Theory, 29(3):191–226, 1996.
3 Can one-way alternating automata with one-counter recognize some unary non-regular

languages? http://cstheory.stackexchange.com/q/19046/13649, 2013–2014.
4 Gregory J. Chaitin. On the length of programs for computing finite binary sequences.

J. ACM, 13(4):547–569, 1966.
5 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,

28(1):114–133, 1981.
6 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,

and abhi shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

7 Dmitry Chistikov and Rupak Majumdar. Unary pushdown automata and straight-line
programs. In ICALP’14, Part II, volume 8573 of LNCS, pages 146–157, 2014.

8 Marek Chrobak. Finite automata and unary languages. Theor. Comput. Sci., 47(3):149–
158, 1986.

9 Yuval Filmus. Lower bounds for context-free grammars. Inf. Process. Lett., 111(18):895–
898, 2011.

10 Matthew M. Geller, Harry B. Hunt III, Thomas G. Szymanski, and Jeffrey D. Ullman.
Economy of description by parsers, DPDA’s, and PDA’s. Theor. Comput. Sci., 4(2):143–
153, 1977.

11 Seymour Ginsburg and H. Gordon Rice. Two families of languages related to ALGOL.
J. ACM, 9(3):350–371, 1962.

12 Orna Kupferman, Amnon Ta-Shma, and Moshe Y. Vardi. Concurrency counts. Technical re-
port, available at http://www.cs.tau.ac.il/~amnon/Papers/KTV.submitted.cjtcs.ps,
2001.

13 Ernst L. Leiss. Succinct representation of regular languages by boolean automata. Theor.
Comput. Sci., 13(3):323–330, 1981.

14 Ming Li and Paul M. B. Vitányi. An introduction to Kolmogorov complexity and its applic-
ations. Texts and monographs in computer science. Springer, 1993.

15 Markus Lohrey. Algorithmics on SLP-compressed strings: a survey. Groups Complexity
Cryptology, 4(2):241–299, 2012.

16 Albert R. Meyer and Michael J. Fischer. Economy of description by automata, grammars,
and formal systems. In SWAT (FOCS) 1971, pages 188–191, 1971.

17 Alexander Okhotin, Xiaoxue Piao, and Kai Salomaa. Descriptional complexity of input-
driven pushdown automata. In Dassow Festschrift 2012, volume 7300 of LNCS, pages
186–206, 2012.

18 Alexander Okhotin and Kai Salomaa. Complexity of input-driven pushdown automata.
SIGACT News, 45(2):47–67, 2014.

19 Giovanni Pighizzini. Deterministic pushdown automata and unary languages. Int. J. Found.
Comput. Sci., 20(4):629–645, 2009.

20 Giovanni Pighizzini, Jeffrey Shallit, and Ming-wei Wang. Unary context-free grammars and
pushdown automata, descriptional complexity and auxiliary space lower bounds. J. Comput.
Syst. Sci., 65(2):393–414, 2002.

21 Wojciech Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit
input. In ICALP’04, volume 3142 of LNCS, pages 15–27, 2004.

22 Kai Salomaa. Limitations of lower bound methods for deterministic nested word automata.
Inf. Comput., 209(3):580–589, 2011.

http://robotics.upenn.edu/~alur/Jacm09.pdf
http://cstheory.stackexchange.com/q/19046/13649
http://www.cs.tau.ac.il/~amnon/Papers/KTV.submitted.cjtcs.ps

Mixed Nash Equilibria in Concurrent
Terminal-Reward Games
Patricia Bouyer, Nicolas Markey, and Daniel Stan

LSV – CNRS & ENS Cachan – France

Abstract
We study mixed-strategy Nash equilibria in multiplayer deterministic concurrent games played
on graphs, with terminal-reward payoffs (that is, absorbing states with a value for each player).
We show undecidability of the existence of a constrained Nash equilibrium (the constraint requir-
ing that one player should have maximal payoff), with only three players and 0/1-rewards (i.e.,
reachability objectives). This has to be compared with the undecidability result by Ummels and
Wojtczak for turn-based games which requires 14 players and general rewards. Our proof has vari-
ous interesting consequences: (i) the undecidability of the existence of a Nash equilibrium with
a constraint on the social welfare; (ii) the undecidability of the existence of an (unconstrained)
Nash equilibrium in concurrent games with terminal-reward payoffs.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, D.2.4 Software/Program Verification), G.3 Probability and statistics

Keywords and phrases concurrent games, randomized strategy, Nash equilibria, undecidability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.351

1 Introduction

Games (especially games played on graphs) have been intensively used in computer science as
a powerful way of modelling interactions between several computerised systems [11, 8]. Until
recently, more focus had been put on the study of purely antagonistic games (a.k.a. zero-sum
games, where the aim of one player is to prevent the other player from achieving her objective),
which conveniently model systems evolving in a (hostile) environment.

Over the last ten years, games with non-zero-sum objectives have come into the picture:
they allow for conveniently modelling complex infrastructures where each individual system
tries to fulfill its own objectives, while still being subject to actions of the surrounding
systems. As an example, consider (a simplified version of) the team formation problem [4],
an example of which is presented in Fig. 1: several agents are trying to achieve tasks; each
task requires some resources, which are shared by the players. Achieving a task thus requires
the formation of a team that have all required resources for that task: each player selects
the task she wants to achieve (and so proposes her resources for achieving that task), and
if a task receives enough resources, the associated team receives the corresponding payoff
(to be divided among the players in the team). In such a game, there is a need of cooperation
(to gather enough resources), and an incentive to selfishness (to maximise the payoff).

In that setting, focusing only on optimal strategies for one single agent is not relevant.
In game theory, several solution concepts have been defined, which more accurately represents
rational behaviours of these multi-player systems; Nash equilibrium [9] is the most prominent
such concept: a Nash equilibrium is a strategy profile (that is, one strategy to each player)
where no player can improve her own payoff by unilaterally changing her strategy. In other
terms, in a Nash equilibrium, each individual player has a satisfactory strategy with regards
to the other players’ strategies. Notice that Nash equilibria need not exist or be unique,

© Patricia Bouyer, Nicolas Markey, and Daniel Stan;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 351–363

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.351
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

352 Mixed Nash Equilibria in Concurrent Terminal-Reward Games

1
2 ,

1
2 1, 0

A1 → T1, A2 → T1
A1 → T2, A2 → T2

A1 → T1, A2 → T2
A1 → T2, A2 → T1

player A1 has resources {r1, r2, r3}
player A2 has resources {r2, r3}

task T1 requires resources {r1, r2}
task T2 requires resources {r1, r3}

Figure 1 An instance of the team-formation problem. For any deterministic choice of actions,
one of the players has an incentive to change her choice: there is no pure Nash equilibrium. However
there is one mixed Nash equilibrium, where each player plays T1 and T2 uniformly at random.

and are not necessarily optimal: Nash equilibria where all players lose may coexist with
more interesting Nash equilibria. Therefore, looking for constrained Nash equilibria (e.g.
equilibria in which some players are required to win, or equilibria with maximal social welfare)
is an interesting and important problem to study, which has been suggested both in the
game-theory community [5] and in the computer-science community [12].

In this paper, we study (deterministic) concurrent games played on graphs. Such games
are indeed a general and relevant model for interactive systems, where the agents take their
decision simultaneously (which is the case for instance in distributed systems). Concurrent
games subsume turn-based games, where in each state, only one player has the decision for the
next move, and which have attracted more focus until now in the computer science community.
Notice also that in game theory, models are almost exclusively based on concurrent actions
(e.g. games in normal form given as matrices indicating the payoff of each player for each
concurrent choice of actions, and extensions thereof, such as repeated games).

In this paper we are interested in randomized (a.k.a. mixed) strategies for the players.
A mixed strategy consists in choosing, at each step of the game, a probability distribution
over the set of available actions; the game then proceeds following the product distribution
of the strategies of all players. Strategies may depend on the history of the game, i.e., the
sequence of visited states, but do not require to see the actions played by the other agents.
In previous works, the first two authors have focused on pure strategies, where at each step,
each player proposes exactly one action, and developed algorithms for deciding the existence
of constrained Nash equilibria in various settings [1]. In the present paper, we focus on
terminal-reward payoffs (where some designated states are absorbing, and each player has
a value—or reward—attached to each of these states): the payoff of a player is then her
expected reward. We will also consider the subclass of games with terminal-reachability
objectives, where the reward in each absorbing state is either 0 or 1 (hence the expected
reward for a player is the probability to reach her winning states). The game in Fig. 1 has
terminal-reward payoffs: they are given by the values labelling the two absorbing states (1 for
player A1 and 0 for player A2 in the right-most state). This game can be shown to have no
pure-strategy Nash equilibria, but it has a mixed-strategy one.

Our results. Our main result is the undecidability of the existence of a 0-optimal Nash
equilibrium in concurrent games with terminal-reachability payoff functions, with only
three players and strategies insensitive to actions. A 0-optimal Nash equilibrium is a Nash
equilibrium in which one designated player is required to have maximal payoff (that is, 1 in
the case of terminal-reachability payoffs). A corollary of our result is the undecidability of
the existence of unconstrained Nash equilibria in concurrent games with terminal payoffs.
We believe that these results are important, as they solve natural questions for basic objectives.
Moreover, our constructions give new insight in the understanding of concurrent games and
their algorithmics, and contain several intermediary tools that can be interesting on their
own in different contexts.

P. Bouyer, N. Markey, and D. Stan 353

Several results already exist in related settings:
our result should first be compared with the undecidability of the existence of a 0-optimal
Nash equilibrium in turn-based games with terminal-reward payoffs[13], which requires
14 players and general rewards. It should be noticed that this result requires more than
0/1 rewards (contrary to our result), since the existence of a 0-optimal equilibrium can
be decided in polynomial time in turn-based games with terminal-reachability payoffs
(by combining the reduction to pure 0-optimal Nash equilibria of [12] and the algorithm
in [13] for computing such equilibria);
our result should also be compared with polynomial-time algorithm for deciding the
existence of a 0-optimal pure Nash equilibrium in concurrent terminal-reward games [15];
our result has several corollaries, that we develop at the end of the paper:

the existence of a (unconstrained) Nash equilibrium in terminal-reward games with
three players; on the opposite, stationary ε-Nash equilibria do always exist in concurrent
games for terminal-reachability (and terminal-reward) games [3];
the existence of a Nash equilibrium that maximizes the social welfare in games
with terminal-reachability payoffs is undecidable with three players. This should be
compared with the NP-completeness of the existence of such equilibria for two-player
normal-form games [6];
the existence of a constrained finite-memory Nash equilibrium in terminal-reachability
games is undecidable with three players;
the existence of a constrained Nash equilibrium in safety games is undecidable with
three players. This can be compared to the result of [10], which states that there
always exists a Nash equilibrium (with little memory) in a safety game.

By lack of space, only some sketches of proofs could be included in this paper. We refer
the interested reader to [2] for full details.

2 Definitions

I Definition 1. A concurrent arena A is a tuple A = 〈States,Agt,Act,Tab, (Allowi)i∈Agt〉
where States is a finite set of states; Agt is a finite set of players; Act is a finite set of actions;
For all i ∈ Agt, Allowi : States −→ 2Act\{∅} is a function describing authorized actions in a
given state for Player i; Tab : States× ActAgt → States is the transition function.

A state s ∈ States is said terminal (or final) if Tab(s, ·) ≡ s. We write FA (or simply F
when the underlying arena is clear from the context) for the set of terminal states of A.

A history of such an arena A is a finite, non-empty word h ∈ States+. We denote
by first(h) and last(h) respectively the first and last states of the word h. During a play,
players in Agt choose their next moves concurrently and independently from each others,
according to the current history h and what they are allowed to do in the current state last(h).

I Definition 2. A strategy for Player i is a function σi : States+ → Dist(Act) with the
requirement that σi(h)−1(R>0) ⊆ Allowi(last(h)) for all history h.

Let α ∈ Act. We write σi(α | h) for the probability mass σi(h)(α) of action α in the
distribution σi(h). In the sequel, we sometimes write σi(h) = α when σi(α | h) = 1. When
σi(h) ∈ Act for all h, the strategy σi for player i is said to be pure. Otherwise it is said to
be mixed. We denote by Si (resp. Si) the set of pure (resp. mixed) strategies of Player i.
A strategy profile σ is a mapping assigning one strategy to each player. We write S for the
set of all strategy profiles, and for σ ∈ S, we will write σi in place of σ(i) for the strategy of
Player i.

FSTTCS 2014

354 Mixed Nash Equilibria in Concurrent Terminal-Reward Games

I Remark. While strategies are aware of the sequence of actions played in a turn-based game,
we can notice this is generally not the case in the concurrent setting depicted here, since
strategies only depend on the sequence of visited states. This is realistic when considering
multi-agent systems, where only the global effect of the actions of the players is assumed to
be observable. However this partial-information hypothesis makes the detection of strategy
deviations (and therefore the computation of Nash equilibria) harder.

Consider a strategy profile σ ∈ S and an initial state s0. For any history h ∈ States+ and
any player i ∈ Agt, we construct the random variable αi(h) ∈ Act with distribution σi(h)
such that (αi(h))i∈Agt,h∈States+ is a family of independent random variables.

We define the stochastic process (Xn)n∈N inductively by X0 = s0 and for every n,
Xn+1 = Xn · Tab (last(Xn), (αi(Xn))i). For each n, the random variable Xn takes value in
Statesn+1: (Xn)n is an increasing sequence of prefixes whose limit is an infinite random run
X∞ ∈ Statesω.

We now consider the standard Borel σ-algebra over Statesω from s0, and define the
probability measure Pσ as the probability distribution induced by X∞, that is, if B is a Borel
subset of Statesω, Pσ(B) = P(X∞ ∈ B). It coincides with the standard construction based
on cylinders. In the following, to make explicit the initial state, we may write Pσ(B | s0)
instead of simply Pσ(B). In the sequel, we sometimes also abusively write h for the cylinder
h · Statesω: then, when we write Pσ(h | s0), we mean Pσ(X|h| = h). If Pσ(h | s0) > 0,
we say that σ enables h from s0: in that case we can define the conditional probability
Pσ(B | h) = Pσ(B | X|h| = h).

Finally we say that a node n is activated by a strategy profile whenever it is visited with
positive probability under that profile.

I Definition 3. A terminal-reward game G = 〈A, s, (φi)i∈Agt〉 is given by an arena A,
an initial state s, and for every player i ∈ Agt, a real-valued function φi ranging over terminal
states of A. In the following, we extend φi to every r ∈ Statesω, by φi(r) = φi(s) if r is an
infinite path ending in a state s ∈ F, and φi(r) = 0 otherwise.

The game G will be said a terminal-reachability game whenever each function φi only
takes values 0 or 1.

I Remark. In the sequel, we represent terminal-reward games as graphs with circle states
representing non-terminal states, and rectangle states representing terminal states, decorated
with the associated rewards for all players. The self-loop on terminal states will be omitted.
The transition table of the underlying arena is encoded by decorating the transitions with the
move vectors that trigger it. Move vectors are written as words over Act, by identifying Agt
with the subset J0, |Agt| − 1K. We will use · as a special symbol representing any action. Also,
for a set S of words in (Act∪{·})k, with k < |Agt|, and for a letter a ∈ Act∪{·}, we write aS
for the words {aw | w ∈ S}. See Fig. 2 (and the subsequent figures) for an example.

Consider a terminal-reward game G, a strategy profile σ, and an enabled history h.
One can easily check that φi is a mesurable function under Pσ. The expected payoff of
Player i under σ after h is defined as

Eσ(φi | h) =
∑

x∈Img(φi)

x · Pσ
(
φ−1
i ({x}) | h

)
.

In case G is a terminal-reachability game, the expected payoff of Player i is the probability
of reaching terminal states with value 1 under φi.

Let G be a terminal-reward game. Let σ ∈ S be a (mixed) strategy profile in G, and h be
a history. A single-player deviation (simply called deviation hereafter, as we only consider

P. Bouyer, N. Markey, and D. Stan 355

deviations of a single player at a time) of σ for Player i after history h is another strategy
profile σ′ for which there exists σ′′i ∈ Si satisfying

∀h′ ∈ States+.

{
h v h′ ⇒ σ′i(h′) = σ′′i (h′)

∀j ∈ Agt. (h 6v h′ ∨ j 6= i)⇒ σ′j(h′) = σj(h′)

where v is the prefix relation. We then write σ′ = σ[i/σ′′i]h. The deviation σ[i/σ′′i]h is said
deterministic if σ′′i is.

I Definition 4. Let G be a terminal-reward game. A strategy profile σ forms a Nash
equilibrium after a history h when the following conditions are met:

h ∈ States+ is enabled by σ from first(h);
No player has a profitable deviation; in other terms, for all i ∈ Agt and for all σ′i ∈ Si,
it holds Eσ[i/σ′

i]h(φi | h) ≤ Eσ(φi | h).
We then write that 〈σ, h〉 is a Nash equilibrium.

A Nash equilibrium 〈σ, h〉 is said 0-optimal whenever the expected payoff of Player 0 is
optimal, that is, Eσ(φi | h) = max(Img(φ0)). In case of a terminal-reachability game, it
amounts to saying that the payoff of Player 0 is 1.

The following result will be useful all along the paper:

I Lemma 5. Let G be a terminal-reward game, and 〈σ, h〉 be a Nash equilibrium. If 〈σ, h〉
enables h′, then 〈σ, h′〉 is a Nash equilibrium.

In general, several Nash equilibria may coexist. It is therefore very relevant to look for
constrained Nash equilibria, that is, Nash equilibria that satisfy a constraint on the expected
payoff. In this paper, we only consider 0-optimality as the constraint, and we prove that
the existence of a 0-optimal Nash equilibrium in a three-player terminal-reachability game is
undecidable. To prove this result, we will first show undecidability in the case of terminal-
reward games, and then extend the result to terminal-reachability games. Those results will
have interesting corollaries, like the undecidability of the existence of a Nash equilibrium
(with no constraint) in terminal-reward games, when the rewards are in {−1, 0, 1}, or the
existence of a Nash equilibrium with optimal social welfare.

3 Tools

In this section, we develop several intermediary results that will be useful for our reduction.
We first show that we can equivalently define Nash equilibria by considering only deterministic
deviations (for non-negative terminal-reward games). We then study a few simple games
and constructions which will be used in the encoding.

3.1 Deterministic deviations
We explain in this section that it is enough to consider deterministic deviations in the
characterization of a Nash equilibrium.

I Proposition 6. Let G be a terminal-reward game with non-negative rewards. Pick a history
h ∈ States+, and a strategy profile σ. Then 〈σ, h〉 is a Nash equilibrium if, and only if, for
all i ∈ Agt and all deterministic deviation σ′′i ∈ Si, it holds Eσ[i/σ′′

i]h(φA | h) ≤ Eσ(φi | h).

I Remark. A similar result was proven in [15, Proposition 3.1] for turn-based games with
qualitative Borel objectives (the payoff is 1 if the run belongs to the designed objective, and
it is 0 otherwise).

FSTTCS 2014

356 Mixed Nash Equilibria in Concurrent Terminal-Reward Games

s0

c0, b1 a0, a1 d0, d1 b0, c1

mn

mm

nm

nn

(a) A generic two-player two-action one-stage game

m

n

m n0
1

a0, a1 b0, c1

c0, b1 d0, d1

(b) Associated matrix represent-
ation

Figure 2 Representations of a one-shot game.

3.2 One-stage games
We analyse two-player two-action one-stage games (that is, games that end up in a terminal
state in one step), and obtain useful properties of their Nash equilibria. Such games can
be represented by a graph as shown in Fig. 2a. Alternatively, these games, also known
as one-shot games, can be represented as a matrix as in Table 2b (this is the standard
representation in the game-theory community).

I Lemma 7. Consider the two-player two-action one-shot concurrent game G of Fig. 2, and
pick some strategy profile σ. If 〈σ, s0〉 is a Nash equilibrium, then for every player i ∈ {0, 1},
it holds{

σi(m | s0) < 1 ⇒ [(di − ci) + (ai − bi)] · σ1−i(m | s0) ≤ di − ci
σi(m | s0) > 0 ⇒ [(di − ci) + (ai − bi)] · σ1−i(m | s0) ≥ di − ci

3.3 k-action matching-pennies games

s0

a0, a1 b0, b1

6=k=k

Figure 3 Matching-pennies game.

The classical matching-pennies games are a special
case of one-stage games, where ai = di and bi =
ci: basically, there are two outcomes, depending on
whether the players propose the same action or not.
This game can be generalized to k (≥ 2) actions, as
depicted on Fig. 3. In this figure (and in the sequel),
=k (resp. 6=k) is a shorthand for pairs of identical (resp.
different) actions taken from a set of k actions Σk =

{c1, . . . , ck}. In other terms, =k represents the set of words {cici | 1 ≤ i ≤ k}, and 6=k is the
complement in Σ2

k.

I Lemma 8. In the k-action matching-pennies game, playing uniformly at random for both
players defines a Nash equilibrium. Moreover, this is the unique Nash equilibrium of the
game if, and only if, either a0 < b0 and a1 > b1, or a0 > b0 and a1 < b1. The payoff of this
Nash equilibrium is

(1
k · a0 +

(
1− 1

k

)
· b0,

1
k · a1 +

(
1− 1

k

)
· b1
)
.

3.4 Games without equilibrium
In this section, we show that there are games that admit no Nash equilibria. We then explain
how these games can be used to impose constraints on payoffs.

Consider the game hide-or-run, depicted in Fig. 4a. Player 0 can either hide (h) or run
home (r), while Player 1 can either shoot him (s), or wait (w). If Player 1 shoots while
Player 0 is hiding, she loses her bullet and loses the game. If Player 1 shoots when Player 0

P. Bouyer, N. Markey, and D. Stan 357

1,−1 −1, 1
hs, rw rs

hw

(a) H has no Nash equilibria

2, 0 0, 2
hs, rw rs

hw

(b) H′ does have a Nash
equilibrium

Figure 4 Hide-or-run games.

s′0 GH
continue s0

stop

Figure 5 A game that has a Nash equilibrium if, and only if, G has a 0-optimal Nash equilibrium.

is running, she wins. This game has been shown to have no optimal almost-sure strategy [7],
and we adapt the proof to show that it has no Nash equilibria.

I Lemma 9. The game H has no Nash equilibria.

The payoff function of H takes negative value. In order to only have nonnegative payoffs,
we could shift the values by 1, which yields the game H′ depicted on Fig. 4b. But then one
easily sees that the strategies σ0(h | sn0) = 1 and σ1(s | sn0) = 1 form a Nash equilibrium,
contrary to a claim in [3, 13]. The difference is that when shifting the payoffs, we did not
modify the payoff of the run that never reaches a terminal state: while this run was a positive
deviation for Player 1 in H, this is not the case in H′ anymore.

We now explain how we use the game H to impose a 0-optimality constraint on the payoff.
In the sequel, we restrict1 to games where maxs∈F φ0(s) = 1. Then:

I Lemma 10. Let G be a terminal-reward game. Then we can build a terminal-reward
game G′ (see Fig. 5) such that G has a 0-optimal Nash equilibrium if, and only if, G′ has a
Nash equilibrium.

This lemma will be useful for extending the undecidability result from the constrained
existence to the existence problem (Corollary 14).
I Remark. Note that in the above construction, game H can be replaced by any game with
no Nash equilibria, such that Player 0 can secure a payoff 1− ε for every ε > 0. For instance,
one could use a game with limit-average payoff and nonnegative rewards only [14].

4 Updating values

Our undecidability proof will be based on an encoding of a two-counter machine. In this
section and in the next one, we present games that will be building blocks for our proof.

Consider the game Grk depicted on Fig. 6: in this game, Player 0 has two available actions a
and b from s0, sk and sl, while the other two players can either continue (action c), or

1 This is no loss of generality, since we can linearly rescale payoffs of each player without changing
profitable deviations.

FSTTCS 2014

358 Mixed Nash Equilibria in Concurrent Terminal-Reward Games

s0

sk

0, 4, 4

bS

0, 5 + k, 3− k

aS

1, 4 + k, 4− k

acc

acc

0, 5, 3

aS

0, 4, 4

bS

sl

1, 4 + l, 4− l

acc

0, 5 + l, 3− l

aS
0, 4, 4

bS

bcc

tk

bcc bcc

uk

0, 5, 3

0, 4, 4
·cs

·s·

·=k

·6=k

H

n : 1, 4 + x, 4− x ·cc

Figure 6 The rescale game Grk for k ∈ {1, 2, 3} and l = k − 1.

unilateraly decide to stop the game (action s) and go to a terminal state (where Player 0 will
have payoff 0). In node tk, only players 1 and 2 have a choice: they can either continue to the
game H (when both of them play c), or decide to stop and go to a k-action matching-pennies
game (when one of them plays s). In Fig. 6, we write S as a shorthand representing any
combination of moves of players 1 and 2 where at least one of them decides to stop (action s).
Node n is the initial node of a game H (which is unknown for the moment).

The interesting property of game Grk is that we can relate 0-optimal Nash equilibria
from s0 and those from n: (roughly) there is a Nash equilibrium from n of expected payoff
(1, 4 + x, 4 − x) if, and only if, there is a Nash equilibrium from s0 of expected payoff
(1, 4 + k · x, 4− k · x).

This is because, from s0 and sk, there is a threat for Player 0 that one of the players 1
and 2 stops the game immediately, leading to a state with payoff 0 for her. Hence, Player 0
is forced to “collaborate” with players 1 and 2 and help them be satisfied with their payoffs,
either by joining one of the interesting terminal states of Grk, or in the next game H after n.
Some technical calculations show that Player 0 has to play a with probability k · x at s0, and
with probability x/(x+ 1) at sk and sl. The gadget to the right of tk is just for ensuring
that 0 ≤ k · x ≤ 1 (this condition is required for having the above-mentioned equivalence
between Nash equilibria from s0 and Nash equilibria from n).

5 Comparing values

5.1 Testing game
We present in this section the construction of a game for comparing the expected payoffs
in different nodes. This will be useful in our reduction to encode the zero-tests of our
two-counter machine.

Consider the game Gt depicted on Fig. 7. This game has the very interesting property
that if we assume there are 0-optimal Nash equilibria from n1 and n2 of respective payoffs
(1, 4 + x, 4− x) and (1, 4− y, 4 + y), then there is a 0-optimal Nash equilibrium from s0 if,
and only if, x = y, and the payoff is then (1, 4 + x/2, 4− x/2). Indeed, unless x = 0 or y = 0,

P. Bouyer, N. Markey, and D. Stan 359

s0

sa1

sb1

0, 4, 4

sa2

sb2

H2 H1

n2 : 1, 4− y, 4 + y n1 : 1, 4 + x, 4− x

·ab

·ba

·S

·S

·cc

·cc

·6=2

·6=2

·=2

·=2

·=2

Figure 7 The testing game Gt.

s0

s21, 3, 5 1, 4, 4

s1

·aa ·ba
·ab

·bb
·6=k

·=k

game Ck: s0

s2 0, 3, 51, 3, 5 1, 4, 4

s1

·aa ·ba
·ab

·bb acc, bS
aS

bcc

game D:

Figure 8 The modules Ck (for k ≥ 2) and D. Notice that state s2 should be considered terminal,
as it only carries a self-loop. We could replace it by a two-state loop. We could also see it as a
terminal state with reward (0, 0, 0), but for the proof of Corollary 16, we want the terminal rewards
of players 1 and 2 to always sum to 8, which we could not achieve easily in this case.

it should be the case that a 0-optimal Nash equilibrium activates all states sαj in the game,
and then, as players 1 and 2 have zero-sum objectives, the best way is to play uniformly at
random in all states where this makes sense (when actions a and b are available), and to
play deterministically action c in all states where c is available.

This gadget allows, by plugging in n2 a game with known payoffs (the games on the next
subsection), to check that the payoff at s0 has some particular value (which depends on that
after n1).

5.2 Counting modules

We now present games that generate a family of Nash equilibria with a particular expected
payoffs. These modules will later be plugged at node n2 of game Gt, and will ensure that the
payoff of an Nash equilibrium in Gt will have a predefined form.

I Lemma 11. Consider the games of Fig. 8. For n ∈ N ∪ {+∞}, define

rk(n) =
(

1, 4− 1
kn
, 4 + 1

kn

)
s(n) =

(
1, 4− 1

n+ 1 , 4 + 1
n+ 1

)
Then the set of 0-optimal Nash equilibrium values is {s(n) | n ∈ N ∪ {∞}} in D, and
{rk(n) | n ∈ N ∪ {∞}} in Ck for all k ≥ 2.

FSTTCS 2014

360 Mixed Nash Equilibria in Concurrent Terminal-Reward Games

in

q0

0, 5, 3·S

·cc

(a) Input gadget G init
M

q s·6=

δ1

δ2 δ3

δ4

·δ1δ1

·δ2δ2

·δ4δ4

·δ3δ3

(b) Game GqM (where {δ1, ..., δn} is the set
∆q of transitions leaving q)

δ

q′

1, 4, 4
·6=k+1

·=k+1

(c) Game GδM when
δ = (q, dec(k), q′)

δ

Grk+1

q′

s0

n

(d) Game GδM when
δ = (q, inc(k), q′)

δ

Gr2

s0

n

Gt

s0

n1 n2

q′ C4−k

(e) Game GδM when δ =
(q, zero(k), q′)

δ

Gr2

s0

n

Gt

s0

n1 n2

q′ D

1, 4, 4

·=k+1

·6=k+1

(f) Game GδM when δ =
(q, !zero(k), q′)

Figure 9 Description of the subgames GqM and GδM.

6 Undecidability proof

We now turn to the global undecidability proof of the constrained-existence problem in
three-player games. The proof is a reduction from the recurring problem of a two-counter
machine. We encode the behaviour of a two-counter machineM as a concurrent game GM,
which connects the various subgames depicted on Figures 9 (one initial gadget, one per state
q, one per transition δ). Roughly, this game will encode a configuration (q, c1, c2) ofM using
a Nash equilibrium σ ∈ S from q such that Eσ(φ | s) =

(
1, 4 + 1

2c1 3c2 , 4− 1
2c1 3c2

)
(property

P (q, c1, c2)). Using the various constructions we have made previously, we can show that
if P (q, c1, c2) is satisfied, then there is a transition (q, c1, c2)→δ (q′, c′1, c′2) inM such that
P (q′, c′1, c′2) is satisfied as well, which allows to progress ‘along’ a Nash equilibrium while
building a computation inM.

The correspondence betweenM and GM is made precise as follows:

I Proposition 12. The two-counter machineM has an infinite valid computation if, and
only if, there is a 0-optimal Nash equilibrium from state in in game GM.

This immediately entails:

I Theorem 13. We cannot decide whether there exists a 0-optimal Nash equilibrium in
three-player games with non-negative terminal-reward payoffs.

We now consider several extensions of this result. We first state two straightforward
corollaries. First, applying Lemma 10, we can enforce the 0-optimality constraint in the
game by inserting an initial module. It follows:

P. Bouyer, N. Markey, and D. Stan 361

s (x, y, 8− y) s vx,y

x, 1, 0

x, 0, 1

My

My

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

=M3 =M4 =M5

Figure 10 Transformation of a terminal node (x, y, 8− y) with an intermediate node vx,y. The
table on the right gives the value of My for some values of y (notice that My ⊆My′ when y ≤ y′).

I Corollary 14. We cannot decide whether there exists a Nash equilibrium in three-player
games with (possibly negative) terminal-reward payoffs.

Now we realize that in this reduction, there is a 0-optimal Nash equilibrium from in
if, and only if, there is a Nash equilibrium with social welfare larger than or equal to 9,
where the social welfare is defined as the sum of the expected payoffs of all players. As an
immediate corollary, we get:

I Corollary 15. We cannot decide whether there exists a Nash equilibrium with some lower
bound on the social welfare (or with optimal social welfare) in three-player terminal-reward
games with non-negative payoffs.

We now explain briefly how the main theorem can be extended to terminal-reachability
payoffs. We indeed realize that the payoffs of players 1 and 2 always sum up to 8 in the
reduction (the game between those two players is zero-sum). The idea is then to replace each
terminal state with a simple gadget in which the payoffs of players 1 and 2 are (8, 0) or (0, 8),
and to use an adequate set of actions which decomposes runs into two sets with proportions
mimicking the normal rewards of the terminal state. For instance, for a reward (x, y, 8− y),
the set of actions My = {·ij | ∃0 ≤ r < y. i − j = r mod 8} will lead to (x, 8, 0) and its
complement to (x, 0, 8), as illustrated on Fig. 10. In the game from vx,y, there is a unique
Nash equilibrium which consists in playing uniformly at random for both players, yielding a
payoff of (x, y, 8− y). It remains to normalize and replace each (x, 8, 0) (resp. (x, 0, 8)) by
(x, 1, 0) (resp. (x, 0, 1)).

I Corollary 16. We cannot decide whether there exists a 0-optimal Nash equilibrium in
three-player games with terminal-reachability payoffs.

Finally, (roughly) by dualizing reachability and safety conditions, we can prove that the
constrained existence of Nash equilibrium in safety games cannot be decided. This is to be
compared with the fact that there always exists a Nash equilibrium in safety games [10].

I Corollary 17. We cannot decide whether there exists a Nash equilibrium in three-player
safety games with payoff 0 assigned to Player 0.

7 Conclusion and future work

In this paper we have shown the undecidability of the existence of a constrained Nash equilib-
rium in a three-player concurrent game with terminal-reachability objectives. We believe this
result is surprising, since it applies to very simple payoff functions, and with very few players.
This result has to be compared with the undecidability result of [13], which on one hand,

FSTTCS 2014

362 Mixed Nash Equilibria in Concurrent Terminal-Reward Games

applies to turn-based games, but requires 14 players and the full power of terminal-reward
payoffs. Furthermore, in turn-based games with terminal-reachability payoffs, constrained
Nash equilibria can be computed (in polynomial time) through a reduction to pure Nash equi-
libria [12] and algorithms for computing pure Nash equilibria [13]. We have also mentioned
a couple of interesting corollaries that we do not repeat here.

This work lets open the decidability status of the constrained-existence problem in
two-player games with terminal-reward and terminal-reachability payoffs. In fact, even
the existence of Nash equilibria in such games is an open problem: it was believed until
recently that there are two-player games with nonnegative terminal rewards having no
Nash equilibrium [3, 13], but the proposed example was actually wrong (as we explained in
Section 3.4). If one can find such a game with no Nash equilibrium, then our Corollary 14
extends to nonnegative terminal-reward games, and possibly to terminal-reachability games.
Notice that two-player games have been studied quite a lot in the literature, and we know
for instance that (uniform) ε-Nash equilibria always exist in terminal-reward games [16, 17].

References
1 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure Nash

equilibria in concurrent games. Logical Methods in Computer Science, 2014. Submitted,
under revision.

2 Patricia Bouyer, Nicolas Markey, and Daniel Stan. Mixed Nash equilibria in concurrent
terminal-reward games. Research Report LSV-14-11, Laboratoire Spécification et Vérifica-
tion, ENS Cachan, France, October 2014.

3 Krishnendu Chatterjee, Marcin Jurdziński, and Rupak Majumdar. On Nash equilibria in
stochastic games. In CSL’04, volume 3210 of LNCS, pages 26–40. Springer, 2004.

4 Taolue Chen, Marta Kwiatkowska, David Parker, and Aistis Simaitis. Verifying team
formation protocols with probabilistic model checking. In CLIMA XII, volume 6814 of
LNAI, pages 190–207. Springer, 2011.

5 Vincent Conitzer and Tuomas Sandholm. Complexity results about Nash equilibria. In
IJCAI’03, pages 765–771, 2003.

6 Vincent Conitzer and Tuomas Sandholm. New complexity results about Nash equilibria.
Games and Economic Behavior, 63(2):621–641, 2008.

7 Luca de Alfaro, Thomas Henzinger, and Orna Kupferman. Concurrent reachability games.
Theoretical Computer Science, 386(3):188–217, 2007.

8 Thomas A. Henzinger. Games in system design and verification. In TARK’05, pages 1–4,
2005.

9 John F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy
of Sciences of the United States of America, 36(1):48–49, 1950.

10 Piercesare Secchi and William D. Sudderth. Stay-in-a-set games. International Journal of
Game Theory, 30:479–490, 2001.

11 Wolfgang Thomas. Infinite games and verification. In CAV’02, volume 2404 of LNCS,
pages 58–64. Springer, 2002. Invited Tutorial.

12 Michael Ummels. The complexity of Nash equilibria in infinite multiplayer games. In
FoSSaCS’08, volume 4962 of LNCS, pages 20–34. Springer, 2008.

13 Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in limit-average
games. In CONCUR’11, volume 6901 of LNCS, pages 482–496. Springer, 2011.

14 Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in limit-average
games. Technical Report abs/1109.6220, CoRR, 2011.

15 Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in stochastic
multiplayer games. Logical Methods in Computer Science, 7(3), 2011.

P. Bouyer, N. Markey, and D. Stan 363

16 Nicolas Vieille. Equilibrium in two-person stochastic games I: A reduction. Israel Journal
of Mathematics, 119:55–91, 2000.

17 Nicolas Vieille. Equilibrium in two-person stochastic games II: The case of recursive games.
Israel Journal of Mathematics, 119:93–126, 2000.

FSTTCS 2014

Quantitative Games with Interval Objectives∗

Paul Hunter and Jean-François Raskin

Départament d’Informatique, Université Libre de Bruxelles (U.L.B.)
{paul.hunter,jraskin}@ulb.ac.be

Abstract
Traditionally quantitative games such as mean-payoff games and discount sum games have two
players – one trying to maximize the payoff, the other trying to minimize it. The associated
decision problem, “Can Eve (the maximizer) achieve, for example, a positive payoff?” can be
thought of as one player trying to attain a payoff in the interval (0,∞). In this paper we consider
the more general problem of determining if a player can attain a payoff in a finite union of
arbitrary intervals for various payoff functions (liminf/limsup, mean-payoff, discount sum, total
sum). In particular this includes the interesting exact-value problem, “Can Eve achieve a payoff
of exactly (e. g.) 0?”

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Quantitative games, Mean-payoff games, Discount sum games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.365

1 Introduction

Quantitative two-player games on graphs have been extensively studied in the verification
community [8, 6, 14, 10, 18]. Those models target applications in reactive system synthesis
with resource constraints. In these games two players, Eve and Adam, interact by moving
a token around a weighted, directed graph, for a possibly infinite number of moves. This
interaction results in a play which is an infinite path in the graph. The value of the play is
computed by applying a payoff function to the sequence of weights of the edges traversed
along the path. Typical payoff functions are (lim)sup, (lim)inf, mean-payoff, (total) sum,
and discounted sum.

In the literature is usual to assume that Eve is attempting to maximize the payoff and
Adam is attempting to minimize it. In this context all these games are determined, that is the
maximum that Eve can ensure is equal to the minimum that Adam can ensure, and this value
can be computed in polynomial time for (lim)inf and (lim)sup [5], and in pseudo-polynomial
time for mean-payoff, discounted sum, and total sum [18, 10]. The associated decision
problem is the threshold problem: Given a game graph, a payoff function and a threshold ν
does Eve have a strategy to ensure all consistent plays have payoff at least ν? The threshold
problems for the aforementioned payoff functions are all closely related, and it is known
that Eve and Adam can play optimally in those games with memoryless strategies [11].
Consequently the decision problem for all those games is in NP ∩ coNP. In fact, it can be
shown in UP ∩ coUP for mean-payoff, discounted sum, and total sum, and in PTIME for
(lim)inf and (lim)sup.

The threshold problem can be seen as game in which Eve is trying to force the payoff to
belong to the interval of values [ν,∞). In this paper we consider the more general problem
of determining if a player can attain a payoff in a finite union of arbitrary intervals for

∗ This work was supported by the ERC inVEST (279499) project.

© Paul Hunter and Jean-François Raskin;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 365–377

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.365
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

366 Quantitative Games with Interval Objectives

Table 1 Complexity of deciding the winner in interval games.

Payoff type Single interval Multiple intervals
Binary Unary

Liminf/limsup PTIME NP ∩ coNP Parity game-c
Mean-payoff NP ∩ coNP PSPACE Parity game-hard
Discounted sum (non-singleton) PSPACE-c PTIME
Discounted sum (exact value) PSPACE-hard ?
Total sum EXPSPACE-c PSPACE-c

Table 2 Memory requirements for interval games.

Payoff type Single interval Multiple intervals
(Eve/Adam)

Liminf/limsup Positional
Mean-payoff Finite/Positional Infinite
Discounted sum (non-singleton) Finite
Discounted sum (exact value) Infinite
Total sum Finite/Infinite Infinite

the classical payoff functions mentioned above. That is, we are interested in the following
question: Given a weighted arena G and a finite union of real intervals, what is the complexity
of determining if Eve has a winning strategy to ensure the payoff of any consistent play lies
within the interval union? In particular this includes the interesting exact-value problem:
Can Eve achieve a payoff of exactly ν? Such objectives arise when considering efficiency
constraints, for example can a system achieve a certain payoff without exceeding a certain
target? We consider two versions of our problem depending on whether the numeric inputs
(weights, interval bounds and discount factor) are given in binary or unary. We also consider
the memory requirements for a winning strategy both for Eve and Adam. Our games are a
natural subclass of multi-dimensional quantitative games (see e. g. [6]), however our results
are largely incomparable with that paper as we consider a wider array of payoff functions
and our objective corresponds to disjunctions of multi-dimensional objectives which were not
considered.

Tables 1 and 2 summarize the results of this paper: the first table highlights the complexity
results and the second table highlights the memory requirements for playing optimally. While
the classical threshold problems for weighted games can be solved in PTIME for (lim)inf and
(lim)sup and in NP ∩ coNP for mean-payoff, discounted sum and total sum, and memoryless
strategies always suffice, the situation for our interval objectives is far richer:

For liminf and limsup, we provide a polynomial time algorithm in the case of a single
interval. For a union of intervals, we show that these games are polynomially equivalent
to parity games: so we can solve them in NP ∩ coNP, and a polynomial time algorithm
for interval liminf games would provide a polynomial time algorithm for parity games (a
long-standing open question in the area). Optimal strategies are memoryless for both
players.
For interval mean-payoff games, we provide a recursive algorithm that executes in
polynomial space. This algorithm leads to a NP ∩ coNP algorithm in the case of single
interval objectives. While mean-payoff games can be solved in polynomial time when
weights are given in unary, we show here that interval mean-payoff games are at least as

P. Hunter and J.-F. Raskin 367

hard as parity games even when weights are given in unary. So, a pseudo-polynomial
time algorithm for interval mean-payoff games would lead to a polynomial algorithm for
parity games. For a union of intervals, infinite memory may be necessary for both players,
and for single interval exponential memory may be necessary for Eve while Adam can
always play a memoryless strategy.
Interval discounted sum games are complete for polynomial space when singleton intervals
(and singleton gaps between intervals) are forbidden. The decidability for the case when
singletons are allowed is left open and it generalizes known open problems in single player
discounted sum graphs [7, 1]. Finite memory suffices for both players in the non-singleton
case and infinite memory is needed for both players when singletons are allowed.
For the total sum payoff, we establish a strong link with one counter parity games that
leads to a PSPACE-complete result for unary encoding and an EXPSPACE-complete result
for binary encoding. For single interval games Eve need only play finite memory strategies,
while she may need infinite memory in the general case. In both cases, Adam may require
infinite memory.

Structure of the paper. Section 2 introduces the necessary preliminaries. In Sections 3, 4,
5, and 6 we consider the decision problems and memory requirements for the liminf/limsup,
mean-payoff, discounted sum, and total sum payoff functions, respectively. Due to space
restrictions the full details of several proofs are left for the full version.

2 Preliminaries

A game graph is a tuple G = (V, V∃, E, w, q0) where (V,E,w) is an edge-weighted graph,
V∃ ⊆ V , and q0 ∈ V is the initial state. Without loss of generality we will assume all weights
are integers. In the sequel we will depict vertices in V∃ with squares and vertices in V \ V∃
with circles. In complexity analyses we will denote the maximum absolute value of a weight
in a game graph by W . If V ′ ⊆ V , we denote by G \ V ′ the game graph induced by V \ V ′.

A play in a game graph is an infinite sequence of states π = v0v1 · · · where v0 = q0 and
(vi, vi+1) ∈ E for all i. Given a play π = v0v1 · · · and integers k, l we define π[k..l] = vk · · · vl,
π[..k] = π[0..k], and π[l..] = vlvl+1 · · · . We extend the weight function to partial plays by
setting w(π[k..l]) =

∑l−1
i=k w((vi, vi+1)). A strategy for Eve (Adam) is a function σ that

maps partial plays ending with a vertex v in V∃ (V \ V∃) to a successor of v. A strategy has
memory M if it can be realized as the output of a finite state machine with M states. A
memoryless (or positional) strategy is a strategy with memory 1, that is, a function that
only depends on the last element of the given partial play. A play π = v0v1 · · · is consistent
with a strategy σ for Eve (Adam) if whenever vi ∈ V∃ (vi ∈ V \ V∃), σ(π[..i]) = vi+1.

2.1 Payoff functions
A play in a game graph defines an infinite sequence of weights. We define below several
common functions that map such sequences to real numbers.

Liminf/limsup. The liminf (limsup) payoff is determined by the minimum (maximum)
weight seen infinitely often. Given a play π = v0v1 · · · we define:

lim inf(π) = lim inf
i→∞

w(vi, vi+1) lim sup(π) = lim sup
i→∞

w(vi, vi+1).

Note that by negating all weights and the endpoints of the intervals we transform a limsup
game to a liminf game and vice-versa.

FSTTCS 2014

368 Quantitative Games with Interval Objectives

Mean-payoff. The mean-payoff value of a play is the limiting average weight, however
there are several suitable definitions because the running averages might not converge. The
mean-payoff values of a play π we are interested in are defined as:

MP (π) = lim inf
k→∞

1
k
w(π[..k]) MP (π) = lim sup

k→∞

1
k
w(π[..k]).

As with liminf/limsup games we can switch between definitions by negating weights and
interval endpoints, so we will only consider the MP function.

Discounted sum. The discounted sum is defined by a discount factor λ ∈ (0, 1). Given a
play π = v0v1 · · · , we define:

DSλ(π) =
∞∑
i=0

λi · w(vi, vi+1).

Total sum. The total sum condition can be thought of as a refinement of the mean-payoff
condition, enabling discrimination between plays that have a mean-payoff of 0. Given a play
π we define:

Total(π) = lim inf
k→∞

w(π[..k]) Total(π) = lim sup
k→∞

w(π[..k]).

As with liminf/limsup games we can switch between definitions by negating weights and
interval endpoints, so we will only consider the Total function.

2.2 Interval games
For a fixed payoff function F , an interval F game consists of a finite game graph and a finite
union of real intervals I = I1 ∪ · · · ∪ Ir (given as a list of finitely presentable end-points).
Given an interval F game (G, I), a play π in G is winning for Eve if F (π) ∈ I and winning
for Adam if F (π) /∈ I. We say a player wins the interval game if he or she has a strategy σ
such that all plays consistent with σ are winning for that player. For convenience we will
assume the intervals are non-overlapping and ordered such that sup Ii ≤ inf Ii+1 for all i.

2.3 Parity games
A parity game is a pair (G,Ω) where G is a game graph (with no weight function) and
Ω : V → N is a function that assigns a priority to each vertex. Plays and strategies are
defined as with interval games. A play defines an infinite sequence of priorities, and we say
it is winning for Eve if and only if the minimal priority seen infinitely often is even.

3 Liminf games

The first payoff function we consider is the lim inf function. Note that as this always takes
integer values, we can assume all intervals are closed or open as necessary. We show below
that deciding interval liminf games is polynomially equivalent to deciding parity games. In
particular the number of intervals is equal to the number of even priorities required, so single
interval liminf games are equivalent to parity games with at most three priorities and can
therefore be solved in polynomial time [15]. Further, the range of the priorities is determined
by range of the weight function and vice versa, so this equivalence also holds for unary
encoded interval liminf games.

P. Hunter and J.-F. Raskin 369

I Theorem 1. The following problems are polynomially equivalent:
(i) Deciding if Eve wins a unary encoded interval liminf game;
(ii) Deciding if Eve wins a binary encoded interval liminf game; and
(iii) Deciding if Eve wins a parity game.

Proof. (i)⇒(ii): Trivial.
(ii)⇒(iii): For this reduction, we use the following function which will also be used in

Section 6. Let I = I1 ∪ I2 ∪ · · · ∪ Ir be a finite union of closed integer intervals such that
sup Ii < inf Ii+1 for all i. Define ΩI : Z→ [1, 2r + 1] as follows:

ΩI(n) =


2i if n ∈ Ii,
1 if n < inf I1, and
max{1 + 2i : sup Ii < n} otherwise.

Now suppose (G, I) is an interval liminf game. We transform the game graph G to G′ as
follows. Every edge e is sub-divided and the subdividing vertex is given priority ΩI(w(e)).
The original vertices of G are all given priority 2r + 1.

It is not difficult to see that there is a 1-1 correspondence between plays in G and plays
in G′, and that for any play in G, lim inf w(e) ∈ Ii for some i if and only if the minimum
priority in the corresponding play in G′ seen infinitely often is even.

(iii)⇒(i): To go the other direction, given a parity game played on G we transform it
to an interval liminf game played on G′ as follows. G′ is the weighted graph obtained by
setting the weight of an edge to be the priority at the vertex at the tail of the edge (that is,
the vertex for which the edge is outgoing). The intervals are singleton intervals containing
each of the even priorities that occur in G. Clearly any play in G is a play in G′ and it is
not difficult to see that for a play in G the minimum priority seen infinitely often is even if
and only if the lim inf of the weights of all edges in a play of G′ lie in a given interval. J

It follows from our reduction and the positional determinacy of parity games [17], that:

I Corollary 2. Positional strategies suffice for interval liminf games.

4 Mean-payoff games

In this section we investigate interval mean-payoff games. We give a recursive algorithm
that repeatedly asks for a solution for the mean-payoff threshold problem. As mentioned
earlier this problem is known to be in NP ∩ coNP, and solvable in time O(|V | · |E| ·W) and
space O(|V | · log(|E| ·W)) [4]. We denote this problem by MP∼ν(G) where ∼∈ {≥, >,≤, <}
depending on whether Eve is maximizing or minimizing1 the payoff and whether or not a
payoff of ν is winning for Eve. It is well known [8] that the strict threshold problem can
be reduced to a non-strict threshold problem – this follows from the fact that mean-payoff
values are restricted to a finite set of rationals.

Our algorithm implies that for a fixed number of intervals the problem reduces to the
classic threshold problem (under polynomial-time Turing reductions). In the sequel we
consider the memory requirements of single interval mean-payoff games in more detail. In
particular we show that in this case finite memory strategies (indeed, positional strategies

1 Note that by positional determinacy of mean-payoff games [8], MP and MP compute the same values
when one player is maximizing the payoff. Hence our decision to use MP is not affected by whether
Eve is maximizing or minimizing.

FSTTCS 2014

370 Quantitative Games with Interval Objectives

q0 q1

1

2

1

0

Figure 1 Interval mean-payoff game (I = {1} ∪ {2}) which requires infinite memory.

for Adam) suffice for winning strategies. However, our first observation of this section is that
in general, interval mean-payoff games may require infinite memory.

I Lemma 3. Finite memory winning strategies are insufficient in interval mean-payoff
games.

Proof. Consider the game in Figure 1 where I = {1} ∪ {2}. Eve has an infinite memory
winning strategy in this game as follows. First she plays to q1. Then she counts how many
times Adam takes the loop (q1, q1). If Adam returns to q0 then Eve takes the loop (q0, q0) the
same number of times before returning to q1. Clearly any play consistent with this strategy
will either have MP = 2 (if it eventually remains in q1), or MP = 1 (otherwise). Therefore
the strategy is winning for Eve. Now suppose Eve plays a finite memory strategy σ with
memory M . We observe that under this strategy Eve cannot stay at q0 for more than M
turns without staying there indefinitely. Adam’s strategy is thus to stay at q1 for 2M turns
before returning to q0. It is not difficult to see that any play consistent with this strategy and
σ will yield a mean-payoff of either 0 or in the range (1, 2), and so the strategy is winning
for Adam. J

Upper bounds

We present an algorithm for computing the winning regions in an interval mean-payoff game
in Algorithm 1. The correctness of the algorithm is given by Lemma 4.

Algorithm 1 MPI(G)
Input: A game graph G = (V, V∃, E, w, q0) and a finite union of real intervals I.
Output: (X∃, X∀) where X∃ (X∀) are the vertices from which Eve (Adam) has a winning strategy.

if I = ∅ then
return (∅, V)

end if
a← inf I

if a = −∞ then
(X, X ′)←MPR\I(G) {G is G with V∃ and V \ V∃ swapped}

else
X ← ∅
repeat

(A, A′)←MP�a(G) {If a ∈ I then �=≥, otherwise �=>}
(B, B′)←MP(−∞,a]∪I(G)
X ← X ∪A′ ∪B′

G← G \ (A′ ∪B′)
until A′ ∪B′ = ∅

end if
return (V \X, X)

P. Hunter and J.-F. Raskin 371

I Lemma 4. Let (G, I) be an interval mean-payoff game. MPI(G) correctly computes the
winning regions for Adam and Eve.

Proof sketch. We observe that at each iteration of the loop we remove vertices from which
Adam can either ensure the mean-payoff lies below I or from which he can (recursively)
win on the larger set (with fewer interval end-points) I ′ = (−∞, inf I] ∪ I. Thus it is clear
that Adam has a winning strategy from any vertex removed. We now argue that Eve has
a winning strategy on any vertex remaining. Observe that from these vertices she has two
strategies: a positional strategy σ> which ensures MP � inf I and σ< which wins with the
larger objective I ′. We combine these into a winning strategy for I as follows. Eve chooses
any t in the first interval and keeps track of the current average weight. Whenever the
average weight lies below t she plays σ>, and whenever it lies above t she plays σ<. As the
mean-payoff objective is a tail objective and therefore independent of an initial play prefix, it
is not difficult to see that if she eventually plays only one strategy then the mean-payoff will
lie in I. If she changes strategy infinitely often, then the fact that σ> is positional means she
will never deviate too far below inf I so the lim inf average will lie between inf I and t, and
thus in I. J

The running time for Algorithm 1 is |V |2r−1 ·MP, where MP is the running time for an
algorithm to solve the mean-payoff threshold problem. It is straightforward to see that the
algorithm can be implemented in polynomial space.

I Theorem 5. Let G be a game graph and I a finite union of r real intervals. Whether Eve
wins the interval mean-payoff game (G, I) can be decided in time O(|V |2r · |E| ·W) and space
O(r · |V | · log(|E| ·W)).

I Corollary 6. Determining if Eve wins an interval mean-payoff game for a fixed number of
intervals is in NP ∩ coNP.

We observe that although the players may require infinite memory for a winning strategy,
Algorithm 1 shows that a winning strategy can be succinctly represented by 2r positional
sub-strategies. It is not clear that given such a certificate whether there exists an efficient
algorithm for computing the winning region, however we believe that this is the case. By
the symmetry of the roles of the players, such an algorithm would show that the interval
mean-payoff game is both in NP and coNP.

I Conjecture 1. Determining if Eve wins an interval mean-payoff game is in NP ∩ coNP.

Lower bound

The above conjecture would hold if we could solve interval mean-payoff games with only
polynomially many calls to the mean-payoff threshold problem. We now give a lower bound
for the complexity of deciding interval mean-payoff games which suggests any such algorithm
would yield quite remarkable results: we reduce parity games to interval mean-payoff games
with small weights and interval bounds. In particular this implies that any pseudo-polynomial
time algorithm (including polynomially many calls to the threshold problem) would yield a
polynomial time algorithm for parity games.

I Theorem 7. There is a polynomial time reduction from parity games to unary encoded
interval mean-payoff games.

FSTTCS 2014

372 Quantitative Games with Interval Objectives

v0
v+

v−
v

p

p + 1

p

p

p − 1

p p

p

Figure 2 Vertex gadget for vertex v ∈ V \ V∃ with even priority p.

Proof sketch. Intuitively, we replace each vertex in the original game with the gadget shown
in Figure 2. If the priority of the vertex is even then the gadget is controlled by Eve, and
if it is odd then it is controlled by Adam. The last vertex in the gadget is controlled by
the player that controlled the original vertex. Given a winning strategy in the parity game,
Eve’s corresponding strategy is to play the same on the original vertices, and whenever the
play reaches a gadget corresponding to an even priority p she remains in the gadget until the
current average lies in the interval [p, p+ 1

2]. This ensures that the minimum average seen
infinitely often corresponds to the minimum priority seen infinitely often and so, with the
interval set I =

⋃
p even[p, p+ 1), the strategy will be winning for Eve. Conversely, Adam

can translate winning strategies from the parity game in the same manner. J

Memory requirements for single interval mean-payoff games

The strategies for Adam and Eve described in the proof of Lemma 4 require infinite memory.
We now show, with a careful analysis, that in the case of a single interval this can be improved.
Note that as we can replace any strict threshold call with a non-strict threshold we can
assume without loss of generality that I is closed.

I Theorem 8. Let (G, I) be a single interval mean-payoff game. If Adam has a winning
strategy then he has a positional winning strategy. If Eve has a winning strategy then she has
a strategy that requires finite memory.

Proof sketch. The fact that Adam only requires positional strategies follows from [13] and
the observation that in the single interval case the winning condition is convex.

The idea behind Eve’s finite memory strategy on X∃ is to keep track of the total weight
seen so far (rather than the average as in Lemma 4) modulo cycles with average weight in I.
The intuition is that such cycles do not affect whether the overall mean-payoff will lie in the
interval, so we can safely ignore them. As σ< and σ> are both positional in this case, by
ignoring these cycles the total weight will never deviate too far from a central value, so finite
memory suffices. J

5 Discount sum games

In this section we consider interval discount sum games. Here we make a distinction between
whether or not singleton intervals (and singleton gaps between intervals) are permitted,
because unlike other payoff functions considered in this paper there is a marked difference
between the corresponding games. We show that for non-singleton intervals the problem
of determining the winner is PSPACE-complete and as a consequence of our algorithm we
show that finite memory strategies suffice. For singleton intervals (including the exact value
problem) our PSPACE-hardness result holds, but is not even known if determining the winner
is decidable.

P. Hunter and J.-F. Raskin 373

. . .
a1

a′1

a2
λ

a′2
λ

an
λn−1

a′n
λn−1

0

Figure 3 Reduction from subset sum games to interval discount sum games.

5.1 Single, non-singleton intervals
Lower bound

To show PSPACE-hardness we reduce from the subset sum game defined in [9]. A subset sum
game is specified by a target t ∈ N and a list of pairs of natural numbers (a1, a

′
1), . . . , (an, a′n).

The game takes n rounds, in round i, one player (Adam if i is odd, Eve if i is even) chooses
ai or a′i. After n rounds Eve wins if and only if the sum of the selected numbers is t. Given
an instance of the subset sum game we construct the interval discount sum game shown in
Figure 3, with interval [t, t+ 1).

It is clear that a play in this game corresponds to a selection of elements from the pairs,
and the discounted sum of the play is equal to the sum of the corresponding elements. As
this sum is always an integer, the discounted sum lies in the interval [t, t+ 1) if and only if
the selected sum is equal to t.

Upper bound

Given v ∈ V and strategies σ and τ for Eve and Adam respectively, we define vvστ to be
the payoff of the unique play from v consistent with σ and τ . Two important (memoryless)
strategies for Eve are σmax and σmin, the strategies which, for all states v, maximize minτ vvστ
and minimize maxτ vvστ respectively.

The idea behind the upper bound centres around the observation that after sufficiently
many steps the remainder of any play does not contribute much to the overall discounted
sum. If the target interval is non-singleton then the problem reduces to the classical threshold
problem. Thus we can stop the game after finitely many steps when it becomes a trivial
matter to determine if the overall discounted sum will lie in the interval or not. The key
lemma for the result, the proof of which we defer to the full paper, is the following:

I Lemma 9. Let (G, I, λ) be an interval discount sum game that Eve wins, and let

N =
⌊

log(sup I − inf I) + log(1− λ)− log(2W)
log λ

⌋
.

Then Eve has a winning strategy that agrees with either σmax or σmin after N steps.

Note that whether the strategy agrees with σmax or σmin depends on the play up to the
N -th step. It is feasible that against one strategy of Adam this strategy will agree with σmax
but against another strategy it will agree with σmin.

I Corollary 10. Finite memory strategies suffice in non-singleton interval discount sum
games.

The algorithm for determining the winner of a non-singleton interval discount sum game
is straightforward. We run an alternating Turing Machine for N steps to guess an initial play.

FSTTCS 2014

374 Quantitative Games with Interval Objectives

Note that N is polynomial in the size of the input, so this can be done in PSPACE. Suppose
the play ends in state v with the current discounted sum S. We compute the four values:

M = max
τ

vvσmaxτ M = min
τ

vvσmaxτ m = max
τ

vvσminτ m = min
τ

vvσminτ .

These are computable in NP ∩ coNP using an algorithm that computes values in classic
discount sum games [18]. Finally we check if either:

S + λN+1 ·M ∈ I and S + λN+1 ·M ∈ I, or
S + λN+1 ·m ∈ I and S + λN+1 ·m ∈ I.

It is clear that one of the above conditions holds if and only if σmax or σmin is winning from
the current position. Therefore, from Lemma 9, one of the above conditions holds if and
only if Eve has a winning strategy.

I Theorem 11. Let G be a game graph, I ⊆ R a non-singleton interval, and λ ∈ (0, 1).
Deciding if Eve wins the interval discount sum game (G, I, λ) is PSPACE-complete.

We observe that if the weights, interval bounds and discount factor are all encoded
in unary then N is logarithmic in the size of the input and M , M , m, and m can all be
computed in polynomial time using a pseudo-polynomial time algorithm for discount sum
games [18]. Thus the above algorithm runs in polynomial time.

I Theorem 12. Let G be a game graph, I ⊆ R a non-singleton interval and λ ∈ (0, 1).
Deciding if Eve wins the unary encoded interval discount sum game (G, I, λ) is in P.

5.2 Multiple intervals
The algorithm of the previous section also applies to multiple intervals as long as the gaps
between the intervals are also non-singleton. This follows from the observation that after
sufficiently many steps the overall discount payoff will not deviate too far from the current
value, so at that point the game reduces to the single interval case.

I Theorem 13. Let G be a game graph, I a finite union of real intervals such that neither
I nor R \ I contains singleton elements, and λ ∈ (0, 1). Deciding if Eve wins the interval
discount sum game (G, I, λ) is PSPACE-complete.

5.3 Singleton intervals
When the set of intervals (or their complement) include singleton intervals, the situation is
more complicated. Following the same argument as the previous section, after sufficiently
many steps the problem reduces to the exact value problem: Given a discount sum game
(G,λ) and a target t ∈ Q, does Eve have a strategy to ensure the discounted sum is exactly
t?

It is currently open whether this problem is even decidable, however the PSPACE-hardness
result from the previous section (using the interval {t} rather than [t, t+ 1)) gives a lower-
bound. The problem is related to the universality problem for discount sum automata [2], a
well-known problem for which decidability remains open [1]. The problem was also studied
for Markov Decision Processes and graphs (i.e. one-player games) in [7] where it was shown
to be decidable for discount factors of the form λ = 1

n , and that in general infinite memory
is required for winning strategies.

I Lemma 14 ([7]). There exist exact value discount sum games for which an infinite memory
is required for a winning strategy.

P. Hunter and J.-F. Raskin 375

v, i ve v′, i′

v⊥ v>v0

w(e) 0 0

−m
i′ −M

i′

=0? =0?
−1 +1

0

Figure 4 Edge gadget for edge e = (v, v′), v /∈ V∃, v′ ∈ V∃.

6 Total sum games

Total sum games refine mean-payoff games and can be seen as a special case of discount
sum games where the discount factor is 1. Assuming the graph has integer weights, Total
will always be an integer (or ±∞), thus we can assume all intervals are closed or open as
necessary.

In this section we show that determining the winner of such games is PSPACE-complete
for unary encoded games and EXPSPACE-complete for binary encoded games. Our bounds
are obtained by relating interval total sum games with various one-counter games, that is,
games played on the transition graph of a one-counter machine (equivalently, one-dimensional
vector addition systems with states). Intuitively a one-counter game graph is a game graph
augmented with a counter which is incremented or decremented by weights on traversed
edges. A special set of edges are activated only if the counter has value 0. We give a reduction
from one-counter reachability games, studied in [3, 14, 12] to establish lower bounds, and a
reduction to one-counter parity games, studied in [16], for the upper bounds.

Lower bounds

We give a reduction from counter reachability games to (singleton) interval total sum games.
This establishes the necessary lower bounds because determining the winner in such games
was shown to be PSPACE-complete for unary encoded games in [14] and EXPSPACE-complete
for binary encoded games in [12], even for the restricted one-counter game graphs considered
here.

Given a one-counter reachability game with no zero-activated edges and target set F ⊆ V∃,
we construct a game graph as follows. We double the weights of all edges; add a new initial
vertex with an edge of weight +1 to the original initial vertex; and add a new global sink with
a self loop of weight 0 and edges of weight −1 from all vertices in F . By parity arguments
the new vertices are the only vertices where the total sum can be 0, and Eve has a strategy
to reach the global sink if and only if she can reach F in the original game with counter
value 0. Thus Eve wins the interval total sum game with interval {0} if and only if she wins
the original one-counter reachability game.

Upper bounds

We now show that interval total sum games can be solved in EXPSPACE by reducing them
to parity games on infinite graphs defined by the transition graphs of one-counter machines.
Such games were considered in [16], where a PSPACE algorithm was given for unary weighted
one-counter games (equivalently, single alphabet pushdown processes). As a binary one-
counter graph can be described by an exponentially larger unary one-counter graph, our
reduction yields an EXPSPACE algorithm.

The key observation for the reduction is that interval total sum games can be viewed as
parity games on V × Z, where the second component indicates the total sum so far. The

FSTTCS 2014

376 Quantitative Games with Interval Objectives

+1

0

−1

0
+1

0

+1

−1

0

0

0

Figure 5 Interval total sum game (I = R \ {0}) which requires infinite memory.

priority of a vertex (v, c) is determined by which interval (or gap between intervals) contains
c, in the same manner used in the equivalence between liminf games and parity games in
Section 3. However, we cannot use the result of [16] directly because for those games the
priorities are defined by the states of the counter-machine and not the values of the counter.
Instead, we have Eve assert which interval (or gap between intervals) the counter is in, and
give Adam the ability to punish her if she claims falsely.

Let (G, I) be an interval total sum game. Recall from Section 3 the definition of ΩI . Let
us define mi := min Ω−1

I (i) and Mi := max Ω−1
I (i). Intuitively, the reduction creates 2r + 1

copies of the G (one for each interval and one for each gap), but we replace edges with the
edge gadget shown in Figure 4. The priority of a vertex (v, i) is i, and for each gadget vertex
it is 2r + 1 except for v0 which has priority 2r.

We now show that Eve has a winning strategy in this parity game if and only if she has a
winning strategy in the interval total sum game. We first observe that if the play reaches
the predecessor of (v, i) and the counter value is outside [mi,Mi] then Adam can win by
playing to v⊥ if the counter is < mi or to v> if the counter is > Mi. On the other hand, if
the counter is in the range [mi,Mi] then Eve wins if Adam plays to either of these vertices.
Thus the gadget defined by the vertices {v⊥, v>, v0} allows Adam to punish Eve if and only
if the counter is not in the asserted interval. Now, assuming Eve plays correctly, it is easy
to see that the minimal priority seen infinitely often corresponds to the lowest interval or
interval gap visited infinitely often by the counter. Thus Eve has a winning strategy in the
parity game if and only if she has a winning strategy in the interval game.

I Theorem 15. Deciding if Eve wins a binary (unary) encoded interval total sum game is
EXPSPACE-complete (PSPACE-complete).

Memory requirements

We now consider memory requirements for winning strategies in interval total sum games.
Figure 5 shows that, in general, infinite memory is required for winning strategies.

I Lemma 16. Finite memory winning strategies are insufficient in interval total sum games.

By swapping the roles of the players and complementing the interval, we see that even
for single interval games Adam may require infinite memory. We now show this is not the
case for Eve. Indeed, using König’s lemma, we can show a more general result.

I Lemma 17. Let (G, I) be an interval total sum game where I ∩ Z is finite. If Eve has a
winning strategy then she has a finite memory winning strategy.

To complete the argument for single interval total sum games, we observe that if the
interval is infinite then we are considering the classical threshold problem for total sum
games. Positional strategies for these games were shown to be sufficient in [11].

I Theorem 18. Let (G, I) be a single interval total sum game. If Eve has a winning strategy
then she has a finite memory winning strategy.

P. Hunter and J.-F. Raskin 377

References
1 U. Boker and T. A. Henzinger. Determinizing discounted-sum automata. In CSL, pages

82–96, 2011.
2 U. Boker and J. Otop. Personal communcation, 2014.
3 T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended vector addition

systems with states. In ICALP (2), pages 478–489, 2010.
4 L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for

mean-payoff games. Formal Methods in System Design, 38(2):97–118, 2011.
5 K. Chatterjee, L. Doyen, and T. A. Henzinger. A survey of partial-observation stochastic

parity games. Formal Methods in System Design, 43(2):268–284, 2013.
6 K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and

energy games. In Proc. of FSTTCS, pages 505–516, 2010.
7 K. Chatterjee, V. Forejt, and D. Wojtczak. Multi-objective discounted reward verification

in graphs and mdps. In LPAR, pages 228–242, 2013.
8 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International

Journal of Game Theory, 8:109–113, 1979.
9 J. Fearnley and M. Jurdzinski. Reachability in two-clock timed automata is pspace-

complete. In ICALP, volume 2, pages 212–223, 2013.
10 T. Gawlitza and H. Seidl. Games through nested fixpoints. In CAV, pages 291–305, 2009.
11 H. Gimbert and W. Zielonka. When can you play positionally? In MFCS, pages 686–697,

2004.
12 P. Hunter. Reachability in succinct one-counter games. Available at http://arxiv.org/

abs/1407.1996, 2014.
13 E. Kopczynski. Omega-regular half-positional winning conditions. In CSL, pages 41–53,

2007.
14 J. Reichert. On the complexity of counter reachability games. In RP, pages 196–208, 2013.
15 S. Schewe. Solving parity games in big steps. In FSTTCS, pages 449–460, 2007.
16 O. Serre. Parity games played on transition graphs of one-counter processes. In FoSSaCS,

pages 337–351, 2006.
17 W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on

infinite trees. Theoretical Computer Science, 200:135–183, 1998.
18 U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical

Computer Science, 158(1):343–359, 1996.

FSTTCS 2014

http://arxiv.org/abs/1407.1996
http://arxiv.org/abs/1407.1996

Playing Safe∗

Thomas Colcombet1, Nathanaël Fijalkow1,2, and Florian Horn1

1 LIAFA, Université Paris 7 – Denis Diderot, France
2 University of Warsaw, Poland

Abstract
We consider two-player games over graphs and give tight bounds on the memory size of strategies
ensuring safety conditions. More specifically, we show that the minimal number of memory states
of a strategy ensuring a safety condition is given by the size of the maximal antichain of left
quotients with respect to language inclusion. This result holds for all safety conditions without
any regularity assumptions, and for all (finite or infinite) graphs of finite degree.

We give several applications of this general principle. In particular, we characterize the
exact memory requirements for the opponent in generalized reachability games, and we prove the
existence of positional strategies in games with counters.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Game Theory, Synthesis, Safety Specifications, Program Verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.379

1 Introduction

Graphs games provide a mathematical framework to automatically address many questions,
for instance they are used to model reactive systems (we refer to [9] for a survey on the
topic). We focus here on the Synthesis Problem to motivate the problem we consider, which
is to characterize the amount of memory required in games with safety conditions.

The Synthesis Problem. The inputs of the Synthesis Problem are a system and a specific-
ation. The expected output is a controller for the system, that ensures the specification.

We describe here an approach to solve the Synthesis Problem through Game Theory. We
model the system as a graph, whose vertices represent states and edges represent transitions.
Its evolution consists in interactions between a controller and an environment, which is
turned into a game on the graph between two players, Eve and Adam. If in a given state, the
controller can choose the evolution of the system, then the corresponding vertex is controlled
by Eve. If the system evolves in an uncertain way, we consider the worst-case scenario, where
Adam controls those states.

A pebble is initially placed on the vertex representing the initial state of the system, then
Eve and Adam move this pebble along the edges. The sequence built describes a run of the
system: Eve tries to ensure that it satisfies the specification.

So, in order to synthesize a controller, we are interested in whether Eve can ensure this
objective and what resources she needs. In particular, the most salient question is: what
is the size of a minimal controller satisfying the specification? Since a controller is here

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no 259454 (GALE) and no 239850 (SOSNA).

© Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 379–390

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.379
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

380 Playing Safe

given by a strategy for Eve, this is equivalent to the following question: what is the minimal
amount of memory used by a winning strategy?

The following diagram shows the correspondence between the notions from the Synthesis
Problem (left-hand side) and the game-theoretical notions (right-hand side).

S︸︷︷︸
system

, C︸︷︷︸
controller

|= Φ︸︷︷︸
specification

⇐⇒ A︸︷︷︸
arena (graph)

, σ︸︷︷︸
strategy

|= W︸︷︷︸
condition

Safety Specifications. Since we consider non-terminating sequences, a specification is given
by a language of infinite words. Of special interest are the specifications asserting that
“nothing bad” ever happens; such specifications are called safety specifications. A safety
specification is induced by a (possibly infinite and non-regular) set of bad prefixes P , and
the specification is met by a run if no prefixes belong to P .

Although quite simple, the safety specifications proved useful in both theory and practice,
and are actively studied (we refer to [12] for a survey).

Our contribution. In this paper, we show the following general principle:

For a safety condition W , the minimal number of memory states of a winning strategy
is exactly the cardinal of the maximal antichain of left quotients of W .

We refer to Section 3 for the missing definitions. Note that this result holds for all safety
conditions, without any regularity assumption. The only assumption made is that graphs
have finite degree: we prove that this is necessary, by providing a counter example not
satisfying this property. The Section 3 is devoted to the proof of this main result. We give
several examples and applications in Section 4. For instance, it allows to characterize the
memory requirements for the opponent in generalized reachability games, and to prove the
existence of positional strategies in games with counters.

Related Works: Evaluating Memory Requirements. Characterizing the amount of memory
required by winning strategies according to the winning conditions has been widely studied,
in different frameworks.

The first result in this direction is about Muller conditions: in [5], the authors show how
to compute the exact memory requirements by looking at the so-called Zielonka tree of a
Muller condition. This is orthogonal to our results, as the Muller conditions only specify the
limit behaviour (what is seen infinitely often), whereas we consider here only the behaviours
in the finite.

In a different direction, Hugo Gimbert and Eryk Kopczyński independently investigated
necessary and sufficient conditions for positional determinacy. We refer to their respective
PhD theses [8, 11] for more details. A submitted result of Eryk Kopczyński [10] shows that
one can compute the exact chromatic memory requirements of ω-regular conditions. Our
results are also orthogonal to this result, as we characterize the exact memory requirements
for all safety conditions, including non-regular ones.

2 Definitions

The games we consider are played on an arena A = (V, (V∃, V∀), E, c), consisting of a (finite
or infinite) graph (V,E), a partition (V∃, V∀) of the vertex set V : a vertex in V∃ belongs to

T. Colcombet, N. Fijalkow, and F. Horn 381

Eve and in V∀ to Adam, and a coloring function c : E → A mapping edges to a color from a
finite alphabet A. When drawing arenas, we will use circles for vertices owned by Eve and
squares for those owned by Adam. Throughout this paper, we make two assumptions:

There are no dead-ends: for every vertex v ∈ V , there exists an edge (v, v′) ∈ E;
The degree is finite: for every vertex v ∈ V , the set {v′ | (v, v′) ∈ E} is finite.

The first assumption is cosmetic. The second assumption, however, will be crucial: in
particular, we will give a counter-example showing that our results do not hold without this
assumption.

Game. A play π is an infinite word of edges e0 · e1 · · · that are consecutive: for all i,
ei = (_, v) ∈ E and ei+1 = (v,_) ∈ E for some v ∈ V . We denote πk the prefix of length k
of π. A play π induces an infinite sequence of colors c(π), obtaining by applying the coloring
function c component-wise. We define winning conditions for a player by giving a set of
infinite sequences of colors W ⊆ Aω. As we are interested in zero-sum games, i.e. where the
winning conditions of the two players are opposite, if the winning condition for Eve is W ,
then the winning condition for Adam is Aω \W . A game is a couple G = (A,W) where A is
an arena and W a winning condition.

Strategy. A strategy for a player is a function that prescribes, given a finite history of
the play, the next move. Formally, a strategy for Eve is a function σ : E∗ · V∃ → E such
that for all π ∈ E∗ and v ∈ V∃ we have σ(π · v) = (v,_) ∈ E. Strategies for Adam are
defined similarly, and usually denoted τ . Once a game G = (A,W), a starting vertex v0 and
strategies σ for Eve and τ for Adam are fixed, there is a unique play π(v0, σ, τ), which is
said winning for Eve if its image by c belongs to W . A strategy σ for Eve is winning if for
all strategies τ for Adam, π(v0, σ, τ) is winning. We say that Eve wins the game G from v0 if
she has a winning strategy from v0, and denote WE(G) the set of vertices from where Eve
wins; we often say that v ∈ WE(G) is winning. We define similarly WA(G) for Adam to be
the set of vertices from where Adam wins.

Memory. A memory structure is a deterministic state machine that reads the sequence
of edges and abstracts its relevant informations into a memory state. Formally, a memory
structure M = (M,m0, µ) for an arena consists of a set M of memory states, an initial
memory statem0 ∈M and an update function µ : M×E →M . The update function takes as
input the current memory state and the chosen edge to compute the next memory state. It can
be extended to a function µ∗ : E∗ →M by defining µ∗(ε) = m0 and µ∗(π · e) = µ(µ∗(π), e).
Given a memory structureM and a next-move function ν : V∃ ×M → E, we can define a
strategy σ for Eve by σ(π · v) = ν(v, µ∗(π · v)). A strategy with memory structureM has
finite memory if M is a finite set. It is memoryless, or positional if M is a singleton: it only
depends on the current vertex. Hence a memoryless strategy can be described as a function
σ : V∃ → E. We denote mem(σ) the number of memory states used by the strategy σ.

An arena and a memory structure induce an expanded arena where the current memory
state is computed online. Formally, the arena A = (V, (V∃, V∀), E, c), the memory structure
M for A and a new coloring function c′ : E ×M → A induce an expanded arena A×M =
(V ×M, (V∃ ×M,V∀ ×M), E × µ, c′), where E × µ is defined by: ((v,m), (v′,m′)) ∈ E × µ
if (v, v′) ∈ E and µ(m, (v, v′)) = m′. From a memoryless strategy in A×M, we can build a
strategy in A usingM as memory structure, which behaves as the original strategy. This
key observation will be used several times in the paper.

FSTTCS 2014

382 Playing Safe

3 Tight Bounds on the Memory for Safety Conditions

In this section, we consider a safety condition1 W and compute the following quantity:

mem(W) .= sup
G=(A,W) game

inf
σ winning
strategy

mem(σ) .

In words, mem(W) is the necessary and sufficient number of memory states for constructing
a winning strategy in games with condition W . Equivalently:

upper bound: for all games G = (A,W), if Eve wins, then she has a winning strategy
using at most mem(W) memory states,
lower bound: there exists a game G = (A,W) when Eve wins but she has no winning
strategy using less than mem(W) memory states.

The reader with a background in game theory may be surprised, as it is well known that
“safety games are positionally determined”, implying that the quantity above is constant
equal to one. The subtlety here is that our setting is (much) more general than the classical
notion of safety games. Specifically, consider an arena A:

an internal safety condition is given by a subset B ⊆ A of forbidden colors, inducing the
winning condition

Safe(B) = {a0 · a1 · · · ∈ Aω | for all i, ai /∈ B} ,

an external safety condition is given by a subset P ⊆ A∗ of forbidden prefixes of colors,
inducing the winning condition

Safe(P) = {a0 · a1 · · · ∈ Aω | for all i, a0a1 · · · ai /∈ P} .

The term “internal” refers to the idea that the set B can be thought of as a set of
forbidden edges in the graph, giving rise to the classical notion of safety games, where Eve
tries to ensure never to reach the forbidden parts in the graph.

I Lemma 1 (Folklore). Let G be a game with an internal safety condition. If Eve has a
winning strategy, then she has a positional winning strategy.

On the other hand, the external safety conditions describe much more, as we will
demonstrate in Section 4.

From now on, as we are mostly interested in external safety conditions, we will drop the
prefix “external”. The notion of safety condition originates from topological studies of the set
of infinite words: the safety conditions are the closed sets for the Cantor topology, denoted
Π1 in the corresponding Borel hierarchy.
For the remainder of this section, we fix a safety condition W = Safe(P) induced by P ⊆ A∗.

A First Upper Bound
We first give an upper bound on mem(W). Let w ∈ A∗, define its left quotient as:

w−1W = {ρ ∈ Aω | w · ρ ∈W}.

1 To be defined in this section.

T. Colcombet, N. Fijalkow, and F. Horn 383

We denote Res(W) the set of left quotients of W . We mention some special left quotients:
the initial one, ε−1W (equal to W), and the empty one, obtained as w−1W for any w ∈ P .
From a left quotient w−1W and a letter a ∈ A, we define (w−1W) · a as (w · a)−1W : it is
easy to check that this is well defined (independent of the representant w chosen). Recall
that Res(W) is finite if and only if W is regular, and in such case it can be used to describe
the set of states of the minimal deterministic automaton recognizing W .

I Lemma 2. Let G = (A,W) be a game with a safety condition W . If Eve wins, then she
has a winning strategy using at most |Res(W)| memory states.

Consequently, for all safety conditions W ,

mem(W) ≤ |Res(W)| .

Proof. We construct a memory structure M, as follows: M = (Res(W),W, ν), where
ν(w−1W,a) = (w−1W) · a. At any point in the game, the memory state computed byM
is the current left quotient. We construct the expanded arena A ×M equipped with the
coloring function c′ : E × Res(W)→ {0, 1} defined by:

c′(_, w−1W) =
{

0 if w−1W = ∅ (equivalently, w ∈ P) ,
1 otherwise .

We attach to A×M the internal safety condition induced by B = {0}, giving rise to the
game G ×M = (A×M,Safe(B)). First observe that by construction, a play in A×M is of
the form

(e0, c(e0)−1W) · (e1, c(e0 · e1)−1W) · · · (ek, c(e0 · e1 · · · ek)−1W) · · · ,

so by definition of c′ a play is winning is G ×M if and only if its projection (on the first
component) is winning in G.

It follows that a winning strategy for Eve in G from v0 induces a winning strategy in
G×M from (v0,W). Now, thanks to Lemma 1, since Eve wins in G×M, she has a positional
winning strategy. This induces a winning strategy in G using M as memory structure,
concluding the proof of Lemma 2. J

The game G ×M defined above will be an important tool in the proofs to follow. We
will also rely on the following remark: let G = (A,W) be a game with a safety condition W ,
and assume we want to prove that a strategy σ in G is winning. Then it is enough to show
that for all plays π consistent with σ, for all k, c(πk)−1W 6= ∅, where πk is the prefix of π of
length k. This simple observation follows from the definition of safety conditions.

A Tighter Upper Bound
The memory structureM defined above is not optimal. A first remark is that the empty
left quotient (which exists if W 6= Aω) can be removed from the memory states as the game
is lost. From now on by “left quotient” we mean “non-empty left quotient of W”, and in
particular Res(W) denotes the set of non-empty left quotients of W .

The second remark is the following: let L1 and L2 be two left quotients of W , such that
L1 ⊆ L2. With the same notations as above, consider a vertex v in the arena A. If Eve wins
from (v, L1) in G ×M, then she also wins from (v, L2): indeed, she can play as she would
have played from (v, L1). Since this ensures from v that all plays are winning for L1, then a
fortiori they are winning for L2.

This suggests to restrict the memory states only to minimally winning left quotients with
respect to inclusion. Two issues arise:

FSTTCS 2014

384 Playing Safe

which left quotients are winning depends on the current vertex, so the semantics of a
memory state can no longer be one left quotient, but rather a left quotient for each
possible vertex,
there may not exist minimally winning left quotients.

For the sake of presentation, we first show how to deal with the first issue, assuming the
second issue does not appear. Specifically, in the following lemma, we assume that Res(W)
is finite (i.e. W is regular), implying the existence of minimally winning left quotients. We
will later drop this assumption.

We define the width of an ordered set (E,≤) as the cardinal of the maximal antichain of
E with respect to ≤, i.e. the cardinal of the largest set of pairwise incomparable elements.

I Lemma 3 (Upper bound in the regular case). Let G = (A,W) be a game with a safety
condition W . Assume that Res(W) is finite, i.e. that W is regular.

If Eve wins, then she has a winning strategy using at most K memory states, where K is
the width of (Res(W),⊆).

Proof. We use the same notations as for the proof of Lemma 2, and construct a smaller
memory structure together with a winning strategy using this memory structure. In this
proof, by winning we mean winning in the game G ×M.

Let K be the cardinal of the maximal antichain of left quotients of W . We construct the
memory structureM∗ = ({1, . . . ,K}, 1, µ), and the strategy σ induced by the next-move
function ν.

Let v be a vertex in A. We consider the set of minimal left quotients L such that
(v, L) is winning. (Here we use the finiteness of Res(W) to guarantee the existence of such
left quotients.) This is an antichain, so there are at most K of them, we denote them by
L1(v), . . . , Lp(v), for some p ≤ K. The key property is that for every left quotient L such
that (v, L) is winning, there exists i such that Li(v) ⊆ L. Furthermore, we choose L1(v0)
such that L1(v0) ⊆W . (Indeed, by assumption (v0,W) is winning.)

We define the update function: µ(i, (v, v′)) is a j such that Lj(v′) ⊆ Li(v) · c(v, v′). Note
that in general, such a j may not exist; it does exist if (v′, Li(v) · c(v, v′)) is winning, and we
will prove that this will always be the case when playing the strategy σ.

We define the next-move function ν (inducing σ). Let v ∈ V∃, and consider (v, Li(v)):
since Eve wins from there, there exists an edge (v, v′) ∈ E such that (v′, Li(v) · c(v, v′)) is
winning. Define ν(v, i) to be this v′.

We show that the strategy σ is winning. Consider a play π = (v0, v1)·(v1, v2) · · · consistent
with σ, and i0 · i1 · · · the sequence of memory states assumed along this play. Denote πk the
prefix of π of length k, we prove that for all k, Lik (vk) ⊆ c(πk)−1W . Note that by definition,
(vk, Lik (vk)) is winning, so Lik (vk) 6= ∅, implying that c(πk)−1W 6= ∅.

We proceed by induction. For k = 0, it follows from L1(v0) ⊆ W . Let k > 0, the
induction hypothesis is Lik−1(vk−1) ⊆ c(πk−1)−1W . We distinguish two cases.

Either vk−1 belongs to Eve, then by construction of σ we have that (vk, Lik−1(vk−1) ·
c(vk−1, vk)) is winning. It follows that the update function is well defined, and Lik (vk) ⊆
Lik−1(vk−1) · c(vk−1, vk), which together with the induction hypothesis implies Lik (vk) ⊆
c(πk)−1W .
Or vk−1 belongs to Adam. Since Adam cannot escape WE(G × M), we have that
(vk, Lik−1(vk−1) · c(vk−1, vk)) is winning, and the same reasoning concludes.

It follows that the strategy σ is winning, concluding the proof of Lemma 3. J

We now get rid of the regularity assumption. This means that for a vertex v, there may
not be a minimal left quotient L such that (v, L) is winning. To get around this difficulty,

T. Colcombet, N. Fijalkow, and F. Horn 385

the semantics of a memory state is not anymore a left quotient for each vertex, but rather a
decreasing sequence of left quotients for each vertex.

Note that the proof of Lemma 4 uses the finite degree assumption, and is the only proof
in the paper to do so. We will show in Section 4 that the result fails without this assumption.

I Lemma 4 (Upper bound). Let G = (A,W) be a game with a safety condition W . If Eve
wins, then she has a winning strategy using at most K memory states, where K is the width
of (Res(W),⊆).

Consequently, for all safety conditions W , mem(W) is smaller than or equal to the width
of (Res(W),⊆).

Proof. We use the same notations as for the proof of Lemma 3, and construct a memory
structure together with a winning strategy using this memory structure.

Let K be the cardinal of the maximal antichain of left quotients of W . We construct the
memory structureM∗ = ({1, . . . ,K}, 1, µ), and the strategy σ induced by the next-move
function ν.

Let v be a vertex in A. We consider the set W(v) of left quotients L such that (v, L)
is winning. We split W(v) into maximal decreasing (finite or infinite) sequences of left
quotients, denoted `1(v), . . . , `p(v), for some p ≤ K. Furthermore, we choose `1(v0) such
that W ∈ `1(v0). (Indeed, by assumption (v0,W) is winning.)

We say that (v, `) is winning if for all L ∈ `, we have that (v, L) is winning. For ` a
sequence of left quotients and a ∈ A, we define ` · a component-wise. Note that even if ` is
infinite, it may be that ` · a is finite.

We define the update function: µ(i, (v, v′)) is a j as follows.
If `i(v) ·c(v, v′) is finite, denote L ·c(v, v′) its last element. Choose j such that L ·c(v, v′) ∈
`j(v′). Note that in general, such a j may not exist; it does exist if (v′, `i(v) · c(v, v′)) is
winning, and we will prove that this will always be the case when playing the strategy σ.
If `i(v) · c(v, v′) is infinite, then choose j such that `j(v′) has an infinite intersection with
`i(v) · c(v, v′). Such a j exists without any assumption.

We define the next-move function ν (inducing σ). Let v ∈ V∃, and consider (v, `i(v)). Let
L ∈ `i(v), Eve wins from (v, L), so there exists an edge (v, v′) ∈ E such that (v′, L · c(v, v′))
is winning, we say that (v, v′) ∈ E is good for L. Since W(v′) is upward closed, if (v, v′) ∈ E
is good for L, then it is good for every L′ such that L ⊆ L′. We argue that there exists an
edge (v, v′) ∈ E that is good for all L ∈ `i(v), i.e. such that (v′, `i(v) · c(v, v′)) is winning;
define ν(v, i) to be this v′. There are two cases:

Either `i(v) is finite, denote L its last element. Since `i(v) is decreasing, an edge good
for L is good for all L′ ∈ `i(v).
Or `i(v) is infinite. The vertex v has finite degree, so there exists an edge which is good
for infinitely many L ∈ `i(v). Since `i(v) is decreasing, it is good for all L′ ∈ `i(v).

We show that the strategy σ is winning. Consider a play π = (v0, v1) · (v1, v2) · · ·
consistent with σ, and i0 · i1 · · · the sequence of memory states assumed along this play.
Denote πk the prefix of π of length k, we prove that for all k, there exists L ∈ `ik (vk) such
that L ⊆ c(πk)−1W . Note that by definition, (vk, `ik (vk)) is winning, so c(πk)−1W 6= ∅.

We proceed by induction. For k = 0, it follows from W ∈ `1(v0). Let k > 0, the
induction hypothesis implies the existence of L ∈ `ik−1(vk−1) such that L ⊆ c(πk−1)−1W .
We distinguish two cases, and denote ck = c(vk−1, vk).

Either vk−1 belongs to Eve, then by construction of σ we have that (vk, `ik−1(vk−1) · ck)
is winning. It follows that the update function is well defined, and:

FSTTCS 2014

386 Playing Safe

v0 ... v′0

v1 · · ·

vi

vK · · ·

...

w1

w2

wK−1

wK

ui,1

ui,2

ui,K−1

ui,K

Figure 1 The lower bound.

1. If `ik−1(vk−1) · ck is finite, denote L′ · ck its last element, we have L′ · ck ∈ `ik (vk).
Since L′ · ck is the last element of `ik−1(vk−1) · ck, it follows that L′ ⊆ L. We have thus
L′ · ck ⊆ L · ck, so L′ ⊆ c(πk)−1W , and L′ · ck ∈ `ik (vk).

2. If `ik−1(vk−1) · ck is infinite, `ik (vk) has an infinite intersection with `ik−1(vk−1) · ck.
So there exists L′ ⊆ L with L′ ∈ `ik−1(vk−1) such that L′ · ck is in this intersection.
We have L′ · ck ∈ `ik (vk) and L′ ⊆ c(πk)−1W .

Or vk−1 belongs to Adam. Since Adam cannot escape WE(G × M), we have that
(vk, `ik−1(vk−1) · ck) is winning, and the same reasoning concludes.

It follows that the strategy σ is winning, concluding the proof of Lemma 4. J

A Matching Lower Bound
I Lemma 5 (Lower bound). Let W be a safety condition. There exists a game G = (A,W)
where Eve wins but she has no winning strategy using less than K memory states where K is
the width of (Res(W),⊆).

Consequently, for all safety conditions W , mem(W) is greater than or equal to the width
of (Res(W),⊆).

Proof. Consider {w−1
1 W, . . . , w−1

K W} an antichain of left quotients of W . For i 6= j, there
exists ui,j ∈ Aω such that ui,j ∈ w−1

i W and ui,j /∈ w−1
j W .

We describe the game, illustrated in Figure 1. A play consists in three steps:
1. From v0 to v′0: Adam chooses a word in {w1, . . . , wK};
2. Eve chooses between K options;
3. say Eve chose the ith option, then Adam chooses between the K − 1 words ui,j for j 6= i.
We first show that Eve has a winning strategy from v0, using K memory states. It consists
in choosing the ith option whenever Adam chooses the word ui: whatever Adam chooses at
the third step, wi · ui,j ∈W .

We now show that there exists no winning strategy using less than K memory states.
Indeed, such a strategy will not comply with the above strategy and for some i 6= j, choose
the jth option if Adam chooses wi. Then Adam wins by playing ui,j , since wi · ui,j /∈W . J

Tight Bounds
Putting together upper and lower bounds, we proved the following result:

I Theorem 6. For all safety conditions W , mem(W) is the width of (Res(W),⊆).

T. Colcombet, N. Fijalkow, and F. Horn 387

ε a a2 a3 a4 a5 . . .

b ab a2b a3b a4b a5b . . .

c

a a a a a

b b b b b b

b b b b b

c

b

c

Figure 2 The outbidding condition: more b’s than a’s.

A conditionW is half-positional if mem(W) = 1. Characterizing half-positional conditions
has been a fruitful topic over the last few years [8, 11]. In the case of safety conditions, we
obtain the following characterization:

I Corollary 7. For all safety conditions W , W is half-positional if and only if the inclusion
is a linear order over Res(W).

4 Examples and Applications

In this section, we instantiate Theorem 6 on different examples. We chose four examples:
The outbidding condition shows the difference between graphs with finite degree and
graphs with infinite degree; in particular, it gives a counter example to Lemma 4 when
dropping the finite degree assumption,
The energy condition is a non-regular half-positional safety condition,
The generalized safety condition is a regular safety condition for which the partially
ordered set of left quotients has a nice well-known combinatorical structure,
The boundedness condition is a central piece in the theory of regular cost functions.

When representing the partial order (Res(W),⊆) for a given W , we use the following
convention: a black edge from L to L′ means that L ⊆ L′, and a red edge labeled a from L

to L′ means that L′ = L · a, so the red structure is the minimal (although possibly infinite)
deterministic automaton recognizing W .

Outbidding Games
Let A = {a, b, c} and W = {an · bp · cω | n ≤ p} ∪ {aω} ∪ a∗ · bω. It is a non-regular safety
condition, called the outbidding condition. Figure 2 represents the partial order (Res(W),⊆).
Its width is three: there are two incomparable infinite increasing sequences of left quotients,
((an)−1W)n∈N and ((b · an)−1W)n∈N, and c−1W .

Hence thanks to Theorem 6, mem(W) = 3. However, there exists an outbidding game
where Eve wins but needs infinite memory for this. This does not contradict Theorem 6, as
this game, represented in Figure 3, has a vertex of infinite degree. It goes as follows: first
Adam picks a number n, and then Eve takes over: she has to pick a number p, higher than
or equal to n. A finite memory strategy can only choose from finitely many options, hence
cannot win against all strategies of Adam.

FSTTCS 2014

388 Playing Safe

v0 v′0

v1

v2

v3

vn

...

...

a

a

b

b2

b3

bn

c

c

c

c

Figure 3 An outbidding game with infinite degree where Eve needs infinite memory to win.

ε a a2 a3 a4 a5 . . .

a a a a a

b b b b b

Figure 4 The energy condition: always more a’s than b’s.

Energy Games
The setup for the energy condition is the following: assume we are monitoring a resource. We
denote by A the set of actions on this resource, which is any monotonic function f : N→ N,
as for instance:

consuming one unit of the resource,
reloading by one unit,
emptying the resource,
consuming half of the current energy level.

Define the energy condition by

W = {w | the energy level in w remains always non-negative} .

It is a non-regular safety condition. Energy games and several variants have been extensively
studied [1, 2, 3]. Figure 4 represents the partial order (Res(W),⊆), with only two actions:
a reloads by one unit, and b consumes one unit. In general, if the actions are monotonic,
then the left quotients are totally ordered by inclusion, so thanks to Theorem 6 we have
mem(W) = 1.

I Corollary 8. The energy games are half-positional.

Generalized Safety Games
This example originates from the study of generalized reachability games [6, 7]. A generalized
reachability condition is a (finite) conjunction of reachability conditions. Here we take the
opponent’s vantage point: a generalized safety condition is a (finite) disjunction of (internal)
safety conditions. Specifically, let A = {⊥, 1, . . . , k}: each letter is a color, and ⊥ is uncolored.
LetW = {w = w0w1 · · · | ∃i ∈ {1, . . . , k},∀n,wn 6= i}, it is satisfied if at least one color is not
seen along the play. It is a safety condition. Figure 4 represents the partial order (Res(W),⊆)
for k = 3. The left quotients are all the strict subsets of {1, . . . , k}. The width of this partial
order is

(
k
bk/2c

)
, according to the well-known Sperner’s Lemma from combinatorics.

T. Colcombet, N. Fijalkow, and F. Horn 389

ε

{1}

{2}

{3}

{1, 2}

{1, 3}

{2, 3}

1

2

3

2

1

3
1

3

2

⊥

⊥, 1

⊥, 2

⊥, 3

⊥, 1, 2

⊥, 1, 3

⊥, 2, 3

Figure 5 The generalized safety condition.

I Corollary 9. For all generalized safety games with k colors, if Eve wins, then she has a
winning strategy with

(
k
bk/2c

)
memory states.

Furthermore, for all k, there exists a generalized safety game with k colors where Eve
wins, but has no winning strategy using less than

(
k
bk/2c

)
memory states.

Games with Counters
This example originates from the theory of regular cost functions [4]. Let N ∈ N, and define
the boundedness condition WN involving a counter as follows:

WN = {w | the counter value in w remains bounded by N} .

For the set of actions, we consider any monotonic action (even non-regular), i.e. function
f : N→ N such that if i ≤ j then f(i) ≤ f(j), as for instance:

leaving the counter value unchanged,
incrementing the counter value by one,
resetting the counter value to zero,
dividing the counter value by two, rounded down,
increasing the counter value to the next power of two.

The condition WN is a regular safety condition.

I Corollary 10. The boundedness games are half-positional.

5 Conclusion and Perspectives

We considered general safety conditions and characterized their memory requirements. Spe-
cifically, the memory requirements of a safety conditionW is the width of the partially ordered
set (Res(W),⊆). This is the first general result characterizing the memory requirements for
some non-regular conditions, based on their topological properties. We hope that this is the
first stone on the path of memory requirements characterizations for much more conditions.

FSTTCS 2014

390 Playing Safe

References
1 Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jirí

Srba. Infinite runs in weighted timed automata with energy constraints. In Franck Cassez
and Claude Jard, editors, FORMATS, volume 5215 of Lecture Notes in Computer Science,
pages 33–47. Springer, 2008.

2 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Re-
source interfaces. In Rajeev Alur and Insup Lee, editors, EMSOFT, volume 2855 of Lecture
Notes in Computer Science, pages 117–133. Springer, 2003.

3 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor. Comput. Sci.,
458:49–60, 2012.

4 Thomas Colcombet. Regular cost functions, part I: Logic and algebra over words. Logical
Methods in Computer Science, 9(3), 2013.

5 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is
needed to win infinite games? In LICS, pages 99–110. IEEE Computer Society, 1997.

6 Nathanaël Fijalkow and Florian Horn. The surprizing complexity of reachability games.
CoRR, abs/1010.2420, 2010.

7 Nathanaël Fijalkow and Florian Horn. Les jeux d’accessibilité généralisée. Technique et
Science Informatiques, 32(9-10):931–949, 2013.

8 Hugo Gimbert. Jeux Positionnels. PhD thesis, Université Paris 7, 2007.
9 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and

Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

10 Eryk Kopczyński. Personal communication.
11 Eryk Kopczyński. Half-Positional Determinacy of Infinite Games. PhD thesis, University

of Warsaw, 2009.
12 Orna Kupferman. Variations on safety. In Erika Ábrahám and Klaus Havelund, editors,

TACAS, volume 8413 of Lecture Notes in Computer Science, pages 1–14. Springer, 2014.

Metaconfluence of Calculi with Explicit
Substitutions at a Distance∗

Flávio L. C. de Moura†1, Delia Kesner2, and
Mauricio Ayala-Rincón1,3

1 Departamento de Ciência da Computação, Universidade de Brasília
2 Université Paris-Diderot, SPC, PPS, CNRS
3 Departamento de Matemática, Universidade de Brasília

Abstract
Confluence is a key property of rewriting calculi that guarantees uniqueness of normal-forms
when they exist. Metaconfluence is even more general, and guarantees confluence on open/meta
terms, i.e. terms with holes, called metavariables that can be filled up with other (open/meta)
terms. The difficulty to deal with open terms comes from the fact that the structure of metaterms
is only partially known, so that some reduction rules became blocked by the metavariables. In
this work, we establish metaconfluence for a family of calculi with explicit substitutions (ES)
that enjoy preservation of strong-normalization (PSN) and that act at a distance. For that, we
first extend the notion of reduction on metaterms in such a way that explicit substitutions are
never structurally moved, i.e. they also act at a distance on metaterms. The resulting reduction
relations are still rewriting systems, i.e. they do not include equational axioms, thus providing
for the first time an interesting family of λ-calculi with explicit substitutions that enjoy both
PSN and metaconfluence without requiring sophisticated notions of reduction modulo a set of
equations.

1998 ACM Subject Classification F.4.1 Mathematical Logic: Lambda calculus and related sys-
tems

Keywords and phrases Confluence, Explicit Substitutions, Lambda Calculi

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.391

1 Introduction

Confluence is a key property of rewriting calculi that guarantees determinism of computa-
tions [9]. In confluent calculi, different reduction sequences starting at the same term always
converge. When terms are enriched with metavariables, used to denote unknown parts of
incomplete proofs/programs, we talk instead about metaconfluence, which in general does
not follow directly from confluence.

In this paper we study metaconfluence of λ-calculi with explicit substitutions (ES), which
are extensions of the λ-calculus being able to internalize the substitution operation [1, 20,
17, 13, 4]. Such calculi are used to refine/implement the notion of β-reduction in functional
languages like Ocaml and Haskell, and proof-assistants like Coq, Isabelle, λProlog and PVS.
Metaterms are notably introduced in this framework to implement higher-order unification
and matching [16, 15, 8, 14] in proof-assistants. Indeed, a logical computational language
based on higher-order resolution might be implemented using a calculus in which higher-order

∗ Work partially funded by the international project DeCOPA STIC-AmSud 146/2012.
† The first author was partially supported by FEMAT.

© Flávio L.C. de Moura, Delia Kesner, and Mauricio Ayala-Rincón;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 391–402

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.391
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

392 Metaconfluence of Calculi with Explicit Substitutions at a Distance

unification can be treated in a natural way through the use of metavariables. Surprisingly,
metaconfluence does not follows directly from confluence. Indeed, when the ES operator
is propagated w.r.t. the structure of (meta)terms, then metavariables naturally block such
propagations. The problem can be illustrated in terms of the following (simplified) rewriting
system (we assume no capture of free variables holds):

(λx.t)u 7→ t[x/u] (λx.t)[y/u] 7→ λx.t[y/u]
(tv)[y/u] 7→ t[y/u]v[y/u] t[y/u] 7→ t, if y does not occur free in t

which generates the following diverging reduction sequences on metaterms:

t[y/u][x/v]� ((λx.t)v)[y/u]→ t[x/v][y/u]

where y does not occur free in v, → denotes the contextual closure of 7→ and � the reflexive-
transitive closure of →. Thus, there exist many λ-calculi with ES that are confluent but not
metaconfluent. Some of them, as for example, λσ [1] and λs [19], were extended respectively
to λσ⇑ [12] and λse [20] in order to regain metaconfluence. Nevertheless, these extended
calculi do not enjoy PSN [25, 18], thus showing the fragility of such rewriting systems.

Another solution was adopted by calculi with ES inspired from linear logic proof-nets [28],
such as λes [21] and λex [22]. Metaconfluence is recovered in these calculi by adding to the
rewriting systems an equational axiom for commutation of independent substitutions:

t[y/u][x/v] ∼ t[x/v][y/u]

where x (resp. y) does not occur free in u (resp. v). The resulting reduction calculi turned out
to have very good properties, in particular, metaconfluence and PSN can live together [22].
However, equational reasoning becomes unavoidable, and even if commutation of independent
substitutions is obtained for free when λ-terms are represented by proof-nets, this is not the
case in classical implementations which use algebraic λ-terms.

In this paper we give a solution to this problem by pushing further the ES paradigm
inspired from Linear-Logic Proof-Nets. In particular, there are nowadays several calculi, also
inspired from Linear-Logic Proof-Nets, that are based on the idea that the ES operation
acts at a distance and does not need to be percolated over the structure of terms. Typical
examples of such calculi are the linear substitution (or Milner’s) calculus and the structural
lambda-calculus (see resp. [26] and [4]), that belong to this new paradigm and have been
successfully used for different applications such as implicit complexity [7], the theory of
abstract standardization [3], or abstract machines [2].

We prove metaconfluence for a family of calculi with ES that act at a distance, namely the
substitution calculus [5], the linear substitution calculus [26] and the structural λ-calculus [4].
The resulting reduction systems are still simple rewriting systems, i.e. they do not include
equational axioms. The key of our solution relies on a new notion of substitution that
propagates/applies only those that are affecting real variables, by keeping fixed the ones
affecting metavariables. For instance, if Yx denotes a metavariable in a context having only the
free variable x, then, according to our new notion of metasubstitution, the term (Yx x)[x/u]
reduces to (Yx u)[x/u] and not to Yx[x/u]u (which was the solution adopted in [24, 27]).
The idea is that the real variable x of the metaterm Yx x can be substituted by u, as usual,
but the substitution [x/u] remains fixed in its place and does not percolate the application,
it must be delayed because of the metavariable Yx. This notion of metasubstitution turns
out to be essential in the development of the results we show in this paper.

To establish metaconfluence for our three calculi, we use the Hindley-Rosen Theorem [10],
which states that if two confluent rewriting systems commute then their union is also

F. L. C. de Moura, D. Kesner, and M. Ayala-Rincón 393

confluent. To do so, each rewriting system we treat in this paper is split into two rewriting
systems, say R and §. We then show that R and § alone are confluent. Finally, we show that
R strongly commutes with §, i.e. ∀t0, t1, t2, if t0 →R t1 and t0 →§ t2, ∃t3 s.t. t1 �§ t3 and
t2

=→R t3 (i.e. t2 →R t3 or t2 = t3). Since strongly commutation implies commutation [9],
then we are done by Hindley-Rosen Theorem.

We thus provide an interesting set of λ-calculi with ES that act at a distance, which
enjoy both PSN and metaconfluence without requiring sophisticated notions of reduction
modulo a set of equations. Moreover, in contrast to available proofs of metaconfluence in the
literature [12, 20, 27, 24], which are non-trivial, our approach just needs a simple reasoning
about commutation of reductions, a standard notion used in abstract reduction systems [11].

2 Common Syntax for Terms

Explicit substitutions calculi with names are built over a simple grammar which is an
extension of that of the λ-calculus:

t, u ::= x | t u | λx.t | t[x/u] (1)

The symbol x is called a variable, λx.t an abstraction, t u an application and t[x/u] a
term with an explicit substitution (ES) [x/u], i.e. a substitution waiting to be applied. The
abstraction λx.t and the ES t[x/u] both bind x in t. The notions of free and bound variables
are defined as usual, in particular, fv(t[x/u]) := fv(t) \ {x} ∪ fv(u), fv(λx.t) := fv(t) \ {x},
bv(t[x/u]) := bv(t) ∪ {x} ∪ bv(u) and bv(λx.t) := bv(t) ∪ {x}. We work with the standard
notion of α-conversion i.e. the bound variables can be renamed in order to avoid clashes
with the free ones. Thus, terms are always considered modulo α-equivalence, i.e. we work
on α-equivalence classes of terms. We use |t|x to denote the number of free occurrences of
the variable x in the term t. When |t|x = n ≥ 2, we write t〈x|y〉 for the non-deterministic
replacement of i (1 ≤ i ≤ n − 1) free occurrences of x in t by a fresh variable y. Thus
for example, given u = (x z)[z/x], we have |u|x = 2 so that only one replacement of x in u
can be done to construct u〈x|y〉, which then denotes either (y z)[z/x] or (x z)[z/y] but not
(y z)[z/y]. Contexts are defined as usual, i.e. they are given by the following grammar:

C ::= � | Ct | tC | λx.C | C[x/t] | t[x/C]

We write C[t] for the term obtained by replacing the hole � of C by t, thus e.g. (�y)[x] = xy

and (λx.�)[x] = λx.x. We write C[[u]] when the free variables of u are not captured by the
context C, thus for example, C[[x]] denotes the term xy if C = �y, and λy.x, if C = λx.�.

Substitutions are (finite) functions from variables to terms. We denote a non-empty
substitution σ by {x1/u1, . . . , xn/un} (n ≥ 1) and the empty substitution by Id. The domain
of the substitution σ is given by dom(σ) := {x | σ(x) 6= x}. The set var(σ) is given by
∪x∈dom(σ)fv(σ(x)). The application of a substitution σ to a term t is defined by induction
on the structure of terms as follows:

xσ := σ(x) if x ∈ dom(σ) (λy.t)σ := λy.tσ if y /∈ var(σ)
yσ := y if y /∈ dom(σ) t[y/u]σ := tσ[y/uσ] if y /∈ var(σ)
(tu)σ := (tσ)(uσ)

Here it should be stressed that the third and fourth rules are conceived modulo α-conversion.
Thus for example (λy.x){x/y} = λz.y. Remark that t{x/u} = t if x /∈ fv(t).

We now present the reduction rules of three calculi with ES acting at a distance that
are based on grammar (1). The first one, known as the substitution calculus, splits the
non-terminating β-rule of the λ-calculus into two terminating rules dB and s (see Fig. 1).

FSTTCS 2014

394 Metaconfluence of Calculi with Explicit Substitutions at a Distance

(λx.t)L u 7→dB t[x/u]L
t[x/u] 7→s t{x/u}

Figure 1 The substitution calculus for terms.

(λx.t)L u 7→dB t[x/u]L
C[[x]][x/u] 7→ls C[[u]][x/u]
t[x/u] 7→w t if |t|x = 0

Figure 2 The linear substitution calculus for terms.

(λx.t)L u 7→dB t[x/u]L
t[x/u] 7→c t〈x|y〉[x/u][y/u] if |t|x > 1
t[x/u] 7→d t{x/u} if |t|x = 1
t[x/u] 7→w t if |t|x = 0

Figure 3 The structural substitution calculus for terms.

The L symbol appearing in the dB-rule, also called distant Beta, denotes a (possibly empty)
list of substitutions of the form [x1/t1][x2/t2] . . . [xn/tn] (n ≥ 0) 1 The resulting reduction
relation, obtained by the contextual closure of the rewriting rules, is written →λsub .

The second calculus (see Fig. 2) is known as the linear substitution calculus. Rule 7→dB

(resp. 7→ls) comes from the structural λ-calculus [4] (resp. Milner’s calculus [26]), while 7→w

belongs to both calculi. The calculus performs partial substitution in the sense that only one
free variable occurrence is substituted at a time. This partial substitution, performed by
means of the ls-rule (for linear substitution), is non-deterministic, i.e. ls randomly chooses
the free variable occurrence of x to be substituted by u. The resulting reduction relation,
obtained by the contextual closure of the rewriting rules, is written →λlsub .

The third calculus (see Fig. 3) is the structural λ-calculus [4]. The dB-rule triggers
computation. The c-rule duplicates ES which affect a term t〈x|y〉, denoting, as defined above,
some non-deterministic replacement of a non-empty subset of the free occurrences of the
variable x in t by a fresh variable y. Metasubstitution on variables is only performed by
the d-rule where the variables have only one single occurrence in the term. The resulting
reduction relation, obtained by the contextual closure of the rewriting rules, is written →λstr .

In what follows we denote by →r (resp. �r) the contextual (resp. reflexive-transitive)
closure of each rewriting rule 7→r (resp. reduction relation →r), for r ∈ {dB, s, ls, w, c, d}
introduced before. For each calculus, the reduction relation associated to its substitution
calculus, i.e. generated by all its rewriting rules except 7→dB, are defined by→s:=→λsub \ →dB,
→lsub:=→λlsub \ →dB and →str:=→λstr \ →dB respectively. A reduction relation →R is said
to be confluent on terms (resp. metaterms) iff for all terms (resp. metaterms) t0, t1, t2, if
t0 �R t1 and t0 �R t2, there exists a term (resp. metaterm) t3 s.t. t1 �R t3 and t2 �R t3.

Here are some examples of reduction sequences from the term t = (λx.xx)y:
In λsub : t→dB (xx)[x/y]→s yy

In λlsub : t→dB (xx)[x/y]→ls (xy)[x/y]→ls (yy)[x/y]→w yy

In λstr : t→dB (xx)[x/y]→c (xx′)[x/y][x′/y]→d (yx′)[x′/y]→d yy

1 Formally, the list L is a context generated by the grammar � | L[x/t].

F. L. C. de Moura, D. Kesner, and M. Ayala-Rincón 395

All the calculi presented above, let us write R, enjoy good properties, specially: (sim-
ulation) every β-reduction step in the λ-calculus can be performed in R, (confluence) all
divergent reduction sequences in R can be closed and (preservation of β-strong normalization)
every β-strongly normalizing λ-term is also R-strongly normalizing.

3 Common Syntax for MetaTerms

We now extend the grammar of terms to metaterms by adding metavariables which denote
incomplete proofs/programs in higher-order theories. In particular, metavariables are used
in higher-order unification to denote unkown partial solutions to be instantiated by the
unification procedure [15, 8, 14]. We use X∆ to denote a metavariable with free variables in
the set ∆. The grammar (1) introduced in Sec. 2 is then extended as follows:

t, u ::= x | X∆ | t u | λx.t | t[x/u] (2)

We also extend the notation |t|x to metaterms, thus e.g. |(yXy)[z/Zy]|y = 3. We distinguish
between free meta and real variables. They are both defined by induction as follows.

fm(x) := ∅ fr(x) := {x}
fm(X∆) := ∆ fr(X∆) := ∅
fm(tu) := fm(t) ∪ fm(u) fr(tu) := fr(t) ∪ fr(u)
fm(λx.t) := fm(t) \ {x} fr(λx.t) := fr(t) \ {x}
fm(t[x/u]) := fm(t) \ {x} ∪ fm(u) fr(t[x/u]) := fr(t) \ {x} ∪ fr(u)

Thus for example, given t = (X{x,y}z)[x/Y∅] we have fm(t) = {y} and fr(t) = {z}. The
set of free variables of a metaterm is given by fv(t) := fm(t) ∪ fr(t). We extend the
non-deterministic operation _〈_|_〉 introduced in Sec. 2 to metaterms as expected.

For each λ-calculus in this paper, the metaconfluence proof uses the termination property
of the corresponding substitution subcalculus. The first substitution calculus, given by
the reduction relation →s, is trivially terminating. In order to prove termination of the
substitution subcalculus →lsub:=→ls ∪ →w we use a decreasing measure based on the notion
of multiplicity [24]. Indeed, the size of a metaterm is recursively defined as follows:

sz(x) = sz(X∆) := 1 sz(t u) := sz(t) + sz(u)
sz(λx.t) := sz(t) sz(t[x/u]) := sz(t) + sz(u) · (1 + mlx(t))

where mlx(t), the multiplicity of the variable x in the metaterm t, is defined by:

mlx(t) := 0 if x /∈ fv(t), otherwise

mlx(x) = mlx(X∆) := 1 mlx(t u) := mlx(t) + mlx(u)
mlx(λy.t) := mlx(t) mlx(t[y/u]) := mlx(t) + mlx(u) · (1 + mly(t))

We have for example sz((x x)[x/λy.y]) = 5, sz((x z)[x/λy.y][z/λy.y]) = 6 and
sz((z z)[z/x x][x/λy.y]) = 15. Observe that sz(t) ≥ 1 and mlx(t) ≥ 0. Moreover, x /∈ fv(t)
implies mlx(t) = 0. It is easy to extend these measures to contexts by adding sz(�) = 0 and
mlx(�) = 0.

While this measure is decreasing for lsub, i.e. t →lsub t
′ implies sz(t) > sz(t′) (see

Sec. 4.1 for details), this is not the case for the subcalculus →str:=→c ∪ →d ∪ →w. Thus
for example, (x x)[x/u] →c (x z)[x/u][z/u] but sz((x x)[x/u]) < sz((x z)[x/u][z/u]). We
then introduce another measure (cf. [4]) which will be used in Sec. 4.3 to show that →str

FSTTCS 2014

396 Metaconfluence of Calculi with Explicit Substitutions at a Distance

terminates. In what follows [] denotes the empty multiset, t the multiset union and
n · [a1, . . . , an] the multiset [n · a1, . . . , n · an].

The multimeasure of a metaterm t, written jm(t), is a multiset of integers defined as:

jm(x) = jm(X∆) := [] jm(t u) := jm(t) t jm(u)
jm(λx.t) := jm(t) jm(t[x/u]) := [Px(t)] t jm(t) tmax(1, Px(t)) · jm(u)

where Px(t) denotes the potential multiplicity of the variable x in the term t and is
recursively defined on α-equivalence classes of t as follows: Px(t) := 0 if x /∈ fv(t), otherwise

Px(x) = Px(X∆) := 1 Px(t u) := Px(t) + Px(u)
Px(λy.t) := Px(t) Px(t[y/u]) := Px(t) + max(1, Py(t)) · Px(u)

Note that in the second case, necessarily x ∈ ∆. Thus for example, jm((x x)[x/λy.y]) = [2];
jm((x z)[x/λy.y][z/λy.y]) = [1, 1] and jm((z z)[z/x x][x/λy.y]) = [4, 2].

4 Metaconfluence

This section is devoted to the proofs of metaconfluence of our three calculi. We start by
extending the notion of metasubstitution introduced in Sec. 2 to metaterms. A first approach,
already used in [23] for the λex-calculus, is obtained by adding to the metasubstitution
operation on terms the following case :

X∆{x/u} =
{

X∆[x/u] if x ∈ ∆
X∆ otherwise. (3)

Nevertheless, if one naively uses this specification to extend the s-rule to metaterms, ter-
mination is lost as the following example shows: X{x}[x/u]→sX{x}{x/u} = X{x}[x/u]→s . . .

This can be recovered by simply restricting the form of the metaterms t on the left-hand
side of the s-rule to those that are not metavariables affected by ES (as done for example
in [24]). However, even with this restriction, confluence fails:

X{x,y}[x/u][y/v]� (λy.X{x,y})[x/u] v→dBX{x,y}[y/v][x/u]

One can then add equations between metaterms to allow permutation of independent
substitutions (cf. [21]) in order to close this divergent diagram. But then equational reasoning
becomes necessary to deal with the resulting reduction system (a reduction system modulo);
this could be particularly problematic from an implementation point of view.

In this paper we present another approach where no additional equations are necessary
to guarantee metaconfluence. We start by extending the notion of metasubstitution to
metaterms as follows. The (capture-free) fixed metasubstitution of x by the metaterm u

in the metaterm t, written t[[x/u]], is given by:

t[[x/u]] :=
{
t{{x/u}}[x/u], if x ∈ fm(t)
t{{x/u}}, if x /∈ fm(t)

where the operation _{{_/_}} is defined as follows: t{{x/u}} := t if x /∈ fr(t), otherwise

x{{x/u}} :=u; (λy.v){{x/u}} :=λy.v{{x/u}} (x 6= y & y /∈ fv(u));
(tv){{x/u}} := t{{x/u}}v{{x/u}}; t[y/v]{{x/u}} := t{{x/u}}[y/v{{x/u}}] (x 6= y & y /∈ fv(u)).

Thus for example, (λy.xX{x})[[x/y]] = (λz.yX{x})[x/y]. Remark that renaming of the
bound variable y was done to avoid capture of free variables. The real free occurrence of x

F. L. C. de Moura, D. Kesner, and M. Ayala-Rincón 397

(λx.t)L u 7→dB t[x/u]L
t[x/u] 7→s t[[x/u]] if x /∈ fm(t) or x ∈ fr(t)

Figure 4 The substitution calculus for metaterms.

(λx.t)L u 7→dB t[x/u]L
t[x/u] 7→c t〈x|y〉[x/u][y/u] if |t|x > 1
t[x/u] 7→d t[[x/u]] if |t|x = 1 and x /∈ fm(t)
t[x/u] 7→w t if |t|x = 0

Figure 5 The structural lambda calculus for metaterms.

was substituted by y, however, the ES [x/y] remains fixed in the resulting term since it is
affecting a metavariable with scope x.

The above definition is a key notion of this work: it is able to capture metasubstitution
on terms, but it is compatible with metaterms. Formally, the metasubstitution _[[_/_]]
is splited into two complementary notions of substitution: the ES _[_/_], which is fixed
whenever there is a metavariable with scope in the domain of this substitution; and the
implicit substitution _{{_/_}} on terms, that only acts on real variables.

We can now reformulate the first and the third λ-calculi presented before by using fixed
metasubstitution [[x/u]] on metaterms instead of {x/u} on terms. The resulting reduction
relations are shown in Fig. 4 and Fig. 5, respectively. In the case of the linear substitution
calculus, since the reduction relation on terms does not use metasubstitution, we can keep
exactly the same rewriting rules in Fig. 2 to specify reduction on metaterms. In the three
cases, the resulting reduction systems on metaterms are conservative w.r.t. their respective
reduction notions on terms.

4.1 The Substitution Calculus enjoys MetaConfluence
This section presents the metaconfluence proof for the substitution calculus. We start
by stating some useful properties concerning the notion of metasubstitution that will be
important in the rest of this section.

I Lemma 1. Let t, u, v be metaterms. If x 6= y and x /∈ fv(v) then t{{x/u}}{{y/v}} =
t{{y/v}}{{x/u{{y/v}}}} and t[[x/u]]{{y/v}} = t{{y/v}}[[x/u{{y/v}}]].

Proof. The first statement is by induction on t and the second one uses the first one. J

The next lemma states that the substitution calculus on metaterms is stable w.r.t. the
new notion of metasubstitution.

I Lemma 2 (Stability). Let t, u be metaterms. Let r ∈ {dB, s}.
If t→r t

′, then t{{x/u}} →r t
′{{x/u}} and t[[x/u]]→r t

′[[x/u]].
If u→r u

′, then t{{x/u}}�r t{{x/u′}} and t[[x/u]]�r t[[x/u′]].

Proof.
The first statement is by induction on t→λsubt

′ using Lem. 1. The second one uses the
first one.
The first statement is by induction on u→λsubu

′ and the second one by using the first
one. J

FSTTCS 2014

398 Metaconfluence of Calculi with Explicit Substitutions at a Distance

The stability properties are necessary to prove that the reduction systems →dB and →s

strongly commutes.

I Theorem 3 (Strong Commutation). ∀t0, t1, t2, if t0 →s t1 and t0 →dB t2, ∃t3 s.t. t1 �dB t3
and t2

=→s t3.

Proof. By induction on the reduction relation. We only show here the key cases:

t[x/u]→st[[x/u]]
↓dB ↓dB (Lem. 2)

t′[x/u]→st
′[[x/u]]

t[x/u]→st[[x/u]]
↓dB

�

dB(Lem. 2)

t[x/u′]→st[[x/u′]]

(λx.t)Lu→s(λx.t′)Lu
↓dB ↓dB

t[x/u]L→s t
′[x/u]L

(λx.t)Lu→s(λx.t)L′u
↓dB ↓dB

t[x/u]L→s t[x/u]L′

(λx.t)Lu→s(λx.t)Lu′
↓dB ↓dB

t[x/u]L→s t[x/u′]L

(λx.t)L1[y/v]L2u→s(λx.t)L1[[y/v]]L2u

↓dB ↓dB

t[x/u]L1[y/v]L2 →s t[x/u]L1[[y/v]]L2

J

We can now conclude metaconfluence of the substitution calculus as follows:

I Corollary 4. The reduction relation →λsub is confluent on metaterms.

Proof. Let →λsub :=→dB ∪ →s. Both →dB and →str are trivially confluent. They commute
(Theorem 3). We conclude by the Hindley-Rosen Theorem [10] introduced in Sec 1. J

4.2 The Linear Substitution Calculus enjoys MetaConfluence
In this section we prove metaconfluence for the linear substitution calculus. As in the previous
section, we first prove that the systems →dB and →lsub strongly commute, where, as defined
in Sec. 3 we have →lsub:=→ls ∪ →w.

I Theorem 5 (Strong Commutation). ∀t0, t1, t2, if t0 →lsub t1 and t0 →dB t2, ∃t3 s.t.
t1 �dB t3 and t2

=→lsub t3.

Proof. By induction on the reduction relations, then, for the base cases, by case analysis of
overlapping local divergences. Most of the cases are straightforward, we only show here the
more interesting ones.

C[[x]][x/u]→ls C[[u]][x/u]
↓dB ↓dB

C′[[x]][x/u]→lsC′[[u]][x/u]

(λx.C[[y]])L1[y/v]L2u→ls(λx.C[[v]])L1[y/v]L2u

↓dB ↓dB

C[[y]][x/u]L1[y/v]L2 →ls C[[v]][x/u]L1[y/v]L2

C[[x]][x/u]→ls C[[u]][x/u]
↓dB

�

dB
C[[x]][x/u′]→lsC[[u′]][x/u′]

(λx.t)L1[y/v]L2u→w(λx.t)L1L2u

↓dB ↓dB

t[x/u]L1[y/v]L2 →w t[x/u]L1L2

(λx.t)L11[z/C[[y]]]L12[y/v]L2u→ls(λx.t)L11[z/C[[v]]]L12[y/v]L2u

↓dB ↓dB

t[x/u]L11[z/C[[y]]]L12[y/v]L2 →ls t[x/u]L11[z/C[[v]]]L12[y/v]L2

J

The next goal is to establish confluence of the subsystem →lsub. For that we first need
to establish termination, that can be proved using some intermediate auxiliary results.

F. L. C. de Moura, D. Kesner, and M. Ayala-Rincón 399

I Lemma 6. Let x 6= y and assume y /∈ fv(v). Then mlx(C[[y]]) + mly(C[[y]]) · mlx(v) =
mlx(C[[v]]) + mly(C[[v]]) · mlx(v).

Proof. By induction on C. J

The following lemma states compatibility of →lsub w.r.t mlx(·).

I Lemma 7 (Compatibility). For all x, t and t′, such that t→lsub t
′, mlx(t) ≥ mlx(t′).

Proof. The proof is by induction on the reduction relation. We show the base cases, since
the inductive cases are straightfoward:
Case C[[z]][z/u] →ls C[[u]][z/u]: mlx(C[[z]][z/u]) ≥ mlx(C[[u]][z/u]) if and only if mlx(C[[z]]) +
mlz(C[[z]]) · mlx(u) ≥ mlx(C[[u]]) + mlz(C[[u]]) · mlx(u), which holds by Lem. 6, since z /∈ fv(u).
Actually, in this case the equality holds.
Case t[z/u]→w t: mlx(t[z/u]) = mlx(t) + mlx(u) + mlz(t) · mlx(u) ≥ mlx(t). J

I Lemma 8. Let x 6= y such that x, y /∈ fv(v). Then mlx(C[[x]]) > mlx(C[[v]]) and
mly(C[[x]]) = mly(C[[v]]).

Proof. The proof is by simultaneous induction on C. J

I Lemma 9. The system →lsub is terminating on metaterms.

Proof. We show that t→lsub t
′ implies sz(t) > sz(t′) so that→lsub is necessarily terminating.

The proof is by induction on t→lsub t
′ and uses Lem. 7 and Lem. 8. J

I Lemma 10. The reduction relations →dB and →lsub are confluent.

Proof. As noticed before the relation →dB is trivially confluent. Since →lsub is terminating
on metaterms (Lem. 9), in order to conclude confluence it is enough to verify joinability
of all critical pairs. The sole critical peak is built overlapping the ls-rule with itself:
C[[u]][x/u] ls ← C[[x]][x/u] = t[x/u] = C′[[x]][x/u] →ls C′[[u]][x/u]. In other words, t can
be written as D′[[x, x]], where D′ is a two-hole context. Then, the critical peak is joinable:
D′[[u, x]][x/u]→ls D′[[u, u]][x/u] ls← D′[[x, u]][x/u]. J

We can now conclude metaconfluence for the linear substitution calculus as follows:

I Corollary 11. The reduction relation →λlsub is confluent on metaterms.

Proof. Let →λlsub :=→dB ∪ →lsub. Since both →dB and →lsub are confluent (Lem 10) and
strongly commute (Theorem 5), their union is confluent using the Hindley-Rosen Theorem [10]
introduced in Sec. 1. J

4.3 The Structural Lambda Calculus enjoys MetaConfluence
In this section we prove metaconfluence for the structural lambda calculus. As in the previous
section, we first prove that the systems →dB and →str strongly commute, where, as defined
in Sec. 3, we have →str:=→c ∪ →d ∪ →w.

I Theorem 12 (Strong Commutation). ∀t0, t1, t2, if t0 →str t1 and t0 →dB t2, ∃t3 s.t.
t1 �dB t3 and t2

=→str t3.

FSTTCS 2014

400 Metaconfluence of Calculi with Explicit Substitutions at a Distance

Proof. By induction on the reduction relations. We only show here the diagrams of the more
interesting cases.

(λx.t)L1[y/v]L2u →w (λx.t)L1L2u

↓dB ↓dB

t[x/u]L1[y/v]L2 →w t[x/u]L1L2

(λx.t)L1[y/v]L2u →d (λx.t)L1[[y/v]]L2u

↓dB ↓dB

t[x/u]L1[y/v]L2 →d t[x/u]L1[[y/v]]L2

t[x/u] →c t〈y|x〉[x/u][y/u]
↓dB

�

dB
t[x/u′] →c t〈y|x〉[x/u′][y/u′]

t[x/u] →c t〈y|x〉[x/u][y/u]
↓dB ↓dB

t′[x/u] →c t′〈y|x〉[x/u][y/u]

(λx.t)L1[y/v]L2u →c (λx.t)L1〈y|y′〉[y/v][y′/v]L2u

↓dB ↓dB

t[x/u]L1[y/v]L2 →c t[x/u]L1〈y|y′〉[y/v][y′/v]L2

The subtle point here is that in the last two diagrams we need to choose the replacement
t′〈y|x〉 (resp. (t[x/u]L1)〈y|y′〉) according to that we used for t〈y|x〉 (resp. ((λx.t)L1)〈y|y′〉). J

The next goal is to establish confluence of the subsystem →str. For that we first need to
establish termination, that can be proved using some intermediate auxiliary results.

I Lemma 13. If x /∈ fv(u) and x 6= y, then Px(t) = Px(t[[y/u]]).

Proof. The hypothesis implies Px(u) = 0. Moreover, we can easily prove by induction on t
that Px(t{{y/u}}) ∗= Px(t), if x /∈ fv(u) and x 6= y. We then consider all the possible cases for
t[[y/u]].
1. If y ∈ fm(t) and y ∈ fr(t), then Px(t[[y/u]]) = Px(t{{y/u}}[y/u]) = Px(t{{y/u}}) ∗= Px(t);
2. If y /∈ fm(t) and y ∈ fr(t), then Px(t[[y/u]]) = Px(t{{y/u}}) ∗= Px(t);
3. If y ∈ fm(t) and y /∈ fr(t), then Px(t[[y/u]]) = Px(t[y/u]) = Px(t{{y/u}}) ∗= Px(t);
4. If y /∈ fv(t), then Px(t[[y/u]]) = Px(t). J

The following properties hold for metaterms. The proofs can be done by simple structural
induction, where the metavariable case is straightforward and the other cases are in [6].

I Lemma 14. Let t be a metaterm. Then
1. |t|x ≤ Px(t).
2. If x /∈ fv(u) then Px(t) = Px(t[y/u]).
3. If x, y, z are pairwise distinct and z /∈ fv(t) then Px(t) = Px(t〈y|z〉).
4. If y /∈ fv(t) and t′ = t〈x|y〉 then Px(t) = Px(t′) + Py(t′).

I Lemma 15. If |t|y = 1 then Px(t{{y/u}}) ≤ Px(t) + Py(t) · Px(u).

Proof. By induction on t. J

I Lemma 16. If |t|x = 1 and x /∈ fm(t) then jm(t[x/u]) A jm(t[[x/u]]).

Proof. By induction on t using Lem. 13 and Lem. 14. J

I Lemma 17. Let t, t′ be metaterms. If t→str t
′ then Px(t) ≥ Px(t′).

Proof. By induction on t→str t
′ using Lem. 15 and Lem. 14. J

I Lemma 18. The reduction relation →str is terminating on metaterms.

Proof. By induction on t→str t
′ using Lem. 16 and Lem. 17. J

F. L. C. de Moura, D. Kesner, and M. Ayala-Rincón 401

I Lemma 19. The reduction relations →str and →dB are confluent.

Proof. The reduction relation →str is terminating on metaterms (Lem. 18), and do not have
critical pairs because its rules are mutually exclusive. Therefore, →str is confluent. J

Metaconfluence of the structural substitution calculus is then obtained as follows:

I Corollary 20. The reduction relation →λstr is confluent on metaterms.

Proof. Let →λstr :=→dB ∪ →str. Both →dB and →str are confluent (Lem. 19) and strongly
commute (Theorem 12), therefore their union is confluent by the Hindley-Rosen Theorem [10]
introduced in Sec. 1. J

5 Conclusion

We define reduction for metaterms for three calculi with explicit substitutions that act at a
distance, namely the substitution calculus, the linear substitution calculus and the structural
lambda calculus. This is done by defining a subtle notion of metasubstitution, which is
completely fixed for metavariables. In contrast to other specifications of λ-calculi with ES on
metaterms, our resulting reduction systems do not contain equations, so that their equational
theories are simple enough to be treated with simple rewriting techniques. In particular, our
proofs of (meta)confluence can be achieved by using the well-known Hindley-Rosen Theorem.

As mentioned before, metaconfluence is an essential property of calculi with ES used to
implement higher-order unification (HOU) procedures [15, 8]. Indeed, such algorithms need
to compare typed metaterms in (η-long) normal form, which are unique by metaconfluence.
They then generate new metavariables in order to denote partial solutions that need again
to be in (η-long) normal form in order to recursively apply the algorithm. As future work,
we want to investigate higher-order unification (HOU) procedures based on calculi acting
at a distance. We believe that the simplicity and applicability of such calculi can lead to
unification procedures that are simpler than already known unification procedures based on
other ES calculi [15, 8].

References
1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of

Functional Programming, 1(4):375–416, 1991.
2 B. Accattoli, P. Barenbaum, and D. Mazza. Distilling abstract machines. Available at

https://sites.google.com/site/beniaminoaccattoli/, 2014.
3 B. Accattoli, E. Bonelli, D. Kesner, and C. Lombardi. A nonstandard standardization

theorem. In 41st Symposium on Principles of Programming Languages (POPL), editor,
ACM SIGPLAN-SIGACT, pages 659–670, 2014.

4 B. Accattoli and D. Kesner. The structural lambda-calculus. In 19th EACSL Annual
Conference on Computer Science and Logic (CSL), volume 6247 of LNCS, pages 381–395.
Springer-Verlag, 2010.

5 B. Accattoli and D. Kesner. The permutative lambda calculus. In LPAR, pages 23–36,
2012.

6 B. Accattoli and D. Kesner. Preservation of strong normalisation modulo permutations for
the structural lambda-calculus. Logical Methods in Computer Science, 8(1), 2012.

7 B. Accattoli and U. Dal Lago. Beta reduction is invariant, indeed. Accepted to LICS/CSL
2014.

FSTTCS 2014

402 Metaconfluence of Calculi with Explicit Substitutions at a Distance

8 M. Ayala-Rincón and F. Kamareddine. Unification via the λs_e-Style of Explicit Substi-
tution. The Logical Journal of the IGPL, 9(4):489–523, 2001.

9 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

10 H. Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of Studies
in Logic and the Foundations of Mathematics. North-Holland, 1984.

11 M. Bezem, J. W. Klop, and R. de Vrijer, editors. Term Rewriting Seminar – Terese.
Cambridge University Press, 2003.

12 P.-L. Curien, T. Hardin, and J.-J. Levy. Confluence properties of weak and strong calculi
of explicit substitutions. Journal of the ACM, 43:43–2, 1996.

13 R. David and B. Guillaume. A lambda-calculus with explicit weakening and explicit sub-
stitution. Mathematical Structures in Computer Science, 11(1):169–206, 2001.

14 F. L.C. de Moura, M. Ayala-Rincón, and F. Kamareddine. Higher-Order Unification: A
structural relation between Huet’s method and the one based on explicit substitutions.
Journal of Applied Logic, 6(1):72–108, 2008.

15 G. Dowek, T. Hardin, and C. Kirchner. Higher order unification via explicit substitutions.
Inf. Comput., 157(1-2):183–235, 2000.

16 G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit substitutions:
The case of higher-order patterns. In JICSLP, pages 259–273, 1996.

17 Z. el A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a Calculus of Explicit
Substitutions which Preserves Strong Normalization. JFP, 6(5):699–722, 1996.

18 B. Guillaume. The λs_e-calculus Does Not Preserve Strong Normalization. J. of Func.
Programming, 10(4):321–325, 2000.

19 F. Kamareddine and A. Ríos. A λ-calculus à la de Bruijn with Explicit Substitutions. In
Proc. of PLILP’95, volume 982 of LNCS, pages 45–62. Springer, 1995.

20 F. Kamareddine and A. Ríos. Extending a λ-calculus with Explicit Substitution which
Preserves Strong Normalisation into a Confluent Calculus on Open Terms. Journal of
Functional Programming, 7:395–420, 1997.

21 D. Kesner. The theory of calculi with explicit substitutions revisited. In CSL, pages 238–
252, 2007.

22 D. Kesner. Perpetuality for full and safe composition (in a constructive setting). In To
appear in Proceedings of the 35th International Colloquium on Automata, Languages and
Programming (ICALP 2008), Track B, Reykjavik, Iceland„ 2008.

23 D. Kesner. A Theory of Explicit Substitutions with Safe and Full Composition. Logical
Methods in Computer Science, 5(3:1):1–29, 2009.

24 D. Kesner and S. Ó Conchúir. Milner’s Lambda Calculus with Partial Substitutions. Tech-
nical Report, Université Paris Diderot, 2008.

25 P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In Proceedings
of TLCA’95, volume 902 of LNCS. Springer-Verlag, 1995.

26 R. Milner. Local bigraphs and confluence: Two conjectures: (extended abstract). ENTCS,
175(3):65–73, 2007.

27 F. Renaud. Les Ressources Explicites vues par la Théorie de la Réécrit-
ure. PhD thesis, Université Paris Diderot - Paris 7, 2011. Available at
www.lix.polytechnique.fr/∼renaud/these.pdf.

28 Jean yves Girard. Proof-nets: The parallel syntax for proof-theory. In Logic and Algebra,
pages 97–124. Marcel Dekker, 1996.

Behavioral Metrics via Functor Lifting
Paolo Baldan1, Filippo Bonchi2, Henning Kerstan3, and
Barbara König3

1 Dipartimento di Matematica, Università di Padova, Italy
baldan@math.unipd.it

2 CNRS, ENS Lyon, Université de Lyon, France
filippo.bonchi@ens-lyon.fr

3 Universität Duisburg-Essen, Germany
henning.kerstan@uni-due.de, barbara_koenig@uni-due.de

Abstract
We study behavioral metrics in an abstract coalgebraic setting. Given a coalgebra α : X → FX

in Set, where the functor F specifies the branching type, we define a framework for deriving
pseudometrics on X which measure the behavioral distance of states.

A first crucial step is the lifting of the functor F on Set to a functor F in the category
PMet of pseudometric spaces. We present two different approaches which can be viewed as
generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We
show that the pseudometrics provided by the two approaches coincide on several natural examples,
but in general they differ.

Then a final coalgebra for F in Set can be endowed with a behavioral distance resulting as
the smallest solution of a fixed-point equation, yielding the final F -coalgebra in PMet. The
same technique, applied to an arbitrary coalgebra α : X → FX in Set, provides the behavioral
distance on X. Under some constraints we can prove that two states are at distance 0 if and
only if they are behaviorally equivalent.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, D.2.4 Software/Program Verification

Keywords and phrases behavioral metric, functor lifting, pseudometric, coalgebra

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.403

1 Introduction

Increasingly, modelling formalisms are equipped with quantitative information, such as
probability, time or weight. Such quantitative information should be taken into account
when reasoning about behavioral equivalence of system states, such as bisimilarity. In this
setting the appropriate notion is not necessarily equivalence, but a behavioral metric that
measures the distance of the behavior of two states. In a quantitative setting, it is often
unreasonable to assume that two states have exactly the same behavior, but it makes sense
to express that their behavior differs by some (small) value ε.

The above considerations led to the study of behavioral metrics which aims at quantifying
the the distance between the behavior of states. Since different states can have exactly the
same behavior it is quite natural to consider pseudometrics, which allow different elements
to be at zero distance.

Earlier contributions defined behavioral metrics in the setting of probabilistic systems
[9, 23] and of metric transition systems [6]. Our aim is to generalize these ideas and to study
behavioral metrics in a general coalgebraic setting. The theory of coalgebra [17] is nowadays

© Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 403–415

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baldan@math.unipd.it
mailto:filippo.bonchi@ens-lyon.fr
mailto:henning.kerstan@uni-due.de
mailto:barbara_koenig@uni-due.de
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.403
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

404 Behavioral Metrics via Functor Lifting

a well-established tool for defining and reasoning about various state based transition systems
such as deterministic, nondeterministic, weighted or probabilistic automata. Hence, it is the
appropriate setting to ask and answer general questions about behavioral metrics.

How can we define behavioral metrics for transition systems with different branching
types? We provide a coalgebraic framework in the category of pseudometric spaces PMet
that allows to define and reason about such metrics.
Are the behavioral metrics canonical in some way? We provide a natural way to define
metrics by lifting functors from Set to the category of pseudometric spaces. In fact, we
study two liftings: the Kantorovich and the Wasserstein lifting and observe that they
coincide in many cases. This provides us with a notion of canonicity and justification for
the choice of metrics.
Does the measurement of distances affect behavioral equivalence? If we start by considering
coalgebras in PMet (as, e.g., in [23]), it is not entirely clear a priori whether the richer
categorical structure influences the notion of behavioral equivalence. In our setting we
start with coalgebras in Set and put distance measurements “on top”, showing that, under
some mild constraints, the original notion of behavioral equivalence is not compromised,
in the sense that two states are behaviorally equivalent iff their distance is 0.
Are there generic algorithms to compute metrics? Coalgebra is a valuable tool to define
generic methods that can be instantiated to concrete cases in order to obtain prototype
algorithms. In our case we give a (high-level) procedure for computing behavioral distances
on a given coalgebra, based on determining the smallest solution of a fixed-point equation.

A central contribution of this paper is the lifting of a functor F from Set to PMet. Given a
pseudometric space (X, d), the goal is to define a suitable pseudometric on FX. Such liftings
of metrics have been extensively studied in transportation theory [24], e.g. for the case of
the (discrete) probability distribution functor, which comes with a nice analogy: assume
several cities (with fixed distances between them) and two probability distributions s, t on
cities, representing supply and demand (in units of mass). The distance between s, t can be
measured in two ways: the first is to set up an optimal transportation plan with minimal
costs (in the following also called coupling) to transport goods from cities with excess supply
to cities with excess demand. The cost of transport is determined by the product of mass
and distance. In this way we obtain the Wasserstein distance. A different view is to imagine
a logistics firm that is commissioned to handle the transport. It sets prices for each city
and buys and sells for this price at every location. However, it has to ensure that the price
function is nonexpansive, i.e., the difference of prices between two cities is smaller than the
distance of the cities, otherwise it will not be worthwhile to outsource this task. This firm
will attempt to maximize its profit, which can be considered as the Kantorovich distance of
s, t. The Kantorovich-Rubinstein duality informs us that these two views lead to the exactly
same result, a very good argument for the canonicity of this notion of distance.

It is our observation that these two notions of distance lifting can analogously be defined
for arbitrary functors F , leading to a rich general theory. The lifting has an evaluation
function as parameter. As concrete examples, besides the probability distribution functor,
we study the (finite) powerset functor (resulting in the Hausdorff metric) and the coproduct
and product bifunctors. In the case of the product bifunctor we consider different evaluation
functions, each leading to a well-known product metric. The Kantorovich-Rubinstein duality
holds for these functors, but it does not hold in general (we provide a counterexample).

After discussing functor liftings, we define coalgebraic behavioral pseudometrics and
answer the questions above. Specifically we show how to compute distances on the final

P. Baldan, F. Bonchi, H. Kerstan, and B. König 405

coalgebra as well as on arbitrary coalgebras via fixed-point iteration and we prove that the
pseudometric obtained on the final coalgebra is indeed a metric. In [3] we discuss a fibrational
perspective on our work and we compare with [13]. All proofs for our results are in [3].

2 Preliminaries, Notation and Evaluation Functions

We assume that the reader is familiar with the basic notions of category theory, especially
with the definitions of functor, product, coproduct and weak pullbacks.

For a function f : X → Y and sets A ⊆ X, B ⊆ Y we write f [A] := {f(a) | a ∈ A} for
the image of A and f−1[B] = {a ∈ A | f(x) ∈ B} for the preimage of B. If Y ⊆ [0,∞] and
f, g : X → Y are functions we write f ≤ g when ∀x ∈ X : f(x) ≤ g(x).

Given a natural number n ∈ N and a family (Xi)ni=1 of sets Xi we denote the projections
of the (cartesian) product of the Xi by πni :

∏n
i=1Xi → Xi, or just by πi if n is clear from

the context. For a source (fi : X → Xi)ni=1 we denote the unique mediating arrow to the
product by 〈f1, . . . , fn〉 : X →

∏n
i=1Xi. Similarly, given a family of arrows (fi : Xi → Yi)ni=1,

we write f1 × · · · × fn = 〈f1 ◦ π1, . . . , fn ◦ πn〉 :
∏n
i=1Xi →

∏n
i=1 Yi.

We quickly recap the basic ideas of coalgebras. Let F be an endofunctor on the category
Set of sets and functions. An F -coalgebra is just a function α : X → FX. Given another
F -coalgebra β : Y → FY a coalgebra homomorphism from α to β is a function f : A→ B

such that β ◦ f = Ff ◦α. We call an F -coalgebra κ : Ω→ FΩ final if for any other coalgebra
α : X → FX there is a unique coalgebra homomorphism [[_]] : X → Ω. The final coalgebra
need not exist but if it does it is unique up to isomorphism. It can be considered as the
universe of all possible behaviors. If we have an endofunctor F such that a final coalgebra
κ : Ω→ FΩ exists then for any coalgebra α : X → FX two states x1, x2 ∈ X are said to be
behaviorally equivalent if and only if [[x1]] = [[x2]].

We now introduce some preliminaries about (pseudo)metric spaces. Our (pseudo)metrics
assume values in a closed interval [0,>], where > ∈ (0,∞] is a fixed maximal element (for
our examples we will use > = 1 or > =∞). In this way the set of (pseudo)metrics over a
fixed set with pointwise order is a complete lattice (since [0,>] is) and the resulting category
of pseudometric spaces is complete and cocomplete.

I Definition 2.1 (Pseudometric, Pseudometric Space). Given a set X, a pseudometric on
X is a function d : X ×X → [0,>] such that for all x, y, z ∈ X, the following axioms hold:
d(x, x) = 0 (reflexivity), d(x, y) = d(y, x) (symmetry), d(x, z) ≤ d(x, y) + d(y, z) (triangle
inequality). If additionally d(x, y) = 0 implies x = y, d is called a metric. A (pseudo)metric
space is a pair (X, d) where X is a set and d is a (pseudo)metric on X.

By de : [0,>]2 → [0,>] we denote the ordinary Euclidean distance on [0,>], i.e., de(x, y) =
|x − y| for x, y ∈ [0,>] \ {∞}, and – where appropriate – de(x,∞) = ∞ if x 6= ∞ and
de(∞,∞) = 0. Addition is defined in the usual way, in particular x+∞ =∞ for x ∈ [0,∞].

Hereafter, we only consider those functions between pseudometric spaces that do not
increase distances.

I Definition 2.2 (Nonexpansive Function, Isometry). Let (X, dX), (Y, dY) be pseudometric
spaces. A function f : X → Y is called nonexpansive if dY ◦ (f × f) ≤ dX . In this case we
write f : (X, dX) 1→ (Y, dY). If equality holds, f is called an isometry.

For our purposes it will turn out to be useful to consider the following alternative characteri-
zation of the triangle inequality using the concept of nonexpansive functions.

FSTTCS 2014

406 Behavioral Metrics via Functor Lifting

I Lemma 2.3. A reflexive and symmetric function d : X2 → [0,>] satisfies the triangle
inequality iff for all x ∈ X the function d(x,_) : X → [0,>] is nonexpansive.

As stated before, our definition of a pseudometric gives rise to a suitably rich category.

I Definition 2.4 (Category of Pseudometric Spaces). For a fixed > ∈ (0,∞] we denote by
PMet the category of all pseudometric spaces and nonexpansive functions.

This category is complete and cocomplete (see [3]) and, in particular, it has products and
coproducts as we will see in Examples 5.1 and 5.2. We now introduce two motivating
examples borrowed from [23] and [6].

I Example 2.5 (Probabilistic Transition Systems and Behavioral Distance). We regard prob-
abilistic transition systems as coalgebras of the form α : X → D(X + 1), where D is
the probability distribution functor (with finite support) which maps a set X to the set
DX = {P : X → [0, 1] |

∑
x∈X P (x) = 1, P has finite support} and a function f : X → Y to

the function Df : DX → DY, P 7→ λy.
∑
x∈f−1[{y}] P (x). Here α(x)(y), for x, y ∈ X, denotes

the probability of a transition from a state x to y and α(x)(X) stands for the probability of
terminating from x (we use X for the single element of the set 1).

In [23] a metric for the continuous version of these systems is introduced, by considering a
discount factor c ∈ (0, 1). In the discrete case we obtain the behavioral distance d : X2 → [0, 1],
defined as the least solution of the equation d(x, y) = d(α(x), α(y)), where x, y ∈ X and
d : (D(X + 1))2 → [0, 1] is defined in two steps: First, d̂ : (X + 1)2 → [0, 1] is defined as
d̂(x, y) = c ·d(x, y) if x, y ∈ X, d̂(X,X) = 0 and 1 otherwise. Then, for all P1, P2 ∈ D(X+1),
d(P1, P2) is defined as the supremum of all values

∑
x∈X+1 f(x) ·

(
P1(x) − P2(x)

)
, with

f : (X + 1, d̂) 1→ ([0, 1], de) being an arbitrary nonexpansive function. As we will further
discuss in Example 3.3, d is the Kantorovich pseudometric given by the space (X + 1, d̂).

We consider a concrete example from [23], illustrated on the left of Figure 1. The
behavioral distance of u and z is d(u, z) = 1 and hence d(x, y) = c · ε.

I Example 2.6 (Metric Transition Systems and Propositional Distances). We give another
example based on the notions of [6]. A finite set Σ = {r1, . . . , rn} of propositions is given
and each proposition r ∈ Σ is associated with a pseudometric space (Mr, dr). A valuation u
is a function with domain Σ that assigns to each r ∈ Σ an element of Mr. We denote the set
of all valuations by U [Σ]. A metric transition system is a tuple M = (S, τ,Σ, [·]) with a set
S of states, a transition relation τ ⊆ S × S, a finite set Σ of propositions and a valuation [s]
for each state s ∈ S. We write τ(s) for {s′ ∈ S | (s, s′) ∈ τ} and require that τ(s) is finite.

In [6] the propositional distance between two valuations is given by pd(u, v) =
maxr∈Σ dr(u(r), v(r)) for u, v ∈ U [Σ]. The (undirected) branching distance d : S × S → R+

0
is defined as the smallest fixed-point of the following equation, where s, t ∈ S:

d(s, t) = max
{

pd([s], [t]), max
s′∈τ(s)

min
t′∈τ(t)

d(s′, t′), max
t′∈τ(t)

min
s′∈τ(s)

d(s′, t′)
}

(1)

Note that, apart from the first argument, this coincides with the Hausdorff distance.
We consider an example which appears similarly in [6] (see Figure 1, right) with a

single proposition r ∈ Σ, where Mr = [0, 1] is equipped with the Euclidean distance de.
According to (1), d(x1, y1) equals the Hausdorff distance of the reals associated with the sets
of successors, which is 0.3 (since this is the maximal distance of any successor to the closest
successor in the other set of successors, here: the distance from y3 to x3).

In order to model such transition systems as coalgebras we define the following n-ary
auxiliary functor: G(X1, . . . , Xn) = {u : Σ→ X1 + · · ·+Xn | u(ri) ∈ Xi}. Then coalgebras

P. Baldan, F. Bonchi, H. Kerstan, and B. König 407

x

u z

y

1
2 − ε

1
2 + ε

1
2

1
2

1

x1 0

x2 0.4 x30.7

y1 0

y2 0.5 y31

Figure 1 A probabilistic transition system (left) and a metric transition system (right).

are of the form α : S → G(Mr1 , . . . ,Mrn)×Pfin(S), where Pfin is the finite powerset functor
and α(s) = ([s], τ(s)). As we will see later in Example 6.7, the right-hand side of (1) can be
seen as lifting a metric d on X to a metric on G(Mr1 , . . . ,Mrn)× Pfin(X).

Generalizing from the examples, we now establish a general framework for deriving such
behavioral distances. In both cases, the crucial step is to find, for a functor F , a way to lift
a pseudometric on X to a pseudometric on FX. Based on this, one can set up a fixed-point
equation and define behavioral distance as its smallest solution. Hence, in the next sections
we describe how to lift an endofunctor F on Set to an endofunctor on PMet.

I Definition 2.7 (Lifting). Let U : PMet→ Set be the forgetful functor which maps every
pseudometric space to its underlying set. A functor F : PMet→ PMet is called a lifting of
a functor F : Set→ Set if it satisfies U ◦ F = F ◦ U .

It is not difficult to prove that such a lifting is always monotone on pseudometrics over
a common set, i.e. for any two pseudometrics d1 ≤ d2 on the same set X, we also have
dF1 ≤ dF2 where dFi are the pseudometrics on FX obtained by applying F to (X, di) (see
[3]). Similarly to predicate lifting of coalgebraic modal logic [18], liftings on PMet can be
conveniently defined via an evaluation function.

I Definition 2.8 (Evaluation Function and Evaluation Functor). Let F be an endofunctor on
Set. An evaluation function for F is a function evF : F [0,>]→ [0,>]. Given such a function,
we define the evaluation functor to be the endofunctor F̃ on Set/[0,>], the slice category1
over [0,>], via F̃ (g) = evF ◦ Fg for all g ∈ Set/[0,>]. On arrows F̃ is defined as F .

3 Lifting Functors to Pseudometric Spaces à la Kantorovich

Let us now consider an endofunctor F on Set with an evaluation function evF . Given a
pseudometric space (X, d), our first approach will be to take the smallest possible pseudo-
metric dF on FX such that, for all nonexpansive functions f : (X, d) 1→ ([0,>], de), also
F̃ f : (FX, dF) 1→ ([0,>], de) is nonexpansive again, i.e. we want to ensure that for all
t1, t2 ∈ FX we have de(F̃ f(t1), F̃ f(t2)) ≤ dF (t1, t2). This idea immediately leads us
to the next definition.

I Definition 3.1 (Kantorovich Pseudometric and Kantorovich Lifting). Let F : Set → Set
be a functor with an evaluation function evF . For every pseudometric space (X, d) the
Kantorovich pseudometric on FX is the function d ↑F : FX × FX → [0,>], where for all
t1, t2 ∈ FX:

d ↑F (t1, t2) := sup{de(F̃ f(t1), F̃ f(t2)) | f : (X, d) 1→ ([0,>], de)} .

1 The slice category Set/[0,>] has as objects all functions g : X → [0,>] where X is an arbitrary set.
Given g as before and h : Y → [0,>], an arrow from g to h is a function f : X → Y satisfying h ◦ f = g.

FSTTCS 2014

408 Behavioral Metrics via Functor Lifting

The Kantorovich lifting of the functor F is the functor F : PMet → PMet defined as
F (X, d) = (FX, d ↑F) and Ff = Ff .

It is easy to show that d ↑F is indeed a pseudometric. Since F inherits the preservation of
identities and composition of morphisms from F we can prove that nonexpansive functions
are mapped to nonexpansive functions and isometries to isometries.

I Proposition 3.2. The Kantorovich lifting F of a functor F preserves isometries.

We chose the name Kantorovich because our definition is reminiscent of the Kantorovich
pseudometric in probability theory. If we take the proper combination of functor and
evaluation function, we can recover that pseudometric (in the discrete case) as the first
instance for our framework.

I Example 3.3 (Probability Distribution Functor). We take > = 1, the probability distribution
functor D from Example 2.5 and define evD : D[0, 1] → [0, 1], evD(P) = EP [id[0,1]] =∑
x∈[0,1] x·P (x) yielding D̃g(P) = EP [g] =

∑
x∈[0,1] g(x)·P (x) for all g : X → [0, 1]. For every

pseudometric space (X, d) we obtain the Kantorovich pseudometric d ↑D : (DX)2 → [0, 1],
d ↑D(P1, P2) = sup{

∑
x∈X f(x) ·

(
P1(x)− P2(x)

)
| f : (X, d) 1→ ([0, 1], de)}.

In general Kantorovich liftings do not preserve metrics, as shown by the following example.

I Example 3.4. Let F : Set → Set be given as FX = X × X on sets and Ff = f × f
on functions and take > = ∞, evF : F [0,∞] → [0,∞], evF (r1, r2) = r1 + r2. For a metric
space (X, d) with |X| ≥ 2 let t1 = (x1, x2) ∈ FX with x1 6= x2 and define t2 := (x2, x1).
Clearly t1 6= t2 but for every nonexpansive function f : (X, d) 1→ ([0,>], de) we have F̃ f(t1) =
f(x1) + f(x2) = f(x2) + f(x1) = F̃ f(t2) and thus d ↑F (t1, t2) = 0.

4 Wasserstein Pseudometric and Kantorovich-Rubinstein Duality

We have seen that our first lifting approach bears close resemblance to the original Kantorovich
pseudometric on probability measures. In that context there exists another pseudometric,
the Wasserstein pseudometric, which under certain conditions coincides with the Kantorovich
pseudometric. We will define a generalized version of the Wasserstein pseudometric and
compare it with our generalized Kantorovich pseudometric. To do that we first need to define
how we can couple elements of FX.

I Definition 4.1 (Coupling). Let F : Set→ Set be a functor and n ∈ N. Given a set X and
ti ∈ FX for 1 ≤ i ≤ n we call an element t ∈ F (Xn) such that Fπi(t) = ti a coupling of the
ti (with respect to F). We write ΓF (t1, t2, . . . , tn) for the set of all these couplings.

If F preserves weak pullbacks, we can define new couplings based on given ones.

I Lemma 4.2 (Gluing Lemma). Let F : Set → Set be a weak pullback preserving functor,
X a set, t1, t2, t3 ∈ FX, t12 ∈ ΓF (t1, t2), and t23 ∈ ΓF (t2, t3) be couplings. Then there is a
coupling t123 ∈ ΓF (t1, t2, t3) such that F (〈π3

1 , π
3
2〉)(t123) = t12 and F (〈π3

2 , π
3
3〉)(t123) = t23.

This lemma already hints at the fact that our new lifting will only work for weak pullback
preserving functors, which is a standard requirement in coalgebra. In addition to that we
have to impose three extra conditions on the evaluation functions.

I Definition 4.3 (Well-Behaved Evaluation Function). Let evF be an evaluation function for
a functor F : Set→ Set. We call evF well-behaved if it satisfies the following conditions:

P. Baldan, F. Bonchi, H. Kerstan, and B. König 409

1. F̃ is monotone, i.e., for f, g : X → [0,>] with f ≤ g, we have F̃ f ≤ F̃ g.
2. For each t ∈ F ([0,>]2) it holds that de(evF (t1), evF (t2)) ≤ F̃ de(t) for ti := Fπi(t).
3. ev−1

F [{0}] = Fi[F{0}] where i : {0} ↪→ [0,>] is the inclusion map.

While the first condition of this definition is quite natural, the other two need to be explained.
Condition 2 is needed to ensure that F̃ id[0,>] = evF : F [0,>]→ [0,>] is nonexpansive once
de is lifted to F [0,>] (cf. the intuition behind the Kantorovich lifting, where we ensure
that F̃ f is nonexpansive whenever f is nonexpansive). Furthermore Condition 3 intuitively
says that exactly the elements of F{0} are mapped to 0 via evF . Before we define the
Wasserstein pseudometric and the corresponding lifting, we take a look at an example of a
functor together with a well-behaved evaluation function.

I Example 4.4 (Finite Powerset Functor). Let > =∞. We take the finite powerset functor
Pfin with evaluation function max : Pfin([0,∞]) → [0,∞] with max ∅ = 0. This evaluation
function is well-behaved whereas min : Pfin([0,∞])→ [0,∞] is not well-behaved.

I Definition 4.5 (Wasserstein Pseudometric and Wasserstein Lifting). Let F : Set → Set
be a weak pullback preserving functor with well-behaved evaluation function evF . For
every pseudometric space (X, d) the Wasserstein pseudometric on FX is the function
d ↓F : FX × FX → [0,>] given by, for all t1, t2 ∈ FX,

d ↓F (t1, t2) := inf{F̃ d(t) | t ∈ ΓF (t1, t2)} .

We define the Wasserstein lifting of F to be the functor F : PMet → PMet, F (X, d) =
(FX, d ↓F), Ff = Ff .

This time it is not straightforward to prove that d ↓F is a pseudometric, so we explicitly
provide the following result. Its proof relies on all properties of well-behavedness of evF and
uses Lemma 4.2 which explains why we need a weak pullback preserving functor.

I Proposition 4.6. The Wasserstein pseudometric is a well-defined pseudometric on FX.

It is not hard to show functoriality of F and, as before, the lifted functor preserves isometries.

I Proposition 4.7. The Wasserstein lifting F of a functor F preserves isometries.

In contrast to our previous approach, metrics are preserved in certain situations.

I Proposition 4.8 (Preservation of Metrics). Let (X, d) be a metric space and F be a functor.
If the infimum in Definition 4.5 is a minimum for all t1, t2 ∈ FX where d ↓F (t1, t2) = 0 then
d ↓F is a metric, thus also F (X, d) = (FX, d ↓F) is a metric space.

Please note that a similar restriction for the Kantorovich lifting (i.e. requiring that the
supremum in Definition 3.1 is a maximum) does not yield preservation of metrics: In
Example 3.4 the supremum is always a maximum but we do not get a metric.

Let us now compare both lifting approaches. Whenever it is defined, the Wasserstein
pseudometric is an upper bound for the Kantorovich pseudometric.

I Proposition 4.9. Let F be a weak pullback preserving functor with well-behaved evaluation
function. Then for all pseudometric spaces (X, d) it holds that d ↑F ≤ d ↓F .

In general this inequality may be strict in general, as the following example shows.

FSTTCS 2014

410 Behavioral Metrics via Functor Lifting

I Example 4.10. The functor of Example 3.4 preserves weak pullbacks and the evaluation
function is well-behaved. We continue the example and take t1 = (x1, x2), t2 = (x2, x1). The
unique coupling t ∈ ΓF (t1, t2) is t = (x1, x2, x2, x1). Using that d is a metric we conclude
that d ↓F (t1, t2) = F̃ d(t) = d(x1, x2) + d(x2, x1) = 2d(x1, x2) > 0 = d ↑F (t1, t2).

When the inequality can be replaced by an equality we will in the following say that the
Kantorovich-Rubinstein duality holds. In this case we obtain a canonical notion of distance
on FX, given a pseudometric space (X, d). To calculate the distance of t1, t2 ∈ FX it is then
enough to find a nonexpansive function f : (X, d) 1→ ([0,>], de) and a coupling t ∈ ΓF (t1, t2)
such that de(F̃ f(t1), F̃ f(t2)) = F̃ de(t). Then, due to Proposition 4.9, this value equals
d ↑F (t1, t2) = d ↓F (t1, t2). We will now take a look at some examples where the duality holds.

I Example 4.11 (Identity Functor). Take F = Id with the identity evaluation map evId =
id[0,>]. For any t1, t2 ∈ X, t := (t1, t2) is the unique coupling of t1, t2. Hence, d ↓F (t1, t2) =
d(t1, t2). With the function d(t1,_): (X, d) 1→ ([0,>], de) we obtain duality because we
have d(t1, t2) = de(d(t1, t1), d(t1, t2)) ≤ d ↑F (t1, t2) ≤ d ↓F (t1, t2) = d(t1, t2) and thus equality.
Similarly, if we define evId(r) = c ·r for r ∈ [0,>], 0 < c ≤ 1, the Kantorovich and Wasserstein
liftings coincide and we obtain the discounted distance d ↑F (t1, t2) = d ↓F (t1, t2) = c · d(t1, t2).

I Example 4.12 (Probability Distribution Functor). The functor D of Example 3.3 preserves
weak pullbacks [19] and the evaluation function evD is well-behaved. We recover the usual
Wasserstein pseudometric d ↓D(P1, P2) = inf{

∑
x1,x2∈X d(x1, x2)·P (x1, x2) | P ∈ ΓD(P1, P2)}

and the Kantorovich-Rubinstein duality [24] from transportation theory for the discrete case.

I Example 4.13 (Finite Powerset Functor and Hausdorff Pseudometric). Let > =∞, F = Pfin
with evaluation map evPfin

: Pfin([0,∞])→ [0,∞], evPfin
(R) = maxR with max ∅ = 0 (as in

Example 4.4). In this setting we obtain duality and both pseudometrics are equal to the
Hausdorff pseudometric dH on Pfin(X) which is defined as, for all X1, X2 ∈ Pfin(X),

dH(X1, X2) = max
{

max
x1∈X1

min
x2∈X2

d(x1, x2), max
x2∈X2

min
x1∈X1

d(x1, x2)
}
.

Note that the distance is ∞, if either X1 or X2 is empty.

It is also illustrative to consider the countable powerset functor. Using the supremum as
evaluation function, one obtains again the Hausdorff pseudometric (with supremum/infimum
replacing maximum/minimum). However, in this case the Hausdorff distance of different
countable sets might be 0, even if we lift a metric. This shows that in general the Wasserstein
lifting does not preserve metrics but we need an extra condition, e.g. the one in Proposition 4.8.

5 Lifting Multifunctors

Our two approaches can easily be generalized2 to lift a multifunctor F : Setn → Set (for
n ∈ N) in a similar sense as given by Definition 2.7 to a multifunctor F : PMetn → Set.
The only difference is that we start with n pseudometric spaces instead of one. Now
we need an evaluation function evF : F ([0,>], . . . , [0,>]) → [0,>] which we call well-
behaved if it satisfies conditions similar to Definition 4.3 and which gives rise to an eval-
uation multifunctor F̃ : (Set/[0,>])n → Set/[0,>]. Given t1, t2 ∈ F (X1, . . . , Xn) we

2 The details are spelled out in [3], here we provide just the basic ideas.

P. Baldan, F. Bonchi, H. Kerstan, and B. König 411

write again ΓF (t1, t2) ⊆ F (X2
1 , . . . , X

2
n) for the set of couplings which is defined analo-

gously to Definition 4.1. For pseudometrics di : X2
i → [0,>], we can then define the Kan-

torovich/Wasserstein pseudometric d ↑F1,...,n, d
↓F
1,...,n : F (X1, . . . , Xn)× F (X1, . . . , Xn)→ [0,>],

as d ↑F1,...,n(t1, t2) := sup{de(F̃ (f1, . . . , fn)(t1), F̃ (f1, . . . , fn)(t2)) | fi : (Xi, di) 1→ ([0,>], de)}
and d ↓F1,...,n(t1, t2) := inf{F̃ (d1, . . . , dn)(t) | t ∈ ΓF (t1, t2)}. This setting grants us access to
new examples such as the product and the coproduct bifunctors.

I Example 5.1 (Product Bifunctor). For the product bifunctor F : Set2 → Set where
F (X1, X2) = X1 × X2 and F (f1, f2) = f1 × f2 we consider the evaluation function
max : [0,>]2 → [0,>] and for fixed parameters c1, c2 ∈ (0, 1] and p ∈ N the function
ρ : [0,>]2 → [0,>], ρ(x1, x2) = (c1xp1 + c2x

p
2)1/p. These functions are well-behaved, the

Kantorovich-Rubinstein duality holds and the supremum [infimum] of the Kantorovich
[Wasserstein] pseudometrics is always a maximum [minimum]. For the first function
we obtain the ∞-product pseudometric d∞((x1, x2), (y1, y2)) = max(d1(x1, y1), d2(x2, y2))
and for the other function the weighted p-product pseudometric dp((x1, x2), (y1, y2)) =
(c1dp1(x1, y1) + c2d

p
2(x2, y2))1/p.

Note that the pseudometric space (X1 ×X2, d∞) is the usual binary (category theoretic)
product of (X1, d1) and (X2, d2). Similarly, we can also obtain the binary coproduct.

I Example 5.2 (Coproduct Bifunctor). For the coproduct bifunctor F : Set2 → Set, where
F (X1, X2) = X1 +X2 = X1×{1}∪X2×{2} and F (f1, f2) = f1 + f2 we take the evaluation
function evF : [0,>] + [0,>] → [0,>], evF (x, i) = x. This function is well-behaved, the
Kantorovich-Rubinstein duality holds and the supremum of the Kantorovich pseudometric is
always a maximum whereas the infimum of the Wasserstein pseudometric is a minimum if
and only if any coupling of the two elements exists. We obtain the coproduct pseudometric
d+ where d+((x1, i1), (x2, i2)) is equal to di(x1, x2) if i1 = i2 = i and equal to > otherwise.

6 Final Coalgebra and Coalgebraic Behavioral Pseudometrics

In this section we assume an arbitrary lifting F : PMet → PMet of an endofunctor F
on Set. For any pseudometric space (X, d) we write dF for the pseudometric obtained by
applying F to (X, d). Such a lifting can be obtained as described earlier, but also by taking
a lifted multifunctor and fixing all parameters apart from one, or by the composition of such
functors. The following result ensures that if κ : Ω→ FΩ is a final F -coalgebra, then there is
also a final F -coalgebra which is constructed by simply enriching Ω with a pseudometric dΩ.

I Theorem 6.1. Let F : PMet→ PMet be a lifting of a functor F : Set→ Set which has a
final coalgebra κ : Ω→ FΩ. For every ordinal i we construct a pseudometric di : Ω×Ω→ [0,>]
as follows: d0 := 0 is the zero pseudometric, di+1 := dFi ◦ (κ × κ) for all ordinals i and
dj = supi<j di for all limit ordinals j. This sequence converges for some ordinal θ, i.e
dθ = dFθ ◦ (κ× κ). Moreover κ : (Ω, dθ) 1→ (FΩ, dFθ) is the final F -coalgebra.

We noted that for any set X, the set of pseudometrics over X, with pointwise order, is a
complete lattice. Moreover the lifting F induces a monotone function _F which maps any
pseudometric d on X to dF on FX. If, additionally, such function is ω-continuous, i.e., it
preserves the supremum of ω-chains, the construction in Theorem 6.1 will converge in at
most ω steps, i.e., dθ = dω. We show in [3] that the liftings induced by the finite powerset
functor and the probability distribution functor with finite support are ω-continuous. The
arguments used for convergence here suggests a connection with the work in [20], which
provides fixed-point results for metric functors which are not locally contractive.

FSTTCS 2014

412 Behavioral Metrics via Functor Lifting

Beyond equivalences of states, in PMet we can measure the distance of behaviors in
the final coalgebra. More precisely, the behavioral distance of two states x, y ∈ X of some
coalgebra α : X → FX is defined via the pseudometric bd(x, y) = dθ([[x]], [[y]]). Such distances
can be computed analogously to dθ above, replacing κ : Ω→ FΩ by α. This way we do not
need to explore the entire final coalgebra (which might be too large) but can restrict to the
interesting part.

I Theorem 6.2. Let the chain of the di converge in θ steps and F preserve isometries.
Let furthermore α : X → FX be an arbitrary coalgebra. For all ordinals i we define a
pseudometric ei : X ×X → [0,>] as follows: e0 is the zero pseudometric, ei+1 = eFi ◦ (α×α)
for all ordinals i and ej = supi<j ei for all limit ordinals j. Then we reach a fixed point after
ζ ≤ θ steps, i.e. eζ = eFζ ◦ (α× α), such that bd = eζ .

Since dθ is a pseudometric, we have that if [[x]] = [[y]] then bd(x, y) = 0. The other direction
does not hold in general: for this dθ has to be a proper metric. Theorem 6.5 at the end of
this section provides sufficient conditions guaranteeing this property.

To this aim, we proceed by recalling the final coalgebra construction via the final chain
which was first presented in the dual setting (free/initial algebra).

I Definition 6.3 (Final Coalgebra Construction [1]). Let C be a category with terminal object
1 and limits of ordinal-indexed cochains. For any functor F : C→ C the final chain consists
of objectsWi for all ordinals i and connection morphisms pi,j : Wj →Wi for all ordinals i ≤ j.
The objects are defined as W0 := 1, Wi+1 := FWi for all ordinals i, and Wj := limi<jWi for
all limit ordinals j. The morphisms are determined by p0,i := ! : Wi → 1, pi,i = idWi

for all
ordinals i, pi+1,j+1 := Fpi,j for all ordinals i < j and if j is a limit ordinal the pi,j are the
morphisms of the limit cone. They satisfy pi,k = pi,j ◦ pj,k for all ordinals i ≤ j ≤ k. We say
that the chain converges in λ steps if pλ,λ+1 : Wλ+1 →Wλ is an iso.

This construction does not necessarily converge, but if it does, we get a final coalgebra.

I Proposition 6.4 ([1]). Let C be a category with terminal object 1 and limits of ordinal-
indexed cochains. If the final chain of a functor F : C → C converges in λ steps then
p−1
λ,λ+1 : Wλ → FWλ is the final coalgebra.

We now show under which circumstances dθ is a metric and how our construction relates to
the construction of the final chain.

I Theorem 6.5. Let F : PMet→ PMet be a lifting of a functor F : Set→ Set which has
a final coalgebra κ : Ω→ FΩ. Assume that F preserves isometries and metrics, that the final
chain for F converges and the chain of the di converges in θ steps. Then dθ is a metric, i.e.
for x, y ∈ Ω we have dθ(x, y) = 0 ⇐⇒ x = y.

We will now get back to the examples studied at the beginning of the paper (Example 2.5
and Example 2.6) and discuss in which sense they are instances of our framework.

I Example 6.6 (Probabilistic Transition System, revisited). To model the behavioral distance
from Example 2.5 in our framework, we set > = 1 and proceed to lift the following three
functors: we first consider the identity functor Id with evaluation map evId : [0, 1]→ [0, 1],
evId(z) = c ·z in order to integrate the discount (Example 4.11). Then, we take the coproduct
with the singleton metric space (Example 5.2). The combination of the two functors yields
the discrete version of the refusal functor of [23], namely R(X, d) = (X + 1, d̂) where d̂ is
taken from Example 2.5. Finally, we lift the probability distribution functor D to obtain D
(Example 3.3). All functors satisfy the Kantorovich-Rubinstein duality and preserve metrics.

P. Baldan, F. Bonchi, H. Kerstan, and B. König 413

It is readily seen that D(R(X, d)) = (D(X + 1), d), where d is defined as in Example 2.5).
Then, the least solution of d(x, y) = d(α(x), α(y)) can be computed as in Theorem 6.2.

I Example 6.7 (Metric Transition Systems, revisited). To obtain propositional distances
in metric transition systems we set > = ∞. We also define, for the auxiliary functor
G, an evaluation function evG : G([0,∞], . . . , [0,∞]) → [0,∞] with evG(u) = maxr∈Σ u(r).
Let G be the corresponding lifted functor. It can be shown, similarly to Example 5.1,
that the Kantorovich-Rubinstein duality holds and metrics are preserved. We instantiate
the given pseudometric spaces (Mri

, dri
) as parameters and obtain the functor F (X, d) =

G((Mr1 , dr1), . . . , (Mrn
, drn

))×Pfin(X, d) (for the lifting of the powerset functor see Exam-
ple 4.13). Then, via Theorem 6.2, we obtain exactly the least solution of (1) in Example 2.6.

7 Related and Future Work

The ideas for our framework are heavily influenced by work on quantitative variants of
(bisimulation) equivalence of probabilistic systems. In that context at first Giacalone et al.
[12] observed that probabilistic bisimulation [16] is too strong and therefore introduced a
metric based on the notion of ε-bisimulations.

Using a logical characterization of bisimulation for labelled Markov processes (LMP)
[8], Desharnais et al. defined a family of metrics between these LMPs [9] via functional
expressions: if evaluated on a state of an LMP, such a functional expression measures the
extent to which a formula is satisfied in that state. A different, coalgebraic approach, which
inspired ours, is used by van Breugel et al. [23]. As presented in more detail in the examples
above, they define a pseudometric on probabilistic systems via the Kantorovich pseudometric
for probability measures. Moreover, they show in [22] that this metric is related to the logical
pseudometric by Desharnais et al.

Our framework provides a toolbox to determine behavioral distances for different types
of transition systems modeled as coalgebras. Moreover, the liftings introduced in this paper
pave the way to extend several coalgebraic methods to reason about quantitative properties
of systems. For instance the bisimulation proof principle, which allows to check behavioral
equivalence, assumes a specific meaning in PMet: every coalgebra α : (X, d) → F (X, d)
coinductively proves that the behavioral distance bd of the underlying F -coalgebra on Set
is smaller or equal than d. Indeed, since [[_]] is nonexpansive, d ≥ dθ([[_]], [[_]]) = bd. This
principle, which has already been stated in different formulations (see e.g. [7, 10, 21]), can
now be enhanced via up-to techniques by exploiting the liftings introduced in this paper and
the coalgebraic understanding of such enhancements given in [4].

Since up-to techniques can exponentially improve algorithms for equivalence-checking, we
hope that they could also optimize some of the algorithms for computing (or approximating)
behavioral distances [23, 21, 5, 2]. At this point, it is worth recalling that the Kantorovich-
Rubinstein duality has been exploited in [23] for defining one of these algorithms: the
characterization given by the Wasserstein metric allows to reduce to linear programming.

Another line of research potentially stemming from our work concerns the so-called
abstract GSOS [15] which provides abstract coalgebraic conditions ensuring compositionality
of behavioral equivalence (with respect to some operators). By taking our lifting to PMet,
abstract GSOS guarantees the nonexpansiveness of behavioral distance, a property that has
captured the interest of several researchers [9, 11]. The main technical challenge would be to
lift to PMet not only functors, but also distributive laws. Lifting of distributive laws would
also be needed for defining linear behavioral distances, exploiting the coalgebraic account of
trace semantics based on Kleisli categories [14].

FSTTCS 2014

414 Behavioral Metrics via Functor Lifting

We finally observe that the chains of Theorems 6.1 and 6.2 can be understood in terms
of fibrations along the lines of [13]. A detailed comparison with [13] can be found in [3].

Acknowledgements. The authors are grateful to Franck van Breugel, Neil Ghani and
Daniela Petrişan for several precious suggestions and inspiring discussions. The second
author acknowledges the support by project ANR 12IS0 2001 PACE.

References
1 Jiří Adámek. Free algebras and automata realizations in the language of categories. Com-

mentationes Mathematicae Universitatis Carolinae, 015(4):589–602, 1974.
2 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-fly exact com-

putation of bisimilarity distances. In Proc. of TACAS’13, pages 1–15, 2013.
3 Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Behavioral metrics

via functor lifting. Extended version with proofs, see arXiv:1410.3385, 2014.
4 Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. Coinduction up to in a

fibrational setting. In Proc. of CSL-LICS’14, 2014.
5 Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing proba-

bilistic bisimilarity. In Proc. of FoSSaCS’12, volume 7213 of LNCS, pages 437–451, 2012.
6 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching system metrics.

IEEE Transactions on Software Engineering, 25(2), 2009.
7 Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics for action-labelled

quantitative transition systems. ENTCS, 153(2):79–96, 2006.
8 Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for labelled

Markov processes. Information and Computation, 179(2):163–193, 2002.
9 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics

for labelled Markov processes. TCS, 318(3):323–354, 2004.
10 Joseé Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. The metric

analogue of weak bisimulation for probabilistic processes. In Proc. of LICS’02, pages 413–
422. IEEE, 2002.

11 Daniel Gebler and Simone Tini. Compositionality of approximate bisimulation for proba-
bilistic systems. In Proc. of EXPRESS/SOS’13, pages 32–46, 2013.

12 Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reasoning for prob-
abilistic concurrent systems. In Proc. IFIP TC2 Working Conference on Programming
Concepts and Methods, pages 443–458. North-Holland, 1990.

13 Ichiro Hasuo, Kenta Cho, Toshiki Kataoka, and Bart Jacobs. Coinductive predicates and
final sequences in a fibration. ENTCS, 298:197–214, 2013.

14 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
LMCS, 3 (4:11):1–36, November 2007.

15 Bartek Klin. Bialgebras for structural operational semantics: An introduction. TCS,
412(38):5043–5069, 2011.

16 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. In Proc. of
POPL’89, pages 344–352, 1989.

17 J. J.M.M. Rutten. Universal coalgebra: a theory of systems. TCS, 249:3–80, 2000.
18 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. TCS,

390(2–3):230–247, 2008.
19 Ana Sokolova. Probabilistic systems coalgebraically: A survey. TCS, 412(38):5095–5110,

2011. CMCS Tenth Anniversary Meeting.
20 Franck van Breugel, Claudio Hermida, Michael Makkai, and James Worrell. Recursively

defined metric spaces without contraction. TCS, 380(1–2):143–163, July 2007.

http://arxiv.org/abs/1410.3385

P. Baldan, F. Bonchi, H. Kerstan, and B. König 415

21 Franck van Breugel, Babita Sharma, and James Worrell. Approximating a behavioural
pseudometric without discount for probabilistic systems. LMCS, 4(2), 2008.

22 Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic tran-
sition systems. TCS, 331:115–142, 2005.

23 Franck van Breugel and James Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. TCS, 360(1):373–385, 2006.

24 Cédric Villani. Optimal Transport – Old and New, volume 338 of A Series of Comprehensive
Studies in Mathematics. Springer, 2009.

FSTTCS 2014

Foundation of Diagnosis and Predictability in
Probabilistic Systems∗

Nathalie Bertrand1, Serge Haddad2, and Engel Lefaucheux1,2

1 Inria, France nathalie.bertrand@inria.fr
2 LSV, ENS Cachan & CNRS & Inria, France

{serge.haddad,engel.lefaucheux}@ens-cachan.fr

Abstract
In discrete event systems prone to unobservable faults, a diagnoser must eventually detect fault
occurrences. The diagnosability problem consists in deciding whether such a diagnoser exists.
Here we investigate diagnosis for probabilistic systems modelled by partially observed Markov
chains also called probabilistic labeled transition systems (pLTS). First we study different spe-
cifications of diagnosability and establish their relations both in finite and infinite pLTS. Then we
analyze the complexity of the diagnosability problem for finite pLTS: we show that the polyno-
mial time procedure earlier proposed is erroneous and that in fact for all considered specifications,
the problem is PSPACE-complete. We also establish tight bounds for the size of diagnosers. Af-
terwards we consider the dual notion of predictability which consists in predicting that in a safe
run, a fault will eventually occur. Predictability is an easier problem than diagnosability: it is
NLOGSPACE-complete. Yet the predictor synthesis is as hard as the diagnoser synthesis. Finally
we introduce and study the more flexible notion of prediagnosability that generalizes predictability
and diagnosability.

1998 ACM Subject Classification D.2.5 Testing and Debugging

Keywords and phrases Partially observed systems, Diagnosis, Markov chains

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.417

1 Introduction

Diagnosis. In computer science, diagnosis may refer to different kinds of activities. For
instance, in artificial intelligence it can describe the process of identifying a disease from its
symptoms, as performed by the expert system MYCIN [3]. In this work, we concentrate on
diagnosis as studied in control theory, where it is applied to partially observable systems
prone to faults. A sequence of observations of such a system is said to be surely correct
(respectively surely faulty) if all possible runs corresponding to this sequence are correct
(respectively faulty); otherwise the observed sequence is ambiguous. While monitoring the
system, the diagnoser should rule out ambiguities, and in particular detect that a fault
occurred; and the problem of existence of such a diagnoser is refered to as diagnosability [12].
In order to anticipate problems triggered by fault occurrences, one can also be interested in
predictors that detect that a fault will eventually occur, and the predictability problem [6] is
concerned with the existence of a predictor.

∗ This work has been supported by project ImpRo ANR-2010-BLAN-0317 and the European Union
Seventh Framework Programme [FP7/2007-2013] under grant agreement 257462 HYCON2 NOE.

© Nathalie Bertrand, Serge Haddad, Engel Lefaucheux;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 417–429

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.417
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

418 Foundation of Diagnosis and Predictability in Probabilistic Systems

Diagnosis of discrete event systems. Diagnosability and predictability were first defined
and studied in the framework of finite discrete event systems modelled by labeled transition
systems (LTS), and the problems were shown to be solvable in PTIME (see [8] and [6], re-
spectively). Despite the polynomial time complexity of the decision problems, for diagnosable
(respectively predictable) LTS, the size of the diagnoser (respectively predictor) constructed
by the algorithms may be exponential. Diagnosers as well as predictors must ensure two
requirements: correctness, meaning that the information provided by the diagnoser/predictor
is accurate, and reactivity, ensuring that a fault will eventually be detected.

Diagnosis of probabilistic systems. Building on the work for LTS, the notion of diagnosab-
ility was later extended to Markov chains with labels on transitions, also called probabilitic
labeled transition systems (pLTS) [13]. In a probabilistic context, the reactivity requirement
now asks that faults will be almost surely eventually detected. Regarding correctness, two
specifications have been proposed: either one sticks to the original definition and requires
that the provided information is accurate, defining A-diagnosability; or one weakens the
correctness by admitting errors in the provided information that should, however, have an
arbitrary small probability when the delay before the diagnostic is long enough, defining
AA-diagnosability. From a computational viewpoint, PTIME algorithms have been proposed
to solve these two specifications of probabilistic diagnosability [4]. Predictability in pLTS
with arbitrary small probability of erroneous information has also been studied in [5].
In case a system is not diagnosable, one may be able to control it, by forbidding some
controllable actions, so that is becomes diagnosable. This property of active diagnosability
has been studied for probabilistic systems in [1] pursuing the work of [11, 7] for discrete-event
systems. Decidability and complexity issues are considered and optimal size diagnosers are
synthesized. Interestingly, the diagnosability notion from [1] slightly differs from the original
one in [13].

Remaining issues. Some issues remained untouched in the above line of work. First,
diagnosability was only considered w.r.t. finite faulty runs. It seems as important to consider
diagnosability of correct runs, and ambiguity can also be defined for infinite computations.
Second, in most work, the complexity of the varied diagnosability problems and of the
diagnosers synthesis were left open. Moreover, optimizing the delay between the fault
occurrence and its detection is an important issue. Yet the search for diagnosers (or predictors)
with optimal reactivity was not even considered. Last predictability and diagnosability were
independently studied while combining them is obviously a fruitful direction.

Contributions. In this paper, we address the above mentioned gaps, and revisit diagnosabil-
ity and predictability for probabilistic systems, from a semantical as well as a computational
perspectives.

In constrast to existing work, we define diagnosability directly on the ambiguity triggered
by the behaviours of the system, and then establish that it is equivalent to the existence
of a diagnoser.
In order to give a firm semantical classification of diagnosability notions, we define criteria
for diagnosability in probabilistic systems, depending on (1) whether the ambiguity is
related to faulty runs only or to all runs and, (2) whether ambiguity is defined at the level
of infinite runs, or for longer and longer finite subruns. A priori these two dimensions
yield four specifications. We prove that two of them coincide leading to three main
specifications: FF-diagnosability, IA-diagnosability used in [1] and FA-diagnosability, and

N. Bertrand, S. Haddad, and E. Lefaucheux 419

we establish the connections between them. In addition we show that FF-diagnosability
is equivalent to the A-diagnosability of [13] for finite pLTS and that this hypothesis is
necessary.
For finite state probabilistic systems, we show that these three notions of diagnosability
can be characterized based on deterministic (finite or Büchi) automata acting as monitors,
and synchronized with the pLTS. We further prove that the diagnosability problem (for
all three specifications) is PSPACE-complete, contradicting the polynomial time result for
FF-diagnosability [4], and identify the error in their algorithm.
Afterwards, we design algorithms for the synthesis of finite-memory diagnosers and prove
that their size 2Θ(n) (where n is the number of states of the pLTS model) is optimal.
Since predictability is an interesting alternative to diagnosability, we introduce two
possible specifications for predictability in probabilistic systems, and show that in both
cases the predictability problem is NLOGSPACE-complete. Yet, as for diagnosers, the
optimal size of predictors is in 2Θ(n).
Last, we introduce and study prediagnosability that combines the benefits of predict-
ability and diagnosability: depending on the observations, a prediagnoser behaves as
a diagnoser or a predictor. Prediagnosability is of interest since predictability is more
difficult to achieve than diagnosability, also prediagnosers can be seen as “as soon as
possible” diagnosers. For the varied notions of prediagnosability, we establish that the
prediagnosability problem is PSPACE-complete and design prediagnosers with optimal
size.
Summarizing we provide a full picture of the hierarchy for the different notions and the
frontier between NLOGSPACE and PSPACE-complete problems.

Organization. In Section 2, we introduce probabilistic LTS, define the possible diagnosability
specifications, establish their connection. In Section 3, we provide characterizations for
diagnosability of finite pLTS and we determine the exact complexity of the diagnosability
problems. In Section 4, we design algorithms for synthesis of diagnosers with optimal size.
In Section 5, we study predictability and prediagnosis, and focus on optimal diagnosers. All
the proofs and additional results can be found in the companion research report [2].

2 Diagnosability specification

In the context of stochastic discrete event systems diagnosis, systems are often modeled using
labeled transition systems.

I Definition 1. A probabilistic labeled transition system (pLTS) is a tuple A = 〈Q, q0,Σ, T,P〉
where:

Q is a set of states with q0 ∈ Q the initial state;
Σ is a finite set of events;
T ⊆ Q× Σ×Q is a set of transitions;
P : T → Q>0 is the probabilistic transition function fulfilling for all q ∈ Q:∑

(q,a,q′)∈T P(q, a, q′) = 1.

Observe that a pLTS is a labeled transition system (LTS) equipped with transition
probabilities. The transition relation of the underlying LTS is defined by: q

a−→ q′ for
(q, a, q′) ∈ T ; this transition is then said to be enabled in q. A pLTS is said to be live if in
every state q of the pLTS, a transition is enabled. We assume the pLTS we consider are
countably branching, i.e., in every state q, only countably many transitions are enabled, so
that the summation

∑
(q,a,q′)∈T P(q, a, q′) is well-defined.

FSTTCS 2014

420 Foundation of Diagnosis and Predictability in Probabilistic Systems

Let us now introduce some important notions and notations that will be used throughout
the paper. A run ρ of a pLTS A is a (finite or infinite) sequence ρ = q0a0q1 . . . such that
for all i, qi ∈ Q, ai ∈ Σ and when qi+1 is defined, qi

ai−→ qi+1. The notion of run can be
generalized, starting from an arbitrary state q. We write Ω for the set of all infinite runs of
A starting from q0, assuming the pLTS is clear from context. When it is finite, ρ ends in a
state q and its length, denoted |ρ|, is the number of actions occurring in it. Given a finite
run ρ = q0a0q1 . . . qn and a (finite or infinite) run ρ′ = qnanqn+1 . . ., we call concatenation
of ρ and ρ′ and we write ρρ′ the run q0a0q1 . . . qnanqn+1 . . .; the run ρ is then a prefix of
ρρ′, which we denote ρ � ρρ′. The cylinder defined by a finite run ρ is the set of all infinite
runs that extend ρ: C(ρ) = {ρ′ ∈ Ω | ρ � ρ′}. The sequence associated with ρ = qa0q1 . . . is
the word σρ = a0a1 . . ., and we write equally q ρ=⇒ or q

σρ=⇒ (resp. q ρ=⇒ q′ or q
σρ=⇒ q′) for an

infinite (resp. finite) run ρ. A state q is reachable (from q0) if there exists a run such that
q0

ρ=⇒ q, which we alternatively write q0 =⇒ q. The language of pLTS A consists of all infinite
words that label runs of A and is formally defined as Lω(A) = {σ ∈ Σω | q0

σ=⇒}.
Forgetting the labels and merging (and summing the probabilities of) the transitions

with same source and target, a pLTS yields a discrete time Markov chain (DTMC). As usual
for DTMC, the set of infinite runs of A is the support of a probability measure defined by
Caratheodory’s extension theorem from the probabilities of the cylinders:

P(C(q0a0q1 . . . qn)) = P(q0, a1, q1) · · ·P(qn−1, an−1, qn) .

In order to formalize problems related to fault diagnosis, we partition the event set Σ into
two disjoint sets Σo and Σu, the sets of observable and of unobservable events, respectively.
Moreover, we distinguish a special fault event f ∈ Σu. Let σ ∈ Σ∗ be a finite word; its length
is denoted |σ|. The projection of σ onto Σo is defined inductively by: P(ε) = ε; for a ∈ Σo,
P(σa) = P(σ)a; and P(σa) = P(σ) for a /∈ Σo. Write |σ|o for |P(σ)|. When σ is an infinite
word, its projection is the limit of the projections of its finite prefixes. This projection is
applicable to runs via their associated sequence; it can be either finite or infinite. As usual
the projection is extended to languages. With respect to the partition of Σ = Σo]Σu, a pLTS
A is convergent if there is no infinite sequence of unobservable events from any reachable
state: Lω(A) ∩ Σ∗Σωu = ∅. When A is convergent, for every σ ∈ Lω(A), P(σ) ∈ Σωo . In the
rest of the paper we assume that pLTS are convergent. We will refer to a sequence for a
finite or infinite word over Σ, and an observed sequence for a finite or infinite sequence over
Σo. Clearly, the projection onto Σo of a sequence yields an observed sequence.

The observable length of a run ρ denoted |ρ|o ∈ N ∪ {∞}, is the number of observable
actions that occur in it: |ρ|o = |σρ|o. A signalling run is a finite run whose last action is
observable. Signalling runs are precisely the relevant runs w.r.t. partial observation issues
since each observable event provides an additional information about the execution to an
external observer. In the sequel, SR denotes the set of signalling runs, and SRn the set of
signalling runs of observable length n. Since we assume that the pLTS are convergent, for
all n > 0, SRn is equipped with a probability distribution defined by assigning measure
P(ρ) = P(C(ρ)) to each ρ ∈ SRn. Given ρ a finite or infinite run, and n ≤ |ρ|o, ρ↓n denotes
the signalling subrun of ρ of observable length n. For convenience, we consider the empty
run q0 to be the single signalling run, of null length.

Let A be a pLTS. A run ρ is faulty if σρ contains f , otherwise it is correct. W.l.o.g., by
considering two copies of each state, we assume that the states of A are partitioned into
correct states and faulty states: Q = Qf]Qc where Qf are faulty states, and Qc correct
states. Faulty (resp. correct) states are only reachable by faulty (resp. correct) runs. An
observed sequence σ ∈ Σωo is surely correct if P−1(σ) ∩ Lω(A) ⊆ (Σ \ f)ω; it is surely faulty

N. Bertrand, S. Haddad, and E. Lefaucheux 421

q0 f1 f2q1
f au

a ba

q0 q2 f1 f2q1
u f au

a bba

Figure 1 Left: a pLTS that is IF-diagnosable but not IA-diagnosable. Right: a pLTS that is
IA-diagnosable but not FA-diagnosable.

if P−1(σ) ∩ Lω(A) ⊆ Σ∗fΣω; otherwise, it is ambiguous. For finite sequences, we need to
rely on signalling runs: a finite observed sequence σ ∈ Σ∗o is surely faulty (resp. surely
correct) if for every signalling run ρ with P(σρ) = σ, ρ is faulty (resp. correct); otherwise
it is ambiguous. A (finite signalling or infinite) run ρ is surely faulty (resp. surely correct,
ambiguous) if P(ρ) is surely faulty (resp. surely correct, ambiguous).

In order to introduce diagnosability, we define different subsets of infinite runs.

I Definition 2 (Ambiguous runs). Let A be a pLTS and n ∈ N with n ≥ 1. Then:
FAmb∞ is the set of infinite faulty ambiguous runs of A;
CAmb∞ is the set of infinite correct ambiguous runs of A;
FAmbn is the set of infinite runs of A whose signalling subrun of observable length n is
faulty and ambiguous;
CAmbn is the set of infinite runs of A whose signalling subrun of observable length n is
correct and ambiguous.

We propose four possible specifications of diagnosability for probabilistic systems. There
are two discriminating criteria: whether the non ambiguity requirement holds for faulty runs
only (_F) or for all runs (_A), and whether ambiguity is defined at the infinite run level
(I_) or for longer and longer finite signalling subruns (F_).

I Definition 3 (Diagnosability specifications). Let A be a pLTS. Then:
A pLTS A is IF-diagnosable if P(FAmb∞) = 0.
A pLTS A is IA-diagnosable if P(FAmb∞] CAmb∞) = 0.
A pLTS A is FF-diagnosable if lim supn→∞ P(FAmbn) = 0.
A pLTS A is FA-diagnosable if lim supn→∞ P(FAmbn] CAmbn) = 0.

Let us illustrate these specifications on the two pLTS of Figure 1 where {u, f} is the set
of unobservable events, represented by dashed arrows. Here and later on, unless mentioned,
the transitions outgoing a state are uniformly distributed. On the left, a faulty run will
almost surely produce a b-event that cannot be mimicked by the single correct run. Thus this
pLTS is IF–diagnosable. The unique correct run ρ = q0uq1(aq1)ω has probability 1

2 and its
corresponding observed sequence aω is ambiguous. Thus this pLTS is not IA-diagnosable. On
the right, any infinite faulty run will contain a b-event, and cannot be mimicked by a correct
run, therefore FAmb∞ = ∅. The two infinite correct runs have aω as observed sequence, and
cannot be mimicked by a faulty run, thus CAmb∞ = ∅. As a consequence, this pLTS is
IA-diagnosable. Consider now the infinite correct run ρ = q0uq1(aq1)ω. It has probability 1

2 ,
and all its finite signalling subruns are ambiguous since their observed sequence is an, for
some n ∈ N. Thus for all n ≥ 1, P(CAmbn) ≥ 1

2 , so that this pLTS is not FA-diagnosable.
The next theorem establishes the connections between these definitions.

I Theorem 4. The different diagnosability notions for pLTS relate according to the table
below. Moreover, all implications hold for infinite-state pLTS, and non implications already
hold for finite-state pLTS. (The implication marked with ∗ requires finitely branching pLTS.)

FSTTCS 2014

422 Foundation of Diagnosis and Predictability in Probabilistic Systems

Diagnosability All runs Faulty runs

Signalling runs FA ⇒
6⇐ FF

⇓6⇑ ⇓⇑∗

Infinite runs IA ⇒
6⇐ IF

To conclude this section, we compare IF-diagnosability with A-diagnosability from [13].

I Theorem 5. A finite pLTS A is IF-diagnosable if and only if it is A-diagnosable, that is:
∀ε > 0, ∃Nε ∈ N, for every faulty signalling run ρ and every n ≥ Nε, P({ρ′ ∈ FAmbn+|ρ|o |
ρ � ρ′}) < εP(ρ). This condition is only sufficient for finitely branching infinite pLTS.

3 Complexity of diagnosability

In this section, we establish the complexity of diagnosability stated in the next theorem.

I Theorem 6. The IF-diagnosability, IA-diagnosability, and FA-diagnosability problems for
finite pLTS are PSPACE-complete.

To prove membership in PSPACE, we provide characterizations of the different diagnosab-
ility notions we introduced. For each notion of diagnosability, we proceed similarly. First,
given a pLTS A we design a deterministic automaton that accepts some (finite or infinite)
observed sequences of A. Then we build the synchronized product of this automaton with
A, to obtain another pLTS with the same stochastic behaviour as A but augmented with
additional information about the current run, that will be useful for diagnosability. Finally,
we characterize diagnosability by graph properties on the synchronized product.

Here we only detail the procedure for IA-diagnosability. Its automaton IA(A) is the
deterministic Büchi automaton introduced in [7]. Its states are triples of disjoint subsets of
states (U, V,W) where given some observed sequence, U is the set of possible correct states
and V and W are possible faulty states. The decomposition between V and W reflects the
fact that the IA-automaton tries to resolve the ambiguity between U and W (when both are
non empty), while V corresponds to a waiting room of states reached by faulty runs that will
be examined when the current ambiguity is resolved. The set F of accepting states consists
of all triples (U, V,W) with U = ∅ or W = ∅. When U = ∅, the current signalling run is
surely faulty. When W = ∅ the current signalling run may be ambiguous (if V 6= ∅) but the
“oldest” possible faulty runs have been discarded. Hence, any infinite observed sequence of
A passing infinitely often through F is not ambiguous (ambiguities are resolved one after
another).

Figure 2 shows the IA-automaton of the pLTS depicted on the right of Figure 1.
Observe that, despite the fact that all observed sequences an are ambiguous as witnessed

by the possible faulty state f2, aω, which is indeed unambiguous, is accepted by the IA-
automaton since its execution infinitely often visits state ({q1, q2}, {f2}, ∅).

To come up with a characterization, one builds AIA = A× IA(A), the product of A and
IA(A) synchronized over observed events.

I Proposition 7. A finite pLTS A is IA-diagnosable if and only if AIA has no bottom strongly
connected component (BSCC) such that:

either, all its states (q, U, V,W) fulfill q ∈ Qf and U 6= ∅;
or all its states (q, U, V,W) fulfill q ∈ Qc and W 6= ∅.

N. Bertrand, S. Haddad, and E. Lefaucheux 423

{q0}, ∅, ∅
s0

{q1, q2}, ∅, {f2}
s1

{q1, q2}, {f2}, ∅
s′1

∅, {f1}, {f2}
s2

∅, ∅, {f1, f2}
s′2

∅, ∅, {f1}
s3

∅, ∅, {f2}
s4

∅, {f2}, ∅
s′4

a b

b

a

b

a

a

b
b

b

b

b

aa

Figure 2 The IA-automaton of pLTS depicted on the right of Figure 1.

q′0 f0q0qq]
f

Σ

u]

]
]

A

Figure 3 A reduction for PSPACE-hardness of IA-diagnosability.

The decision algorithm for IA-diagnosability checks whether the above characterization
is satisfied by looking for a state that violates the disjunction and then checking that it
belongs to a BSCC. This can be done in polynomial space without explicitly building AIA,
and relying on Savitch’s theorem.

In order to establish a lower bound for the complexity of IA-diagnosability, we introduce a
variant of language universality. A language L over an alphabet Σ is said eventually universal
if there exists a word v ∈ Σ∗ such that v−1L = Σ∗, where v−1L denotes the left quotient of
L by v: v−1L = {v′ | vv′ ∈ L}. Recently, several variants of the universality problem were
shown to be PSPACE-complete [10] but, to the best of our knowledge, eventual universality
has not yet been considered.

Because of our diagnosis framework, we focus on live non deterministic finite automata
(NFA). Similarly to pLTS, an NFA is live if from every state there is at least one outgoing
transition. The language of an NFA A, denoted L(A), is defined as the set of finite words
that are accepted by A. We reduce the universality problem for NFA, which is known to be
PSPACE-complete [9] to the eventual universality problem to obtain the following result.

I Proposition 8. Let A be a live NFA where all states are terminal. Then deciding whether
L(A) is eventually universal is PSPACE-hard.

Let us sketch how we reduce this problem to IA-diagnosability. Given a live NFA A
over Σ where all states are terminal, one builds the pLTS of Figure 3 where Σ ∪ {]} are
observable. Since a correct run almost surely “outputs” a], ambiguity may only occur with
faulty runs. Since after the fault one observes Σ∗, using the characterization in Proposition 7
one concludes that the pLTS is not IA-diagnosable if and only if A is eventually universal.

Theorem 6 seems to contradict the PTIME decision procedure from [4] for A-diagnosability
(or, equivalently IF-diagnosability). However, we establish that:

I Fact 9. The PTIME algorithm of [4] for A-diagnosability is erroneous.

FSTTCS 2014

424 Foundation of Diagnosis and Predictability in Probabilistic Systems

q0 f1 f2
f a

b ca, b

Figure 4 A pLTS which is IA-diagnosable.

4 Diagnoser construction

In this section, we focus on the construction of diagnosers. A diagnoser is a function
D : Σ∗o → {?,>,⊥} assigning to every finite observation sequence a verdict. Informally when
a diagnoser outputs ? it does not provide any information, while > ensures that a fault is
certain and ⊥ that some information about correctness has been provided. We consider the
natural partial order ≺ on these values defined by ? ≺ > and ? ≺ ⊥.

A finite memory diagnoser is given by a tuple (M,Σo,m0, up, Dfm) where M is a finite
set of memory states, m0 ∈M is the initial memory state, up : M × Σo →M is a memory
update function, and finally Dfm : M → {?,>,⊥} is a diagnoser function. The mapping
up is extended into a function up : M × Σ∗o →M defined inductively by up(m, ε) = m and
up(m,wa) = up(up(m,w), a). A finite memory diagnoser is not a diagnoser as defined above,
yet it induces the diagnoser defined by D(w) = Dfm(up(m0, w)).

Diagnosers we define in the sequel will have two important properties: soundness and
reactivity. Soundness ensures that the information provided is accurate and reactivity
specifies which pieces of information the diagnoser must provide. The precise soundness
and reactivity requirements depend on the diagnosability notion of interest. Moreover, we
restrict to diagnosers that, once they output >, never change their verdict in the future.
Note that any sound diagnoser can be turned into one that is sound and satisfies this
commitment property. In this short version, we only introduce IA-diagnosers (the synthesis
of FA-diagnosers and IF-diagnosers is similar and even simpler). Intuitively, IA-diagnosers
may resolve an ambiguity late, while another one has already been produced.

I Definition 10. An IA-diagnoser for A is a function D : Σ∗o → {>,⊥, ?} such that
soundness For all w ∈ Σ∗o

if D(w) = >, then w is surely faulty;
if D(w) = ⊥, letting |D(w)|⊥ = |{0 < n ≤ |w| | D(w≤n) = ⊥}|, then for all signalling
run ρ such that P(ρ) = w, ρ↓|D(w)|⊥ is correct.

reactivity P({ρ ∈ Ω | Dsup(P(ρ))=?})=0 where for w ∈ Σωo , Dsup(w)=lim supn→∞D(w≤n).
(Dsup is well-defined since once the diagnoser outputs >, it always sticks to this verdict.)

The reactivity condition requires that almost surely the diagnoser detects a fault or
guarantees that longer and longer subruns of the current run are correct. Soundness of >
verdict implies that indeed the run is faulty. The interpretation of D(w) = ⊥ is that the
diagnoser ensures that any signalling subrun of length |D(w)|⊥ ≤ |w| of a signalling run for w
is correct. Of course it may deduce this information from the last |w| − |D(w)|⊥ observations.
This is illustrated on the example of Figure 4 for which we describe an IA-diagnoser. After
observing any sequence wbaa, with w ∈ {a, b}∗, the diagnoser knows a posteriori that two
steps before, that is after the observation of wb, the run was necessarily correct. Indeed,
observing the suffix aa is not possible after a fault, yet wba is not surely correct. The
function D defined by: for w ∈ {a, b}∗(ab+ aa), D(w) = ⊥, for w ∈ {a, b, c}∗c, D(w) = >
and otherwise D(w) =?, is an IA-diagnoser.

N. Bertrand, S. Haddad, and E. Lefaucheux 425

An

q0

l0 l1 l2 . . . ln

r1 r2 . . . rn

f

a a, b a, b a, b

b a, b a, b a, b
a, b c

c

Figure 5 Example of an IA-diagnosable pLTS requiring an IA-diagnoser with exponential size.

q0 q1 q2q3 f1
b ca f

ca b

Figure 6 A 0-surely predictable and 1-predictable pLTS.

The next proposition establishes that this definition of diagnosers is appropriate for
IA-diagnosability. Furthermore it provides tight lower and upper bounds for the size of
IA-diagnosers. The pLTS of Figure 5 is used to prove the lower bound. Intuitively, every
IA-diagnoser for this pLTS must decide, on observing a c, whether the run is faulty or correct.
To do so, it must remember whether, n observations earlier, the event was a or b. Due
to the self-loop on q0, it cannot know when a c will occur, and must remenber the n last
observations. This requires at least 2n memory states.

I Proposition 11. A finite pLTS A is IA-diagnosable if and only if it admits an IA-diagnoser.
For every pLTS A with nc correct states and nf faulty states which is IA-diagnosable, one
can build an IA-diagnoser with at most 2nc3nf states. There is a family {An}n∈N of IA-
diagnosable pLTS such that An has 2n + 2 states and it admits no IA-diagnoser with less
than 2n memory states.

5 Predictability and prediagnosis

Predictability. Fault predictability has been first introduced for LTS in [6]: in words, an
LTS is predictable (resp. k-predictable) if a fault can be predicted (resp. at least before k
observations) whatever the future behavior of the LTS. There are two possible adaptations
for pLTS: (1) either one sticks to the original definition and requires that the fault surely
occurs or, (2) one relaxes it and only requires that the fault almost surely occurs.

In order to reason about predictability, we introduce some particular prefixes of a run. For
a finite run ρ, and k ∈ N, we define prek(ρ), the k-past of ρ, by prek(ρ) = ρ↓|ρ|o−min(k,|ρ|o).
For example, in the pLTS of Figure 6, pre0(q0bq1fq2) = q0bq1 as f is unobservable and
pre1(q0bq1fq2) = q0. In fact for k ≥ 1, prek(q0bq1fq2) = q0.

We also introduce sets of observed sequences defined on their possible future behaviors.
In words, an observed sequence σ forbids prediction of a fault when there is still either a
correct infinite run where σ is a prefix of its observed sequence (UPC) or a set of positive
measure of such runs (UPSC). Thus in order to be k-predictable, k observations before a
possible fault the observed sequence should not belong to these sets (see Definition 13).

I Definition 12 (ultimately possibly (significantly) correct). Let σ be a finite observed sequence
of a pLTS A. Then:

FSTTCS 2014

426 Foundation of Diagnosis and Predictability in Probabilistic Systems

σ is ultimately possibly correct if {ρ′ ∈ Ω | σ � P(ρ′)} ∩ C∞ 6= ∅. The set of ultimately
possibly correct observed sequences is denoted UPC.
σ is ultimately possibly significantly correct if P({ρ′ ∈ Ω | σ � P(ρ′)} ∩ C∞) > 0. The set
of ultimately possibly significantly correct observed sequences is denoted UPSC.

I Definition 13 ((sure) predictability). Let k ∈ N.
A pLTS A is k-surely predictable if for every run ρfq of A, P(prek(ρ)) /∈ UPC;
A pLTS A is k-predictable if for every run ρfq of A, P(prek(ρ)) /∈ UPSC.

Observe that in the previous definition, one can safely restrict to check the condition on
correct runs ρ by considering the first occurrence of a fault in the run ρfq.

For example, the pLTS of Figure 6 is 0-surely predictable. Every correct run ρ that is
followed by f is such that P(ρ) = bnc for some n ≥ 1. As it is the unique signalling run
with such an observed sequence, the fault can be predicted. It is not 1-surely predictable
as the 1-past of ρ = q0bq1cq2ff1 is pre1(ρ) = q0bq1 and the infinite run ρ′ = q0(bq1)ω is
correct. However it is 1-predictable as for every signalling run with observed sequence
bn for some n ≥ 1 (thus ending in q1) a fault eventually almost surely occurs. Finally it
is not 2-predictable since the 2-past of ρ = q0bq1cq2ff1 is q0 and the infinite correct run
ρ = q0(aq3)ω has probability 1

2 .
We have established all the relations between the different notions of diagnosability

and predicatibility (see Figure 8 in the conclusion). The main result about predicatibility
is given in the next theorem, and highlights the complexity gap between predictability
and diagnosability for probabilistic systems (recall that their complexity coincide for LTS).
Despite this difference, the size of optimal predictors is comparable to the one of optimal
diagnosers (see details in our research report [2]).

I Theorem 14. Deciding, given A a pLTS and k ∈ N, whether A is k-predictable (resp.
surely k-predictable) is an NLOGSPACE-complete problem. Moreover, the same complexity
applies assuming k is fixed (rather than given as input).

Prediagnosis. On the one hand, diagnosis is concerned with detection of faults that have
occurred: given a sequence of observations a diagnoser tries to detect that a fault has occurred
in the past of all consistent behaviors. On the other hand, prediction is concerned with
anticipation of faults: given a sequence of observations a predictor tries to detect that a fault
will eventually occur in the future of all consistent behaviors. The notion we introduce now,
prediagnosis, concerns detection of faults both in the past and in the future.

Let us start by introducing two sets of infinite faulty runs that make prediagnosis
impossible. FUPC∞ is the set of faulty runs that admit for all their finite prefixes a
compatible infinite correct run. The condition is strengthened for FUPSC∞ which gathers the
faulty runs that admit for all their finite prefixes, a positive measure of compatible infinite
correct runs.

I Definition 15. Let A be a pLTS. Then:
FUPC∞, the set of faulty, ultimately possibly correct runs is defined by:
FUPC∞ = {ρ ∈ Ω | ρ faulty and ∀i ∈ N, P(ρ↓i) ∈ UPC}
FUPSC∞, the set of faulty, ultimately possibly significantly correct runs is defined by:
FUPSC∞ = {ρ ∈ Ω | ρ faulty and ∀i ∈ N, P(ρ↓i) ∈ UPSC}

The reactivity requirement for prediagnosers will impose that these sets are negligible.
The difference between these two sets impacts correctness: relying on FUPC∞ provides a
sure correctness while relying on FUPSC∞ only provides an almost sure correctness.

N. Bertrand, S. Haddad, and E. Lefaucheux 427

q0 f1q1 q2

f

a fb
ab

Figure 7 A non-predictable pLTS, for which a sure prediagnoser is quicker than all diagnosers.

I Definition 16 ((Sure) Prediagnosability). Let A be a pLTS. Then:
A is surely prediagnosable if P(FUPC∞)=0;
A is prediagnosable if P(FUPSC∞)=0.

Surprisingly, sure prediagnosability lies strictly between FF-diagnosability and IF-diagnosa-
bility with equivalence for finitely branching pLTS. Also (sure) 0-predictability implies (sure)
prediagnosability. As expected, the less demanding specification is prediagnosability. All the
relations that we have established between the different notions of diagnosability, predictability
and prediagnosability are described by Figure 8 in the conclusion. From a complexity point
of view, prediagnosability is equivalent to diagnosability:

I Theorem 17. The (sure) prediagnosability problem is PSPACE-complete.

In the research report [2], we formally define and study the notion of prediagnosers.
Here we informally discuss the interest of prediagnosers. While sure prediagnosability and
IF-diagnosability are equivalent for finitely branching pLTS, there are differences between
sure prediagnosers and IF-diagnosers. An IF-diagnoser is a sure prediagnoser, but a sure
prediagnoser may output a verdict > even before a fault. This phenomenon occurs even
if the pLTS is non predictable. The non predictable pLTS of Figure 7 points out this
difference. A diagnoser may output > only after observing two a’s, since then, surely a fault
occurred. In contrast, a sure prediagnoser can already output > after observing the first a.
In fact this pLTS is FA-diagnosable since after an occurrence of b, the run is surely correct.
Prediagnosers, can be thought of as monitors that emit verdicts as soon as possible, while
preserving soundness. In the proof that prediagnosability is equivalent to the existence of a
prediagnoser, the prediagnosers we construct are indeed optimal in that sense.

6 Conclusion

In this work, we settled the foundations of diagnosability and predictability for partially
observed stochastic systems. In particular, we investigated semantical issues and provided
several meaningful definitions for diagnosability and predictability in a probabilistic context.
We also introduced prediagnosability, that combines the advantages of diagnosability and
predictability. Beyond providing relations between these notions, we obtained tight complex-
ity bounds using graph-based characterizations on the product of the system under scrutiny
and an appropriate monitor. The complexity ranges from NLOGSPACE-completeness for pre-
dictability to PSPACE-completeness for diagnosability and prediagnosability, as summarized
on Figure 8. Last, we proved exponential almost matching lower and upper bounds for the
diagnosers, predictors, and prediagnosers synthesis problems.

The present contribution opens several interesting research perspectives. First of all, the
decidability status (and in the positive case, the precise complexity) of the approximate
diagnosability (AA-diagnosability) introduced in [13] is still open since we only proved
the algorithm from [4] to be erroneous (see [2]). Second, beyond diagnosability and its

FSTTCS 2014

428 Foundation of Diagnosis and Predictability in Probabilistic Systems

FA-diagnosable

IA-diagnosable FF-diagnosable

IF-diagnosable

sure-prediagnosable

prediagnosable

for finitely
branching pLTS

k-sure-predictable

k-predictablefor all k

for all k

PSPACE-complete
(for finite pLTS)

NLOGSPACE-complete
(for finite pLTS)

Figure 8 Summarizing relations between specifications, and associated complexities.

variants (predictability and prediagnosability), we wish to conduct a systematic study
of other paradigms related to partial observability, such as opacity or detectability, in
a probabilistic context. Last, we plan to move to more quantitative versions of diagnosis
including optimization issues. The objective would be to minimize the observational capacities
of the monitor, either spatially or timely by restricting either the observable actions, or the
observation time instants, while preserving diagnosability.

References
1 N. Bertrand, E. Fabre, S. Haar, S. Haddad, and L. Hélouët. Active diagnosis for probab-

ilistic systems. In Proceedings of FoSSaCS’14, volume 8412 of Lecture Notes in Computer
Science, pages 29–42. Springer, 2014.

2 N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of diagnosis and predictability in
probabilistic systems. Research Report LSV-14-09, ENS Cachan, June 2014. Available at
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2014-09.pdf.

3 B.G. Buchanan and E.H. Shortliffe. Rule Based Expert Systems: The MYCIN Experiments
of the Stanford Heuristic Programming Project. Addison-Wesley, 1984.

4 J. Chen and R. Kumar. Polynomial test for stochastic diagnosability of discrete-event
systems. IEEE Transactions on Automation Science and Engineering, 10(4):969–979, 2013.

5 J. Chen and R. Kumar. Failure prognosability of stochastic discrete event systems. In
Proceedings of ACC’14, pages 2041–2046. IEEE, 2014.

6 S. Genc and S. Lafortune. Predictability of event occurrences in partially-observed discrete-
event systems. Automatica, 45(2):301–311, 2009.

7 S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal constructions for active diagnosis.
In Proceedings of FSTTCS’13, volume 24 of LIPIcs, pages 527–539. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013.

8 S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing dia-
gnosability of discrete-event systems. IEEE Transactions on Automatic Control, 46(8):1318–
1321, 2001.

9 A.R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In Proceedings of SWAT’72, pages 125–129. IEEE
Computer Society, 1972.

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2014-09.pdf

N. Bertrand, S. Haddad, and E. Lefaucheux 429

10 N. Rampersad, J. Shallit, and Z. Xu. The computational complexity of universality prob-
lems for prefixes, suffixes, factors, and subwords of regular languages. Fundamenta Inform-
aticae, 116(1-4):223–236, 2012.

11 M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems.
IEEE Transactions on Automatic Control, 43(7):908–929, 1998.

12 M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosab-
ility of discrete-event systems. IEEE Transactions on Automatic Control, 40(9):1555–1575,
1995.

13 D. Thorsley and D. Teneketzis. Diagnosability of stochastic discrete-event systems. IEEE
Transactions on Automatic Control, 50(4):476–492, 2005.

FSTTCS 2014

Lipschitz Robustness of Finite-state Transducers∗

Thomas A. Henzinger, Jan Otop and Roopsha Samanta

IST Austria
{tah,jotop,rsamanta}@ist.ac.at

Abstract
We investigate the problem of checking if a finite-state transducer is robust to uncertainty in
its input. Our notion of robustness is based on the analytic notion of Lipschitz continuity –
a transducer is K-(Lipschitz) robust if the perturbation in its output is at most K times the
perturbation in its input. We quantify input and output perturbation using similarity functions.
We show that K-robustness is undecidable even for deterministic transducers. We identify a class
of functional transducers, which admits a polynomial time automata-theoretic decision procedure
for K-robustness. This class includes Mealy machines and functional letter-to-letter transducers.
We also studyK-robustness of nondeterministic transducers. Since a nondeterministic transducer
generates a set of output words for each input word, we quantify output perturbation using set-
similarity functions. We show that K-robustness of nondeterministic transducers is undecidable,
even for letter-to-letter transducers. We identify a class of set-similarity functions which admit
decidable K-robustness of letter-to-letter transducers.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.1.1 Models of Com-
putation

Keywords and phrases Robustness; Transducers; Weighted Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.431

1 Introduction

Most computational systems today are embedded in a physical environment. The data
processed by such real-world computational systems is often noisy or uncertain. For instance,
the data generated by sensors in reactive systems such as avionics software may be corrupted,
keywords processed by text processors may be wrongly spelt, the DNA strings processed
in computational biology may be incorrectly sequenced, and so on. In the presence of such
input uncertainty, it is not enough for a computational system to be functionally correct.
An additional desirable property is that of continuity or robustness — the system behaviour
degrades smoothly in the presence of input disturbances [14].

Well-established areas within control theory, such as robust control [16], extensively study
robustness of systems. However, their results typically involve reasoning about continuous
state-spaces and are not directly applicable to inherently discontinuous discrete computational
systems. Moreover, uncertainty in robust control refers to differences between a system’s
model and the actual system; thus robust control focuses on designing controllers that
function properly in the presence of perturbation in various internal parameters of a system’s
model. Given the above, formal reasoning about robustness of computational systems under
input uncertainty is a problem of practical as well as conceptual importance.

∗ This work was supported in part by the European Research Council (ERC) under grant agreement
267989 (QUAREM) and by the Austrian Science Fund (FWF) NFN project S11402-N23 (RiSE).

© Thomas A. Henzinger, Jan Otop, and Roopsha Samanta;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 431–443

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.431
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

432 Lipschitz Robustness of Finite-state Transducers

In our work, we focus on robustness of finite-state transducers, processing finite or infinite
words, in the presence of uncertain inputs. Transducers are popular models of input-output
computational systems operating in the real world [13, 20, 3, 24]. While many decision
problems about transducers have been studied thoroughly over the decades [20, 24], their
behaviour under uncertain inputs has only been considered recently [22]. In [22], a transducer
was defined to be robust if its output changed proportionally to every change in the input
up to a certain threshold. In practice, it may not always be possible to determine such a
bound on the input perturbation. Moreover, the scope of the work in [22] was limited to the
robustness problem for functional transducers w. r. t. specific distance functions, and did not
consider arbitrary nondeterministic transducers or arbitrary similarity functions.

In this paper, we formalize robustness of finite-state transducers as Lipschitz continuity.
A function is Lipschitz-continuous if its output changes proportionally to every change in the
input. Given a constant K and similarity functions dΣ, dΓ for computing the input, output
perturbation, respectively, a functional transducer T is defined to be K-Lipschitz robust (or
simply, K-robust) w. r. t. dΣ, dΓ if for all words s, t in the domain of T with finite dΣ(s, t),
dΓ(T (s), T (t)) ≤ KdΣ(s, t). Let us consider the transducers TNR and TR below. Recall that
the Hamming distance between equal length words is the number of positions in which the
words differ. Let dΣ, dΓ be computed as the Hamming distance for equal-length words, and
be ∞ otherwise. Notice that for words ak+1, bak in the domain of the Mealy machine TNR,
dΣ(ak+1, bak) = 1 and the distance between the corresponding output words, dΓ(ak+1, bk+1),
equals k + 1. Thus, TNR is not K-robust for any K. On the other hand, the transducer TR
is 1-robust: for words ak+1, bak, we have dΣ(ak+1, bak) = dΓ((b)k+1, a(b)k) = 1, and for all
other words s, t in the domain of TR, either dΣ(s, t) =∞ or dΣ(s, t) = dΓ(TR(s), TR(t)) = 0.

q0

q1 q2

TNR:
a/a b/b

a/a a/b

q0

q1 q2

TR:
a/b b/a

a/b a/b

While the K-robustness problem is undecidable even for deterministic transducers, we
identify interesting classes of finite-state transducers with decidable K-robustness. We first
define a class of functional transducers, called synchronized transducers, which admits a
polynomial time decision procedure for K-robustness. This class includes Mealy machines
and functional letter-to-letter transducers; membership of a functional transducer in this
class is decidable in polynomial time. Given similarity functions computable by weighted
automata, we reduce the K-robustness problem for synchronized transducers to the emptiness
problem for weighted automata.

We extend our decidability results by employing an isometry approach. An isometry is a
transducer, which for all words s, t satisfies dΓ(T (s), T (t)) = dΣ(s, t). We observe that if a
transducer T2 can be obtained from a transducer T1 by applying isometries to the input and
output of T1, then K-robustness of T1 and T2 coincide. This observation enables us to reduce
K-robustness of various transducers to that of synchronized transducers.

Finally, we study K-robustness of nondeterministic transducers. Since a nondetermin-
istic transducer generates a set of output words for each input word, we quantify output
perturbation using set-similarity functions and define K-robustness of nondeterministic trans-
ducers w. r. t. such set-similarity functions. We show that K-robustness of nondeterministic

T.A. Henzinger, J. Otop, and R. Samanta 433

transducers is undecidable, even for letter-to-letter transducers. We define three classes of set-
similarity functions and show decidability of K-robustness of nondeterministic letter-to-letter
transducers w. r. t. one class of set-similarity functions.

In what follows, we first present necessary definitions in Sec. 2. We formalize Lipschitz
robustness in Sec. 3. In Sec. 4 and Sec. 5, we study the K-robustness problem for functional
transducers, showing undecidability of the general problem and presenting two classes with
decidable K-robustness. We study K-robustness of arbitrary nondeterministic transducers
in Sec. 6, present a discussion of related work in Sec. 7 and conclude in Sec. 8.

2 Preliminaries

In this section, we review definitions of finite-state transducers and weighted automata, and
present similarity functions. We use the following notation. We denote input letters by a,
b etc., input words by s, t etc., output letters by a′, b′ etc. and output words by s′, t′ etc.
We denote the concatenation of words s and t by s · t, the ith letter of word s by s[i], the
subword s[i] · s[i+ 1] · . . . · s[j] by s[i, j], the length of the word s by |s|, and the empty word
and empty letter by ε. Note that for an ω-word s, |s| =∞.

Finite-state Transducers. A finite-state transducer (fst) T is a tuple (Σ,Γ, Q,Q0, E, F)
where Σ is the input alphabet, Γ is the output alphabet, Q is a finite nonempty set of states,
Q0 ⊆ Q is a set of initial states, E ⊆ Q× Σ× Γ∗ ×Q is a set of transitions1, and F is a set
of accepting states.

A run γ of T on an input word s = s[1]s[2] . . . is defined in terms of the sequence:
(q0, w

′
1), (q1, w

′
2), . . . where q0 ∈ Q0 and for each i ∈ {1, 2, . . .}, (qi−1, s[i], w′i, qi) ∈ E. Let

Inf(γ) denote the set of states that appear infinitely often along γ. For an fst T processing
ω-words, a run is accepting if Inf(γ) ∩ F 6= ∅ (Büchi acceptance condition). For an fst T
processing finite words, a run γ: (q0, w

′
1), . . . (qn−1, w

′
n), (qn, ε) on input word s[1]s[2] . . . s[n]

is accepting if qn ∈ F (final state acceptance condition). The output of T along a run is the
word w′1·w′2·. . . if the run is accepting, and is undefined otherwise. The transduction computed
by an fst T processing infinite words (resp., finite words) is the relation JT K ⊆ Σω × Γω
(resp., JT K ⊆ Σ∗ × Γ∗), where (s, s′) ∈ JT K iff there is an accepting run of T on s with s′
as the output along that run. With some abuse of notation, we denote by JT K(s) the set
{t : (s, t) ∈ JT K}. The input language, dom(T), of T is the set {s : JT K(s) is non-empty}.

An fst T is called functional if the relation JT K is a function. In this case, we use JT K(s)
to denote the unique output word generated along any accepting run of T on input word s.
Checking if an arbitrary fst is functional can be done in polynomial time [12]. An fst T is
deterministic if ∀q ∈ Q, a ∈ Σ: |{q′ : (q, a, w′, q′) ∈ E}| ≤ 1. An fst T is a letter-to-letter
transducer if for every transition of the form (q, a, w′, q′) ∈ E, |w′| = 1. A Mealy machine
is a deterministic, letter-to-letter transducer, with every state being an accepting state. In
what follows, we use transducers and finite-state transducers interchangeably.
Composition of transducers. Consider transducers T1 = (Σ,∆, Q1, Q1,0, E1, F1) and T2 =
(∆,Γ, Q2, Q2,0, E2, F2) such that for every s ∈ dom(T1), JT K(s) ∈ dom(T2). We define T2 ◦ T1,
the composition of T1 and T2, as the transducer (Σ,Γ, Q1 × Q2, Q1,0 × Q2,0, E, F1 × F2),
where E is defined as follows: (〈q1, q2〉, a, w′, 〈q′1, q′2〉) ∈ E iff (q1, a, t

′, q′1) ∈ E1 and upon
reading t′, T2 generates w′ and changes state from q2 to q′2, i.e., iff (q1, a, t

′, q′1) ∈ E1 and

1 Note that we disallow ε-transitions where the transducer can change state without moving the reading
head.

FSTTCS 2014

434 Lipschitz Robustness of Finite-state Transducers

there exist (q2, t
′[1], w′1, q1

2), (q1
2 , t
′[2], w′2, q2

2), . . ., (qk−1
2 , t′[k], w′k, q′2) ∈ E2 such that k = |t′|

and w′ = w′1 · w′2 · . . . · w′k. Observe that if T1, T2 are functional, T2 ◦ T1 is functional and
JT2 ◦ T1K = JT2K } JT1K, where } denotes function composition.

Weighted automata. Recall that a finite automaton (with Büchi or final state acceptance)
can be expressed as a tuple (Σ, Q,Q0, E, F), where Σ is the alphabet, Q is a finite set of
states, Q0 ⊆ Q is a set of initial states, E ⊆ Q×Σ×Q is a transition relation, and F ⊆ Q is
a set of accepting states. A weighted automaton (wa) is a finite automaton whose transitions
are labeled by rational numbers. Formally, a wa A is a tuple (Σ, Q,Q0, E, F, c) such that
(Σ, Q,Q0, E, F) is a finite automaton and c : E 7→ Q is a function labeling the transitions of
A. The transition labels are called weights.

Recall that a run π of a finite automaton on a word s = s[1]s[2] . . . is defined as a sequence
of states: q0, q1, . . . where q0 ∈ Q0 and for each i ∈ {1, 2, . . .}, (qi−1, s[i], qi) ∈ E. A run π
in a finite automaton processing ω-words (resp., finite words) is accepting if it satisfies the
Büchi (resp., final state) acceptance condition. The set of accepting runs of an automaton on
a word s is denoted Acc(s). Given a word s, every run π of a wa A on s defines a sequence
c(π) = (c(qi−1, s[i], qi))1≤i≤|s| of weights of successive transitions of A; such a sequence is
also referred to as a weighted run. To define the semantics of weighted automata we need
to define the value of a run (that combines the sequence of weights of the run into a single
value) and the value across runs (that combines values of different runs into a single value).
To define values of runs, we consider value functions f that assign real numbers to sequences
of rational numbers, and refer to a wa with a particular value function f as an f -wa. Thus,
the value f(π) of a run π of an f -wa A on a word s equals f(c(π)). The value of a word s
assigned by an f -wa A, denoted LA(s), is the infimum of the set of values of all accepting
runs, i.e., LA(s) = infπ∈Acc(s) f(π) (the infimum of an empty set is infinite).

In this paper, we consider the following value functions: (1) the sum function Sum(π) =∑|π|
i=1(c(π))[i], (2) the discounted sum function Discδ(π) =

∑|π|
i=1 δ

i(c(π))[i] with δ ∈ (0, 1)
and (3) the limit-average function LimAvg(π) = lim supk→∞ 1

k

∑k
i=1(c(π))[i]. Note that the

limit-average value function cannot be used with finite sequences. We define ValFunc =
{Sum,Discδ,LimAvg}.

A wa A is functional iff for every word s, all accepting runs of A on s have the same
value.
Decision questions. Given an f -wa A and a threshold λ, the emptiness question asks whether
there exists a word s such that LA(s) < λ and the universality question asks whether for all
words s we have LA(s) < λ. The following results are known.

I Lemma 1. (1) For every f ∈ ValFunc, the emptiness problem is decidable in polynomial
time for nondeterministic f -automata [11, 10]. (2) The universality problem is undecidable
for Sum-automata with weights drawn from {−1, 0, 1} [17, 1].

I Remark. Weighted automata have been defined over semirings [10] as well as using
value functions (along with infimum or supremum) as above [5, 6]. These variants of
weighted automata have incomparable expression power. We use the latter definition as it
enables us to express long-run average and discounted sum, which are inexpressible using
weighted automata over semirings. Long-run average and discounted sum are widely used
in quantitative verification and define natural distances (Example 9). Moreover, unlike the
semiring-based definition, the value-function-based definition extends easily from finite to
infinite words.

T.A. Henzinger, J. Otop, and R. Samanta 435

Similarity Functions. In our work, we use similarity functions to measure the similarity
between words. Let Q∞ denote the set Q ∪ {∞}. A similarity function d : S × S → Q∞
is a function with the properties: ∀x, y ∈ S : (1) d(x, y) ≥ 0 and (2) d(x, y) = d(y, x).
A similarity function d is also a distance (function or metric) if it satisfies the additional
properties: ∀x, y, z ∈ S : (3) d(x, y) = 0 iff x = y and (4) d(x, z) ≤ d(x, y) + d(y, z). We
emphasize that in our work we do not need to restrict similarity functions to be distances.

An example of a similarity function is the generalized Manhattan distance defined as:
dM (s, t) =

∑∞
i=1 diff(s[i], t[i]) for infinite words s, t, where diff is the mismatch penalty

for substituting letters. For finite words s, t, dM (s, t) =
∑max(|s|,|t|)
i=1 diff(s[i], t[i]). The

mismatch penalty is required to be a distance function on the alphabet (extended with a
special end-of-string letter # for finite words). When diff(a, b) is defined to be 1 for all a, b
with a 6= b, and 0 otherwise, dM is called the Manhattan distance.
Notation: We use s1 ⊗ . . . ⊗ sk to denote convolution of words s1, . . . , sk, for k > 1. The
convolution of k words merges the arguments into a single word over a k-tuple alphabet
(accommodating arguments of different lengths using # letters at the ends of shorter words).
Let s1, . . . , sk be words over alphabets Σ1, . . . ,Σk. Let Σ1 ⊗ . . . ⊗ Σk denote the k-tuple
alphabet (Σ1 ∪ {#}) × . . . × (Σk ∪ {#}). The convolution s1 ⊗ . . . ⊗ sk is an infinite word
(resp., a finite word of length max(|s1|, . . . , |sk|)), over Σ1 ⊗ . . . ⊗ Σk, such that: for each
i ∈ {1, . . . , |s1⊗ . . .⊗ sk|}, (s1⊗ . . .⊗ sk)[i] = 〈s1[i], . . . , sk[i]〉 (with sj [i] = # if i > |sj |). For
example, the convolution aa⊗ b⊗ add is the 3 letter word 〈a, b, a〉〈a, #, d〉〈#, #, d〉.

I Definition 2 (Automatic Similarity Function). A similarity function d : Σω
1 × Σω

2 7→ Q
is called automatic if there exists a wa Ad over Σ1 ⊗ Σ2 such that ∀s1 ∈ Σω

1 , s2 ∈ Σω
2 :

d(s1, s2) = LAd
(s1 ⊗ s2). We say that d is computed by Ad.

One can similarly define automatic similarity functions over finite words.

3 Problem Definition

Our notion of robustness for transducers is based on the analytic notion of Lipschitz continuity.
We first define K-Lipschitz robustness of functional transducers.

I Definition 3 (K-Lipschitz Robustness of Functional Transducers). Given a constant K ∈ Q
with K > 0 and similarity functions dΣ : Σω × Σω → Q∞ (resp., dΣ : Σ∗ × Σ∗ → Q∞)
and dΓ : Γω × Γω → Q∞ (resp., dΓ : Γ∗ × Γ∗ → Q∞), a functional transducer T , with
JT K ⊆ Σω × Γω (resp., JT K ⊆ Σ∗ × Γ∗,), is called K-Lipschitz robust w. r. t. dΣ, dΓ if:

∀s, t ∈ dom(T) : dΣ(s, t) <∞ ⇒ dΓ(JT K(s), JT K(t)) ≤ KdΣ(s, t).

Recall that when T is an arbitrary nondeterministic transducer, for each s ∈ dom(T),
JT K(s) is a set of words in Γω (resp., Γ∗). Hence, we cannot use a similarity function over Γω
(resp., Γ∗) to define the similarity between JT K(s) and JT K(t), for s, t ∈ dom(T). Instead, we
must use a set-similarity function that can compute the similarity between sets of words
in Γω (resp., Γ∗). We define K-Lipschitz robustness of nondeterministic transducers using
such set-similarity functions (we use the notation d and D for similarity functions and
set-similarity functions, respectively).

I Definition 4 (K-Lipschitz Robustness of Nondeterministic Transducers). Given a constant
K ∈ Q with K > 0, a similarity function dΣ : Σω ×Σω → Q∞ (resp., dΣ : Σ∗×Σ∗ → Q∞)
and a set-similarity function DΓ : 2Γω × 2Γω → Q∞ (resp., DΓ : 2Γ∗ × 2Γ∗ → Q∞),

FSTTCS 2014

436 Lipschitz Robustness of Finite-state Transducers

a nondeterministic transducer T , with JT K ⊆ Σω × Γω (resp. JT K ⊆ Σ∗ × Γ∗), is called
K-Lipschitz robust w. r. t. dΣ, DΓ if:

∀s, t ∈ dom(T) : dΣ(s, t) <∞ ⇒ DΓ(JT K(s), JT K(t)) ≤ KdΣ(s, t).

In what follows, we use K-robustness to denote K-Lipschitz robustness. The results in
the remainder of this paper hold both for machines processing ω-words as well as for those
processing finite words. To keep the presentation clean, we present all results in the context
of machines over ω-words, making a distinction as needed. Moreover, we only present some
(partial) proofs in this paper. We direct the interested reader to [15] for the complete proofs.

4 Synchronized (Functional) Transducers

In this section, we define a class of functional transducers which admits a decision procedure
for K-robustness.

I Definition 5 (Synchronized Transducers). A functional transducer T with JT K ⊆ Σω × Γω
is synchronized iff there exists an automaton AT over Σ ⊗ Γ recognizing the language
{s⊗ JT K(s) : s ∈ dom(T)}.

Let T be an arbitrary functional transducer. In each transition, T reads a single input
letter and may generate an empty output word or an output word longer than a single
letter. To process such non-aligned input and output words, the automaton AT needs to
internally implement a buffer. Thus, T is synchronized iff there is a bound B on the required
size of such a buffer. We can use this observation to check if T is synchronized. Note that
letter-to-letter transducers are synchronized, with B being 0.

I Proposition 6. Synchronicity of a functional transducer is decidable in polynomial time.

Synchronized transducers admit an automata-theoretic decision procedure for checking
K-robustness w. r. t. similarity functions satisfying certain properties.

I Theorem 7. For every f ∈ ValFunc, if dΣ, dΓ are similarity functions computed by
functional f-wa AdΣ , AdΓ , respectively, and T is a synchronized transducer, K-robustness
of T w. r. t. dΣ, dΓ is decidable in polynomial time in the sizes of T , AdΣ and AdΓ .

We show that for every f ∈ ValFunc, if the conditions of Theorem 7 are met, K-
robustness of T can be reduced to the emptiness problem for f -weighted automata, which is
decidable in polynomial time.

Similarity functions computed by nondeterministic automata. If we permit the weighted
automata computing the similarity functions dΣ, dΓ to be nondeterministic, K-robustness
becomes undecidable. We can show that the universality problem for nondeterministic
weighted automata reduces to checking 1-robustness. Indeed, given a nondeterministic
weighted automaton A, consider (1) dΣ such that ∀s, t ∈ Σω: dΣ(s, t) = λ if s = t, and
undefined otherwise, (2) T encoding the identity function, and (3) dΓ such that ∀s′, t′ ∈ Σω:
dΓ(s′, t′) = LA(s′) if s′ = t′, and undefined otherwise. Note that dΓ is computed by a
nondeterministic weighted automaton obtained from A by changing each transition (q, a, q′)
in A to (q, (a, a), q′) while preserving the weight. Then, T is 1-robust w. r. t. dΣ, dΓ iff for all
words s, LA(s) ≤ λ. Since the universality problem for f -weighted automata is undecidable
(e.g., for f = Sum), it follows that checking 1-robustness of transducers with similarity
functions computed by nondeterministic weighted automata is undecidable.

T.A. Henzinger, J. Otop, and R. Samanta 437

We now present examples of synchronized transducers and automatic similarity functions
satisfying the conditions of Theorem 7.

I Example 8 (Mealy machines and generalized Manhattan distances.). Mealy machines are
perhaps the most widely used transducer model. Prior work [22] has shown decidability
of robustness of Mealy machines with respect to generalized Manhattan distances given a
fixed bound on the amount of input perturbation. In what follows, we argue the decidability
of robustness of Mealy machines (processing infinite words) with respect to generalized
Manhattan distances in the presence of unbounded input perturbation.

A Mealy machine T : (Σ,Γ, Q, {q0}, ET , Q) is a synchronized transducer with AT given
by (Σ⊗Γ, Q, {q0}, EAT , Q), where EAT = {(q, a⊗a′, q′) : (q, a, a′, q′) ∈ ET }. The generalized
Manhattan distance dM : Σω × Σω → Q∞ can be computed by a functional Sum-weighted
automaton AM given by the tuple (Σ⊗ Σ, {q0}, {q0}, EM , {q0}, c). Here, q0 is the initial as
well as the accepting state, EM = {(q0, a⊗ b, q0) : a⊗ b ∈ Σ⊗ Σ}, and the weight of each
transition (q0, a⊗ b, q0) equals diff(a, b).

Thus, all the conditions of Theorem 7 are satisfied. K-robustness of Mealy machines,
with dΣ, dΓ being the generalized Manhattan distance, is decidable in polynomial time.

I Example 9 (Piecewise-linear functions.). Let us use q to denote an infinite word over
{0, . . . , 9,+,−} representing the fractional part of a real number in base 10. E. g., −0.21 =
−21 and π − 3 = 1415 . . . Then, q1 ⊗ . . . ⊗ qk is a word over {0, . . . , 9,+,−} ⊗ . . . ⊗
{0, . . . , 9,+,−} that represents a k-tuple of real numbers q1, . . . , qk from the interval (−1, 1).
Now, observe that one can define letter-to-letter transducers that compute the following func-
tions: (1) swapping of arguments, JT K(q1, . . . , ql, . . . , qm, . . . , qk) = (q1, . . . , qm, . . . , ql, . . . , qk),
(2) addition, JT K(q1, . . . , qk) = (q1 + q2, q2, . . . , qk), (3) multiplication by a constant c,
JT K(q1, . . . , qk) = (cq1, . . . , cqk), (4) projection, JT K(q1, . . . , qk) = (q1, . . . , qk−1), and (5) con-
ditional expression, JT K(q1, . . . , qk) equals JT1K(q1, . . . , qk), if q1 > 0, and JT2K(q1, . . . , qk)
otherwise. We assume that the transducers reject if the results of the corresponding functions
lie outside the interval (−1, 1). We can model a large class of piecewise-linear functions using
transducers obtained by composition of transducers (1)-(5). The resulting transducers are
functional letter-to-letter transducers.

Now, consider dΣ, dΓ defined as the L1 -norm over Rk, i.e., dΣ(q1 ⊗ . . .⊗ qk, q′1 ⊗ . . .⊗ q′k)
= dΓ(q1 ⊗ . . .⊗ qk, q′1 ⊗ . . .⊗ q′k) =

∑k
i=1 abs(qi − q′i). Observe that dΣ, dΓ can be computed

by deterministic Discδ-weighted automata, with δ = 1
10 . Therefore, 1-robustness of T can

be decided in polynomial time (Theorem 7). Finally, note that K-robustness of a transducer
computing a piecewise-linear function h w. r. t. the above similarity functions is equivalent
to Lipschitz continuity of h with coefficient K.

5 Functional Transducers

It was shown in [22] that checking K-robustness of a functional transducer w. r. t. to a fixed
bound on the amount of input perturbation is decidable. In what follows, we show that when
the amount of input perturbation is unbounded, the robustness problem becomes undecidable
even for deterministic transducers.

I Theorem 10. 1-robustness of deterministic transducers is undecidable.

Proof. The Post Correspondence Problem (PCP) is defined as follows. Given a set of
word pairs {〈v1, w1〉, . . . , 〈vk, wk〉}, does there exist a sequence of indices i1, . . . , in such that
vi1 · . . . · vin = wi1 · . . . · win? PCP is known to be undecidable.

FSTTCS 2014

438 Lipschitz Robustness of Finite-state Transducers

Let Gpre = {〈v1, w1〉, . . . , 〈vk, wk〉} be a PCP instance with vi, wi ∈ {a, b}∗ for each
i ∈ [1, k]. We define a new instance G = Gpre ∪ {〈vk+1, wk+1〉}, where 〈vk+1, wk+1〉 = 〈$, $〉.
Observe that for i1, . . . , in ∈ [1, k], i1, . . . , in, k+ 1 is a solution of G iff i1, . . . , in is a solution
of Gpre. We define a deterministic transducer T processing finite words and generalized
Manhattan distances dΣ, dΓ such that T is not 1-robust w. r. t. dΣ, dΓ iff G has a solution of
the form i1, . . . , in, k + 1, with i1, . . . , in ∈ [1, k].

We first define T , which translates indices into corresponding words from the PCP
instance G. The input alphabet Σ is the set of indices from G, marked with a polarity, L or
R, denoting whether an index i, corresponding to a pair 〈vi, wi〉 ∈ G, is translated to vi or
wi. Thus, Σ = {1, . . . , k+ 1}× {L,R}. The output alphabet Γ is the alphabet of words in G,
marked with a polarity. Thus, Γ = {a, b, $} × {L,R}. The domain of JT K is described by the
following regular expression: dom(T) = Σ∗L〈k + 1, L〉+ Σ∗R〈k + 1, R〉, where for P ∈ {L,R},
ΣP = {1, . . . , k} × {P}. Thus, T only processes input words over letters with the same
polarity, rejecting upon reading an input letter with a polarity different from that of the first
input letter. Moreover, T accepts iff the first occurrence of 〈k + 1, L〉 or 〈k + 1, R〉 is in the
last position of the input word. Note that the domain of T is prefix-free, i.e., if s, t ∈ dom(T)
and s is a prefix of t, then s = t. Let uP denote the word u⊗ P |u|. Along accepting runs, T
translates each input letter 〈i, L〉 to vLi and each letter 〈i, R〉 to wRi , where 〈vi, wi〉 is the ith
word pair of G. Thus, the function computed by T is:

JT K(〈i1, L〉 . . . 〈in, L〉〈k + 1, L〉) = vLi1 . . . v
L
inv

L
k+1

JT K(〈i1, R〉 . . . 〈in, R〉〈k + 1, R〉) = wRi1 . . . w
R
inw

R
k+1

We define the output similarity function dΓ as a generalized Manhattan distance with
the following symmetric diffΓ where P,Q ∈ {L,R} and α, β ∈ {a, b, $} with α 6= β:

diffΓ(〈α, P 〉, 〈α, P 〉) = 0 diffΓ(〈α,L〉, 〈α,R〉) = 2
diffΓ(〈α, P 〉, 〈β,Q〉) = 1 diffΓ(〈α, P 〉, #) = 1

Note that for s′, t′ ∈ Γ∗ with different polarities, dΓ(s′, t′) equals the sum of max(|s′|, |t′|)
and N (s′, t′), where N (s′, t′) is the number of positions in which s′ and t′ agree on the first
components of their letters.

We define a projection π as π(〈i1, P1〉〈i2, P2〉 . . . 〈in, Pn〉) = i1i2 . . . in, where i1, . . . , in ∈
[1, k+1] and P1, . . . , Pn ∈ {L,R}. We define the input similarity function dΣ as a generalized
Manhattan distance such that dΣ(s, t) is finite iff π(s) is a prefix of π(t) or vice versa. We
define dΣ using the following symmetric diffΣ where P,Q ∈ {L,R} and i, j ∈ [1, k+ 1] with
i 6= j:

diffΣ(〈i, P 〉, 〈i, P 〉) = 0 diffΣ(〈i, P 〉, 〈j,Q〉) = ∞
diffΣ(〈i, L〉, 〈i, R〉) = |vi| + |wi|, if i ∈ [1, k] diffΣ(〈i, P 〉, #) = ∞
diffΣ(〈k + 1, L〉, 〈k + 1, R〉) = 1

Thus, for all s, t ∈ dom(T), dΣ(s, t) <∞ iff one of the following holds:
(i) for some P ∈ {L,R}, s = t = 〈i1, P 〉 . . . 〈in, P 〉〈k + 1, P 〉, or,
(ii) s = 〈i1, L〉 . . . 〈in, L〉〈k + 1, L〉 and t = 〈i1, R〉 . . . 〈in, R〉〈k + 1, R〉.

In case (i), dΣ(s, t) = dΓ(JT K(s), JT K(t)) = 0. In case (ii), dΣ(s, t) = |JT K(s)|+ |JT K(t)|−1 and
dΓ(JT K(s), JT K(t)) = max(|JT K(s)|, |JT K(t)|) +N (JT K(s), JT K(t)). Thus, dΓ(JT K(s), JT K(t)) >
dΣ(s, t) iff N (JT K(s), JT K(t)) = min(|JT K(s)|, |JT K(t)|). Since the letters 〈$, L〉, 〈$, R〉 occur
exactly once in JT K(s), JT K(t), respectively, at the end of each word, N (JT K(s), JT K(t)) =
min(|JT K(s)|, |JT K(t)|) iff |JT K(s)| = |JT K(t)| and π(JT K(s)) = π(JT K(t)), which holds iff G
has a solution. Therefore, T is not 1-robust w. r. t. dΣ, dΓ iff G has a solution. J

We have shown that checking 1-robustness w. r. t. generalized Manhattan distances is
undecidable. Observe that for every K > 0, K-robustness can be reduced to 1-robustness by

T.A. Henzinger, J. Otop, and R. Samanta 439

scaling the output distance by K. We conclude that checking K-robustness is undecidable
for any fixed K. In contrast, if K is not fixed, checking if there exists K such that T is
K-robust w. r. t. dΣ, dΓ is decidable for transducers processing finite words.

Let us define a functional transducer T to be robust w. r. t. dΣ, dΓ if there exists K such
that T is K-robust w. r. t. dΣ, dΓ.

I Proposition 11. Let T be a given functional transducer processing finite words and dΣ, dΓ
be instances of the generalized Manhattan distance.
1. Robustness of T is decidable in co-NP.
2. One can compute KT such that T is robust iff T is KT -robust.

Proof sketch. Given T , one can easily construct a trim2 functional transducer PT such that
JPT K(s, t) = (s′, t′) iff JT K(s) = s′ and JT K(t) = t′. We show that T is not robust w. r. t.
generalized Manhattan distances iff there exists some cycle in PT satisfying certain properties.
Checking the existence of such a cycle is in NP. If such a cycle exists, one can construct
paths in PT through the cycle, labeled with input words (s, t) and output words (s′, t′), with
dΓ(s′, t′) > KdΣ(s, t) for any K. Conversely, if there exists no such cycle, one can compute
KT such that T is KT -robust. It follows that one can compute KT such that T is robust iff
T is KT -robust. J

5.1 Beyond Synchronized Transducers
In this section, we present an approach for natural extensions of Theorem 7.

Isometry approach. We say that a transducer T is a (dΛ, d∆)-isometry if and only if for
all s, t ∈ dom(T) we have dΛ(s, t) = d∆(JT K(s), JT K(t)).

I Proposition 12. Let T , T ′ be functional transducers with JT K ⊆ Σω × Γω and JT ′K ⊆
Λω × ∆ω. Assume that there exist transducers T I and T O such that T I is a (dΣ, dΛ)-
isometry, T O is a (d∆, dΓ)-isometry and JT K = JT O ◦ (T ′ ◦ T I)K. Then, for every K > 0, T
is K-robust w. r. t. dΣ, dΓ if and only if T ′ is K-robust w. r. t. dΛ, d∆.

I Example 13 (Stuttering). For a given word w we define the stuttering pruned word
Stutter(w) as the result of removing from w letters that are the same as the previous
letter. E. g. Stutter(baaaccaaab) = bacab.

Consider a transducer T and a similarity function dΣ over finite words that are stuttering
invariant, i.e., for all s, t ∈ dom(T), if Stutter(s) = Stutter(t), then JT K(s) = JT K(t) and
for every u ∈ Σ∗, dΣ(s, u) = dΣ(t, u). In addition, we assume that for every s ∈ dom(T),
|JT K(s)| = |Stutter(s)|.

Observe that these assumptions imply that: (1) the projection transducer T π defined such
that JsK = Stutter(s) is a (dΣ, dΣ)-isometry, (2) the transducer T S obtained by restricting
the domain of T to stuttering-free words, i.e., the set {w ∈ dom(T) : Stutter(w) = w}, is
a synchronized transducer3, and (3) JT K = JT I ◦ (T S ◦ T π)K, where T I defines the identity
function over Γ∗. Therefore, by Proposition 12, in order to check K-robustness of T , it
suffices to check K-robustness of T S . Since T S is a synchronized transducer, K-robustness of

2 PT is trim if every state in PT is reachable from the initial state and some final state is reachable from
every state in PT .

3 Note that any functional transducer T with the property: for every s ∈ dom(T), |JT K(s)| = |s|, is a
synchronized transducer.

FSTTCS 2014

440 Lipschitz Robustness of Finite-state Transducers

T S can be effectively checked, provided the similarity functions dΣ, dΓ satisfy the conditions
of Theorem 7.

I Example 14 (Letter-to-multiple-letters transducers). Consider a transducer T which on
every transition outputs a 2-letter word4. Although, T is not synchronized, it can be
transformed to a letter-to-letter transducer T D, whose output alphabet is Γ × Γ. The
transducer T D is obtained from T by substituting each output word ab to a single letter
〈a, b〉 from Γ× Γ. We can use T D to decide K-robustness of T in the following way. First,
we define transducers T I , T pair such that T I computes the identity function over Σω and
T pair is a transducer representing the function JT pairK(〈a1, b1〉〈a2, b2〉 . . .) = a1b1a2b2
Observe that JT K = JT pair ◦ (T D ◦ T I)K. Second, we define dDΓ as follows: ∀s, t ∈ (Σ× Σ)ω,
dDΓ (s, t) = dΓ(JT pairK(s), JT pairK(t)). Observe that T I is a (dΣ, dΣ)-isometry and T pair is a
(dDΓ , dΓ)-isometry. Thus, K-robustness of T w. r. t. dΣ, dΓ reduces to K-robustness of the
letter-to-letter transducer T D w. r. t. dΣ, d

D
Γ , which can be effectively checked (Theorem 7).

6 Nondeterministic Transducers

Let T be a nondeterministic transducer with JT K ⊆ Σω × Γω. Let dΣ be an automatic
similarity function for computing the similarity between input words in Σ∗. As explained
in Sec. 3, the definition of K-robust nondeterministic transducers involves set-similarity
functions that can compute the similarity between sets of output words in Γω. In this section,
we examine the K-robustness problem of T w. r. t. dΣ and three classes of such set-similarity
functions.

Let dΓ be an automatic similarity function for computing the similarity between output
words in Γω. We first define three set-similarity functions induced by dΓ.

I Definition 15. Given sets A,B of words in Γω, we consider the following set-similarity
functions induced by dΓ:
(i) Hausdorff set-similarity function DH

Γ (A,B) induced by dΓ:

DH
Γ (A,B) = max{ sups∈A inft∈B dΓ(s, t), sups∈B inft∈A dΓ(s, t) }

(ii) Inf-inf set-similarity function Dinf
Γ (A,B) induced by dΓ:

Dinf
Γ (A,B) = infs∈A inft∈B dΓ(s, t)

(iii) Sup-sup set-similarity function Dsup
Γ (A,B) induced by dΓ:

Dsup
Γ (A,B) = sups∈A supt∈B dΓ(s, t)

Of the above set-similarity functions, only the Hausdorff set-similarity function is a distance
function (if dΓ is a distance function).

Note that when T is a functional transducer, each set-similarity function above reduces
to dΓ. Hence, K-robustness of a functional transducer T w. r. t. dΣ, DΓ and K-robustness
of T w. r. t. dΣ, dΓ coincide. As K-robustness of functional transducers in undecidable
(Theorem 10), K-robustness of nondeterministic transducers w. r. t. the above set-similarity
functions is undecidable as well.

Recall from Theorem 7 that K-robustness of a synchronized (functional) transducer
is decidable w. r. t. certain automatic similarity functions. In particular, K-robustness of

4 One can easily generalize this example to any fixed number.

T.A. Henzinger, J. Otop, and R. Samanta 441

Mealy machines is decidable when dΣ, dΓ are generalized Manhattan distances. In contrast,
K-robustness of nondeterministic letter-to-letter transducers is undecidable w. r. t. the
Hausdorff and Inf-inf set-similarity functions even when dΣ, dΓ are generalized Manhattan
distances. Among the above defined set-similarity functions, K-robustness of nondeterministic
transducers is decidable only w. r. t. the Sup-sup set-similarity function.

I Theorem 16. Let dΣ, dΓ be computed by functional weighted-automata. Checking K-
robustness of nondeterministic letter-to-letter transducers w. r. t. dΣ, DΓ induced by dΓ
is
(i) undecidable if DΓ is the Hausdorff set-similarity function,
(ii) undecidable if DΓ is the Inf-inf set-similarity function, and
(iii) decidable if DΓ is the Sup-sup set-similarity function and dΣ, dΓ satisfy the conditions

of Theorem 7.

Proof of (iii). We can encode nondeterministic choices of T , with JT K ⊆ Σω × Γω, in an
extended input alphabet Σ× Λ. We construct a deterministic transducer T e such that for
every s ∈ Σω, {JT eK(〈s, λ〉) : 〈s, λ〉 ∈ dom(T e)} = JT K(s). We also define deΣ such that for all
〈s, λ1〉, 〈t, λ2〉 ∈ (Σ×Λ)ω, deΣ(〈s, λ1〉, 〈t, λ2〉) = dΣ(s, t). Then, T is K-robust w. r. t. dΣ, D

sup
Γ

induced by dΓ iff T e is K-robust w. r. t. deΣ, dΓ. Indeed, a nondeterministic transducer T is
K-robust w. r. t. dΣ, Dsup

Γ induced by dΓ iff for all input words s, t ∈ dom(T) and for all
outputs s′ ∈ JT K(s), t′ ∈ JT K(t), dΣ(s, t) <∞ implies dΓ(s′, t′) ≤ KdΣ(s, t). J

7 Related Work

In early work [19], [7, 8] on continuity and robustness analysis, the focus is on software
programs manipulating numbers. In [19], the authors compute the maximum deviation of
a program’s output given the maximum possible perturbation in a program input. In [7],
the authors formalize ε− δ continuity of programs and present sound proof rules to prove
continuity of programs. In [8], the authors formalize robustness of programs as Lipschitz
continuity and present a sound program analysis for robustness verification. While arrays of
numbers are considered in [8], the size of an array is immutable.

More recent papers have aimed to develop a notion of robustness for reactive systems. In
[23], the authors present polynomial-time algorithms for the analysis and synthesis of robust
transducers. Their notion of robustness is one of input-output stability, that bounds the
output deviation from disturbance-free behaviour under bounded disturbance, as well as the
persistence of the effect of a sporadic disturbance. Their distances are measured using cost
functions that map each string to a nonnegative integer. In [18, 4, 2], the authors develop
different notions of robustness for reactive systems, with ω-regular specifications, interacting
with uncertain environments. In [9], the authors present a polynomial-time algorithm to
decide robustness of sequential circuits modeled as Mealy machines, w. r. t. a common suffix
distance metric. Their notion of robustness also bounds the persistence of the effect of a
sporadic disturbance.

Recent work in [21] and [22] formalized and studied robustness of systems modeled using
transducers, in the presence of bounded perturbation. The work in [21] focussed on the
outputs of synchronous networks of Mealy machines in the presence of channel perturbation.
The work in [22] focussed on the outputs of functional transducers in the presence of input
perturbation. Both papers presented decision procedures for robustness verification w. r. t.
specific distance functions such as Manhattan and Levenshtein distances.

FSTTCS 2014

442 Lipschitz Robustness of Finite-state Transducers

8 Conclusion

In this paper, we studied the K-Lipschitz robustness problem for finite-state transducers.
While the general problem is undecidable, we identified decidability criteria that enable
reduction of K-robustness to the emptiness problem for weighted automata.

In the future, we wish to extend our work in two directions. We plan to study robustness
of other computational models. We also wish to investigate synthesis of robust transducers.

References
1 S. Almagor, U. Boker, and O. Kupferman. What’s Decidable about Weighted Automata?

In ATVA, pages 482–491. LNCS 6996, Springer, 2011.
2 R. Bloem, K. Greimel, T. Henzinger, and B. Jobstmann. Synthesizing Robust Systems. In

Formal Methods in Computer Aided Design (FMCAD), pages 85–92, 2009.
3 R.K. Bradley and I. Holmes. Transducers: An Emerging Probabilistic Framework for

Modeling Indels on Trees. Bioinformatics, 23(23):3258–3262, 2007.
4 P. Cerny, T. Henzinger, and A. Radhakrishna. Simulation Distances. In Conference on

Concurrency Theory (CONCUR), pages 253–268, 2010.
5 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Alternating weighted

automata. In FCT, volume 5699 of LNCS, pages 3–13. Springer, 2009.
6 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.

ACM Trans. Comput. Log., 11(4), 2010.
7 S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity Analysis of Programs. In

Principles of Programming Languages (POPL), pages 57–70, 2010.
8 S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving Programs Robust.

In Foundations of Software Engineering (FSE), pages 102–112, 2011.
9 L. Doyen, T.A. Henzinger, A. Legay, and D. Ničković. Robustness of Sequential Circuits.

In Application of Concurrency to System Design (ACSD), pages 77–84, 2010.
10 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.

Springer Publishing Company, Incorporated, 1st edition, 2009.
11 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag New York,

Inc., New York, USA, 1996.
12 E.M. Gurari and O.H. Ibarra. A Note on Finitely-Valued and Finitely Ambiguous Trans-

ducers. Mathematical Systems Theory, 16(1):61–66, 1983.
13 D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,

1997.
14 T.A. Henzinger. Two Challenges in Embedded Systems Design: Predictability and Robust-

ness. Philosophical Transactions of the Royal Society, 366:3727–3736, 2008.
15 T.A. Henzinger, J. Otop, and R. Samanta. Lipschitz Robustness of Finite-state Trans-

ducers. CoRR, abs/1404.6452, 2014.
16 K. Zhou and J.C. Doyle and K. Glover. Robust and Optimal Control. Prentice Hall, 1996.
17 Daniel Krob. The equality problem for rational series with multiplicities in the tropical

semiring is undecidable. IJAC, 4(3):405–426, 1994.
18 R. Majumdar, E. Render, and P. Tabuada. A Theory of Robust Omega-regular Software

Synthesis. ACM Transactions on Embedded Computing Systems, 13, 2013.
19 R. Majumdar and I. Saha. Symbolic Robustness Analysis. In IEEE Real-Time Systems

Symposium, pages 355–363, 2009.
20 M. Mohri. Finite-state Transducers in Language and Speech Processing. Computational

Linguistics, 23(2):269–311, 1997.

T.A. Henzinger, J. Otop, and R. Samanta 443

21 R. Samanta, J.V. Deshmukh, and S. Chaudhuri. Robustness Analysis of Networked Sys-
tems. In Verification, Model Checking, and Abstract Interpretation (VMCAI), pages 229–
247, 2013.

22 R. Samanta, J.V. Deshmukh, and S. Chaudhuri. Robustness Analysis of String Transducers.
In ATVA, pages 427–441. LNCS 8172, Springer, 2013.

23 P. Tabuada, A. Balkan, S. Y. Caliskan, Y. Shoukry, and R. Majumdar. Input-Output
Robustness for Discrete Systems. In International Conference on Embedded Software (EM-
SOFT), 2012.

24 M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner. Symbolic Finite
State Transducers: Algorithms and Applications. In Principles of Programming Languages
(POPL), pages 137–150, 2012.

FSTTCS 2014

Separating Cook Completeness from Karp-Levin
Completeness Under a Worst-Case Hardness
Hypothesis∗

Debasis Mandal, A. Pavan, and Rajeswari Venugopalan

Department of Computer Science, Iowa State University, USA
{debasis,pavan,dvaithi}@iastate.edu

Abstract
We show that there is a language that is Turing complete for NP but not many-one complete
for NP, under a worst-case hardness hypothesis. Our hypothesis asserts the existence of a non-
deterministic, double-exponential time machine that runs in time O(22n

c

) (for some c > 1)
accepting Σ∗ whose accepting computations cannot be computed by bounded-error, probabilistic
machines running in time O(22β2n

c

) (for some β > 0). This is the first result that separates
completeness notions for NP under a worst-case hardness hypothesis.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Cook reduction, Karp reduction, NP-completeness, Turing completeness,
many-one completeness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.445

1 Introduction

The notion of polynomial-time reductions is pervasive in theoretical computer science. In
addition to their critical role in defining NP-completeness, polynomial-time reductions play
an important role in establishing several results in various areas such as complexity theory,
cryptography, learning theory etc. Informally, reductions translate instances of one problem
to instances of another problem; a problem A is polynomial-time reducible to a problem B if
A can be solved in polynomial-time by making queries to problem B. By varying the manner
in which the queries are allowed to make, we obtain a wide spectrum of reductions. At one
end of the spectrum is Cook/Turing reduction where multiple queries are allowed and the ith
query made depends on answers to previous queries. On the other end is the most restrictive
reduction, Karp-Levin/many-one reduction, where each positive instance of problem A is
mapped to a positive instance of problem B, and so are the negative instances. In between
are truth-table/non-adaptive reductions, and bounded truth-table reductions. Interestingly,
the seminal paper of Cook [7] used Turing reduction to define NP-completeness, whereas the
works of Karp [16] and Levin [19] used many-one reductions.

Understanding the differences between many-one reductions and Turing reductions is
one of the fundamental problems in complexity theory. Compared to many-one reductions,
our knowledge about Turing reductions is limited. Extending certain assertions that are
known to be true for many-one reductions to the case of Turing reductions yield much sought
after separation results in complexity theory. For example, it is known that polynomial time
many-one complete sets for EXP are not sparse [24]. Extending this result to the case of

∗ Research Supported in part by NSF grants CCF: 0916797 and CCF: 1421163.

© Debasis Mandal, A. Pavan, and Rajeswari Venugopalan;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 445–456

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.445
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

446 Separating Cook Completeness from Karp-Levin Completeness

Turing reductions implies that EXP does not have polynomial-size circuits. In the context
of resource-bounded measure, it is known that “small span theorem” holds for many-one
reductions. Establishing a similar result for Turing reductions separates EXP from BPP [15].
In addition, Turing reductions are crucial to define the Polynomial-time hierarchy.

The differences between various types of polynomial-time reductions have been studied
in different contexts. Selman [23] showed that if NE ∩ co-NE does not equal E, then there
exist languages A and B in NP such that A polynomial-time Turing reduces to B, but does
not polynomial-time many-one reduce to B. Aida et al. [1] showed a similar result in the
average-case world; if P does not equal NP, then there is a distributional problems (A,µA)
and (B,µB) in DistNP such that (A,µA) Turing reduces to (B,µB) but does not many-one
reduce to (B,µB). The differences between Turing and truth-table reductions have been
studied extensively in the context of random self-reductions and coherence [4, 8, 9, 11]. For
example, Feigenbaum et al. [8] showed that if nondeterministic triple exponential time is not
in bounded-error, probabilistic triple exponential time, there exists a function in NP that is
Turing random self-reducible, but not truth-table random-self reducible.

In this paper we study the differences between many-one and Turing reductions in the
context of completeness. Even though, it is standard to define completeness using many-one
reductions, one can also define completeness using Turing reductions. A language L is Turing
complete for a class C if L is in class C and every language in C Turing reduces to L. To
capture the intuition that if a complete problem for a class C is “easy”, then the entire class
is easy, Turing reductions are arguably more appropriate to define completeness. However,
all known natural languages turn out to be complete under many-one reductions. This raises
the following question: For a complexity class C, is there a Turing complete language that is
not many-one complete? This question was first posed by Ladner, Lynch, and Selman [18].

This question has been completely resolved for the complexity classes EXP and NEXP.
Works of Ko and Moore [17] and Watanabe [27] showed that for EXP, almost all completeness
notions are mutually different. Similar separation results are obtained for NEXP [5]. See
survey articles [6, 14] for more details on these results.

For the case of NP, the progress has been very slow. The first result that achieves a
separation between Turing and many-one completeness in NP, under a reasonable hypothesis,
is due to Lutz and Mayordomo [20]. They showed that if NP does not have P-measure 0
(known as measure hypothesis), then Turing completeness for NP is different from many-one
completeness. Ambos-Spies and Bentzien [2] achieved a finer separation under a weaker
hypothesis known as genericity hypothesis. Subsequently, Turing and many-one completeness
notions are shown to be different under even weaker hypotheses known as NP machine
hypothesis, bi-immunity hypothesis, and partial bi-immunity hypothesis [13, 21, 22].

All of the above mentioned hypotheses are known as almost everywhere hardness hy-
potheses. Informally, these hypotheses assert that there exists a language in NP such that
every algorithm that decides L must take more than subexponential time on all but finitely
many inputs. Even though we believe that NP is subexponentially hard, we do not have any
candidate languages in NP that are almost everywhere hard. All natural problems have an
infinite set of instances that can be decided in polynomial time. Thus these hypotheses are
considered “strong hypotheses”. It has been open whether a separation can be achieved using
a worst-case hardness hypothesis (such as P 6= NP, or NE 6= E). The only partial result in
this direction is due to Gu, Hitchcock, and Pavan [10] who showed that if there exist one-way
permutations and there exists a language in NEEE ∩ co-NEEE that can not be solved in
deterministic triple exponential time with logarithmic advice, then Turing completeness for
NP differs from many-one completeness. Even though the latter hypothesis is a worst-case
hardness hypothesis, the former is a average-case hardness hypothesis.

D. Mandal, A. Pavan, and R. Venugopalan 447

In this paper, we separate Turing completeness for NP from many-one completeness using
a worst-case hardness hypothesis. This is the first result of this nature. Below is an informal
statement of our result. Please see Section 3 for a more formal statement.

I Main Theorem. Suppose there exist an NEEXP machine N accepting Σ∗ and running
in time t(n) and a positive constant δ < 1 such that no zero-error, probabilistic machine Z
running in time 2t(n)δ can compute accepting computation of N with non-trivial probability.

Then there is a Turing complete language for NP that is not truth-table complete for NP.
Here we require that t(n) is 22n

c

for some constant c > 1.

The rest of the paper is organized as follows. Section 2 is the preliminaries section. In
Section 3, we formally state our worst-case hardness hypothesis, and provide a proof of
the separation theorem. Section 4 relates the hypothesis used in this paper to a few other
hypotheses studied in the context of separating completeness notions.

2 Preliminaries

We use standard notions and definitions in complexity theory [3]. All languages are defined
over the the binary alphabet Σ = {0, 1}, Σn denotes the set of all binary strings of length n.
We use |x| to denote the length of a string x. Non-deterministic double-exponential time is
defined by NEEXP =

⋃
c>1 NTIME(22n

c

) and co-NEEXP is its complement class. We say
that a non-deterministic machine is a NEEXP machine, if its runtime is bounded by 22n

c

for
some c > 1. A language L is in ZPTIME(t(n)), if there is a probabilistic machine Z running
in time O(t(n)) such that for every x, Pr[Z(x) = L(x)] is atleast 1/4, and the probability
that Z outputs an incorrect answer is zero. The machine Z may output ⊥ with probability
at most 3/4.

I Definition 1. Suppose N is a non-deterministic machine accepting a language S. We say
that a t(n)-time bounded, zero-error, probabilistic machine computes accepting computations
of N if there exists a probabilistic machine Z such that

For every x ∈ S, for every choice of random bits, the machine Z on input x either outputs
a string from Σ∗ or outputs the special symbol ⊥.
for every x ∈ S, Pr[Z(x) is an accepting computation of N(x)] > 1/4, and
for every x ∈ S, Pr[Z(x) 6= ⊥ and is not an accepting computation of N(x)] = 0.

Our proof uses the notion of P-selective sets introduced by Selman [23].

I Definition 2. A set S ⊆ Σ∗ is P-selective if there is a polynomial time computable function
f : Σ∗ × Σ∗ → Σ∗ such that for all strings x, y ∈ Σ∗, (1) f(x, y) ∈ {x, y}, and (2) if either of
x and y is in S, then f(x, y) is in S. The function f is called the P-selector of S.

The well-known example of P-selective sets are the left-cut sets L(r) = {x | x < r}, where
r is an infinite binary sequence, and < is the dictionary order with 0 < 1. The following
lemma is due to Toda [25].

I Lemma 3. For every P-selective set L, there is a polynomial time algorithm that given any
finite set of strings Q as input, outputs a sequence x1, · · · , xm such that {x1, · · · , xm} = Q,
such that for some integer p, 0 ≤ p ≤ m, Q ∩ L = {xi | i ≤ p} and Q ∩ L̄ = {xi | i > p}.

Consider two languages A and B. A is polynomial time Turing reducible to B, denoted
by A ≤P

T B, if there is a polynomial time oracle Turing machine M such that A = L(MB).
Note that M can make at most polynomially many queries to B and they can be adaptive.

FSTTCS 2014

448 Separating Cook Completeness from Karp-Levin Completeness

The language A is polynomial-time truth-table reducible to B, denoted by A ≤P
tt B, if there

is a pair of polynomial time computable functions 〈f, g〉 such that for every x ∈ Σ∗, (1)
f(x) is query set Q = {q1, q2, · · · , qk} and (2) x ∈ A ⇐⇒ g(x,B(q1), B(q2), · · · , B(qk)) = 1.
We call f the query generator and g the truth-table evaluator. Given a polynomial time
reducibility ≤P

r , a set B is ≤P
r -complete for NP if B is in NP and for every set A ∈ NP,

A is ≤P
r reducible to B. Note that we only consider polynomial time reductions to define

NP-completeness in this paper.

Notation. Let τ : N → N be a function defined as τ(n) = 22n . The functions of the form
22f(n) , that are used in many places throughout this paper, are not visually appealing; from
now we represent such functions as τ(f(n)). Then τ(δf(n)) represents 22δf(n) . We use τ ε(n)
to denote (τ(n))ε. Further, logc n represents (logn)c.

3 Separation Theorem

In this section we prove the main result of this paper. First, we formally state our hypothesis.

Hypothesis W. There exist a positive constant δ < 1 and an NEEXP machine N1 accepting
Σ∗ that runs in time t(n) such that no 2t(n)δ -time bounded, zero-error, probabilistic machine
can compute the accepting computations of N1. Here t(n) = 22n

c

for some constant c > 1.

I Theorem 4. If Hypothesis W holds, then there is a Turing complete language for NP that
is not truth-table complete for NP.

Before we provide a formal proof, we first describe proof outline. Our proof proceeds in
four steps. Note that Hypothesis W is a “worst-case hardness hypothesis”. This means that
for every probabilistic, 2t(n)δ -time bounded, machine Z1 there exists infinitely many inputs
x such that the probability that Z1(x) computes an accepting computation of N1(x) is very
small. This is equivalent to the following: there exist infinitely many input lengths n for
which there exists at least one string x of length n so that the probability that Z1(x) is an
accepting computation of N1(x) is very small. In the first step (Section 3.1), we amplify the
hardness of N1 and obtain an NEEXP machine N2 with the following property: For every
2t(n)δ -time bounded, probabilistic machine Z2, there exist infinitely many input lengths n at
which for every string x of length n the probability that Z2(x) is an accepting computation
of N2(x) is small.

In the second step (Section 3.2), we first define a padding function pad : Σ∗ → N. Via
standard padding arguments we obtain an NP-machine N running in time p(n) that accepts
a tally set T = {0pad(x) | x ∈ Σ∗}. For ` ≥ 0, let T` = {0pad(x) | x ∈ Σ`}. The NP-machine
N has the following hardness property: For every f(n)-time bounded, probabilistic machine
Z (for an appropriate choice of f) there exist infinitely many integers ` such that Z fails to
compute accepting computations on every string from T`.

Using the NP-machine N , we define the Turing complete language L in step three
(Section 3.3). The language L is formed by taking disjoint union of two NP languages L1 and
L2. The language L1 consists of tuple of the form 〈x, a〉 so that x ∈ C (for some NP-complete
language C), and a is an accepting computation of N(0n) (for some n that depends on x).
In L2, we encode accepting computations of N using a P-selective set. It follows that C can
be Turing reduced to L by first obtaining an accepting computation of N (by making queries
to L2) and then by making one query to L1. The idea of forming L1 is borrowed from [21],
and encoding accepting computations of an NP-machine as a P-selective sets is well known.
For example see [11].

D. Mandal, A. Pavan, and R. Venugopalan 449

Finally, in step four (Section 3.4), we show that if L is truth-table complete, then there
is a probabilistic machine Z such that for every ` there exists atleast one string in T` so that
Z computes an accepting computation of N on that string with high probability. Using this,
we in turn show that there exists a probabilistic machine Z2 so that for every input length `,
there exists atleast one string x ∈ Σ` such that Z2(x) outputs an accepting computation of
the NEEXP machine N2(x). This will be a contradiction. The most technical part of the
proof lies in this step.

We now give proof details.

3.1 Hardness Amplification
The first step amplifies the hardness of the NEEXP machine N1 from the hypothesis to
obtain a new NEEXP machine N2.

I Lemma 5. Suppose that the hypothesis W holds. Then there exist an NEEXP machine
N2 accepting Σ∗ and running in time O(2nτ(nc)) and a constant β < δ such that for every
probabilistic machine Z2 that runs in time τ(β2nc), there exist infinitely many input lengths
n > 0 such that for every x ∈ Σn,

Pr[Z2(x) = an accepting computation of N2(x)] ≤ 1/4.

Proof. Let N1 be the non-deterministic machine from Hypothesis W whose running time
is bounded by O(t(n)), where t(n) = τ(nc) (for some c > 1). Length of every accepting
computation of N1(x) is bounded by O(t(|x|)). Consider a machine N2 that behaves as
follows: On an input x of length n, it runs N1(y) on every string y of length n (in a sequential
manner). The running time of N2 is O(2n × t(n)). Since N1 accepts Σ∗, the machine N2
also accepts Σ∗. We claim that N2 has the required property.

Suppose not. Then there is a probabilistic machine Z2 that runs in time O(τ(β2nc)) (for
some β < δ) such that for all but finitely many n, there exists a string yn ∈ Σn such that

Pr[Z2(yn) = an accepting computation of N2(yn)] > 1/4.

By the definition of N2, the accepting computation of N2(x) encodes the accepting computa-
tion of N1(y) for every y whose length is same as the length of x. Consider a machine Z1
that on any input x of length n behaves as follows:

It runs Z2(y) on every y of length n. It verifies that the output of Z2(y) is an
accepting computation of N2(y), and if the verification succeeds, then it extracts the
accepting computation of N1(x) and outputs it. If Z2(y) does not output an accepting
computation of N2(y), then Z1 outputs ⊥.

Let x be any input of length n. By our assumption, there exists a yn ∈ Σn such that
Z2(yn) outputs an accepting computation of N2(yn) with probability at least 1/4. The
above machine clearly runs Z2(yn) on input x. Since an accepting computation of N1(x)
can be retrieved from an accepting computation of N2(yn), the above machine outputs an
accepting computation of N1(x). Thus for all but finitely many n, for every x ∈ Σn, Z1
outputs an accepting computation of N1(x) with probability at least 1/4. The running time
of Z1 is clearly O(2n × τ(β2nc)), which is less than τ(δ2nc) (as β < δ). This contradicts
Hypothesis W. J

FSTTCS 2014

450 Separating Cook Completeness from Karp-Levin Completeness

3.2 Defining an NP machine
In this section, we define an NP machine N from the above NEEXP machine N2. Fix ε < β.
Consider the following padding function pad : Σ∗ → N, defined by

pad(x) = bτ ε(logc rx)c,

where rx is the rank of string x in the standard lexicographic order of Σ∗, so that 2` − 1 ≤
rx ≤ 2`+1 − 2, for every x ∈ Σ`. Note that pad is 1-1 and so pad−1(n) (if exists) is well
defined. To keep the calculation simple, we drop the floors henceforth. Now we define the
following tally language based on the padding function:

T =
{

0pad(x) | x ∈ Σ∗
}
.

Our NP machine N that accepts a tally language behaves as follows:

On input 0m, it computes x = pad−1(m). Upon finding such x, it runs N2(x). If no
such x is found, then N rejects.

Note that |x| < (log logm2/ε)1/c. So running time of N is bounded by m3/ε. Thus N is an
NP machine. Note that N accepts the tally language T .

3.3 Turing-complete language
At this point, we are ready to define the language L in NP that we prove to be Turing
complete, but not truth-table complete for NP.

Let LT be the range of the padding function pad.

LT = {τ ε(logc i) | i ∈ N}.

By definition, N accepts only those tally strings whose length is in the set LT . We use ni
to denote pad(i). Given a length n ∈ LT , define an to be the lexicographically maximum
accepting computation of N(0n). Let a be the infinite binary string an1an2an3 · · · where
ni ∈ LT and n1 < n2 < n3 < · · · . Let |an| denotes the length of the accepting computation
an. Let SAT′ consist of the SAT formulas with lengths only in LT , i.e.,

SAT′ = SAT ∩ {x ∈ Σ∗ | |x| ∈ LT }.

Since there exists a polynomial p such that ni+1 ≤ p(ni), it can be shown via padding that
SAT many-one reduces to SAT′ and thus SAT′ is NP-complete.

We define L1 and L2 as follows:

L1 =
{
〈φ, u〉 | |φ| = n, u is an accepting computation of N on 0n, φ ∈ SAT′

}
and

L2 = L(a) = {z | z < a} ,

where < is the dictionary order with 0 < 1. Then our Turing-complete language L is the
disjoint union of L1 and L2, i.e.,

L = L1 ∪· L2 = 0L1 ∪ 1L2.

Note that both L1 and L2 are in NP, and so is L.

I Lemma 6. L is ≤P
T -complete for NP.

Proof. Reduce SAT′ to L: On input φ of length n, make adaptive queries to L2 to find an.
Accept φ if and only if 〈φ, an〉 ∈ L1. J

D. Mandal, A. Pavan, and R. Venugopalan 451

3.4 L is not truth-table complete
In this section, we show that L is not truth-table complete for NP. Before we proceed
with the proof, we provide the intuition behind the proof. Suppose that L is truth-table
complete. We achieve a contradiction by exhibiting a procedure to compute accepting
computations of NEEXP machine N2. Since the NP-machine N is padded version of N2, it
suffices to compute the accepting computations of N . We partition T into sets T1, T2, · · · ,
where T` = {0pad(x) | x ∈ Σ`}. Clearly, |T`| = 2` and T =

⋃
` T`. Note that an accepting

computation of N2(x) can be computed by computing an accepting computation of N(0pad(x)),
and if |x| = `, then 0pad(x) ∈ T`.

Recall that N2 has the following property: For every probabilistic machine Z2 that
attempts to compute its accepting computations, there exist infinitely many input lengths
` and Z2 fails on every string at those lengths. Informally, this translates to the following
hardness property of N : For every probabilistic machine Z that attempts to compute
accepting computations of N , there exist infinitely many integers ` such that Z fails on
every string from T`. Thus to achieve a contradiction, it suffices to exhibit a probabilistic
procedure Z such that for all but finitely many `, Z outputs an accepting computation of
N(0n) for some 0n ∈ T`, with non-negligible probability. We will now (informally) describe
how to compute accepting computations of N .

For the sake of simplicity, let us first assume that the NP machine N has exactly one
accepting computation on every input from T . The first task is to define a set S that encodes
the accepting computations of the machine N . One way to define S as

S = {〈0n, i〉 | ith bit of accepting computation of N(0n) is 1} .

Since we assumed that N has exactly one accepting computation, deciding S is equivalent to
computing accepting computations of N . Since S is in NP, there is a truth-table reduction
from S to L. We make another simplifying assumption that all queries are made to L1 part
of L. Consider an input 〈0n, i〉 where 0n ∈ T` (for some ` > 0). All the queries produced
on this input are of the form 〈φ, u〉. It is easy to check if u is an accepting computation of
N(0m) for some m. If u is not an accepting computation, then 〈φ, u〉 does not belong to L,
and thus it is easy to decide the membership of 〈0n, i〉 in S. Suppose that u is an accepting
computation of N(0m) for some m. Then there are two cases. First case is the “short query”
case, where m is much smaller than n. In this case 〈φ, u〉 is in L1 only when |φ| equals m and
φ ∈ SAT′. Since m << n, we can decide whether φ ∈ SAT′ using a brute force algorithm in
time O(2m), this in turn enables us to decide the membership of 〈0n, i〉 in S. Thus if all the
queries are small, we can decide the memberships of 〈0n, i〉 (for all i), and thus can compute
accepting computation of N(0n). The second case is the “large query” case: Suppose that
for some query, m is not much smaller than n. In this case, we are in the following scenario:
The reduction outputs accepting computation of N(0m) and m is somewhat large. In this
case, we argue that for an appropriate choice of n, 0m also lies in T`. This will enable us to
design a procedure that outputs accepting computation of some string from T`. This is the
gist of the proof.

The above argument assumed that N has exactly one accepting computation, which is
not true in general. We get around this problem by applying Valiant-Vazirani lemma [26]
to isolate one accepting computation. Thus our language S will involve the use of isolation
lemma. It is also very much possible that the reduction makes queries to L2 also. Recall
that L2 is a P-selective set and it is known that if an NP-language A reduces to a P-selective
set, then A must be “easy” [25, 23]. We use this in combination with the above mentioned
approach. A technically involved part is to define the correct notion of “small” and “large”

FSTTCS 2014

452 Separating Cook Completeness from Karp-Levin Completeness

queries. There is a fine interplay among the choice of pad function, notion of small query,
and the runtime of probabilistic machine that computes the accepting computations of N .
We now provide a formal proof.

I Lemma 7. L is not ≤P
tt-complete for NP.

Proof. For the sake of contradiction, assume that L is truth-table complete for NP. Consider
the following set S.

S = {〈0n, k, r1, r2, . . . , rk, i〉 | n ∈ LT , 1 ≤ k ≤ |an|, ri ∈ Σ|an|, there is a u such that
u is an accepting computation of N(0n), ith bit of u = 1, and

u · r1 = u · r2 = · · · = u · rk = 0},

where u · ri denotes the inner product of u and ri, for all i, over GF[2].
It is easy to see that S is in NP. Since L is ≤P

tt-complete for NP, S is ≤P
tt reducible to L

via polynomial time computable functions 〈g, h〉, where g is the query generator and h is the
truth-table evaluator. Since g is polynomial-time computable, there exists a constant b > 0
such that every query generated by it is of length at most nb.

At this point, our goal is to compute an accepting computation of N . We start with
the following algorithm A that classifies all the queries of the query generator into two sets,
“Large Query” and “Small Query”.

1. Input 0n, where n = τ ε(logc i) for some i ∈ N. Clearly, n ∈ LT .
2. For 1 ≤ j ≤ n2 repeat the following:

Pick kj uniformly at random from {1, · · · , |an|}.
Pick each of rj1, r

j
2, . . . , r

j
kj

uniformly at random from Σ|an|.
3. Let Qj be the set of queries generated by g on inputs 〈0n, kj , rj1, · · · , r

j
kj
, i〉, 1 ≤ i ≤ |an|.

Compute Qj for 1 ≤ j ≤ n2 and set Q =
⋃
j Q

j . Note that the length of each query is
bounded by nb.

4. Partition Q into two sets Q1 and Q2 such that Q1 is the set of all queries to L1 and Q2
is the set of all queries to L2.

5. If Q1 contains a query 〈φ, ut〉 for some t, where ut is an accepting computation of N(0t)
and

t > τ ε(((log lognb/ε)1/c − 1)c),

then print ut, output “Large Query”, and halt.
6. Otherwise, output “Small Query” and halt.

It is clear that the algorithm A runs in time polynomial in n.
Before we give our probabilistic algorithm to compute the accepting computations of N ,

we bound the probabilities of certain events of interest. T is partitioned into sets T1, T2, · · ·
each of cardinality 2`, where

T` =
{

0τ
ε(logc rx) | x ∈ Σ`

}
.

Fix ` > 0. For a fixed 0n ∈ T` and j, 1 ≤ j ≤ n2, let En,j denote the following event:

There exists exactly one u such that
u is an accepting computation on N(0n),
u · rj1 = u · rj2 = · · · = u · rjkj = 0.

D. Mandal, A. Pavan, and R. Venugopalan 453

By Valiant-Vazirani, we have that Pr[En,j] ≥ 1
n2 . Let En denote the event that for some j,

1 ≤ j ≤ n2, En,j occurs. The probability of En is at least 1− 1
2n2 . Finally, let E` denote the

event that for every 0n ∈ T`, the event En occurs. Again, we have that Pr[E`] ≥ 1− 1
2` .

Thus for every `, the probability that the event E` occurs is very high. Fix an `. From
now on, we assume that the event E` has occurred.

Now our goal is to arrive at the machine that computes an accepting computation of
atleast one string from T`. For this we will analyze the behavior of the above algorithm on a
specific string 0V` ∈ T`, where

V` = τ ε/b(logc(2`+1 − 2)).

We stress that this unique string 0V` depends only on the length `. When we run algorithm
A on 0V` , either it outputs “Large Query” on it, or it outputs “Small Query”.

I Lemma 8 (Key Lemma). One of the following holds.
1. If A outputs “Small Query” on 0V` , then there is an algorithm B1 that on input 0V`

runs in time polynomial in τ(ε2((log logV`b/ε)1/c−1)c), and correctly outputs an accepting
computation of N(0V`).

2. If A outputs “Large Query” on 0V` , there exist an algorithm B2 such that for every string
in T` it runs in time polynomial in V`, and there exists a 0t ∈ T` for which B2(0t) outputs
an accepting computation of N(0t).

Due to the lack of space, we defer the proof of this lemma to the full version of the paper.
Now we complete the proof of main theorem by describing a probabilistic machine that
computes accepting computation of the NEEXP machine N2.

Computing accepting computations of N2

Remember that we defined our NEEXP machine N2 in Lemma 5. Now consider the
probabilistic machine Z2 that does the following on input x ∈ Σ`:

1. Compute V`. Run A on 0V` .
2. If A(0V`) outputs “Small Query”,

Verify if x = pad−1(V`). If it is, then run B1 on 0V` and if it outputs an accepting
computation of N(0V`), then output that accepting computation. This is also the
accepting computation of N2(x).

3. If A(0V`) outputs “Large Query”, do the following:
For every string 0i in T`, run the algorithm B2 on it. If it outputs the accepting
computation of N(0t) for some 0t, then verify if x = pad−1(0t). If it is, then output
that accepting computation. This is also the accepting computation of N2(x).

We analyze the behavior of Z2 under the assumption that the event E` happens. Recall
that this happens with very high probability. If A(0V`) outputs “Small Query”, then by part
(1) of Lemma 8, B1 outputs an accepting computation of N(0V`). Note that every accepting
computation of N(0V`) is an accepting computation of N2(pad−1(V`)). Since pad−1(V`) is
of length `, there exists a string x ∈ Σ`, on which Z2 outputs an accepting computation of
N2(x). Now consider the case where A(0V`) outputs “Large Query”, then by part (2) of
Lemma 8, there exists a 0t ∈ T` such that B2(0t) outputs an accepting computation of N(0t).
Thus Z2 will find that 0t through iteration. Similarly, pad−1(0t) ∈ T` is of length `, thus
there exists a x in Σ` on which Z2 outputs an accepting computation of N2(x). Thus Z2
always outputs an accepting computation of atleast one string x from Σ`.

FSTTCS 2014

454 Separating Cook Completeness from Karp-Levin Completeness

We will now bound the runtime of Z2. This is bounded by runtime of A(0V`), plus the
runtime of B1(0V`), and the time taken in step 3 of the above algorithm. By part (1) of
Lemma 8, the runtime of B1(0V`) is τd(ε2((log logV`b/ε)1/c−1)c) for some constant d > 0, which
is bounded by

τd(ε2((log logV`b/ε)1/c−1)c) = τd(ε2((logc(2`+1−2)1/c−1)c) = τd(ε2((log(2`−1))c) < τd(ε2`
c

).

Let p be a constant such that A(0V`) runs in time V p` and B2(0i), 0i ∈ T`, runs in time V p` .
Step 3 runs B2 on every string from T`, and there are 2` strings in T`. Thus the combined
runtime of A(0V`) in step 1 and step 3 is bounded by

2`+1V p` = 2`+1τpε/b(logc(2`+1 − 2)) ≤ 2`+1τpε/b((`+ 1)c) ≤ τ q((`+ 2)c)

for some constant q > p. Thus the total running time of Z2 is bounded by τ(β2`c), as β > ε.
Thus for all but finitely many `, the machine Z2 computes an accepting computation

of N2(x) for atleast one string x from Σ` with non-trivial probability. This contradicts the
hardness of NEEXP machine N2 in Lemma 5. This completes the proof of Lemma 7. J

This also completes the proof the main theorem.

4 Power of the hypothesis

In this section, we show some results that explain the power of Hypothesis W and also compare
it to some of the previously studied hypotheses that are used to separate NP-completeness
notions. All proofs in this section appear in the full version of the paper.

Even though Hypothesis W talks about the difficulty of computing accepting computations
of NEEXP machines, our first result states that it can be related to the hardness of the
complexity class NEEXP ∩ co-NEEXP.

Hypothesis 2. There exist constants c > 1 and 0 < δ < 1 such that NTIME(t(n)) ∩
co-NTIME(t(n)) * ZPTIME(2t(n)δ), for t(n) = 22n

c

.
Now we show that our hypothesis follows from this worst-case separation hypothesis.

I Proposition 1. Hypothesis 2 implies Hypothesis W.

Pavan and Selman [21] showed that the NP-completeness notions differ under the following
hypothesis.

Hypothesis 3 (NP-machine Hypothesis). There exist an NP machine N accepting 0∗ and
β > 0 for every 2nβ -time bounded deterministic algorithm M , M(0n) does not output an
accepting computation of N(0n) for all but finitely many n.

Note that the hypothesis requires that every machine that attempts to compute accepting
computations of N must fail on all but finitely many inputs. This type of hardness hypothesis
is called “almost everywhere hardness hypothesis”. In contrast, Hypothesis W requires that
every machine that attempts to compute accepting computations of the NEEXP machine
must fail on only infinitely many strings.

Ideally, we would like to show that NP-machine hypothesis implies Hypothesis W.
However, NP-machine hypothesis concerns with hardness against deterministic algorithms,
whereas Hypothesis W concerns with hardness against probabilistic algorithms. If we assume
well-accepted derandomization hypotheses, we can show Hypothesis W is weaker than the
NP-machine hypothesis.

D. Mandal, A. Pavan, and R. Venugopalan 455

I Proposition 2. Suppose that ZPP = P. If NP-machine hypothesis holds, then Hypothesis W
holds.

Lutz and Mayordomo [20] achieved the separation of NP-completeness notions under the
Measure Hypothesis. Hitchcock and Pavan [12] showed that Measure hypothesis implies the
above NP-machine hypothesis. Thus we have the following.

I Proposition 3. Suppose that ZPP = P. Measure hypothesis implies Hypothesis W.

Pavan and Selman [22] showed that if NP-contains 2nε -bi-immune sets, then completeness
in NP differ. Informally, the hypothesis means the following: There is a language L in NP
such that every 2nε-time bounded algorithm that attempts to decide L must fail on all
but finitely many strings. Thus this hypothesis concerns with almost-everywhere hardness,
whereas Hypothesis W concerns with worst-case hardness. We are not able to show that
the bi-immunity hypothesis implies Hypothesis W (even under the assumption ZPP = P).
However, we note that if NP ∩ co-NP has bi-immune sets, then Hypothesis W follows.
Pavan and Selman [21] showed that if NP ∩ co-NP has a DTIME(2nε)-bi-immune set, then
NP-machine hypothesis follows.

I Proposition 4. Suppose that ZPP = P. If NP ∩ co-NP has a DTIME(2nε)-bi-immune set,
then Hypothesis W holds.

5 Conclusions

This paper, for the first time, shows that Turing completeness for NP can be separated from
many-one completeness under a worst-case hardness hypothesis. Our hypothesis concerns
with hardness of nondeterministic, double exponential time. An obvious question is to further
weaken the hypothesis. Can we achieve the separation under the assumption that there
exists a language in NE that can not be solved in deterministic/probabilistic time O(2δ2n)?

References
1 S. Aida, R. Schuler, T. Tsukiji, and O. Watanabe. On the difference between polynomial-

time many-one and truth-table reducibilities on distributional problems. In 18th Interna-
tional Symposium on Theoretical Aspects of Computer Science, 2001.

2 K. Ambos-Spies and L. Bentzien. Separating NP-completeness under strong hypotheses.
Journal of Computer and System Sciences, 61(3):335–361, 2000.

3 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

4 L. Babai and S. Laplante. Stronger separations ofor random-self-reducibility, rounds, and
advice. In 14th IEEE Conference on Computational Complexity, pages 98–104, 1999.

5 H. Buhrman, S. Homer, and L. Torenvliet. Completeness notions for nondeterministic
complexity classes. Mathematical Systems Theory, 24:179–200, 1991.

6 H. Buhrman and L. Torenvliet. On the structure of complete sets. In 9th IEEE Annual
Conference on Structure in Complexity Theory, pages 118–133, 1994.

7 S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM
Symposium on Theory of Computing, pages 151–158, 1971.

8 J. Feigenbaum, L. Fortnow, C. Lund, and D. Spielman. The power of adaptiveness and
additional queries in random-self-reductions. In Proc. 7th Annual Conference on Structure
in Complexity Theory, pages 338–346, 1992.

FSTTCS 2014

456 Separating Cook Completeness from Karp-Levin Completeness

9 J. Feigenbaun, L. Fortnow, S. Laplante, and A. Naik. On coherence, random-self-
reducibility, and self-correction. In Proceedings of the Eleventh Annual IEEE Conference
on Computational Complexity, pages 224–232, 1996.

10 X. Gu, J. Hitchcock, and A. Pavan. Collapsing and separating completeness notions under
average-case and worst-case hypotheses. Theory of Computing Systems, 51(2):248–265,
2011.

11 E. Hemaspaandra, A. Naik, M. Ogiwara, and A. Selman. P-selective sets and reducing
search to decision vs. self-reducibility. Journal of Computer and System Sciences, 53(2):194–
209, 1996.

12 J. Hitchcock and A. Pavan. Hardness hypotheses, derandomization, and circuit complexity.
Computational Complexity, 17(1):119–146, 2008.

13 J. Hitchcock, A. Pavan, and N. V. Vinodchandran. Partial bi-immunity, scaled dimension
and np-completeness. Theory of Computing Systems, 42(2):131–142, 2008.

14 S. Homer. Structural properties of complete problems for exponential time. In L. Hemas-
paandra and A. Selman, editors, Complexity Theory Retrospective II, pages 135–153.
Springer-Verlag, 1997.

15 D.W. Juedes and J.H. Lutz. The complexity and distribution of hard problems. SIAM
Joutnal on Computing, 24:279–295, 1995.

16 R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-
putations, pages 85–104. Plenum Press, New York, 1972.

17 K. Ko and D. Moore. Completeness, approximation and density. SIAM Journal on Com-
puting, 10(4):787–796, Nov. 1981.

18 R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.
Theoretical Computer Science, 1:103–123, 1975.

19 L. Levin. Universal sorting problems. Problems of Information Transmission, 9:265–266,
1973. English translation of original in Problemy Peredaci Informacii.

20 J.H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions
if NP is not small. Theoretical Computer Science, 164:141–163, 1996.

21 A. Pavan and A. Selman. Separation of NP-completeness notions. SIAM Journal on
Computing, 31(3):906–918, 2002.

22 A. Pavan and A. Selman. Bi-immunity separates strong NP-completeness notions. Infor-
mation and Computation, 188:116–126, 2004.

23 A. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibil-
ities on NP. Mathematical Systems Theory, 13:55–65, 1979.

24 S. Tang, B. Fu, and T. Liu. Exponential time and subexponential time sets. Theoretical
Computer Science, 115(2):371–381, 1993.

25 S. Toda. On polynomial-time truth-table reducibilities of intractable sets to P-selective
sets. Mathematical Systems Theory, 24(2):69–82, 1991.

26 L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986.

27 O. Watanabe. A comparison of polynomial time completeness notions. Theoretical Com-
puter Science, 54:249–265, 1987.

Constructing Small Tree Grammars and Small
Circuits for Formulas
Danny Hucke, Markus Lohrey, and Eric Noeth

University of Siegen, Germany
{hucke,lohrey,eric.noeth}@eti.uni-siegen.de

Abstract
It is shown that every tree of size n over a fixed set of σ different ranked symbols can be
decomposed into O(n

logσ n
) = O(n log σ

logn) many hierarchically defined pieces. Formally, such a
hierarchical decomposition has the form of a straight-line linear context-free tree grammar of size
O(n

logσ n
), which can be used as a compressed representation of the input tree. This generalizes

an analogous result for strings. Previous grammar-based tree compressors were not analyzed for
the worst-case size of the computed grammar, except for the top dag of Bille et al., for which
only the weaker upper bound of O(n

log0.19 n
) for unranked and unlabelled trees has been derived.

The main result is used to show that every arithmetical formula of size n, in which only m ≤ n

different variables occur, can be transformed (in time O(n logn)) into an arithmetical circuit of
size O(n·logm

logn) and depth O(logn). This refines a classical result of Brent, according to which an
arithmetical formula of size n can be transformed into a logarithmic depth circuit of size O(n).
Missing proofs can be found in the long version [14].

1998 ACM Subject Classification E.4 Data compaction and compression

Keywords and phrases grammar-based compression, tree compression, arithmetical circuits

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.457

1 Introduction

Grammar-based compression has emerged to an active field in string compression during the
past 20 years. The idea is to represent a given string s by a small context-free grammar
that generates only s; such a grammar is also called a straight-line program, briefly SLP. For
instance, the word (ab)1024 can be represented by the SLP with the productions A0 → ab

and Ai → Ai−1Ai−1 for 1 ≤ i ≤ 10 (A10 is the start symbol). The size of this grammar is
much smaller than the size (length) of the string (ab)1024. In general, an SLP of size n (the
size of an SLP is usually defined as the total length of all right-hand sides of the productions)
can produce a string of length 2Ω(n). Hence, an SLP can be seen indeed as a succinct
representation of the generated string. The goal of grammar-based string compression is to
construct from a given input string s a small SLP that produces s. Several algorithms for
this have been proposed and analyzed. Prominent grammar-based string compressors are for
instance LZ78, RePair, and BISECTION, see [7] for more details.

To evaluate the compression performance of a grammar-based compressor C, two different
approaches can be found in the literature: A first approach is to analyze the size of the SLP
produced by C for an input string x compared to the size of a smallest SLP for x. This
leads to the approximation ratio for C, see [7] for a formal definition. It is known that unless
P = NP, there is no polynomial time grammar-based compressor that produces for every
string x an SLP of size strictly smaller than 8569/8568 · g(x), where g(x) is the size of a
smallest SLP for x [7]. The best known polynomial time grammar-based compressors have

© Danny Hucke, Markus Lohrey, and Eric Noeth;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 457–468

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.457
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

458 Constructing Small Tree Grammars and Small Circuits for Formulas

an approximation ratio of O(log(n/g)), where g is the size of a smallest SLP for the input
string, and each of them works in linear time; see [22] for references.

Another approach is to analyze the maximal size of SLPs produced by C on strings of
length n over the alphabet Σ (the size of Σ is considered to be a constant larger than one
in the further discussion). An information-theoretic argument shows that for almost all
strings of length n (up to an exponentially small part) the smallest SLP has size Ω(n

logn).
Explicit examples of strings for which the smallest SLP has size Ω(n

logn) result from de
Bruijn sequences; see Section 2. On the other hand, many grammar-based compressors
produce for every string of length n an SLP of size O(n

logn). This holds for instance for
the above mentioned LZ78, RePair, and BISECTION, and in fact for all compressors that
produce so-called irreducible SLPs [16]. This fact is used in [16] to construct universal string
compressors based on grammar-based compressors.

In this paper, we follow the latter approach, but for trees instead of strings. A tree in this
paper is always a rooted ordered tree over a ranked alphabet, i. e., every node is labelled with
a symbol and the rank of this symbol is equal to the number of children of the node. In [6],
grammar-based compression was extended from strings to trees. For this, linear context-free
tree grammars were used. Linear context-free tree grammars that produce only a single
tree are also known as tree straight-line programs (TSLPs) or straight-line context-free tree
grammars (SLCF tree grammars). TSLPs generalize dags (directed acyclic graphs), which
are widely used as a compact tree representation. Whereas dags only allow to share repeated
subtrees, TSLPs can also share repeated internal tree patterns.

Several grammar-based tree compressors were developed in [1, 6, 15, 23]. The algorithm
from [15] achieves an approximation ratio of O(logn) (for a constant set of node labels). On
the other hand, for none of the above mentioned compressors it is known, whether for any
input tree with n nodes the size of the output grammar is bounded by O(n

logn), as it is the
case for many grammar-based string compressors. Recently, it was shown that the so-called
top dag of an unranked and unlabelled tree of size n has size O(n

log0.19 n
) [3]. The top dag

can be seen as a slight variant of a TSLP for an unranked tree.
In this paper, we present a grammar-based tree compressor that transforms a given

node-labelled ranked tree of size n with σ different node labels into a TSLP of size O(n
logσ n

)
and depth O(logn), where the depth of a TSLP is the depth of the corresponding derivation
tree. In particular, for an unlabelled binary tree we get a TSLP of size O(n

logn). Our
compressor is an extension of the BISECTION algorithm [17] from strings to trees and works
in two steps (the following outline works only for binary trees, but it can be easily adapted
to trees of higher ranks): In the first step, we hierarchically decompose the tree into pieces of
roughly equal size, using a well-known lemma from [19]. But care has to be taken to bound
the ranks of the nonterminals of the resulting TSLP. As soon as we get a tree with three
holes during the decomposition (which corresponds in the TSLP to a nonterminal of rank
three) we do an intermediate step that decomposes the tree into two pieces having only two
holes each. This may involve an unbalanced decomposition. On the other hand, such an
unbalanced decomposition is only necessary in every second step. This trick to bound the
number of holes by three was used by Ruzzo [25] in his analysis of space-bounded alternation.

The TSLP produced in the first step can be identified with its derivation tree. Thanks
to the fact that all nonterminals have rank at most three, we can encode the derivation
tree by a tree with O(σ) many labels. Moreover, this derivation tree is weakly balanced in
the following sense. For each edge (u, v) in the derivation tree such that both u and v are
internal nodes, the derivation tree is balanced at u or v. These facts allow us to show that
the minimal dag of the derivation tree has size at most O(n

logσ n
). The nodes of this dag are

the nonterminals of our final TSLP. The running time of our algorithm is in O(n logn).

D. Hucke, M. Lohrey, and E. Noeth 459

Our size bound O(n
logσ n

) does not contradict the information-theoretic lower bound:
Consider for instance unlabelled ordered trees. When encoding a TSLP of size m into a bit
string, we get an additional log(m)-factor. Hence, a TSLP of size O(n

logn) is encoded by a bit
string of size O(n), which is the information-theoretic bound (the exact bound is 2n− o(n)).

It is important to note that our size bound O(n
logσ n

) only holds for ranked trees and
does not directly apply to unranked trees (that are, for instance, the standard tree model for
XML). To overcome this limitation, one can transform an unranked tree of size n into its
first-child-next-sibling encoding [18, Paragraph 2.3.2], which is a ranked tree of size n. Then,
the first-child-next-sibling encoding can be transformed into a TSLP of size O(n

logσ n
).

Our main result has an interesting application for the classical problem of transforming
formulas into small circuits. Spira [26] has shown that for every Boolean formula of size
n there exists an equivalent Boolean circuit of depth O(logn) and size O(n). Brent [4]
extended Spira’s theorem to formulas over arbitrary semirings and moreover improved the
constant in the O(logn) bound. Subsequent improvements that mainly concern constant
factors can be found in [5]. An easy corollary of our O(n

logσ n
) bound for TSLPs is that for

every (not necessarily commutative) semiring (or field), every formula of size n, in which only
m ≤ n different variables occur, can be transformed into a circuit of depth O(logn) and size
O(n·logm

logn). Hence, we refine the size bound from O(n) to O(n·logm
logn) (Theorem 9). Another

interesting point of our formula-to-circuit conversion is that most of the construction (namely
the construction of a TSLP for the input formula) is purely syntactic. The remaining part
(the transformation of the TSLP into a circuit) is straightforward.

Related work. Several papers deal with algorithmic problems on trees that are succinctly
represented by TSLPs, see [22] for a survey. Among other problems, equality checking and
the evaluation of tree automata can be done in polynomial time for TSLPs.

It is interesting to compare our O(n
logσ n

) bound with the known bounds for dag compres-
sion. A counting argument shows that for almost all unlabelled binary trees, the size of a
smallest TSLP is Ω(n

logn), and hence (by our main result) Θ(n
logn). This implies that the

average size of the minimal TSLP, where the average is taken for the uniform distribution on
unlabelled binary trees of size n, is Θ(n

logn) as well. In contrast, the size of the minimal dag
for trees of size n is Θ(n/

√
logn) on average [11] but n in the worst case.

2 Strings and Straight-Line Programs

Before we come to grammar-based tree compression, let us briefly discuss grammar-based
string compression. A straight-line program, briefly SLP, is a context-free grammar that
produces a single string. Formally, it is a tuple G = (N,Σ, P, S), where N is a finite
set of nonterminals, Σ is a finite set of terminal symbols (Σ ∩ N = ∅), S ∈ N is the
start nonterminal, and P is a finite set of productions of the form A → w for A ∈ N ,
w ∈ (N ∪Σ)∗ such that: (i) if (A→ u), (A→ v) ∈ P then u = v, and (ii) the binary relation
{(A,B) ∈ N × N | (A → w) ∈ P, B occurs in w} is acyclic. Every nonterminal A ∈ N
produces a unique string valG(A) ∈ Σ∗. The string defined by G is val(G) = valG(S). The
size of the SLP G is |G| =

∑
(A→w)∈P |w|, where |w| is the length of w.

Let σ be the size of the terminal alphabet Σ. It is well-known that for every string x ∈ Σ∗
of length n there exists an SLP G of size O(n/ logσ n) such that val(G) = x, see e. g. [16].
On the other hand, an information-theoretic argument shows that for almost all strings of
length n, the smallest SLP has size Ω(n/ logσ n). For SLPs, one can, in contrast to other
models like Boolean circuits, construct explicit strings that achieve this worst-case bound:

FSTTCS 2014

460 Constructing Small Tree Grammars and Small Circuits for Formulas

I Proposition 1. Let Σ be an alphabet of size σ. For every n ≥ σ2, one can construct in time
poly(n, σ) a string sσ,n ∈ Σ∗ of length n such that every SLP for sσ,n has size Ω(n/ logσ n).

Proof. Let r = dlogσ ne ≥ 2. The sequence sσ,n is in fact a prefix of a de Bruijn sequence
[9]. Let x1, . . . xσr−1 be a list of all words from Σr−1. Construct a directed graph by taking
these strings as vertices and drawing an a-labelled edge (a ∈ Σ) from xi to xj if xi = bw and
xj = wa for some w ∈ Σr−2 and b ∈ Σ. This graph has σr edges and every vertex of this
graph has indegree and outdegree σ. Hence, it has a Eulerian cycle, which can be viewed as
a sequence u, b1, b2, . . . , bσr , where u ∈ Σr−1 is the start vertex, and the edge traversed in
the ith step is labelled with bi ∈ Σ. Define sσ,n as the prefix of ub1b2 · · · bσr of length n. The
construction implies that sσ,n has n− r + 1 different substrings of length r. By the so-called
mk-Lemma from [7], every SLP for sσ,n has size at least n−r+1

r > n
r − 1 ≥ n

logσ(n)+1 − 1. J

In [2] a set of n binary strings of length n is constructed such that any concatenation
circuit that computes this set has size Ω(n2/ log2 n). A concatenation circuit for a set S
of strings is simply an SLP such that every string from S is derived from a nonterminal of
the SLP. Using the above construction, this lower bound can be improved to Ω(n2/ logn):
Simply take the string s2,n2 and write it as s1s2 · · · sn with |si| = n. Then any concatenation
circuit for {s1, . . . , sn} has size Ω(n2/ logn).

3 Trees and Tree Straight-Line Programs

For every i ≥ 0, we fix a countably infinite set Fi (resp., Ni) of terminals (resp., nonterminals)
of rank i. Let F =

⋃
i≥0 Fi and N =

⋃
i≥0Ni. Moreover, let X = {x1, x2, . . . } be a countably

infinite set of parameters. We assume that F , N , and X are pairwise disjoint. A labelled
tree t = (V, λ) is a finite, rooted and ordered tree t with node set V and labelling function
λ : V → F ∪ N ∪ X . We require that a node v ∈ V with λ(v) ∈ Fk ∪ Nk has exactly
k children, which are ordered from left to right. We also require that every node v with
λ(v) ∈ X is a leaf of t. The size of t is |t| = |{v ∈ V | λ(v) ∈ F ∪ N}|, i. e., we do not
count parameters. We denote trees in their usual term notation, e. g. b(a, a) denotes the
tree with a b-labelled root, which has two a-labelled children. We define T as the set of
all labelled trees. The depth of a tree t is the maximal length (number of edges) of a path
from the root to a leaf, and is denoted by depth(t). Let labels(t) = {λ(v) | v ∈ V } and
T (L) = {t | labels(t) ⊆ L} for L ⊆ F ∪N ∪ X . We write <t for the depth-first-order on V .
Formally, u <t v if u is an ancestor of v or if there exists a node w and i < j such that the
ith child of w is an ancestor of u and the jth child of w is an ancestor of v. The tree t ∈ T is
linear if there do not exist different nodes that are labelled with the same parameter. We
call t ∈ T valid if (i) labels(t) ∩ X = {x1, . . . , xn} for some n ≥ 0 and (ii) for all u, v ∈ V
with λ(u) = xi, λ(v) = xj and u <t v we have i < j (in particular t is linear). For example,
f(x1, x21, x99), f(x1, x1, x3), and f(x3, x1, x2) are invalid, whereas f(x1, x2, x3) is valid. For
a linear tree t we define valid(t) as the unique valid tree which is obtained from t by renaming
the parameters. For instance, valid(f(x21, x2, x99)) = f(x1, x2, x3). A valid tree t in which
the parameters x1, . . . , xn occur is also written as t(x1, . . . , xn) and we write rank(t) = n.

We now define a particular form of context-free tree grammars (see [8] for more details
on context-free tree grammars) with the property that exactly one tree is derived. A tree
straight-line program (TSLP) is a pair G = (S, P), where S ∈ N0 is the start nonterminal
and P is a finite set of rules of the form A(x1, . . . , xn)→ t(x1, . . . , xn) (which is also briefly
written as A→ t), where n ≥ 0, A ∈ Nn and t(x1, . . . , xn) ∈ T is valid such that:

There is an initial rule (S → t) ∈ P .

D. Hucke, M. Lohrey, and E. Noeth 461

If (A→ s) ∈ P and B ∈ labels(s) ∩N , then there is a tree t such that (B → t) ∈ P .
There do not exist rules (A→ t1), (A→ t2) ∈ P with t1 6= t2.
The binary relation {(A,B) ∈ N ×N | (A→ t) ∈ P,B ∈ labels(t)} is acyclic.

These conditions ensure that from every nonterminal A ∈ Nn exactly one valid tree valG(A) ∈
T (F ∪ {x1, . . . , xn}) is derived by using the rules as rewrite rules in the usual sense. The
tree defined by G is val(G) = valG(S). Instead of a formal definition, we give an example:

I Example 2. Let G = (S, P), where P consists of the following rules (a ∈ F0, b ∈ F2):
S → A(B), A(x1)→ C(F, x1), B → E(F), C(x1, x2)→ D(E(x1), x2), D(x1, x2)→ b(x1, x2),
E(x1)→ D(F, x1), F → a. Part of a possible derivation of val(G) = b(b(a, a), b(a, a)) from
S is: S → A(B)→ C(F,B)→ D(E(F), B)→ b(E(F), B)→ b(D(F, F), B) → b(b(F, F), B)
→ b(b(a, F), B) → b(b(a, a), B) → b(b(a, a), E(F))→ · · · → b(b(a, a), b(a, a)).

The size |G| of a TSLP G = (S, P) is the total size of all trees on the right-hand sides of P :
|G| =

∑
(A→t)∈P |t|. For instance, the TSLP from Example 2 has size 12.

A TSLP is in Chomsky normal form if for every production A(x1, . . . , xn)→ t(x1, . . . , xn)
one of the following two cases holds:

t(x1, . . . , xn) = B(x1, . . . , xi−1, C(xi, . . . , xk), xk+1, . . . , xn) for B,C ∈ N (1)
t(x1, . . . , xn) = f(x1, . . . , xn) for f ∈ Fn. (2)

If the tree t in the corresponding rule A → t is of type (1), we write index(A) = i. If
otherwise t is of type (2), we write index(A) = 0. One can transform every TSLP efficiently
into an equivalent TSLP in Chomsky normal form with a small size increase [24]. We only
consider TSLPs in Chomsky normal form in the following.

We define the rooted, ordered derivation tree DG of a TSLP G = (S, P) in Chomsky
normal form as for string grammars: The inner nodes of the derivation tree are labelled by
nonterminals and the leaves are labelled by terminal symbols. Formally, we start with the
root node of DG and assign it the label S. For every node in DG labelled by A, where the
right-hand side t of the rule for A is of type (1), we attach a left child labelled by B and a
right child labelled by C. If the right-hand side t of the rule for A is of type (2), we attach a
single child labelled by f to A. Note that these nodes are the leaves of DG and they represent
the nodes of the initial tree val(G). We denote by depth(G) the depth of the derivation tree
DG . For instance, the depth of the TSLP from Example 2 is 4.

A commonly used compact tree compression scheme is obtained by writing down repeated
subtrees only once. In that case all occurrences except for the first are replaced by a pointer
to the first one. This leads to a node-labelled directed acyclic graph (dag). It is known that
every tree has a unique minimal dag, which is called the the dag of the initial tree. An
example can be found in Figure 2, where the right graph is the dag of the tree in the middle.
The dag of a tree t can be constructed in time O(|t|) [10]. Dags correspond to TSLPs where
every nonterminal has rank 0.

4 Constructing a small TSLP for a tree

In this section we construct a TSLP G for a given tree t of size n. We then prove that
|G| ∈ O(n/ logn). For the remainder of this section we restrict our input to binary trees, i. e.,
every node has either zero or two children. Formally, we consider trees from T (F0 ∪ F2).

The following idea of splitting a tree recursively into smaller parts of roughly equal
size is well-known, see e. g. [4, 26]. For our later analysis, it is important to bound the
number of parameters in the resulting nonterminals (i. e., the number of holes in trees)

FSTTCS 2014

462 Constructing Small Tree Grammars and Small Circuits for Formulas

x1 x2 x3

v

x1 x2 x3

v

Figure 1 Splitting a tree with three parameters.

by a constant. To achieve this, we use an idea from Ruzzo’s paper [25]. For a valid
tree t = (V, λ) ∈ T (F0 ∪ F2 ∪ X) and a node v ∈ V we denote by t[v] the tree valid(s),
where s is the subtree rooted at v in t. We further write t \ v for the tree valid(r), where
r is obtained from t by replacing the subtree rooted at v by a new parameter. If for
instance t = h(g(x1, f(x2, x3)), x4) and v is the f -labelled node, then t[v] = f(x1, x2) and
t \ v = h(g(x1, x2), x3). The following lemma is well-known, see e. g. [19].

I Lemma 3. Let t be a binary tree with |t| ≥ 2. One can determine in time O(|t|) a node v
such that 1

3 |t| −
1
2 ≤ |t[v]| ≤ 2

3 |t|.

For the remainder of this section we denote by split(t) the unique node in a tree t computed
using Lemma 3. We now construct a TSLP G with val(G) = t for a given binary tree
t (we assume that |t| ≥ 2). Every nonterminal of G will be of rank at most three. We
store two sets of productions, Ptemp and Pfinal. The set Pfinal contains rules of the final
TSLP G and Ptemp ensures that the TSLP (S, Ptemp ∪ Pfinal) produces t at any point of
time. Initially, we set Ptemp := {S → t} and Pfinal := ∅. While Ptemp is non-empty we
proceed for each rule (A → s) ∈ Ptemp as follows: Let A ∈ Nr. If r ≤ 2 we determine
the node v = split(s) in s. Then we split the tree s into the trees s[v] and s \ v. Let
r1 = rank(s[v]), r2 = rank(s \ v) and let A1 ∈ Nr1 and A2 ∈ Nr2 be fresh nonterminals.
Note that r = r1 + r2 − 1. If the size of s[v] (resp., s \ v) is larger than 1 we add the rule
A1 → s[v] (resp., A2 → s \ v) to Ptemp. Otherwise we add it to Pfinal as a final rule. Let k
be the number of nodes of s that are labelled by a parameter and that are smaller (w.r.t. <s)
than v. To link the nonterminal A to the fresh nonterminals A1 and A2 we add the rule
A(x1, . . . , xr)→ A1(x1, . . . , xk, A2(xk+1, . . . , xk+r2), xk+r2+1, . . . , xr) to Pfinal.

To bound the rank of the nonterminals by three we handle rules A→ s with A ∈ N3 as
follows. Let v1, v2 and v3 be the nodes labelled by the parameters x1, x2 and x3, respectively.
Instead of choosing the node v by split(s) we set v to the lowest common ancestor of (v1, v2)
or (v2, v3), depending on which one has the greater distance from the root node (see Figure 1).
This step ensures that the two trees s[v] and s\v have rank 2, so in the next step each of them
will be split in a balanced way according to Lemma 3. As a consequence, the resulting TSLP
has depth O(log |t|) but size O(|t|). The running time of this first phase can be bounded by
O(|t| log |t|): All right-hand sides from Ptemp obtained after i splittings have total size at
most |t|, so we need time O(|t|) to split them. Moreover, i ranges from 0 to O(log |t|).

I Example 4. If we apply our construction to the tree b(b(a, a), b(a, a)) we get the TSLP
with the rules S → A(B), A(x1)→ C(D,x1), B → E(F), C(x1, x2)→ G(H(x1), x2), D → a,
E(x1)→ I(J, x1), F → a, G(x1, x2)→ b(x1, x2), H(x1)→ K(L(x1)), I(x1, x2)→ b(x1, x2),
J → a, K(x1, x2)→ b(x1, x2), and L→ a.

In the next step we want to compact the TSLP by considering the dag of the derivation
tree. For this we first build the derivation tree DG from the TSLP G as described above. The
derivation tree for the TSLP described in Example 4 is shown on the left of Figure 2.

D. Hucke, M. Lohrey, and E. Noeth 463

S

A

C

G

b

H

K

b

L

a

D

a

B

E

I

b

J

a

F

a

1

1

1

b 1

b a

a

1

1

b a

a

1

1 1

1

b 1

a

Figure 2 The derivation tree from Example 4.

We now want to identify some (but not all) nonterminals that produce the same tree. Note
that if we just omit the nonterminal labels from the derivation tree, then there might exist
isomorphic subtrees of the derivation whose root nonterminals produce different trees. This
is due to the fact that we lost for an A-labelled node of the derivation tree with a left (resp.,
right) child that is labelled with B (resp., C) the information at which argument position
of B the nonterminal C is substituted. To keep this information we replace every label A
in the derivation tree with index(A) ∈ {0, 1, 2, 3} (the index of a nonterminal of a TSLP in
Chomsky normal form was defined in Section 3). Moreover, we remove every leaf v and write
its label into its parent node. We call the resulting tree the modified derivation tree and
denote it by D∗G . Note that D∗G is a full binary tree with node labels from {1, 2, 3} ∪ labels(t).
The modified derivation tree for Example 4 is shown in the middle of Figure 2. The following
lemma shows how to compact our grammar by considering the dag of D∗G .

I Lemma 5. Let u and v be nodes of DG labelled by A resp. B. Moreover, let u′ and v′ be
the corresponding nodes in D∗G. If the subtrees D∗G [u′] and D∗G [v′] are isomorphic (as labelled
ordered trees), then valG(A) = valG(B).

By Lemma 5, if two subtrees of D∗G are isomorphic we can eliminate the nonterminal of a
root node of one subtree. Hence, we construct the dag d of D∗G . This is possible in time
O(|DG |) = O(|t|) [10]. The minimal dag of the TSLP of Example 4 is shown on the right of
Figure 2. The nodes of d are the nonterminals of the final TSLP. We obtain rules of type (1)
for each nonterminal corresponding to an inner node of d and rules of type (2) for each leaf
in d. Let n1 be the number of inner nodes of d and n2 be the number of leaves. Then the
size of our final TSLP is 2n1 + n2, which is bounded by twice the number of nodes of d. The
dag from Figure 2 gives the TSLP for the tree b(b(a, a), b(a, a)) described in Example 2.

To estimate the number of nodes in the dag of the modified derivation tree, we prove in
this section a general result about the size of dags of certain weakly balanced binary trees.
Let t be a binary tree and let 0 < β < 1 and γ ≥ 2 be constants. The leaf size of a node v is
the number of leaves of the subtree rooted at v. We say that an inner node v with children
v1 and v2 is β-balanced if the following holds: If ni is the leaf size of vi, then n1 ≥ βn2 and
n2 ≥ βn1. We say that t is (β, γ)-balanced if the following holds: For all inner nodes u and v
such that v is a child of u and the leaf size of v (and hence also u) is at least γ, we have that
u is β-balanced or v is β-balanced.

I Theorem 6. Fix constants 0 < β < 1 and γ ≥ 2. Then there is a constant α (depending
on β and γ) such that the following holds: If t is a (β, γ)-balanced binary tree with n leaves
and |labels(t)| = σ (hence, |t|, σ ≤ 2n− 1), then the size of the dag of t is bounded by α·n

logσ n
.

Proof. Let us fix a tree t = (V, λ) as in the theorem with n leaves. Moreover, let us fix
a number k ≥ γ that will be defined later. Let top(t, k) be the tree obtained from t by

FSTTCS 2014

464 Constructing Small Tree Grammars and Small Circuits for Formulas

≤k ≤k

v1 v′1

v2 v′2

v3 v′3

v4 v′4

v5

≥βk

≥βk

≥β(1+β)k

≥β(1+β)k

≥k

or

or

Figure 3 A chain within a top tree. The subtree rooted at v1 has more than k leaves.

removing all nodes with leaf size at most k. We first bound the number of different subtrees
with at most k leaves in t. Afterwards we will estimate the size of the remaining tree top(t, k).
The same strategy is used for instance in [13, 20] to derive a worst-case upper bound on the
size of binary decision diagrams.

Claim 1. The number of different subtrees of t with at most k leaves is bounded by dk with
d = 4σ2.
A subtree of t with i leaves has exactly 2i− 1 nodes, each labelled with one of σ labels. Let
Cm = 1

m+1
(2m
m

)
be the mth Catalan number. It is known that Cm ≤ 4m. If the labels are

ignored, there are Ci−1 different subtrees with i leaves. In conclusion, we get the following
bound:

∑k
i=1 Ci−1 · σ2i−1 ≤

∑k−1
i=0 4i · σ2i+1 = σ (4σ2)k−1

4σ2−1 ≤ (4σ2)k.

Claim 2. The number of nodes of top(t, k) is bounded by c · nk for a constant c depending
only on β and γ.
The tree top(t, k) has at most n/k leaves since it is obtained from t by removing all nodes
with leaf size at most k. Each node in top(t, k) has at most two children. Therefore it
remains to show that the length of unary chains in top(t, k) is bounded by a constant.

Let v1, . . . , vm be a unary chain in top(t, k) where vi is the single child node of vi+1.
Moreover, let v′i be the removed sibling of vi in t, see Figure 3. Note that each node v′i has
leaf size at most k. We claim that the leaf size of v2i+1 is larger than (1 + β)ik for all i with
2i+ 1 ≤ m. For i = 0 note that v1 has leaf size more than k since otherwise it would have
been removed in top(t, k). For the induction step, assume that the leaf size of v2i−1 is larger
than (1 + β)i−1k ≥ k ≥ γ. One of the nodes v2i and v2i+1 must be β-balanced. Hence, v′2i−1
or v′2i must have leaf size more than β(1 + β)i−1k. Hence, v2i+1 has leaf size more than
(1 + β)i−1k + β(1 + β)i−1k = (1 + β)ik.

Let ` = log1+β(β−1). If m ≥ 2`+ 3, then v2`+1 exists and has leaf size more than k/β,
which implies that the leaf size of v′2`+1 or v′2`+2 (both nodes exist) is more than k, which is
a contradiction. Hence, we must have m ≤ 2 log1+β(β−1) + 2. Figure 3 shows an illustration.

Using Claim 1 and 2 we can now prove the theorem: The number of nodes of the dag of
t is bounded by the number of different subtrees with at most k leaves (Claim 1) plus the
number of nodes of the remaining tree top(t, k) (Claim 2). Let k = max{γ, 1

2 logd n} ≥ γ

D. Hucke, M. Lohrey, and E. Noeth 465

(recall that d = 4σ2 and hence log d = 2 + 2 log σ). If k = γ, i. e., 1
2 logd n ≤ γ then we

have n
logσ n

∈ Ω(n) and the bound O(n
logσ n

) on the size of the dag is trivial. If k = 1
2 logd n

then we get with Claim 1 and 2 the following bound on the size of the dag: dk + c · nk =
d(logd n)/2 +2c · n

logd n
=
√
n+2c · n

logd n
∈ O(n

logd n
) = O(n

logσ n
). This proves the theorem. J

Obviously, one could relax the definition of (β, γ)-balanced by only requiring that if
(v1, v2, . . . , vδ) is a path down in the tree, where δ is a constant and vδ has leaf size at least
γ, then one of the nodes v1, v2, . . . , vδ must be β-balanced. Theorem 6 would still hold with
this definition (with the constant α also depending on δ).

Let us fix the TSLP G for a binary tree t ∈ T (F0 ∪ F2) that has been produced by the
first part of our algorithm. Let n = |t| and σ = |labels(t)|. Then, the modified derivation
tree D∗G is a binary tree with n leaves (and hence 2n − 1 nodes) and σ + 3 different node
labels (namely 1, 2, 3 and those appearing in t). Moreover, D∗G is (1/3, 6)-balanced: If we
have two successive nodes in D∗G , then we split at one of the two nodes according to Lemma 3.
Now, assume that we split at node v according to Lemma 3. Let v1 and v2 be the children
of v, let ni be the leaf size of vi, and let n = n1 + n2 ≥ 6 be the leaf size of v. We get
1
3n−

1
2 ≤ n1 ≤ 2

3n and 1
3n ≤ n2 ≤ 2

3n+ 1
2 (or vice versa). Since n ≥ 6 we have 1

4n ≤ n1 ≤ 2
3n

and 1
3n ≤ n2 ≤ 3

4n. We get n1 ≥ 1
4n ≥

1
3n2 and n2 ≥ 1

3n ≥
1
2n1. Hence, we get:

I Corollary 7. Let t be a binary tree with |t| = n and |labels(t)| = σ. Let d be the minimal
dag of the modified derivation tree produced from t by our algorithm. Then the number of
nodes of d is in O

(
n

logσ n
)
. Hence, the size of the TSLP produced from t is in O

(
n

logσ n
)
.

The conditions in Theorem 6 ensure that depth(t) ∈ O(log |t|). One might think that a tree
t of depth O(log |t|) has a small dag. For instance, the dag of a complete binary tree with n
nodes has size O(logn). But this intuition is wrong:

I Theorem 8. There is a family of trees tn ∈ T ({a, c}) (a ∈ F0, c ∈ F2), n ≥ 1, such that
(i) |tn| ∈ O(n), (ii) depth(t) ∈ O(logn), and (iii) the size of the dag of tn is at least n.

Proof. To simplify the presentation, we use a unary node label b ∈ F1. It can be replaced
by the pattern c(d, x), where d ∈ F0 \ {a} to obtain a binary tree. Let k = n

logn (we ignore
rounding problems with logn, which only affects multiplicative factors). Choose k different
binary trees s1, . . . , sk ∈ T ({a, c}), each having logn internal nodes. Note that this is
possible since by the formula for the Catalan numbers there are more than n different binary
trees with logn internal nodes for n large enough. Then consider the trees s′i = blogn(si).
Each of these trees has size at most 3 logn as well as depth at most 3 logn. Next, let
un(x1, . . . , xk) ∈ T ({c, x1, . . . , xk}) a binary tree (all non-parameter nodes are labelled with
c) of depth log k ≤ logn and size O(k) = O(n

logn). We finally take tn = un(s′1, . . . , s′k). A
possible choice for t16 is shown below. We obtain |tn| = O(n

logn) +O(k · logn) = O(n). The
depth of tn is bounded by 3 logn. Finally,
in the dag for tn the unary b-labelled nodes
cannot be shared. Basically, the pairwise
different trees t1, . . . , tn work as different
constants that are attached to the b-chains.
But the number of b-labelled nodes in tn is
k · logn = n. J

It is straightforward to adapt our algorithm to trees where every node has at most r
children for a fixed constant r. One only has to prove a version of Lemma 3 for r-ary trees.
The multiplicative constant in the O

(
n

logσ n
)
bound for the final TSLP will depend on r. On

FSTTCS 2014

466 Constructing Small Tree Grammars and Small Circuits for Formulas

the other hand, for unranked trees, where the number of children of a node is arbitrary, our
algorithm does not work. This problem can be solved by transforming an unranked tree into
a binary tree of the same size using the first-child next-sibling encoding [18]. For this binary
tree we get a TSLP of size O

(
n

logσ n
)
.

For traversing a compressed unranked tree t, another well-known encoding is favorable.
Let ct be a compressed representation (e. g., a TSLP) of t. The goal is to represent t in space
O(|ct|) such that one can efficiently navigate from a node to (i) its parent node, (ii) its first
child, (iii) its next sibling, and (iv) its previous sibling (if they exist). For top dags [3], it was
shown that a single navigation step can be done in time O(log |t|). Using the right binary
encoding, we can prove the same result for TSLPs: Let r be the maximal rank of a node of
the unranked tree t. We define the binary encoding bin(t) by adding for every node v of rank
s ≤ r a binary tree of depth dlog se with s many leaves, whose root is v and whose leaves are
the children of v. This introduces at most 2s many new binary nodes, which are labelled by
a new symbol. We get |bin(t)| ≤ 3|t|. In particular, we obtain a TSLP of size O

(
n

logσ n
)
for

bin(t), where n = |t| and σ = |labels(t)|. Note that a traversal step in the initial tree t (going
to the parent node, first child, next sibling, or previous sibling) can be simulated by O(log r)
many traversal steps in bin(t) (going to the parent node, left child, or right child). But for a
binary tree s, it was recently shown that a TSLP G for s can be represented in space O(|G|)
such that a single traversal step takes time O(1) [21] (this generalizes a corresponding result
for strings [12]). Hence, we can navigate in t in time O(log r) ≤ O(log |t|).

5 Arithmetical Circuits

In this section, we present our main application of Theorem 7. Let S = (S,+, ·) be a (not
necessarily commutative) semiring. Thus, (S,+) is a commutative monoid with identity
element 0, (S, ·) is a monoid with identity element 1, and · left and right distributes over +.
We use the standard notation of arithmetical formulas and circuits over S: An arithmetical
formula (resp. arithmetical circuit) is a binary tree (resp. dag) where internal nodes are
labelled with the semiring operations + and ·, and leaf nodes are labelled with variables
y1, y2, . . . or the constants 0 and 1. The depth of a circuit is the length of a longest path from
the root node to a leaf. An arithmetical circuit evaluates to a multivariate noncommutative
polynomial p(y1, . . . , yn) over S, where y1, . . . , yn are the variables occurring at the leaf
nodes. Two arithmetical circuits are equivalent if they evaluate to the same polynomial.
Brent [4] has shown that every arithmetical formula of size n over a commutative ring can
be transformed into an equivalent circuit of depth O(logn) and size O(n) (the proof easily
generalizes to semirings). Using Theorem 7 we can refine the size bound to O(n·logm

logn), where
m is the number of different variables in the formula:

I Theorem 9. An arithmetical formula F of size n with m different variables can be
transformed in time O(n logn) into an arithmetical circuit C of depth O(logn) and size
O(n·logm

logn) such that C and F are equivalent for every semiring.

Proof sketch. Fix a semiring S. We apply our TSLP construction to the formula tree F and
obtain a TSLP G for F of size O(n·logm

logn) and depth O(logn). Using the main construction
from [24] we can reduce the rank of nonterminals in G to 1. Thereby the size and depth of the
TSLP only increase by constant factors. Recall that for a nonterminal A(x), valG(A) is a tree
in which each of the parameter x occurs exactly once. By evaluating this tree in the polynomial
semiring S[y1, . . . , ym], we obtain a noncommutative polynomial pA(x) = a0 + a1xa2, where
a0, a1, a2 ∈ S[y1, . . . , ym]. We now transform G into an arithmetical circuit that contains

D. Hucke, M. Lohrey, and E. Noeth 467

for every nonterminal A of rank one gates that evaluate to the above polynomials a0, a1, a2.
E.g., for a rule of the form A(x)→ B(C(x)) one has to substitute the polynomial pC(x) into
pB(x) and carry out the obvious simplifications. For a nonterminal A of rank 0, the circuit
simply contains a gate that evaluates to the polynomial to which valG(A) evaluates. J

Theorem 9 can also be shown for fields instead of semirings. In this case, the expression
is built up using variables, the constants −1, 0, 1, and the field operations +, · and /.

6 Future work

In [27] a universal (in the information-theoretic sense) code for binary trees is developed.
This code is computed in two phases: In a first step, the minimal dag for the input tree
is constructed. Then, a particular binary encoding is applied to the dag. It is shown that
the average redundancy of the resulting code converges to zero (see [27] for definitions) for
every probability distribution on binary trees that satisfies the so-called domination property
(a somewhat technical condition) and the representation ratio negligibility property. The
latter means that the average size of the dag divided by the tree size converges to zero
for the underlying probability distribution. This is, for instance, the case for the uniform
distribution, since the average size of the dag is Θ(n/

√
logn) [11]. We are confident that

replacing the minimal dag by a TSLP of size O(n
logn) in the universal tree encoder from

[27] leads to stronger results. In particular, we hope to get a code whose maximal pointwise
redundancy converges to zero for certain probability distributions. For strings, such a result
was obtained in [16] using the fact that every string of length n has an SLP of size O(n

logn).
Another interesting question is whether the time bound of O(n logn) for the construction

of a TSLP of size O(n
logσ n

) can be improved to O(n). Related to this is the question for the
worst-case output size of the grammar-based tree compressor from [15]. It works in linear
time and produces a TSLP that is only by a factor O(logn) larger than an optimal TSLP.
From a complexity theoretic point of view, it would be also interesting to see, whether our
TSLP construction can be carried out in logarithmic space or even NC1.

In [3] the authors proved that the top dag of a given tree t of size n is at most by a factor
logn larger than the minimal dag of t. It is not clear, whether the TSLP constructed by our
algorithm has this property too. The construction of the top dag is done in a bottom-up
way, and as a consequence identical subtrees are compressed in the same way. This property
is crucial for the comparison with the minimal dag. Our algorithm works in a top-down way.
Hence, it is not guaranteed that identical subtrees are compressed in the same way.

Finally, one should also study whether all the operations from [3] for top dags can be
implemented with the same time bounds also for TSLPs. For traversing the tree, this is
possible, see the paragraph at the end of Section 4. For the other operations, like for instance
computing lowest common ancestors, this is not clear.

Acknowledgment. We have to thank Anna Gál for helpful comments.

References
1 T. Akutsu. A bisection algorithm for grammar-based compression of ordered trees. Inf.

Process. Lett., 110(18-19):815–820, 2010.
2 V. Arvind, S. Raja, and A.V. Sreejith. On lower bounds for multiplicative circuits and

linear circuits in noncommutative domains. In Proc. CSR 2014, volume 8476 of LNCS,
pages 65–76. Springer, 2014.

FSTTCS 2014

468 Constructing Small Tree Grammars and Small Circuits for Formulas

3 P. Bille, I. L. Gørtz, G.M. Landau, and O. Weimann. Tree compression with top trees. In
Proc. ICALP (1) 2013, volume 7965 of LNCS, pages 160–171. Springer, 2013.

4 R. P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM, 21(2):201–
206, 1974.

5 N.H. Bshouty, R. Cleve, and W. Eberly. Size-depth tradeoffs for algebraic formulas. SIAM
J. Comput., 24(4):682–705, 1995.

6 G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document
trees. Inf. Syst., 33(4–5):456–474, 2008.

7 M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai,
and A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576,
2005.

8 H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, and
M. Tommasi. Tree automata techniques and applications. http://tata.gforge.inria.fr.

9 N. de Bruijn. A combinatorial problem. Nederl. Akad. Wet., Proc., 49:758–764, 1946.
10 P. J. Downey, R. Sethi, and R.E. Tarjan. Variations on the common subexpression problem.

J. ACM, 27(4):758–771, 1980.
11 P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations on the common subexpression

problem. In Proc. ICALP 1990, volume 443 of LNCS, pages 220–234. Springer, 1990.
12 L. Gasieniec, R. M. Kolpakov, I. Potapov, and P. Sant. Real-time traversal in grammar-

based compressed files. In Proc. DCC 2005, page 458. IEEE Computer Society, 2005.
13 M.A. Heap and M.R. Mercer. Least upper bounds on OBDD sizes. IEEE Trans. Computers,

43(6):764–767, 1994.
14 D. Hucke, M. Lohrey, and E. Noeth. Constructing small tree grammars and small circuits

for formulas. arXiv.org, http://arxiv.org/abs/1407.4286, 2014.
15 A. Jėz and M. Lohrey. Approximation of smallest linear tree grammars. In Proc. STACS

2014, volume 25 of LIPIcs, pages 445–457. Leibniz-Zentrum für Informatik, 2014.
16 J.C. Kieffer and E.-H. Yang. Grammar-based codes: A new class of universal lossless

source codes. IEEE Trans. Inf. Theory, 46(3):737–754, 2000.
17 J.C. Kieffer, E.-H. Yang, G. J. Nelson, and P.C. Cosman. Universal lossless compression

via multilevel pattern matching. IEEE Trans.Inf. Theory, 46(4):1227–1245, 2000.
18 D.E. Knuth. The Art of Computer Programming, Vol. I: Fundamental Algorithms. Addison-

Wesley, 1968.
19 P.M. Lewis II, R. E. Stearns, and J. Hartmanis. Memory bounds for recognition of context-

free and context-sensitive languages. In Proc. 6th Annual IEEE Symp. Switching Circuit
Theory and Logic Design, pages 191–202, 1965.

20 H.-T. Liaw and C.-S. Lin. On the OBDD-representation of general boolean functions. IEEE
Trans. Computers, 41(6):661–664, 1992.

21 M. Lohrey. Traversing grammar-compressed trees with constant delay.
http://www.eti.uni-siegen.de/ti/veroeffentlichungen/14-traversal.pdf.

22 M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups Complexity Crypto-
logy, 4(2):241–299, 2012.

23 M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.
Inf. Syst., 38(8):1150–1167, 2013.

24 M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata eval-
uation for grammar-compressed trees. J. Comput. Syst. Sci., 78(5):1651–1669, 2012.

25 W.L. Ruzzo. Tree–size bounded alternation. J. Comput. Syst. Sci., 21:218–235, 1980.
26 P.M. Spira. On time-hardware complexity tradeoffs for boolean functions. In Proc. 4th

Hawaii Symp. on System Sciences, pages 525–527, 1971.
27 J. Zhang, E.-H. Yang, and J.C. Kieffer. A universal grammar-based code for lossless

compression of binary trees. IEEE Trans. Inf. Theory, 60(3):1373–1386, 2014.

One Time-traveling Bit is as Good as
Logarithmically Many∗

Ryan O’Donnell1 and A. C. Cem Say2

1 Computer Science Department, Carnegie Mellon University
Pittsburgh, USA
odonnell@cs.cmu.edu

2 Department of Computer Engineering, Boğaziçi University
İstanbul, Turkey
say@boun.edu.tr

Abstract
We consider computation in the presence of closed timelike curves (CTCs), as proposed by
Deutsch. We focus on the case in which the CTCs carry classical bits (as opposed to qubits).
Previously, Aaronson and Watrous showed that computation with polynomially many CTC bits
is equivalent in power to PSPACE. On the other hand, Say and Yakaryılmaz showed that com-
putation with just 1 classical CTC bit gives the power of “postselection”, thereby upgrading
classical randomized computation (BPP) to the complexity class BPPpath and standard quantum
computation (BQP) to the complexity class PP. It is natural to ask whether increasing the num-
ber of CTC bits from 1 to 2 (or 3, 4, etc.) leads to increased computational power. We show that
the answer is no: randomized computation with logarithmically many CTC bits (i.e., polynomi-
ally many CTC states) is equivalent to BPPpath. (Similarly, quantum computation augmented
with logarithmically many classical CTC bits is equivalent to PP.) Spoilsports with no interest
in time travel may view our results as concerning the robustness of the class BPPpath and the
computational complexity of sampling from an implicitly defined Markov chain.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

Keywords and phrases Time travel, postselection, Markov chains, randomized computation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.469

1 On time travel

We begin with a discussion of time travel. Readers not interested in this concept may
skip directly to Section 2, wherein we define the problem under consideration in a purely
complexity-theoretic manner, with no reference to time travel.

Kurt Gödel [20] was the first to point out that Einstein’s theory of general relativity
is consistent with the existence of closed timelike curves (CTCs), raising the theoretical
possibility of time travel. Any model of time travel must deal with the “Grandfather Paradox”,
wherein a trip to the past causes a chain of events that leads to a future in which that very
trip does not take place. Assume that a time-traveler changes the state of the universe at the
earlier end t0 of a time loop from state s to some different state s′. Then just what is the
state of the universe at time t0: is it s or s′? Seeing a logical inconsistency in this scenario,

∗ Ryan O’Donnell’s work performed while at the Boğaziçi University Computer Engineering Department,
supported by Marie Curie International Incoming Fellowship project number 626373.

© Ryan O’Donnell and A.C. Cem Say;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 469–480

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.469
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

470 One Time-traveling Bit is as Good as Logarithmically Many

most thinkers of earlier generations concluded that time travel to the past must be impossible.
There is, however, a way out. In an influential paper [18], Friedman et al. suggested Nature
might allow CTCs as long as they do not “change the past”, an idea that has come to be
known as the Novikov self-consistency principle. The main two rivaling models of time travel
– the “Deutschian model” (which we study in this work), and the “postselected CTC model”
from [26] – both conform to the Novikov self-consistency principle.

In the model put forward by Deutsch [16], the universe need not be in a single deterministic
state at time t0. Rather, the state of the universe should be viewed as a probability distribution
over several states (possibly even quantum states) like s and s′ in the example above. The
requirement that the past should not change is fulfilled by stipulating that Nature sets the
state x of the portion of the universe affected by the CTC at time t0 to a fixed point of the
operator f describing the evolution in the CTC (meaning x = f(x)).

To take the traditional example, suppose a deranged scientist can access a CTC to the
past century, and he sends through it a bomb that is programmed to kill his grandfather
(who is only a child back then). We consider two (classical) states of the universe at the
time of the bomb’s arrival: state 1 is “grandfather dies” and state 2 is “grandfather lives”.
We assume the universe proceeds deterministically from that point on: if the grandfather is
killed, then in the future no bomb is sent through the CTC; conversely, if the grandfather
lives, then the deranged scientist is born and does send the bomb back in time. We can
model this evolution by a 2-state Markov chain with the following transition matrix (that

happens to be deterministic):
[
0 1
1 0

]
. In Deutsch’s model, Nature sets the state of the

universe to be the stationary distribution for this chain:
[1

2
1
2

]
. That is, the bomb arrives to

kill the grandfather with probability 1
2 .

1.1 Computation with CTCs
As the reader can see, Nature performs a kind of computation here, determining the stationary
distribution of the Markov chain that has been arranged within the CTC by the deranged
scientist. It is natural to wonder if Nature’s power can be effectively harnessed by a
computational device. Indeed, Deutsch [16] pointed out that in general his model involves
Nature solving an NP-hard problem; later, Brun [15] discussed the possibility of using
CTCs to solve the Factoring problem efficiently. The first clear model of computation with
Deutschian CTCs was proposed by Bacon [11]. Both Deutsch and Bacon consider sending
qubits through a CTC. However, as pointed out by Aaronson [3], it is also very interesting
(and simpler) to consider only classical bits passing through a CTC. Indeed, as far as we
aware, there are no results showing that time-traveling quantum bits confer a computational
advantage over time-traveling classical bits. Therefore, in the rest of this section we will
sketch the Deutschian model of computation with classical CTC bits, and mention prior
work. A formal complexity-theoretic definition of the model (with no reference to time travel)
is given in Section 2.

Suppose that a computational agent A has access to a CTC which is “wide” enough to
support the transmission of w bits. Thus the physical object being sent through the CTC
can be in one of S = 2w states. (We may also more generally consider values of S that
are not powers of 2.) Let us think of A as a classical polynomial-time randomized Turing
machine (though it might be of another type; e.g., a BQP-machine). Say that A is trying to
decide if a given input x ∈ {0, 1}n belongs to language L. The algorithm A can read the w
bits in the CTC, perform some computation, and then send a new string of w bits through

R. O’Donnell and A. C. Cem Say 471

the CTC. Since the incoming and outgoing bit strings can be in one of 2w = S states, and
since A is a randomized algorithm, the operation of A on the CTC constitutes an S-state
Markov chain Mx, which depends on the input x ∈ {0, 1}n to the L-decision problem.

In the Deutschian model, we assume that once the Markov chain Mx is defined, Nature
sets the distribution of the bits in the CTC to some stationary distribution of Mx. We
emphasize that it’s merely some stationary distribution (at least one of which always exists)
– we don’t assume that Mx must have a unique stationary distribution. (Now is a good time
to mention that if A is allowed to send qubits along the CTC, then its operation constitutes
a quantum channel. It is also known [16, 39] that every quantum channel has at least one
stationary mixed state, and we assume Nature selects one.) Finally, given that the incoming
CTC bits are now presumed to be in a stationary distribution for the Markov chain Mx, the
algorithm A effectively gets one sample from this stationary distribution. Using this sample,
the algorithm A can output its decision on whether or not x ∈ L. When thinking of A as
a BPP-type machine, this decision should be correct with probability at least 2

3 .

1.2 Prior work

Bacon [11] considered the case of a 1-qubit CTC, though his construction actually works
equally well with a CTC supporting just 1 classical bit. However, Bacon’s model was
also more generous in that he allowed 1-bit CTC computations as “subroutines” within
polynomial-time algorithms; in effect, he allowed the use of poly(n) many 1-(qu)bit CTCs.
Bacon showed that in this model one can efficiently solve any NP problem. Subsequently,
Aaronson and Watrous [3, 5] investigated the model in which the CTC supports poly(n) many
bits (i.e., S = 2poly(n) many states). They showed that this model is extremely powerful: if
A’s computational power is anywhere between AC0 and PSPACE (including the most usual
choices of BPP or BQP), the result is that the model becomes equivalent in power to PSPACE.
Actually, this result was not even the main one in their paper; their main result is that
if poly(n) many CTC qubits are allowed, then the power of the model is still only that
of PSPACE.

Regarding the difference between using a 1-bit CTC polynomially many times, and using
a poly(n)-bit CTC once, Aaronson [3] remarked, “It is difficult to say which model is the
more reasonable!” One can argue that both models are rather impractical in that they
require constructing new/wider CTCs as the input length increases.1 Indeed, the main
technical question left open at the end of Aaronson and Watrous’s work was to understand
the computational power of the more realistic “narrow” CTCs; e.g., one-time-use CTCs
that can only transmit a single bit, or a bounded number of bits. In this direction, Say
and Yakaryılmaz [31] showed that augmenting standard complexity models with access to a
1-bit CTC is exactly equal in power to augmenting them with “postselection” [4] (defined
in Section 3). In particular, this shows that classical randomized computation with a 1-bit
CTC is equivalent to the complexity class BPPpath, and quantum computation with a 1-bit
CTC is equivalent to the complexity class PP. We recall in further detail the class BPPpath
in Section 3. For now, suffice it to say that it contains NP and coNP, is likely equal to PNP

|| ,
and is very likely to be much smaller than PSPACE. In particular, randomized computation
with access to a 1-bit CTC can efficiently solve the SAT problem; this is discussed below in
Example 3.

1 Bearing in mind the comment concerning practical considerations in the final paragraph of Bacon’s
work [11].

FSTTCS 2014

472 One Time-traveling Bit is as Good as Logarithmically Many

To summarize, the aforementioned results show that for classical polynomial-time random-
ized computation, adding a 1-bit CTC gives the power of BPPpath and adding a poly(n)-bit
CTC gives the power of PSPACE. What about in between (presuming of course that
BPPpath 6= PSPACE)? Sticking with the more “realistic” end of the spectrum, this is the
question motivating our work:

I Question. Are 2-bit (or 3-bit, 4-bit etc.) CTCs more powerful than 1-bit CTCs?

2 Formal computational complexity statements

In what follows we formally define the complexity model of computing with CTCs. Our
definitions are equivalent to those in [5, 31]; however we phrase them differently, in terms
of Markov chains. Informally and in brief, BPPCTC[w] is the class of languages decidable by
efficient randomized algorithms that are allowed to set up a 2w-state Markov chain and then
freely get one sample from the chain’s stationary distribution.

I Definition 1. Let M be an S-state Markov chain. A state-transition oracle M for M is
any algorithm that takes as input a state i ∈ [S] and outputs the state resulting from taking
one random step in M starting from state i. Most typically we think of S = 2w andM as
being implemented by a w-bit-input/output standard randomized circuit; i.e., one with AND,
OR, NOT, and “probability- 1

2 coin-flip” gates. We might also consider standard quantum
circuits M in which Hadamard and Toffoli gates (which are universal [33]) are also used.

I Definition 2. Let w = w(n) be a “width” parameter. Consider a deterministic polynomial-
time Turing Machine A that, on input x ∈ {0, 1}n, outputs the description of two standard
randomized circuits, Mx and Dx. The circuit Mx should have w input and output bits,
thereby defining a state-transition oracle for a Markov chain Mx on S = 2w states. The
“decision circuit” Dx should have w input bits and one output bit. We suppose computation
proceeds as follows: First, an arbitrary stationary distribution π for Mx is chosen. Next, a
sample i ∼ π is chosen from this distribution and is fed as input to Dx. Finally, Dx’s output
gate is considered to be the overall output of A’s computation. We define BPPCTC[w] to be
the class of all languages L such that there exists an A as above with the following property:
for every x (and every stationary distribution π for Mx),

Pr
i

[A outputs 1] ≥ 2
3 when x ∈ L, Pr

i
[A outputs 1] ≤ 2

3 when x /∈ L.

We may also analogously define BQPCTC[w] in caseMx and Dx are allowed to be standard
quantum circuits.

I Remark. We warn the reader that our notation CCTC[w] is different from that in [5, 31],
in that “CTC[w]” signifies a CTC carrying w classical bits. We suggest notation such
as BQPQCTC[w] for the case of CTCs carrying w qubits; however we neither define nor
consider CTC-qubits in this paper (except in a concluding open problem).
I Remark. There is nothing special about considering Markov chains with S states where S
is a power of 2. However we stick with the above notation for simplicity, and for consistency
with similar complexity class definitions such as that of PNP[w] (polynomial-time computation
with 2w − 1 parallel queries to an NP oracle).

I Example 3. Following [31], let us show that NP ⊆ BPPCTC[1]. Equivalently, we illustrate
how SAT can be solved by a “1-bit CTC algorithm” A, which can set up a 2-state Markov
chain and get a sample from its stationary distribution. On input an n-variable CNF

R. O’Donnell and A. C. Cem Say 473

formula φ, algorithm A constructs a state-transition circuitMφ for a certain 2-state Markov
chain Mφ. Think of state 0 of Mφ as meaning “no evidence that φ is satisfiable” and state 1
as meaning “evidence that φ is satisfiable”. The operation ofMφ is as follows: On input
state i,Mφ first chooses a uniformly random string y ∈ {0, 1}n and checks if it satisfies φ.
If y is satisfying,Mφ outputs state 1. If y is unsatisfying, thenMφ outputs state 0 with
probability ε := 2−n2 and outputs its input state i with probability 1− ε. It is clear that A
can write downMφ’s description in deterministic polynomial time. One can now check that
the resulting Markov chains Mφ are as follows:

if φ is satisfiable, Mφ =
[
1− 2−n 2−n

ε′ 1− ε′
]

(where ε′ := (1− 2−n)ε ≈ 2−n
2
);

if φ is unsatisfiable, Mφ =
[
1 0
ε 1− ε

]
.

Now if φ is unsatisfiable, state 0 is absorbing and it’s clear that the (unique) stationary
distribution π of Mφ is entirely concentrated on state 0. On the other hand, suppose φ is
satisfiable. Then since the 0 → 1 transition probability of Mφ is much higher (relatively
speaking) than the 1→ 0 transition probability, the long-term (i.e., stationary) distribution π
of Mφ will be almost entirely concentrated on state 1. (More precisely, π will put only
probability ε′

2−n+ε′ ≈ 2−n2+n on state 0.) We now stipulate that for every φ, algorithm A
outputs the same 1-bit decision circuit Dφ, which on input i ∼ π simply outputs i. From the
above discussion, we see that this correctly indicates whether φ ∈ SAT except with negligible
error probability.

The following theorems concerning BPPCTC[w] have previously been shown:

I Theorem 4. (Aaronson–Watrous [5].) BPPCTC[poly(n)] = PSPACE.
(Indeed PCTC[poly(n)] = BQPQCTC[poly(n)] = PSPACE.)

I Theorem 5. (Say–Yakaryılmaz [31].) BPPCTC[1] = BPPpath.
(Indeed, adding 1 CTC-bit generally confers the power of “postselection”, discussed in

Section 3. For example, it also holds that BQPCTC[1] = PostBQP = PP.)

As mentioned in Section 1.1 (and discussed further in Section 3), BPPpath is likely equal
to PNP

|| = PNP[O(logn)], and is very likely to be much smaller than PSPACE.

2.1 Our theorem
Paraphrasing the above two theorems, we have that Markov chains with 2 states (w = 1) give
the power of BPPpath, and Markov chains with exponentially many states (w = poly(n)) give
the power of PSPACE. What about in between? Are 3-state or 4-state (w = 2) Markov chains
more powerful than 2-state chains? To take an analogy from another family of complexity
classes, we remind the reader that it’s widely believed that PNP[1] (PNP[2] (PNP[3] (· · ·
The main result of this paper is that in apparent contrast, “the hierarchy collapses” for
BPPCTC[w]; polynomially many states (w = O(logn)) confer no more advantage than 2 states.

I Main theorem. BPPCTC[O(logn)] ⊆ PostBPP = BPPpath; thus

BPPCTC[1] = BPPCTC[2] = BPPCTC[3] = · · · = BPPCTC[O(logn)] = BPPpath.

FSTTCS 2014

474 One Time-traveling Bit is as Good as Logarithmically Many

It will be clear from our proof that more generally, O(logn) CTC bits still only confer
the power of postselection, and in particular BQPCTC[O(logn)] = PostBQP = PP. Our main
theorem may also be seen as further demonstration of the robustness and naturalness of the
class BPPpath.

2.2 Proof techniques
Here we briefly outline the proof of our theorem, with the actual proof being given in
Section 4. Let’s return to Example 3, which shows that SAT ∈ BPPCTC[1]. One might ask,
why doesn’t the proof show that SAT ∈ BPP? After all, the algorithm A simply constructs
a 2-state Markov chain M and then takes a sample from its stationary distribution. Why
doesn’t A simply exactly solve for M ’s stationary distribution? The trouble of course is
that even though A constructed M itself, in some sense M is still only “implicitly defined”
from A’s point of view. A cannot directly access the transition probabilities of M (doing
so requires A to solve an NP-complete problem); rather, A can only “simulate” M , by use
of the state-transition matrix M it constructed. Naively, this still might not seem like a
problem; given the ability to simulate M , couldn’t A find a (near-)stationary distribution π
for M simply by simulating it for a long time? The trouble here is that even though M

only has 2 states, it has some transition probabilities that are “exponentially small” (in n).
Furthermore, the stationary distribution of M can be extremely sensitive to the relative
exponential smallness of these transition probabilities – Example 3 illustrates exactly this.

Our proof that BPPCTC[w] ⊆ PostBPP = BPPpath for w ≤ O(logn) in some sense follows
Say and Yakaryılmaz’s proof [31] in the case of w = 1. They essentially observed that using
the power of postselection (discussed further in Section 3), a randomized algorithm can get an
exact sample from the stationary distribution of a Markov chain given only a state-transition
oracle for it. Their proof of this was greatly facilitated by the fact that 2-state Markov
chains are easy to analyze: If the 0→ 1 transition probability is p and the 1→ 0 transition

probability is q, then the stationary distribution is π =
[

q
p+q
p
p+q

]
. (This presumes we don’t

have p = q = 0, an important issue that we discuss later.) For our main theorem, we need a
similar postselecting algorithm for general poly(n)-state Markov chains. The key technical
tool for this will be the Markov Chain Tree Theorem, apparently first proved by Hill [23],
and called by Aldous [6] “the most often rediscovered result in probability theory”; see
also [36, 34, 24, 25, 7, 14, 28]. We state here the version for irreducible chains:

I Markov Chain Tree Theorem. Let M be an S-state irreducible Markov chain with transi-
tion matrix (pij)i,j∈[S]. Let GM be the underlying strongly connected digraph for M in which
(i, j) is a directed edge if and only if pij > 0. Recall that a rooted arborescence T in GM is
a collection of edges forming a rooted spanning tree in which all edges are directed toward the
root vertex. We write ‖T‖ =

∏
(i,j)∈T pij . Let Ti denote the set of all arborescences in GM

rooted at i ∈ [S], and write T = ∪iTi. Then if π denotes the (unique) stationary distribution
of M , we have the formula πi =

(∑
T∈Ti

‖T‖
) / (∑

T∈T ‖T‖
)
.

We add that this theorem plays an important role in the theory of exact sampling from
unknown Markov chains [8, 27, 29, 38]. That theory is concerned with a problem similar
to ours; however, there are two main differences: i) That theory involves only traditional
algorithms, and therefore by necessity the running time may be exponential if the chain’s
mixing time is exponential. By contrast, we are using postselecting algorithms and therefore
have the chance to run in polynomial time. ii) That theory is concerned with exact sampling

R. O’Donnell and A. C. Cem Say 475

from the stationary distribution. By contrast, we actually only need approximate sampling
from the stationary distribution.

Finally, we mention one challenge for our proof that at first seems like a technicality but
in fact proves to be quite a nuisance: There is no promise in the definition of BPPCTC[w] that
the Markov chains Mx be irreducible. This is precisely the “p = q = 0 issue” elided in the
discussion of 2-state stationary distributions above. We overcome this difficulty by proving a
somewhat technical lemma that allows us to perturb general Markov chains into irreducible
ones.

2.3 Outline of the remainder of the paper
The aforementioned technical lemma on Markov chain perturbations, which allows us to
work only with irreducible Markov chains, is omitted for reasons of space; it can be found
in the arXiv version of the paper. In Section 3 we recall BPPpath and postselection in more
detail, and we also describe the “restarting” view of postselection (from [40]) that will be
helpful in the proof of our main theorem. Finally, we give the proof of the main theorem in
Section 4, and then end with an open question.

3 BPPpath, postselection, and restarts

In this section we describe three different viewpoints on the class BPPpath.
The complexity class BPPpath was originally defined by Han, Hemaspaandra, and Thier-

auf [22, 21], in a paper also concerned with certain cryptographic problems. (It was also
independently defined much later in a paper by Aspnes, Fischer, Fischer, Kao, and Ku-
mar [9, 10] on the computational complexity of the stock market.) We quote Fortnow’s
explanation of the original definition when he named it “Complexity Class of the Week” [17]:

“Let us call a nondeterministic Turing machine M balanced if for every input x, all of its
computational paths have the same length. [We can define the] class BPP as follows: L is in
BPP if there is a balanced nondeterministic polynomial-time M such that:

If x is in L then there are at least twice as many accepting as rejecting paths of M(x).
If x is not in L then there are at least twice as many rejecting as accepting paths of
M(x).

Suppose we use the same definition without the “balanced” requirement. This gives us the
class BPPpath.”

Interestingly, the analogous class “PPpath” – for which x ∈ L iff M(x) has more accepting
than rejecting (unbalanced) paths – was defined much earlier in Simon’s 1975 thesis [35].
Simon showed that PPpath is equal to the class PP (which had recently been defined by
Gill [19]). By way of contrast, BPPpath is very unlikely to equal BPP, as it is known [22] that
BPPpath contains both MA and PNP

|| . BPPpath is also known [22] to be contained in BPPNP
|| .

Indeed, under the standard complexity assumptions used to derandomize AM, Shaltiel and
Umans [32] showed that BPPpath = PNP

|| . For a related class known as SBP, which sits
between MA and BPPpath, see [13, 12].

Another characterization of BPPpath was given by Aaronson, via the notion of adding
postselection (see [4]) to a complexity class. Suppose that you have a probabilistic algorithm
that can end in three kinds of final states: accepting, rejecting, and indecisive. We assume
the probability of ending in a decisive state is guaranteed to be nonzero. “Postselection”
refers to the (nonrealistic) ability to condition the computation on ending in a decisive
state. This yields probabilistic computation with just the usual two kinds of final states.
For example, one says that L ∈ PostBPP if there is a polynomial-time randomized Turing

FSTTCS 2014

476 One Time-traveling Bit is as Good as Logarithmically Many

machine as described above which, for each input x, gives the correct answer about x ∈ L
with probability at least 2

3 , conditioned on not ending in an indecisive state. More generally,
if C is a probabilistic or quantum complexity class, PostC is the class of languages decided
by C-machines with the ability to postselect on ending in a decisive state. In [1], Aaronson
proved that PostBQP = PP; later [2], he observed that PostBPP = BPPpath.

In the derivation of our main theorem we will prefer a third perspective on BPPpath and
postselection, introduced by Yakaryılmaz and Say [40]: that of randomized algorithms with
restarts. For some probabilistic complexity class C, suppose again that we have C-machines
that can end in one of three states: accept, reject, or indecisive. We think of the third
state as the restart state, imagining that whenever the C-machine enters such a state, it
immediately restarts its computation from the initial configuration, using no information
that it may have gathered up to that point.2 As observed in [40], the class of languages
decided by such a machine is again PostC. In particular, BPPpath is the class of languages
that are decided by bounded-error probabilistic polynomial-time Turing machines with this
ability to restart. This perspective seems most useful for algorithm design. As an illustration,
we believe it is fairly “obvious” that the following restarting-algorithm decides SAT with
very high probability, thereby showing NP ⊆ BPPpath:

“On input formula φ with n variables, randomly choose an assignment y.
If y satisfies φ, accept.

Otherwise, restart with probability 1− 2−n
2
and reject with probability 2−n

2
.”

(1)

The reader may compare (1) with the 1-bit CTC algorithm for SAT from Example 3, which
also shows NP ⊆ BPPpath in light of Say and Yakaryılmaz’s Theorem 5, BPPCTC[1] = BPPpath.
I Remark. For all three definitions of BPPpath described above, it is easy to see that the
“ 2

3 cutoff” for success could equivalently be an “α cutoff” for any fixed constant 1
2 < α < 1,

just as is the case for the class BPP.

3.1 Remarks on random coins for BPPpath algorithms
In informal descriptions of randomized algorithms, it’s typical to make statements like, “Next,
with probability 1

3 the algorithm. . . ” Such statements sweep a well-known, minor detail
under the rug; namely, the traditional BPP model (based on nondeterministic branching)
only has “access” to probability- 1

2 coin flips. Of course, this is not an essential problem, since
one can simulate a 1

3 -biased coin flip to error δ in time O(log 1
δ), and δ needn’t be smaller

than 1/poly(n). Here we remark that in the context of restarting algorithms, the problem is
not just inessential, it’s literally no problem at all:

I Lemma 6. A restarting randomized algorithm can simulate a p-biased coin flip exactly in
time O(〈p〉), and can simulate a uniformly random draw from [n] exactly in time O(logn).

Proof. We give the simplest example, leaving the general case for the reader. Suppose we
wish to draw r ∼ [3] uniformly at random. We toss two probability- 1

2 coins, forming a 2-bit
integer 0 ≤ r ≤ 3. Then if r = 0, we restart. J

On the other hand, it’s also important to remember that time Ω(〈p〉) is also required to flip
a p-biased coin; for example, in algorithm (1) the step “reject with probability 2−n2 else
restart” takes n2 time steps.

2 Note that the new algorithm obtained in this manner will in general have unbounded runtime, even if C
is a time-bounded class.

R. O’Donnell and A. C. Cem Say 477

4 Proof of the main theorem

We now give the proof of our main theorem, that BPPCTC[O(logn)] ⊆ BPPpath.

Proof. Let L ∈ BPPCTC[O(logn)]; say L is defined by algorithm A as in Definition 2. Thus
there are constants c1, c2, c3 ∈ N such that on inputs x ∈ {0, 1}n, algorithm A outputs
state-transition circuitsMx of size O(nc1) defining Markov chains Mx on S = O(nc2) states,
as well as decision circuits Dx of size O(nc3). Further, we have that for each x, if π is any
stationary distribution for Mx and i ∼ π, then

Pr[Dx(i) = 1{x∈L}] ≥ 2
3 . (2)

Our goal will be to define a polynomial-time randomized restarting algorithm R that has

Pr[R(x) = 1{x∈L}] ≥ 0.65 (3)

for all x. As discussed in Section 3, this will show that L ∈ BPPpath, as required.
On input x ∈ {0, 1}n, the first step of algorithm R involves invoking a technical lemma

to convert to an irreducible Markov chain. This lemma (whose proof is omitted from
this extended abstract) involves replacing the transition matrix K of the chain with K ′ =
(1− ε)K+ ε 1

SJ , where S is the number of states in the chain and J is the all-1’s matrix. Here
the exact value ε = 2−poly(n) will be described later. More precisely, R first simulates A to get
state-transition oracle circuitMx for Markov chain Mx. It then constructs a state-transition
oracle circuitM′x for the irreducible perturbed chain M ′x, using the description ofMx in a
black-box fashion. Let π′ denote the stationary distribution for M ′x and let K denote the
transition matrix forMx. By definition, K is square matrix of dimension S ≤ O(nc2) in which
each entry is an integer multiple of 2−size(Mx) = 2−O(nc1). It follows that 〈K〉 ≤ O(nc4) for
some constant c4 ∈ N. We will now specify that ε = 2−bnb for a sufficiently large constant b
depending on c1, c2, and a constant from the aforementioned technical lemma. Then that
lemma implies

‖π − π′‖1 ≤ .01 (4)

for some stationary distribution π of Mx. It is easy to see that with this choice of ε,
algorithm R can constructM′x fromMx in poly(n) time. (Here we use the fact that ε is
“only” exponentially small; cf. the last paragraph in Section 3.1.)

The remainder of the proof is devoted to showing thatR can obtain an exact sample r ∼ π′.
Having shown this, we only need to let R simulate A to get Dx, and then output Dx(r).
Then combining (4) with (2) shows that (3) holds for all x, as required.

We now exhibit the subroutine which the restarting-algorithm R will use to obtain an
exact sample r ∼ π′ (the unique stationary distribution of irreducible chain M ′x):

Choose a uniformly random labeled, rooted, undirected tree T on vertex set [S]. This can
be done exactly (i.e., with each T occurring with probability 1/SS−1) in poly(S) = poly(n)
time, by choosing a uniformly random Prüfer Code [30, 37] in [S]S−2, converting it to a
tree T , and then choosing a random vertex r of T to be the root.3
Make T into a rooted arborescence ~T by directing all edges toward the root r.
For each directed edge (i, j) ∈ ~T , simulateM′x(i) and “check” if the output is j. If the
check fails, restart.
If all S − 1 checks pass, halt with output r.

3 Here we may use restarting to get exactly random samples from [S]; see Lemma 6.

FSTTCS 2014

478 One Time-traveling Bit is as Good as Logarithmically Many

The fact that this subroutine restarts with probability strictly less than 1 follows from the
fact that M ′x is irreducible; indeed, its underlying digraph G = GM ′x is the complete digraph.
The probability Pr that this subroutine outputs r = r without encountering any restarts is
precisely

Pr =
∑

r-rooted arborescences T

1
SS−1

∏
(i,j)∈T

pij ,

where pij denotes the transition probability from i to j in the Markov chain M ′x. It follows
that the probability of R finally outputting r (when restarts are taken into account) is

Pr∑
r∈[S] Pr

=
∑
r-rooted arborescences T

∏
(i,j)∈T pij∑

arborescences T
∏

(i,j)∈T pij
.

By the Markov Chain Tree Theorem, this is indeed precisely the probability π′(r) of r under
the stationary distribution of M ′x. J

We conclude this section by observing that besides the power of restarting, algorithm R
only really needed the power to simulate the state-transition circuitsMx and the decision
circuits Dx. For example, if these were standard quantum circuits, it would suffice for R to
be a quantum algorithm. Thus we may also conclude BQPCTC[O(logn)] ⊆ PostBQP = PP.

We also add that Say and Yakaryılmaz [31] studied various models of finite automata
augmented with 1-bit CTCs; they showed that this augmentation causes both probabilistic
and quantum finite automata to become as powerful as their respective postselected versions.
The technique used in the proof of our main result can be simplified easily to show that no
additional gain arises when these machines are augmented with larger constant-width CTCs.

5 Conclusion

A very interesting open question left by our work is one also raised at the end of [31]:

What is the computational power conferred by 1 time-traveling qubit?

Answering this question precisely would seem to require a good understanding of stationary
density matrices for 1-qubit quantum channels. As mentioned in Section 1.1, we are not
aware of any work showing that time-traveling qubits confer more computational power than
time-traveling bits.

Acknowledgment. The first author would like to thank the Boğaziçi University Computer
Engineering Department for their hospitality.

References
1 Scott Aaronson. Is quantum mechanics an island in Theoryspace? Technical Report

quant-ph/0401062, arXiv, 2004.
2 Scott Aaronson. Limits on Efficient Computation in the Physical World. PhD thesis,

University of California, Berkeley, 2004.
3 Scott Aaronson. NP-complete problems and physical reality. ACM SIGACT News,

36(1):30–52, 2005.
4 Scott Aaronson. Quantum computing, postselection, and probabilistic polynomial-time.

Proceedings of the Royal Society A, 461(2063):3473–3482, 2005.

R. O’Donnell and A. C. Cem Say 479

5 Scott Aaronson and John Watrous. Closed timelike curves make quantum and classical
computing equivalent. Proceedings of the Royal Society A, 465(2102):631–647, 2009.

6 David Aldous. Reversible Markov chains and random walks on graphs, 2002. http://www.
stat.berkeley.edu/~aldous/RWG/book.pdf.

7 Venkat Anantharam and Pantelis Tsoucas. A proof of the Markov chain tree theorem.
Statistics & Probability Letters, 8(2):189–192, 1989.

8 Søren Asmussen, Peter Glynn, and Hermann Thorisson. Stationarity detection in the initial
transient problem. ACM Transactions on Modeling and Computer Simulation, 2(2):130–
157, 1992.

9 James Aspnes, David Fischer, Michael Fischer, Ming-Yang Kao, and Alok Kumar. Towards
understanding the predictability of stock markets from the perspective of computational
complexity. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 745–754, 2001.

10 James Aspnes, David Fischer, Michael Fischer, Ming-Yang Kao, and Alok Kumar. Towards
understanding the predictability of stock markets from the perspective of computational
complexity. In New Directions in Statistical Physics, pages 129–151. Springer Berlin Hei-
delberg, 2004.

11 Dave Bacon. Quantum computational complexity in the presence of closed timelike curves.
Physical Review A, 70(3):032309, 2004.

12 Elmar Böhler, Christian Glaßer, and Daniel Meister. Small bounded-error computations
and completeness. Technical Report 69, Electronic Colloquium on Computational Com-
plexity, 2003.

13 Elmar Böhler, Christian Glaßer, and Daniel Meister. Error-bounded probabilistic compu-
tations between MA and AM. Journal of Computer and System Sciences, 72(6):1043–1076,
2006.

14 Andrei Broder. Generating random spanning trees. In Proceedings of the 30th Annual
IEEE Symposium on Foundations of Computer Science, pages 442–447, 1989.

15 Todd Brun. Computers with closed timelike curves can solve hard problems efficiently.
Foundations of Physics Letters, 16(3):245–253, 2003.

16 David Deutsch. Quantum mechanics near closed timelike lines. Physical Review D,
44(10):3197–3217, 1991.

17 Lance Fortnow. Complexity class of the week: BPPpath, February 2003. http://blog.
computationalcomplexity.org/2003/02/complexity-class-of-week-bpppath.html.

18 John Friedman, Michael Morris, Igor Novikov, Fernando Echeverria, Gunnar Klinkhammer,
Kip Thorne, and Ulvi Yurtsever. Cauchy problem in spacetimes with closed timelike curves.
Physical Review D, 42(6):1915–1930, 1990.

19 John Gill. Computational complexity of probabilistic Turing machines. In Proceedings of
the 6th Annual ACM Symposium on Theory of Computing, pages 91–95, 1974.

20 Kurt Gödel. An example of a new type of cosmological solutions of Einstein’s field equations
of gravitation. Reviews of Modern Physics, 21(3):447–450, 1949.

21 Yenjo Han, Lane Hemaspaandra, and Thomas Thierauf. Threshold computation and cryp-
tographic security. SIAM Journal on Computing, 26(1):59–78, 1997.

22 Yenjo Hem, Lane Hemaspaandra, and Thomas Thierauf. Threshold computation and cryp-
tographic security. In Proceedings of the 4th Annual International Symposium on Algorithms
and Computation, pages 230–239, 1993.

23 Terrell Hill. Studies in irreversible thermodynamics IV: diagrammatic representation of
steady state fluxes for unimolecular systems. Journal of Theoretical Biology, 10(3):442–
459, 1966.

24 Hans-Helmut Kohler and Eva Vollmerhaus. The frequency of cyclic processes in biological
multistate systems. Journal of Mathematical Biology, 9(3):275–290, 1980.

FSTTCS 2014

http://www.stat.berkeley.edu/~aldous/RWG/book.pdf
http://www.stat.berkeley.edu/~aldous/RWG/book.pdf
http://blog.computationalcomplexity.org/2003/02/complexity-class-of-week-bpppath.html
http://blog.computationalcomplexity.org/2003/02/complexity-class-of-week-bpppath.html

480 One Time-traveling Bit is as Good as Logarithmically Many

25 F. Thomson Leighton and Ronald Rivest. The Markov Chain Tree Theorem. Technical
Report TM-249, Massachusetts Institute of Technology, 1983.

26 Seth Lloyd, Lorenzo Maccone, Raul Garcia-Patron, Vittorio Giovannetti, and Yutaka
Shikano. The quantum mechanics of time travel through post-selected teleportation. Tech-
nical Report 1007.2615, arXiv, 2010.

27 László Lovász and Peter Winkler. Exact mixing in an unknown Markov chain. Electronic
Journal of Combinatorics, 2:Research Paper 15, 1995.

28 Piotr Pokarowski. Directed forests with application to algorithms related to Markov chains.
Applicationes Mathematicae, 26(4):395–414, 1999.

29 James Propp and David Wilson. How to get a perfectly random sample from a generic
markov chain and generate a random spanning tree of a directed graph. Journal of Algo-
rithms, 27(2):170–217, 1998.

30 Heinz Prüfer. Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematik und
Physik, 27:742–744, 1918.

31 A. C. Cem Say and Abuzer Yakaryılmaz. Computation with multiple CTCs of fixed length
and width. Natural Computing, 11(4):579–594, 2012.

32 Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and
sampling. Computational Complexity, 15(4):298–341, 2006.

33 Yaoyun Shi. Both Toffoli and controlled-NOT need little help to do universal quantum
computing. Quantum Information & Computation, 3(1):84–92, 2003.

34 Bruno Shubert. A flow-graph formula for the stationary distribution of a Markov chain.
Institute of Electrical and Electronics Engineers. Transactions on Systems, Man, and Cy-
bernetics, SMC-5(5):565–566, 1975.

35 Janos Simon. On some central problems in computational complexity. PhD thesis, Cornell
University, 1975. TR 75-224.

36 Alexander Wentzell and Mark Freidlin. On small random perturbations of dynamical sys-
tems. Russian Mathematical Surveys, 25(1):1–55, 1970.

37 Wikipedia. Prüfer sequence, July 2014. http://en.wikipedia.org/wiki/Prufer_
sequence.

38 David Wilson. Generating random spanning trees more quickly than the cover time. In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pages 296–303,
1996.

39 Michael Wolf. Quantum channels & operations: guided tour, 2012. http://www-m5.ma.
tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf.

40 Abuzer Yakaryılmaz and A. C. Cem Say. Proving the power of postselection. Fundamenta
Informaticae, 123(1):107–134, 2013.

http://en.wikipedia.org/wiki/Prufer_sequence
http://en.wikipedia.org/wiki/Prufer_sequence
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

New Bounds for the Garden-Hose Model∗

Hartmut Klauck1 and Supartha Podder2

1 CQT and Nanyang Technological University, Singapore
hklauck@gmail.com

2 CQT Singapore
supartha@gmail.com

Abstract
We show new results about the garden-hose model. Our main results include improved lower
bounds based on non-deterministic communication complexity (leading to the previously un-
known Θ(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(n · log3 n)
upper bound for the Distributed Majority function (previously conjectured to have quadratic
complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the
garden-hose model, which implies that lower bounds on the garden-hose complexity GH (f) of
the order Ω(n2+ε) will be hard to obtain for explicit functions. Furthermore we study a time-
bounded variant of the model, in which even modest savings in time can lead to exponential
lower bounds on the size of garden-hose protocols.

1998 ACM Subject Classification F.1.1 Models of Computation, F.2 Analysis of Algorithms
and Problem Complexity

Keywords and phrases Space Complexity, Communication Complexity, Garden-Hose Model

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.481

1 Introduction

1.1 Background: The Model
Recently, Buhrman et al. [4] proposed a new measure of complexity for finite Boolean
functions, called garden-hose complexity. This measure can be viewed as a type of distributed
space complexity, and while its motivation is mainly in applications to position based quantum
cryptography, the playful definition of the model is quite appealing in itself. Garden-hose
complexity can be viewed as a natural measure of space, when two players with private
inputs compute a Boolean function cooperatively. Space-bounded communication complexity
has been investigated before [2, 7, 9] (usually for problems with many outputs), and recently
Brody et al. [3] have studied a related model of space bounded communication complexity
for Boolean functions (see also [17]). In this context the garden-hose model can be viewed as
a memoryless model of communication that is also reversible.

To describe the garden-hose model let us consider two neighbors, Alice and Bob. They
own adjacent gardens which happen to have s empty water pipes crossing their common
boundary. These pipes are the only means of communication available to the two. Their
goal is to compute a Boolean function on a pair of private inputs, using water and the pipes
across their gardens as a means of communication.1

∗ This work is funded by the Singapore Ministry of Education (partly through the Academic Research
Fund Tier 3 MOE2012-T3-1-009) and by the Singapore National Research Foundation.

1 It should be mentioned that even though Alice and Bob choose to not communicate in any other way,
their intentions are not hostile and neither will deviate from a previously agreed upon protocol.

© Hartmut Klauck and Supartha Podder;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 481–492

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.481
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

482 New Bounds for the Garden-Hose Model

A garden-hose protocol works as follows: There are s shared pipes. Alice takes some
pieces of hose and connects pairs of the open ends of the s pipes. She may keep some of the
ends open. Bob acts in the same way for his end of the pipes. The connections Alice and
Bob place depend on their local inputs x, y, and we stress that every end of a pipe is only
connected to at most one other end of a pipe (meaning no Y-shaped pieces of hose may be
used to split or combine the flow of water). Finally, Alice connects a water tap to one of
those open ends on her side and starts the water. Based on the connections of Alice and
Bob, water flows back and forth through the pipes and finally ends up spilling on one side.

If the water spills on Alice’s side we define the output to be 0. Otherwise, the water spills
on Bob’s side and the output value is 1. It is easy to see that due to the way the connections
are made the water must eventually spill on one of the two sides, since cycles are not possible.

Note that the pipes can be viewed as a communication channel that can transmit log s
bits, and that the garden-hose protocol is memoryless, i.e., regardless of the previous history,
water from pipe i always flows to pipe j if those two pipes are connected. Furthermore
computation is reversible, i.e., one can follow the path taken by the water backwards (e.g.
by sucking the water back).

Buhrman et al. [4] have shown that it is possible to compute every function f : {0, 1}n ×
{0, 1}n → {0, 1} by playing a garden-hose game. A garden-hose protocol consists of the
scheme by which Alice chooses her connections depending on her private input x ∈ {0, 1}n
and how Bob chooses his connections depending on his private input y ∈ {0, 1}n. Alice also
chooses the pipe that is connected to the tap. The protocol computes a function f , if for all
inputs with f(x, y) = 0 the water spills on Alice’s side, and for all inputs with f(x, y) = 1
the water spills on Bob’s side.

The size of a garden-hose protocol is the number s of pipes used. The garden-hose
complexity GH (f) of a function f(x, y) is the minimum number of pipes needed in any
garden-hose game that computes the value of f for all x and y such that f(x, y) is defined.

The garden-hose model is originally motivated by an application to quantum position-
verification schemes [4]. In this setting the position of a prover is verified via communications
between the prover and several verifiers. An attack on such a scheme is performed by several
provers, none of which are in the claimed position. [4] proposes a protocol for position-
verification that depends on a function f : {0, 1}n × {0, 1}n → {0, 1}, and a certain attack
on this scheme requires the attackers to share as many entangled qubits as the garden-hose
complexity of f . Hence all f with low garden-hose complexity are not suitable for this task,
and it becomes desirable to find explicit functions with large garden-hose complexity.

Buhrman et al. [4] prove a number of results about the garden-hose model:
Deterministic one-way communication complexity can be used to show lower bounds of
up to Ω(n/ logn) for many functions.
For the Equality problem they refer to a bound of GH (Equality) = Θ(n) shown by Pietrzak
(the proof implicitly uses the fooling set technique from communication complexity [10]
[personal communication]).
They argue that super-polynomial lower bounds for the garden-hose complexity of a
function f imply that the function cannot be computed in Logspace, making such bounds
hard to prove for ‘explicit’ functions.
They define randomized and quantum variants of the model and show that randomness
can be removed at the expense of multiplying size by a factor of O(n) (for quantum larger
gaps are known).
Via a counting argument it is easy to see that most Boolean functions need size GH (f) =
2Ω(n).

H. Klauck and S. Podder 483

Very recently Chiu et al. [5] have improved the upper bound for the Equality function to
1.359n from the previously known 2n bound [4].

1.2 Our Results

We study garden-hose complexity and establish several new connections with well studied
models like communication complexity, permutation branching programs, and formula size.

We start by showing that non-deterministic communication complexity gives lower bounds
on the garden-hose complexity of any function f . This improves the lower bounds of Ω(n

logn)
for several important functions like Inner Product, Disjointness to Ω(n).

We observe that any 2-way deterministic communication protocol can be converted to
a garden-hose protocol so that the complexity GH (f) is upper bounded by the size of the
protocol tree of the communication protocol.

We then turn to comparing the model to another nonuniform notion of space complexity,
namely branching programs. We show how to convert any permutation branching program to
a garden-hose protocol with only a constant factor loss in size.

The most important application of this simulation is that it allows us to find a garden-hose
protocol for the distributed Majority function, DMAJ (x, y) = 1 iff

∑n
i=1(xi · yi) ≥ n

2 , that
has size O(n · log3 n), disproving the conjecture in [4] that this function has complexity Ω(n2).

Using the garden-hose protocols for Majority, Parity, AND, OR, we show upper bounds
on the composition of functions with these.

We then show how to convert any Boolean formula with AND, OR, XOR gates to a
garden-hose protocol with a small loss in size. In particular, any formula consisting of
arbitrary fan-in 2 gates only can be simulated by a garden-hose protocol with a constant
factor loss in size. This result strengthens the previous observation that explicit super-
polynomial lower bounds for GH (f) will be hard to show: even bounds of Ω(n2+ε) would
improve on the long-standing best lower bounds on formula size due to Nečiporuk from 1966
[12]. We can also simulate formulae including a limited number of Majority gates of arbitrary
fan-in, so one might be worried that even super-linear lower bounds could be difficult to
prove. We argue, however, that for formulae using arbitrary symmetric gates we can still get
near-quadratic lower bounds using a Nečiporuk-type method. Nevertheless we have to leave
super-linear lower bounds on the garden-hose complexity as an open problem.

Next we define a notion of time in garden-hose protocols and prove that for any function
f , if we restrict the number of times water can flow through pipes to some value k, we have
GH k(f) = Ω(2Dk(f)/k), where GH k denotes the time-bounded garden-hose complexity, and
Dk the k-round deterministic communication complexity. This result leads to strong lower
bounds for the time bounded complexity of e.g. Equality, and to a time-hierarchy based on
the pointer jumping problem.

Finally, we further investigate the power of randomness in the garden-hose model by
considering private coin randomness ([4] consider only public coin randomness).

1.3 Organization

Most proofs are contained only in the full version of the paper, which is available on the
arXiv.

FSTTCS 2014

484 New Bounds for the Garden-Hose Model

2 Preliminaries

2.1 Definition of the Model
We now describe the garden-hose model in graph terminology. In a garden-hose protocol
with s pipes there is a set V of s vertices plus one extra vertex, the tap t.

Given their inputs x, y Alice and Bob want to compute f(x, y). Depending on x Alice
connects some of the vertices in V ∪{t} in pairs by adding edges EA(x) that form a matching
among the vertices in V ∪ {t}. Similarly Bob connects some of the vertices in V in pairs by
adding edges EB(y) that form a matching in V .

Notice that after they have added the additional edges, a path starting from vertex t is
formed in the graph G = (V ∪ {t}, EA(x) ∪ EB(y)). Since no vertex has degree larger than
2, this path is unique and ends at some vertex. We define the output of the game to be the
parity of the length of the path starting at t. For instance, if the tap is not connected the
path has length 0, and the output is 0. If the tap is connected to another vertex, and that
vertex is the end of the path, then the path has length 1 and the output is 1 etc.

A garden-hose protocol for f : X × Y → {0, 1} is a mapping from x ∈ X to matchings
among V ∪ {t} together with a mapping from y ∈ Y to matchings among V . The protocol
computes f(x, y) if for all x, y the path has even length iff f(x, y) = 0. The garden-hose
complexity of f is the smallest s such that a garden-hose protocol of size s exists that
computes f .

We note that one can form a matrix Gs that has rows labeled by all of Alice’s matchings,
and columns labeled by Bob’s matchings, and contains the parity of the path lengths. A
function f has garden-hose complexity s iff its communication matrix is a sub-matrix of Gs.
Gs is called the garden-hose matrix for size s.

2.2 Communication Complexity, Formulae, Branching Programs
I Definition 1. Let f : {0, 1}n × {0, 1}n → {0, 1}. In a communication complexity protocol
two players Alice and Bob receive inputs x and y from {0, 1}n. In the protocol players
exchange messages in order to compute f(x, y). Such a protocol is represented by a protocol
tree, in which vertices, alternating by layer, belong to Alice or to Bob, edges are labeled with
messages, and leaves either accept or reject. See [10] for more details. The communication
matrix is the matrix containing f(x, y) in row x and column y.

We say a protocol P correctly computes the function f(x, y) if for all x, y the output of
the protocol P (x, y) is equal to f(x, y). The communication complexity of a protocol is the
maximum number of bits exchanged for all x, y.

The deterministic communication complexity D(f) of a function f is the complexity of
an optimal protocol that computes f .

I Definition 2. The non-deterministic communication complexity N(f) of a Boolean func-
tion f is the length of the communication in an optimal two-player protocol in which
Alice and Bob can make non-deterministic guesses, and there are three possible outputs
accept, reject, undecided. For each x, y with f(x, y) = 1 there is a guess that will make
the players accept but there is no guess that will make the players reject, and vice versa for
inputs with f(x, y) = 0.

Note that the above is the two-sided version of non-deterministic communication com-
plexity. It is well known [10] that N(f) ≤ D(f) ≤ O(N2(f)), and that these inequalities are
tight.

H. Klauck and S. Podder 485

I Definition 3. In a public coin randomized protocol for f the players have access to a public
source of random bits. For all inputs x, y it is required that the protocol gives the correct
output with probability 1− ε for some ε < 1/2. The public coin randomized communication
complexity of f , Rpubε (f) is the complexity of the optimal public coin randomized protocol.
Private coin protocols are defined analogously (players now have access only to private
random bits), and their complexity is denoted by Rε(f).

I Definition 4. The deterministic communication complexity of protocols with at most k
messages exchanged, starting with Alice, is denoted by Dk(f).

I Definition 5. In a simultaneous message passing protocol, both Alice and Bob send
messages mA,mB to a referee. The referee, based on mA,mB, computes the output. The
simultaneous communication complexity of a function f , R||(f), is the cost of the best
simultaneous protocol that computes the function f using private randomness and error 1/3.

Next we define Boolean formulae.

I Definition 6. A Boolean formula is a Boolean circuit whose every node has fan-out 1
(except the output gate). A Boolean formula of depth d is then a tree of depth d. The nodes
are labeled by gate functions from a family of allowed gate functions, e.g. the class of the
16 possible functions of the form f : {0, 1} × {0, 1} → {0, 1} in case the fan-in is restricted
to 2. Another interesting class of gate functions is the class of all symmetric functions (of
arbitrary fan-in). The formula size of a function f (relative to a class of gate functions) is
the smallest number of leaves in a formula computing f .

Finally, we define branching programs. Our definition of permutation branching programs
is extended in a slightly non-standard way.

I Definition 7. A branching program is a directed acyclic graph with one source node and
two sink nodes (labeled with accept and reject). The source node has in-degree 0. The
sink nodes have out-degree 0. All non-sink nodes are labeled by variables xi ∈ {x1, · · · , xn}
and have out-degree 2. The computation on an input x starts from the source node and
depending on the value of xi on a node either moves along the left outgoing edge or the right
outgoing edge of that node. An input x ∈ {0, 1}n is accepted iff the path defined by x in the
branching program leads to the sink node labeled by accept. The length of the branching
program is the maximum length of any path, and the size is the number of nodes.

A layered branching program of length l is a branching program where all non-sink nodes
(except the source) are partitioned into l layers. All the nodes in the same layer query the
same variable xi, and all outgoing edges of the nodes in a layer go to the nodes in the next
layer or directly to a sink. The width of a layered branching program is defined to be the
maximum number of nodes in any layer of the program. We consider the starting node to be
in layer 0 and the sink nodes to be in layer l.

A permutation branching program is a layered branching program, where each layer has the
same number k of nodes, and if xi is queried in layer i, then the edges labeled with 0 between
layers i and i+ 1 form an injective mapping from {1, . . . , k} to {1, . . . , k}∪{accept, reject}
(and so do the the edges labeled with 0). Thus, for permutation branching programs if we fix
the value of xi, each node on level i+ 1 has in-degree at most 1.

We call a permutation branching program strict if there are no edges to accept/reject
from internal layers. This is the original definition of permutation branching programs.
Programs that are not strict are also referred to as loose for emphasis.

We denote by PBP(f) the minimal size of a permutation branching program that
computes f .

FSTTCS 2014

486 New Bounds for the Garden-Hose Model

We note that simple functions like AND, OR can easily be computed by linear size
loose permutation branching programs of width 2, something that is not possible for strict
permutation branching programs [1].

3 Garden-Hose Protocols and Communication Complexity

3.1 Lower Bound via Non-deterministic Communication
In this section we show that non-deterministic communication complexity can be used to lower
bound GH (f). This bound is often better than the bound GH (f) ≥ Ω(D1(f)/ log(D1(f)))
shown in [4], which cannot be larger than n/ logn.

I Theorem 8. GH (f) ≥ N(f)− 1.

The main idea is that a nondeterministic protocol that simulates the garden-hose game
can choose the set of pipes that are used on a path used on inputs x, y instead of the path
itself, reducing the complexity of the protocol. The set that is guessed may be a superset
of the actually used pipes, introducing ambiguity. Nevertheless we can make sure that the
additionally guessed pipes form cycles and are thus irrelevant.

As an application consider the function IP(x, y) =
∑n
i=1(xi · yi) mod 2. It is well known

that N(IP) ≥ n + 1 [10], hence we get that GH (IP) ≥ n. The same bound holds for
Disjointness. These bounds improve on the previous Ω(n/ logn) bounds for these functions
[4]. Furthermore note that the fooling set technique gives only bounds of size log2 n for the
complexity of IP (see [10]), so the technique previously used to get a linear lower bound for
Equality fails for IP.

3.2 GH (f) At Most The Size of a Protocol Tree for f

Buhrman et al. [4] show that any one way communication complexity protocol with com-
plexity D1(f) can be converted to a garden-hose protocol with 2D1(f) + 1 pipes. One-way
communication complexity can be much larger than two-way communication [16].

I Theorem 9. For any function f , the garden-hose complexity GH (f) is upper bounded by
the number of edges in a protocol tree for f .

The construction is better than the previous one in [4] for problems for which one-way
communication is far from the many-round communication complexity.

4 Relating Permutation Branching Programs and the Garden-Hose
Model

I Definition 10. In a garden hose protocol a spilling-pipe on a player’s side is a pipe such
that water spills out of that pipe on the player’s side during the computation for some input
x, y.

We say a protocol has multiple spilling-pipes if there is more than one spilling-pipe on
Alice’s side or on Bob’s side.

We now show a technical lemma that helps us compose garden-hose protocols without
blowing up the size too much.

I Lemma 11. A garden-hose protocol P for f with multiple spilling pipes can be converted
to another garden-hose protocol P ′ for f that has only one spilling pipe on Alice’s side and
one spilling pipe on Bob’s side. The size of P ′ is at most 3 times the size of P plus 1.

H. Klauck and S. Podder 487

Next we are going to show that it is possible to convert a (loose) permutation branching
program into a garden-hose protocol with only a constant factor increase in size. We are
stating a more general fact, namely that the inputs to the branching program we simulate
can be functions (with small garden-hose complexity) instead of just variables. This allows
us to use composition.

I Lemma 12. GH (g(f1, f2, . . . , fk)) = O(s · max(Ci)) + O(1), where PBP(g) = s and
GH (fi) = Ci and fi : {0, 1}n × {0, 1}n → {0, 1}. The fi do not necessarily have the same
inputs x, y.

A first corollary is the following fact already shown in [4]. Nonuniform Logspace is equal
to the class of all languages recognizable by polynomial size families of branching programs.
Since reversible Logspace equals deterministic Logspace [11], and a reversible Logspace
machine (on a fixed input length) can be transformed into a polynomial size permutation
branching program, we get the following.

I Corollary 13. Logspace ⊆ GH (poly(n)). This holds for any partition of the variables
among Alice and Bob.

5 The Distributed Majority Function

In this section we investigate the complexity of the Distributed Majority function.

I Definition 14. Distributed Majority: DMAJ (x, y) = 1 iff
∑n
i (xi · yi) ≥ n

2 , where x, y ∈
{0, 1}n.

Buhrman et al. [4] have conjectured that the complexity of this function is quadratic,
which is what is suggested by the naïve garden-hose protocol for the problem. The naïve
protocol implicitly keeps one counter for i and one for the sum, leading to quadratic size.
Here we describe a construction of a permutation branching program of size O(n · log3 n) for
Majority, which can then be used to construct a garden-hose protocol for the Distributed
Majority function. Note that the Majority function itself can be computed in the garden-hose
model using O(n) pipes (for any way to distribute inputs to Alice and Bob), since Alice
can just communicate

∑
i xi to Bob. The advantage of using a permutation branching

program to compute Majority is that by Lemma 12 we can then find a garden-hose protocol
for the composition of Majority and the Boolean AND, which is the Distributed Majority
function. Our construction of a permutation branching program adapts a branching program
construction by Sinha and Thathachar [19].

I Lemma 15. PBP(MAJ) = O(n · log3 n)).

We can now state our result about the composition of functions f1, . . . , fk with small
garden-hose complexity via a Majority function.

I Lemma 16. For (f1, f2, . . . , fk), where each function fi has garden-hose complexity GH (fi),
GH (MAJ (f1, . . . , fk)) = O(

∑
GH (fi)) · log3 k).

The lemma immediately follows from combining Lemma 15 with Lemma 12. Considering
fi = xi ∧ yi we get

I Corollary 17. The garden-hose complexity of distributed Majority is O(n log3 n).

FSTTCS 2014

488 New Bounds for the Garden-Hose Model

6 Composition and Connection to Formula Size

We wish to relate GH (f) to the formula size of f . To do so we examine composition of
garden-hose protocols by popular gate functions.

I Theorem 18. For (f1, f2, . . . , fk), where each function fi has garden-hose complexity
GH (fi)

GH (
∨
fi) = O(

∑
GH (fi)).

GH (
∧
fi) = O(

∑
GH (fi)).

GH (⊕fi) = O(
∑

GH (fi)).
GH (MAJ (fi)) = O(

∑
GH (fi) · log3 k).

This result follows from Lemma 16 and Lemma 12 combined with the trivial loose
permutation branching programs for AND, OR, XOR.

We now turn to the simulation of Boolean formulae by garden-hose protocols. We use
the simulation of formulae over the set of all fan-in 2 function by branching programs due to
Giel [6].

I Theorem 19. Let F be a formula for a Boolean function g on k inputs made of gates
{∧,∨,⊕} of arbitrary fan-in. If F has size s and GH (fi) ≤ c for all i, then for all constants
ε > 0 we have GH (g(f1, f2, . . . , fk)) ≤ O(s1+ε · c).

Proof. Giel [6] shows the following simulation result:

I Fact 1. Let ε > 0 be any constant. Assume there is a formula with arbitrary fan-in 2
gates and size s for a Boolean function f . Then there is a layered branching program of size
O(s1+ε) and width O(1) that also computes f .

By inspection of the proof it becomes clear that the constructed branching program is in
fact a strict permutation branching program (an exponential increase in the width would
yield this property in any case). The theorem follows by applying Lemma 12. J

I Corollary 20. When the fi’s are single variables GH (g) ≤ O(s1+ε) for all constants ε > 0.
Thus any lower bound on the garden-hose complexity of a function g yields a slightly smaller
lower bound on formula-size (all gates of fan-in 2 allowed).

The best lower bound of Ω(n2/ logn) known for the size of formulae over the basis of all
fan-in 2 gate function is due to Nečiporuk [12]. The Nečiporuk lower bound method (based
on counting subfunctions) can also be used to give the best general branching program lower
bound of Ω(n2/ log2 n) (see [20]).

Due to the above any lower bound larger than Ω(n2+ε) for the garden-hose model
would immediately give lower bounds of almost the same magnitude for formula size and
permutation branching program size. Proving super-quadratic lower bounds in these models
is a long-standing open problem.

Due to the fact that we have small permutation branching programs for Majority, we can
even simulate a more general class of formulae involving a limited number of Majority gates.

I Theorem 21. Let F be a formula for a Boolean function g on n inputs made of gates
{∧,∨,⊕} of arbitrary fan-in. Additionally, on any path from the root to the leaves there
may be up to O(1) Majority gates. If F has size s, then for all constants ε > 0 we have
GH (g) ≤ O(s1+ε).

H. Klauck and S. Podder 489

Proof. Proceeding in reverse topological order we can replace all sub-formulae below a
Majority gate by garden-hose protocols with Theorem 19, increasing the size of the sub-
formula. Then we can apply Lemma 16 to replace the sub-formula including the Majority
gate by a garden-hose protocol. If the size of the formula below the Majority gate is s̃, then
the garden-hose size is O(s̃1+ε′), where the poly-logarithmic factor of Lemma 16 is hidden in
the polynomial increase. Since every path from root to leaf has at most c = O(1) Majority
gates, and we may choose the ε′ in Theorem 19 to be smaller than ε/c, we get our result. J

6.1 The Nečiporuk Bound with Arbitrary Symmetric Gates
Since garden-hose protocols can even simulate formulae containing some arbitrary fan-in
Majority gates, the question arises whether one can hope for super-linear lower bounds at
all. Maybe it is hard to show super-linear lower bounds for formulae having Majority gates?
Note that very small formulae for the Majority function itself are not known (the currently
best construction yields formulae of size O(n3.03) [18]), hence we cannot argue that Majority
gates do not add power to the model. In this subsection we sketch the simple observation
that the Nečiporuk method [12] can be used to give good lower bounds for formulae made of
arbitrary symmetric gates of any fan-in. Hence there is no obstacle to near-quadratic lower
bounds from the formula size connection we have shown. We stress that nevertheless we do
not have any super-linear lower bounds for the garden-hose model.

We employ the communication complexity notation for the Nečiporuk bound from [8].

I Theorem 22. Let f : {0, 1}n → {0, 1} be a Boolean function and B1, . . . , Bk a partition
of the input bits of f . Denote by Dj(f) the deterministic one-way communication complexity
of f , when Alice receives all inputs except those in Bj, and Bob the inputs in Bj. Then the
size (number of leaves) of any formula consisting of arbitrary symmetric Boolean gates is at
least

∑
Dj(f)/ logn.

The theorem is as good as the usual Nečiporuk bound except for the log-factor, and can
hence be used to show lower bounds of up to Ω(n2/ log2 n) on the formula size of explicit
functions like IndirectStorageAccess [20].

7 Time Bounded Garden-Hose Protocols

We now define a notion of time in garden-hose complexity.

I Definition 23. Given a garden-hose protocol P for computing function f , and an input
x, y we refer to the pipes that carry water in P on x, y as the wet pipes. Let TP denote the
maximum number of wet pipes for any input (x, y) in P .

The number of wet pipes on input x, y is equal to the length of the path the water takes
and thus corresponds to the time the computation takes. Thus it makes sense to investigate
protocols which have bounded time TP . Furthermore, the question is whether it is possible
to simultaneously optimize TP and the number of pipes used.

I Definition 24. We define GH k(f) to be the complexity of an optimal garden-hose protocol
P for computing f where for any input (x, y) we have that TP is bounded by k.

As an example consider the Equality function (test whether x = y). The straightforward
protocol that compares bit after bit has cost 3n but needs time 2n in the worst case. On the
other hand one can easily obtain a protocol with time 2, that has cost O(2n): use 2n pipes
to communicate x to Bob. We have the following general lower bound.

FSTTCS 2014

490 New Bounds for the Garden-Hose Model

I Theorem 25. For all Boolean functions f we have GH k(f) = Ω(2Dk(f)/k), where Dk(f)
is the deterministic communication complexity of f with at most k rounds (Alice starting).

Proof. We rewrite the claim as Dk(f) = O(k · log GH k(f)).
Let P ′ be the garden-hose protocol for f that achieves complexity GH k(f) for f . The

deterministic k-round communication protocol for f simulates P ′ by simply following the
flow of the water. In each round Alice or Bob (alternatingly) send the name of the pipe used
at that time by P ′. J

Thus for Equality we have for instance that GH√n(Equality) = Ω(2
√
n). There is an

almost matching upper bound of GH√n(Equality) = O(2
√
n ·
√
n) by using

√
n blocks of 2

√
n

pipes to communicate blocks of
√
n bits each.

We can easily deduce a time-cost tradeoff from the above: For Equality the product of
time and cost is at least Ω(n2/ logn), because for time T < o(n/ logn) we get a super-linear
bound on the size, whereas for larger T we can use that the size is always at least n.

7.1 A Time-Size Hierarchy
The Pointer Jumping Function is well-studied in communication complexity. We describe a
slight restriction of the problem in which the inputs are permutations of {1, . . . , n}.

I Definition 26. Let U and V be two disjoint sets of vertices such that |U | = |V | = n.
Let FA = {fA|fA : U → V and fA is bijective} and FB = {fB |fB : V → U and fB is

bijective}. For a pair of functions fA ∈ FA and fB ∈ FB define f(v) =
{
fA(v) if v ∈ U
fB(v) if v ∈ V .

Then f0(v) = v and fk(v) = f(fk−1(v)).
Finally, the pointer jumping function PJk : FA × FB → {0, 1} is defined to be the XOR

of all bits in the binary name of fk(v0), where v0 is a fixed vertex in U .

Round-communication hierarchies for PJk or related functions are investigated in [15].
Here we observe that PJk gives a time-size hierarchy in the garden-hose model. For simplicity
we only consider the case where Alice starts.

I Theorem 27. 1. PJk can be computed by a garden-hose protocol with time k and size kn.
2. Any garden-hose protocol for PJk that uses time at most k − 1 has size 2Ω(n/k) for all

k ≤ n/(100 logn).

We note that slightly weaker lower bounds hold for the randomized setting.

8 Randomized Garden-Hose Protocols

We now bring randomness into the picture and investigate its power in the garden-hose
model. Buhrman et al [4] have already considered protocols with public randomness. In this
section we are mainly interested in the power of private randomness.

I Definition 28. Let RGH pub(f) denote the minimum complexity of a garden-hose protocol
for computing f , where the players have access to public randomness, and the output is
correct with probability 2/3 (over the randomness). Similarly, we can define RGH pri(f), the
cost of garden-hose protocols with access to private randomness.

By standard fingerprinting ideas [10] we can observe the following.

I Claim 1. RGH pub(Equality) = O(1).

H. Klauck and S. Podder 491

I Claim 2. RGH pri(Equality) = O(n), and this is achieved by a constant time protocol.

Proof. The second claim follows from Newman’s theorem [13] showing that any public coin
protocol with communication cost c can be converted into a private coin protocol with
communication cost c+ logn+O(1) bits on inputs of length n together with the standard
public coin protocol for Equality, and the protocol tree simulation of Theorem 9. J

Of course we already know that even the deterministic complexity of Equality is O(n),
hence the only thing achieved by the above protocol is the reduction in time complexity.
Note that due to our result of the previous section computing Equality deterministically in
constant time needs exponentially many pipes.

Buhrman et al. [4] have shown how to de-randomize a public coin protocols at the cost
of increasing size by a factor of O(n), so the factor n in the separation between public
coin and deterministic protocols above is the best that can be achieved. This raises the
question whether private coin protocols can ever be more efficient in size than the optimal
deterministic protocol. We now show that there are no very efficient private coin protocols
for Equality.

I Claim 3. RGH pri(Equality) = Ω(
√
n/ logn)

Proof. To prove this we first note that RGH pri(f) = Ω(R||(f)/ logR||(f)), where R||(f) is
the cost of randomized private coin simultaneous message protocols for f (Alice and Bob
can send their connections to the referee). Hence, RGH pri(f) = Ω(R||pri(f)/ logR||pri(f)),
but Newman and Szegedy [14] show that RGH pri(Equality) = Ω(

√
n). J

9 Open Problems

We show that getting lower bounds on GH (f) larger than Ω(n2+ε) will be hard. But we
know of no obstacles to proving super-linear lower bounds.
Possible candidates for quadratic lower bounds could be the Disjointness function with
set size n and universe size n2, and the IndirectStorageAccess function.
Consider the garden-hose matrix Gs as a communication matrix. How many distinct
rows does Gs have? What is the deterministic communication complexity of Gs? The
best upper bound is O(s log s), and the lower bound is Ω(s). An improved lower bound
would give a problem, for which D(f) is larger than GH (f).
We have proved RGH pri(Equality) = Ω(

√
n/ logn). Is it true that RGH pri(Equality) =

Θ(n)? Is there any problem where RGH pri(f) is smaller than GH (f)?
It would be interesting to investigate the relation between the garden-hose model and
memoryless communication complexity, i.e., a model in which Alice and Bob must send
messages depending on their input and the message just received only. The garden-hose
model is memoryless, but also reversible.

Acknowledgement. We thank an anonymous referee for pointing out a mistake in an earlier
version of this paper.

References
1 D.A. Barrington. Width-3 permutation branching programs, 1985. Technical report,

MIT/LCS/TM-293.
2 P. Beame, M. Tompa, and P. Yan. Communication-space tradeoffs for unrestricted proto-

cols. SIAM Journal on Computing, 23(3):652–661, 1994. Earlier version in FOCS’90.

FSTTCS 2014

492 New Bounds for the Garden-Hose Model

3 Joshua Brody, Shiteng Chen, Periklis A. Papakonstantinou, Hao Song, and Xiaoming Sun.
Space-bounded communication complexity. In Proceedings of the 4th conference on Innov-
ations in Theoretical Computer Science, pages 159–172, 2013.

4 Harry Buhrman, Serge Fehr, Christian Schaffner, and Florian Speelman. The garden-hose
model. In Proceedings of the 4th conference on Innovations in Theoretical Computer Science,
pages 145–158. ACM, 2013.

5 Well Y. Chiu, Mario Szegedy, Chengu Wang, and Yixin Xu. The garden hose complexity
for the equality function. arXiv:1312.7222, 2013.

6 O. Giel. Branching program size is almost linear in formula size. Journal of Computer and
System Sciences, 63(2):222–235, 2001.

7 H. Klauck. Quantum and classical communication-space tradeoffs from rectangle bounds.
In Proceedings of FSTTCS, 2004.

8 H. Klauck. One-Way Communication Complexity and the Nečiporuk Lower Bound on
Formula Size. SIAM J. Comput., 37(2):552–583, 2007.

9 H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product the-
orems and optimal time-space tradeoffs. SIAM Journal on Computing, 36(5):1472–1493,
2007. Earlier version in FOCS’04. quant-ph/0402123.

10 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

11 K. J. Lange, P. McKenzie, and A. Tapp. Reversible space equals deterministic space.
Journal of Computer and System Sciences, 2(60):354–367, 2000.

12 E. I. Nečiporuk. A boolean function. Soviet Mathematics Doklady, 7(S 999), 1966.
13 I. Newman. Private vs. common random bits in communication complexity. Information

Processing Letters, 39(2):67–71, 1991.
14 Ilan Newman and Mario Szegedy. Public vs. private coin flips in one round communication

games (extended abstract). In Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing, STOC’96, pages 561–570, 1996.

15 Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM J.
Comput., 22(1):211–219, February 1993.

16 C.H. Papadimitriou and M. Sipser. Communication complexity. Journal of Computer and
System Sciences, 28(2):260–269, 1984. Earlier version in STOC’82.

17 P. Papakonstantinou, D. Scheder, and H. Song. Overlays and limited memory communica-
tion mode(l)s. In Proc. of the 29th Conference on Computational Complexity, 2014.

18 I. S. Sergeev. Upper bounds for the formula size of symmetric boolean functions. Russian
Mathematics, Iz. VUZ, 58(5):30–42, 2014.

19 Rakesh Kumar Sinha and Jayram S Thathachar. Efficient oblivious branching programs
for threshold and mod functions. Journal of Computer and System Sciences, 55(3):373–384,
1997.

20 I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner Series in Computer
Science, 1987.

Homomorphism Polynomials Complete for VP∗

Arnaud Durand1, Meena Mahajan2, Guillaume Malod1,
Nicolas de Rugy-Altherre1, and Nitin Saurabh2

1 Univ Paris Diderot, Sorbonne Paris Cité, IMJ-PRG, UMR 7586 CNRS,
Sorbonne Université, UPMC Univ Paris 06, F-75013, Paris, France
{durand,malod,nderugy}@math.univ-paris-diderot.fr

2 The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India
{meena,nitin}@imsc.res.in

Abstract
The VP versus VNP question, introduced by Valiant, is probably the most important open ques-
tion in algebraic complexity theory. Thanks to completeness results, a variant of this question,
VBP versus VNP, can be succinctly restated as asking whether the permanent of a generic mat-
rix can be written as a determinant of a matrix of polynomially bounded size. Strikingly, this
restatement does not mention any notion of computational model. To get a similar restatement
for the original and more fundamental question, and also to better understand the class itself, we
need a complete polynomial for VP. Ad hoc constructions yielding complete polynomials were
known, but not natural examples in the vein of the determinant. We give here several variants of
natural complete polynomials for VP, based on the notion of graph homomorphism polynomials.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

Keywords and phrases algebraic complexity, graph homomorphism, polynomials, VP, VNP, com-
pleteness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.493

1 Introduction

One of the most important open questions in algebraic complexity theory is to decide whether
the classes VP and VNP are distinct. These classes, first defined by Valiant in [12, 13], are
the algebraic analogues of the Boolean complexity classes P and NP, and separating them
is essential for separating P from NP (at least non-uniformly and assuming the generalised
Riemann Hypothesis, over the field C, [3]). Valiant established that the family of polynomials
computing the permanent is complete for VNP under a suitable notion of reduction which
can be thought of as a very strong form of polynomial-size reduction. The leading open
question of VP versus VNP is often phrased as the permanent versus the determinant, as
the determinant is complete for VP. However, the hardness of the determinant for VP is
under the more powerful quasi-polynomial-size reductions. Under polynomial reductions, the
determinant is complete for the possibly smaller class VBP. This naturally raises the question
of finding polynomials which are complete for VP under polynomial-size reductions. Ad hoc
families of generic polynomials can be constructed that are VP-complete, but, surprisingly,
there are no known natural polynomial families that are VP-complete. Since complete
problems characterise complexity classes, the existence of natural complete problems lends

∗ This work was supported by IFCPAR/CEFIPRA Project 4702-1(A).

© Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, and Nitin Saurabh;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 493–504

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.493
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

494 Homomorphism Polynomials Complete for VP

added legitimacy to the study of a class. The determinant and the permanent make the
classes VBP, VNP interesting; analogously, what characterises VP?

Our results and techniques
In this paper, we provide the first instance of natural families of polynomials that (1) are
defined independently of the circuit definition of VP, and (2) are VP-complete. The families we
consider are families of homomorphism polynomials. Formal definitions appear in Section 2,
but here is a brief description. For graphs G and H, a homomorphism from “source graph”
G to “target graph” H is a map from V (G) to V (H) that preserves edges. If G and H are
directed, a directed homomorphism must preserve directed edges. Additionally, if the vertices
of G and H are coloured, a coloured homomorphism must also preserve colours. Placing
distinct variables on the vertices (X variables) and edges (Y variables) of the target graph H,
we can associate with each homomorphism from G toH a monomial built using these variables.
The homomorphism polynomial associated with G and H is the sum of all such monomials.
Various variants can be obtained by (1) summing only over homomorphisms of a certain type
H, e. g., directed, coloured, injective,. . . (2) setting non-negative weights α on the vertices of G
and using these weights while defining the monomial associated with a homomorphism. Thus
the general form of a homomorphism polynomial is fG,H,α,H(X,Y). We show that over fields
of characteristic zero, with respect to constant-depth oracle reductions, the following natural
settings, in order of increasing generality, give rise to VP-complete families (Theorem 19):
1. G is a balanced alternately-binary-unary tree with n leaves, with a marker gadget added

to the root, and with edge directions chosen in a specific way; H is the complete directed
graph on n6 nodes; α is 1 everywhere; H is the set of directed homomorphisms.

2. G is an undirected balanced alternately-binary-unary tree with n leaves; H is the complete
undirected graph on n6 nodes; α is 1 everywhere; the vertices are coloured with 5 colours
in a specific way; H is the set of coloured homomorphisms.

3. G is a balanced binary tree with n leaves; H is a complete graph on n6 nodes; α is 1 for
every right child in G and 0 elsewhere; H is the set of all homomorphisms from G to H.

There seems to be a trade-off between the ease of describing the source and target graphs
and the use of weights α. The first family above does not use weights (α is 1 everywhere),
but G needs a marker gadget on a naturally defined graph. The second family also does
not use weights (α is 1 everywhere), but the colouring of H is described with reference to
previously known universal circuits. The third family has very natural source and target
graphs, but requires non-trivial α. Ideally, we should be able to show VP-completeness with
G and H as in the third family and with trivial weights as in the first two families; our
hardness proofs fall short of this. Note however that the weights we use are 0-1 valued. Such
0-1 weights are commonly used in the literature, see, e. g., [2].

A crucial ingredient in our hardness proofs is the fact that VP circuits can be depth-reduced
[14] and made multiplicatively disjoint [8] so that all parse trees are isomorphic to balanced
binary trees. Another crucial ingredient is that homogeneous components of a polynomial
p can be computed in constant depth and polynomial size with oracle gates for p. The
hardness proofs illustrate how the monomials in the generic VP-complete polynomial can be
put in correspondence with a carefully chosen homogeneous component of the homomorphism
polynomial (equivalently, with monomials associated with homomorphisms and satisfying
some degree constraints in certain variables). Extracting the homogeneous component is
what necessitates an oracle-reduction (constant depth suffices) for hardness. The coloured
homomorphism polynomial is however hard even with respect to projections, the stricter
form of polynomial-size reductions which is more common in this setting.

A.Durand, M.Mahajan, G.Malod, N. de Rugy-Altherre, and N. Saurabh 495

For all the above families, membership in VP is shown in a uniform way by showing that a
more general homomorphism polynomial, where we additionally have a set of variables Z for
each pair of nodes V (G)× V (H), is in VP, and that the above variants can be obtained from
this general polynomial through projections. The generalisation allows us to partition the
terms corresponding to H into groups based on where the root of G is mapped, factorise the
sums within each group, and recurse. A crucial ingredient here is the powerful Baur-Strassen
Lemma 3 ([1]) which says that for a polynomial p computed by a size s circuit, p and all its
first-order derivatives can be simultaneously computed in size O(s).

We also show that when G is a path (instead of a balanced binary tree), the homomorphism
polynomial family is complete for VBP. On the other hand, using the generalised version
with Z variables, and letting G,H be complete graphs, we get completeness for VNP.

Previous related results

As mentioned earlier, very little was previously known about VP-completeness. In [3],
Bürgisser showed that a generic polynomial family constructed recursively while controlling
the degree is complete for VP (Bürgisser showed something even more general; completeness
for relativised VP). The construction directly follows a topological sort of a generic VP circuit.
In [10] (see also [11]), Raz used the depth-reduction of [14] to show that a family of “universal
circuits” is VP-complete; any VP computation can be embedded into it by appropriately
setting the variables. Both these VP-complete families are thus directly obtained using the
circuit definition / characterization of VP. In [9], Mengel described a way of associating
polynomials with constraint satisfaction programs CSPs, and showed that for CSPs where
all constraints are binary and the underlying constraint graph is a tree, these polynomials
are in VP. Further, for each VP-polynomial, there is such a CSP giving rise to the same
polynomial. This means that for the CSP corresponding to the generic VP polynomial or
universal circuit, the associated polynomial is VP-complete. The unsatisfactory element
here is that to describe the complete polynomial, one again has to fall back to the circuit
definition of VP. Similarly, in [4], it is shown that tensor formulas can be computed in VP
and can compute all polynomials in VP. Again, to put our hands on a specific VP-complete
tensor formula, we need to fall back to the circuit characterisation of VP.

For VBP, on the other hand, there are natural known complete problems, most notably
the determinant and iterated matrix multiplication.

A somewhat different homomorphism polynomial was studied in [5]; for a graph H, the
monomials of the polynomial fHn encode the distinct graphs of size n that are homomorphic
to H. The dichotomy result established there gives completeness for VNP or membership in
Valiant’s analogue of AC0; it does not capture VP.

Finally, a considerable number of works have been done during the last years on the
related subject of counting graph homomorphisms (but mostly in the non uniform settings –
i. e., when the target graph is fixed – see [7]) or counting models of CSP and conjunctive
queries with connections to VP-completeness (see [6]).

Organization of this paper

In Section 2, basic definitions and notations and previous results used are stated. In Section 3
we describe the hardness of various homomorphism polynomials for VP. Membership in VP
is established in Section 4. Completeness for VBP and VNP is discussed in Section 5. Due to
space limitations, detailed proofs had to be omitted.

FSTTCS 2014

496 Homomorphism Polynomials Complete for VP

2 Preliminaries and Notation

An arithmetic circuit is a directed acyclic graph with leaves labeled by variables or field
elements, internal nodes (called gates) labeled by one of the field operations + and ×, and
designated output gates at which specific polynomials are computed in the obvious way. If
every node has fan-out at most 1 (only one successor), then the circuit is a formula (the
underlying graph is a tree). If at every node labeled ×, the subcircuits rooted at the children
of the node are disjoint, then the circuit is said to be multiplicatively disjoint. Notions of size
and depth are similar to that of classical Boolean circuits. For more details about arithmetic
circuits, see for instance [11].

A family of polynomials {fn(x1, . . . , xt(n))} is p-bounded if t(n) and degree(fn) are nO(1).
A p-bounded family {fn} is in VP if a circuit family {Cn} of size s(n) ∈ nO(1) computes it.

I Proposition 1 ([14, 8]). If {fn} is in VP, then {fn} can be computed by polynomial-size
circuits of depth O(logn) where each × gate has fan-in at most 2. Furthermore, the circuits
are multiplicatively disjoint.

We say that {fn} is a p-projection of {gn} if there is an m(n) ∈ nO(1) such that each fn
can be obtained from gm(n) by setting each of the variables in gm(n) to a variable of fn or to
a field element.

A constant-depth c-reduction from {fn} to {gn}, denoted f ≤c g, is a polynomial-size
constant-depth circuit family with + and × gates and oracle gates for g, that computes f .
(This is akin to AC0-Turing reductions in the Boolean world.)

A family {Dn} of universal circuits computing a polynomial family {pn} is described
in [10, 11]. These circuits are universal in the sense that that every polynomial f(X1, . . . , Xn)
of degree d, computed by a circuit of size s, can be computed by a circuit Ψ such that the
underlying graph of Ψ is the same as the graph of Dm, for m ∈ poly(n, s, d). (In fact, fn
can be obtained as a projection of pm.) With minor modifications to {Dn} (simple padding
with dummy gates, followed by the multiplicative disjointness transformation from [8]), we
can show that there is a universal circuit family {Cn} in the normal form described below:

I Definition 2 (Normal Form Universal Circuits). A universal circuit {Cn} in normal form is
a circuit with the following structure:

It is a layered and semi-unbounded circuit, where × gates have fan-in 2, whereas + gates
are unbounded.
Gates are alternating, namely every child of a × gate is a + gate and vice versa. Without
loss of generality, the root is a × gate.
All the input gates have fan-out 1 and they are at the same level, i. e., all paths from the
root of the circuit to an input gate have the same length.
Cn is a multiplicatively disjoint circuit.
Input gates are labeled by distinct variables. In particular, there are no input gates
labeled by a constant.
Depth (Cn) = 2k(n) = 2cdlogne; number of variables (x̄) = vn; and size (Cn) = sn,
which is polynomial in n.
The degree of the polynomial computed by the universal circuit is n.

We will identify the directed graph of the circuit, where each edge e is labeled by a new
variable Xe, by the circuit itself. Let (fCn(x̄))n be the polynomial family computed by the
universal circuit family in normal form.

A.Durand, M.Mahajan, G.Malod, N. de Rugy-Altherre, and N. Saurabh 497

I Lemma 3 ([1]). Let L(p1, p2, . . . , pk) denote the size of a smallest circuit computing the
polynomials pi at k of its nodes. For any f ∈ F[x̄],

L

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
≤ 3L (f) .

The coefficient of a particular monomial in a polynomial can be extracted as described
below. It appears to be folklore, and was noted in [3]; a version appears in [5] (Lemma 2).

I Lemma 4 (Folklore). Let F be any field of characteristic zero.
1. Let p be a polynomial in F (W̄), with total degree at most D. Let m be any monomial,

with k distinct variables appearing in it. The coefficient of m in p can be computed by a
O(k)-depth circuit of size O(Dk) with oracle gates for p.

2. Let p be a polynomial in F (X̄, W̄), with |W̄ | = n and total degree in W̄ at most D. Let
pd denote the component of p of total degree in W̄ exactly d. Then pd can be computed by
a constant depth circuit of size O(Dn) with O(D) oracle gates for p.

We use (u, v) to denote an undirected edge between u and v, and 〈u, v〉 to denote a
directed edge from u to v.

I Definition 5 (Homomorphisms). Let G = (V (G), E(G)) and H = (V (H), E(H)) be two
undirected graphs. A homomorphism from G to H is a mapping φ : V (G) → V (H) such
that the image of an edge is an edge; i. e., for all (u, v) ∈ E(G), (φ(u), φ(v)) ∈ E(H).

If G,H are directed graphs, then a homomorphism only needs to satisfy for all 〈u, v〉 ∈
E(G), at least one of 〈φ(u), φ(v)〉, 〈φ(v), φ(u)〉 is in E(H). But a directed homomorphism
must satisfy for all 〈u, v〉 ∈ E(G), 〈φ(u), φ(v)〉 ∈ E(H).

If cG, cH are functions assigning colours to V (G) and V (H), then a coloured homomorph-
ism must also satisfy, for all u ∈ V (G), cG(u) = cH(φ(u)).

I Definition 6 (Homomorphism polynomials (see, e. g., [2])). Let G and H be undirected
graphs; the definitions for the directed case are analogous. Consider the set of variables
X ∪ Y where X = {Xu|u ∈ V (H)} and Y = {Yuv|(u, v) ∈ E(H)}. Let α : V (G) 7→ N be a
labeling of vertices of G by non-negative integers. For each homomorphism φ from G to H
we associate the monomial

mon(φ) ,

 ∏
u∈V (G)

X
α(u)
φ(u)

 ∏
(u,v)∈E(G)

Yφ(u),φ(v)

 .

Let H be a set of homomorphisms from G to H. The homomorphism polynomial fG,H,α,H
is defined as follows:

fG,H,α,H(X,Y) =
∑
φ∈H

mon(φ) =
∑
φ∈H

 ∏
u∈V (G)

X
α(u)
φ(u)

 ∏
(u,v)∈E(G)

Yφ(u),φ(v)

 .

Some sets of homomorphisms we consider are InjDirHom: injective directed homomorph-
isms, InjHom: injective homomorphisms, DirHom: directed homomorphisms, ColHom:
coloured homomorphisms, Hom: all homomorphisms.

I Definition 7 (Parse trees (see, e. g., [8])). The set of parse trees of a circuit C is defined
by induction on its size:

If C is of size 1, it has only one parse tree, itself.

FSTTCS 2014

498 Homomorphism Polynomials Complete for VP

If the output gate of C is a × gate whose children are the gates α and β, the parse trees
of C are obtained by taking a parse tree of Cα, a parse tree of a disjoint copy of Cβ and
the edges from α and β to the output gate.
If the output of C is a + gate, the parse trees of C are obtained by taking a parse tree of
a subcircuit rooted at one of the children and the edge from the (chosen) child to the
output gate.

Each parse tree T is associated with a monomial by computing the product of the values
of the input gates. We denote this value by mon(T).

I Lemma 8 ([8]). If C is a circuit computing a polynomial f , then f(x̄) =
∑

T mon(T),
where the sum is over the set of parse trees, T, of C.

I Proposition 9 ([8]). A circuit C is multiplicatively disjoint if and only if any parse tree
of C is a subgraph of C. Furthermore, a subgraph T of C is a parse tree if the following
conditions are met:

T contains the output gate of C.
If α is a multiplication gate in T having gates β and γ as children in C, then the edges
〈β, α〉 and 〈γ, α〉 also appear in T .
If α is an addition gate in T , it has only one child in T .
Only edges and gates obtained in this way belong to T .

3 Lower Bounds: VP-hardness

Here we study the question of whether all families of polynomials in VP can be computed
by homomorphism polynomials. Instantiating G, H and α to our liking we obtain a variety
of homomorphism polynomials that are VP-hard. We describe them in increasing order of
generalisation.

I Definition 10. Let ATk be a directed balanced alternately-binary-unary tree with k leaves.
Vertices on an odd layer have exactly two incoming edges whereas vertices on an even layer
have exactly one incoming edge. The first layer has only one vertex called root, and the
edges are directed from leaves towards the root.

I Lemma 11. The parse trees of Cn, the universal circuit in normal form, are subgraphs of
Cn and are isomorphic to ATn.

This observation suggests a way to capture monomial computations of the universal
circuit via homomorphisms from ATk into Cn.

Injective Directed Homomorphism
I Proposition 12. Consider the homomorphism polynomial where

G := ATm.
H is the directed graph corresponding to the universal circuit in normal form Cm.
H := set of injective directed homomorphisms from G to H.
α is 1 everywhere.

Then, the family (fATm,H,α,InjDirHom(X̄, Ȳ))m, where m ∈ N, is VP-hard for projections.

Proof Sketch. We want to express the universal polynomial through a projection. We set
all X variables at leaves to the corresponding variables in Cm, and all other X variables and
all Y variables to 1. The idea is to show that elements in InjDirHom are in bijection with

A.Durand, M.Mahajan, G.Malod, N. de Rugy-Altherre, and N. Saurabh 499

parse trees of Cm, and compute the same monomials. It is easy to see that for every parse
tree of Cm, there is a φ ∈ InjDirHom with exactly this image. On the other hand, every
φ ∈ InjDirHom must map the directed paths of length 2 logm in G to directed paths in H;
this fact can be used to show that its image is a parse tree of Cm. J

I Remark. The hardness proof above will work even if H is the complete directed graph on
poly(m) nodes. In the projection, we can set the Ȳ variables to values in {0, 1} such that
the edges with variables set to 1 together form the underlying graph of Cn.

If we follow the proof of the previous proposition and look at the image of a given
homomorphism in layers, we notice that “direction”-respecting homomorphisms basically
ensured that we never fold back (in the image). In particular, the mapping respect layers.
Furthermore “injectivity” helped ensure that vertices within a layer are mapped distinctly.
This raises an intriguing question: can we eliminate either assumption (direction or injectivity)
and still prove VP-hardness? We answer this question positively, albeit under a stronger
notion of reduction.

Injective Homomorphisms
Let ATuk be defined as the alternately-binary-unary tree ATk, but with no directions on edges.

I Proposition 13. Consider the homomorphism polynomial where
G := ATum.
H is a complete graph (undirected) on poly(m), say m6, nodes.
H := set of injective homomorphisms from G to H.
α is 1 everywhere.

Then, the family (fATu
m,H,α,InjHom(X̄, Ȳ))m is VP-hard for constant-depth c-reductions.

Proof Sketch. Again, we want to express the universal polynomial. Setting some Y variables
to 0 values allows us to pick out Cm from H. To enforce directedness of the injective
homomorphisms, we assign a special variable r on the edges emerging from the root, and
a special variable ` on edges reaching the leaves. (The remaining Y variables are set to
1; the X variables are set as in Proposition 12.) Now the coefficient of `mr2 in f extracts
exactly the contribution of injective directed homomorphisms, and this, by Proposition 12,
is the universal polynomial. The desired coefficient can be extracted by a constant-depth
c-reduction, as described in Lemma 4. J

Directed Homomorphisms
Consider the directed alternately-binary-unary-tree ATk. For every vertex in an odd layer
there are two incoming edges. Flip the direction of the right edge for every such vertex. Note
that the edges coming into the unary vertices at even layers are unchanged. Also connect a
path t1 → t2 → · · · → ts to the root by adding an edge 〈ts, root〉. The vertices t1, . . . , ts are
new vertices. Denote this modified alternately-binary-unary-tree by ATdk,s.

I Theorem 14. Consider the homomorphism polynomial where
G := ATdm,s for sufficiently large s in poly(m), say s = m7.
H is a complete directed graph on poly(m), say m6, nodes.
H := set of directed homomorphisms from G to H.
α is 1 everywhere.

Then, the family (fATd
m,s,H,α,DirHom(X̄, Ȳ))m is VP-hard for constant-depth c-reductions.

FSTTCS 2014

500 Homomorphism Polynomials Complete for VP

Proof Sketch. To compute the universal polynomial, we set some Y variables to 0 to pick
out from H the circuit Cm with a tail at the root. We assign special variables r and t on the
first and last edge of the tail, and variable ` on the edges entering leaves of Cm. The idea
is to show that homomorphism monomials with degree exactly 1 in r and in t and degree
exactly m in ` are in bijection with parse trees of Cm (and compute the same corresponding
monomials). The length of the tail and the degree in r and t, ensure that any directed
homomorphism maps the tail in G to the tail attached to Cm, so the root of the copy of ATm
inside G is mapped to the root of Cm. The degree constraint in ` ensures that the leaves of
ATm are mapped to the leaves of Cm, thus preserving layers. An inductive argument based
on layer numbers, beginning from the root, and using the multiplicative disjointness of Cm,
shows that the homomorphisms must also be injective. This gives the bijection. J

Coloured Homomorphisms
In all the above hardness proofs we restricted the set of homomorphisms to be direction-
respecting, or injective, or both. Here we show another restriction, called colour-respecting,
that gives a VP-hard polynomial. Recall that a homomorphism from a coloured graph to
another coloured graph is colour-respecting if it preserves the colour class of vertices.

Consider the following colouring of ATuk with colours brown, left, right, white and green.
The root of ATuk is coloured brown, leaves are coloured green. For every gate on an even
layer, if it is the left (resp. right) child of its parent then colour it left (resp. right). Every
gate on an odd layer, except the root, is coloured white. Denote this coloured alternately-
binary-unary-tree as ATck.

We define a circuit to be properly coloured if the root is coloured brown, leaves are
coloured green, all multiplication gates but the root are coloured white and all addition gates
are coloured left or right depending on whether they are left or right child respectively.

We obtain a properly coloured circuit from the universal circuit Cn as follows. For all
addition gates in Cn we make two coloured copies, one coloured left and the other coloured
right. We add edge connections as follows: for a multiplication gate we add an incoming
edge to it from the left (resp. right) coloured copy of the left (resp. right) child, and for an
addition gate the coloured gates are connected as the original gate in the circuit Cn.

We say that an undirected complete graph H on M nodes is properly coloured if, for all
sn ≤M/2, there is an embedding of the graph that underlies an sn-sized properly coloured
universal circuit, into H.

I Theorem 15. Consider the homomorphism polynomial where
G := ATcm.
H is a properly coloured complete graph (undirected) on poly(m), say m6, nodes.
H := set of coloured homomorphisms from G to H.
α is 1 everywhere.

Then, the family (fATc
m,H,α,ColHom(X̄, Ȳ))m, where m ∈ N, is VP-hard for projections.

Proof Sketch. As before, Y variables pick out Cm from H. The brown and green colours
ensure that the root and the leaves of G are mapped to the root and leaves of Cm respectively.
Injectivity follows from an argument similar to the one used for Theorem 14. J

The generic homomorphism polynomial gives us immense freedom in the choice of G,
target graph H, weights α and the set of homomorphisms H. Until now we used several
modified graphs along with different restrictions onH to capture computations in the universal
circuit. The question here is: can we get rid of restrictions on the set of homomorphisms?
We provide a positive answer, using instead weights on the vertices of the source graph.

A.Durand, M.Mahajan, G.Malod, N. de Rugy-Altherre, and N. Saurabh 501

Homomorphism with weights
For k a power of 2, let Tk denote a complete (perfect) binary tree with k leaves.

I Theorem 16. Consider the homomorphism polynomial where
G := Tm.
H is a complete graph (undirected) on poly(m), say m6, nodes.
H := set of all homomorphisms from G to H.
Define α such that,

α(u) =


0 u = root
1 if u is the right child of it’s parent
0 otherwise

Then, the family (fTm,H,α,Hom(X̄, Ȳ))m is VP-hard for constant-depth c-reductions.

Proof Sketch. Since the source graph is complete binary trees, we first need to compact
parse trees and get rid of the unary nodes (corresponding to + gates). We construct from
the universal circuit Cn a graph Jn that allows us to get rid of the alternating binary-unary
parse tree structure while maintaining the property that the compacted “parse trees” are
subgraphs of Jn. The graph Jn has two copies gL and gR of each × gate and input gate of
Cn. It also has two children attached to each leaf node. The edges of Jn essentially shortcut
the + edges of Cn.

As before, we use Y variables to pick out Jn from H. We assign special variables w on
edges from the root to a node gR, and z on edges going from a non-root non-input node u to
some right copy node gR. For an input node g in the “left sub-graph” of Jn, the new left
and right edges are assigned c` and x respectively, where x is the corresponding input label
of g in Cn, and the node at the end of the x edge is assigned a special variable y. In the
right sub-graph, variable cr is used.

We show that homomorphisms whose monomials have degree 1 in w, 2k − 2 in z, 2k−1

each in c` and cr, and 2k in y are in bijection with compacted parse trees in Jn. The
argument proceeds in stages: first show that the homomorphism is well-rooted (using the
degree constraint on w, c`, cr and the 0-1 weights in G), then show that it preserves layers
(does not fold back) (using the degree constraint on c`, cr and y), then show that it is
injective within layers (using the degree constraint in z and the 0-1 weights in G). J

4 Upper Bounds: membership in VP

In this section we will show that most of the variants of the homomorphism polynomial
considered in the previous section are also computable by polynomial size arithmetic circuits.
That is, the homomorphism polynomials are VP-Complete. For sake of clarity we describe
the membership of a generic homomorphism polynomial in VP in detail. Then we explain
how to obtain various instantiations via projections.

We define a set of new variables Z̄ := {Zu,a | u ∈ V (G) and a ∈ V (H)}. Let us generalise
the homomorphism polynomial fG,H,α,H as follows:

fG,H,H(Z̄, Ȳ) =
∑
φ∈H

 ∏
u∈V (G)

Zu,φ(u)

 ∏
(u,v)∈E(G)

Yφ(u),φ(v)

 .

Note that for a 0-1 valued α, we can easily obtain fG,H,α,H from our generic homomorphism
polynomial fG,H,H via substitution of Z̄ variables, setting Zu,a to Xα(u)

a . (If α can take any

FSTTCS 2014

502 Homomorphism Polynomials Complete for VP

non-negative values, then we can still do the above substitution. We will need subcircuits
computing appropriate powers of the X̄ variables. The resulting circuit will still be poly-sized
and hence in VP, provided the powers are not too large.)

I Theorem 17. The family of homomorphism polynomials (fm) = fGm,Hm,Hom(Z̄, Ȳ) where
Gm is Tm, the complete balanced binary tree with m = 2k leaves,
Hm is Kn, complete graph on n = poly(m) nodes,

is in VP.

Proof Sketch. The idea is to group the homomorphisms based on where they send the root
of Gm and its children, and to recursively compute sub-polynomials within each group. The
sub-polynomials in a specific group will have a specific set of variables in all their monomials.
Thus the group can be identified by suitably combining partial derivatives of the recursively
constructed sub-polynomials. (Note: this is why we consider the generalised polynomial with
Z̄ instead of X̄ and α. If for some u, α(u) = 0, then we cannot use partial derivatives to force
sending u to a specific vertex of H.) The partial derivatives themselves can be computed
efficiently using Lemma 3. J

I Remark. In the above theorem and proof, if Gm is ATum instead of Tm, essentially the
same construction works. The grouping of homomorphisms should be based on the images
of the root and its children and grandchildren as well.

If Gm and Hm have directions, again everything goes through the same way.
If we want to consider a restricted set H of homomorphisms DirHom or ColHom

instead of all of Hom, again the same construction works. All we need is that H can be
decomposed into independent parts with a local stitching-together operator. That is, whether
φ belongs to H can be verified locally edge-by-edge and/or vertex-by-vertex, so that this can
be built into the decomposition and the recursive construction.

From Theorem 17, the discussion preceding it and the remark following it, we have:

I Corollary 18. The polynomial families from Proposition 12, Theorems 14, 15, and 16 are
all in VP.

I Remark. It is not clear how to get a similar upper bound for InjDirHom when the target
graph is the complete directed graph (remark following Proposition 12), or for the family
from Proposition 13. We need a way of enforcing that the recursive construction above
respects injectivity. This is not a problem for Proposition 12, though, because there the
target graph is the graph underlying a multiplicatively disjoint circuit. Injectivity at the
root and its children and grandchildren can be checked locally; the recursion beyond that
does not fold back because the homomorphisms are direction-preserving. The construction
may not work if the target graph is the complete directed graph.

From Corollary 18, Proposition 12, and Theorems 14, 15 and 16, we get our main result:

I Theorem 19. 1. The polynomial families from Proposition 12 and Theorem 15 are com-
plete for VP with respect to p-projections.

2. The polynomial families from Theorems 14 and 16 are complete for VP with respect to
constant-depth c-reductions.

5 Characterizing other complexity classes

We complement our result of VP-completeness by showing that appropriate modification of
G can lead to VBP-complete and VNP-complete polynomial families.

A.Durand, M.Mahajan, G.Malod, N. de Rugy-Altherre, and N. Saurabh 503

VBP Completeness
VBP is the class of polynomials computed by polynomial-sized algebraic branching programs.
These are layered directed graphs, with edges labeled by field constants or variables, and with
a designated source node s and target node t. For any path ρ in G, the monomial mon(ρ)
is the product of the labels of all edges in ρ. For two nodes u, v, the polynomial puv sums
mon(ρ) for all paths ρ from u to v. The branching program computes the polynomial pst.

A well-known polynomial family complete for VBP is the determinant of a generic matrix.
A generic complete polynomial for VBP is the polynomial computed by an ABP with (1) a
source node s, m − 1 layers of m nodes each, and a target node t, (2) complete bipartite
graphs between layers, and (3) distinct variables x̄ on all edges. This is also the iterated
matrix multiplication polynomial IMM. It is easy to see that st paths play the same role
here as parse trees did in the multiplicatively disjoint circuits.

I Theorem 20. Consider the homomorphism polynomial where
G is a simple path on m+ 1 nodes, (u1, u2, . . . , um+1).
H is a complete graph (undirected) on m2 nodes.
H := set of all homomorphisms from G to H.

Define α such that α(u) =
{

1 u = u1 or u = um+1
0 otherwise

Then, the family (fG,H,α,Hom(X̄, Ȳ))m, where m ∈ N, is complete for VBP under c-reductions.

Proof Sketch. The hardness proof is very similar to that in Theorem 16. Lemma 3 (and
hence Theorem 17) doesn’t work for branching programs; however we show membership by
direct construction of an ABP. J

VNP Completeness
I Theorem 21. Consider the homomorphism polynomial where

G is the complete graph (undirected) on m nodes.
H is the complete graph (undirected) on m nodes.
H := set of all homomorphisms from G to H.
All Ȳ variables are set to 1.

Then, the family (fG,H,Hom(Z̄))m, where m ∈ N, is complete for VNP under p-projections.

Proof Sketch. This homomorphism polynomial is exactly the perm polynomial. J

6 Conclusion

We have shown that several natural homomorphism polynomials are complete for the algebraic
complexity class VP. Our results are summarised below.

Complexity G H H polynomial type reduction

VP-complete

ATm CmO(1) InjDirHom α = 1 p-projections
ATd

m DKmO(1) DirHom α = 1 O(1)-depth
c-reductions

ATc
m coloured KmO(1) ColHom α = 1 projections

Tu
m KmO(1) Hom 0-1 valued O(1)-depth

VBP-complete Pathm KmO(1) Hom 0-1 valued O(1)-depth
VNP-complete Km Km Hom generalised p-projections

(Z̄ variables)

FSTTCS 2014

504 Homomorphism Polynomials Complete for VP

It would be interesting to show all the hardness results with respect to p-projections. It
would also be very interesting to obtain completeness while allowing all homomorphisms on
simple graphs and eliminating vertex weights. Another question is extending the completeness
results of this paper to fields of characteristic other than zero.

Perhaps more importantly, it would be nice to get still more examples of natural VP-
complete problems, preferably from different areas. The completeness of determinant or
iterated matrix multiplication for VBP underlies the importance of linear algebra as a source
of “efficient” computations. Finding natural VP-complete polynomials in some sense means
finding computational techniques which are (believed to be) stronger than linear algebra.

References
1 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Com-

puter Science, 22(3):317–330, 1983.
2 Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós, and Katalin Vesztergombi.

Counting graph homomorphisms. In Topics in Discrete Math, pages 315–371. Springer,
2006.

3 P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7 of
Algorithms and Computation in Mathematics. Springer, 2000.

4 Florent Capelli, Arnaud Durand, and Stefan Mengel. The arithmetic complexity of tensor
contractions. In Symposium on Theoretical Aspects of Computer Science STACS, volume 20
of LIPIcs, pages 365–376, 2013.

5 Nicolas de Rugy-Altherre. A dichotomy theorem for homomorphism polynomials. In Math-
ematical Foundations of Computer Science 2012, volume 7464 of LNCS, pages 308–322.
Springer Berlin Heidelberg, 2012.

6 Arnaud Durand and Stefan Mengel. The complexity of weighted counting for acyclic con-
junctive queries. J. Comput. Syst. Sci., 80(1):277–296, 2014.

7 Martin E. Dyer and David Richerby. An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013.

8 Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic complexity
classes. Journal of Complexity, 24(1):16–38, 2008.

9 Stefan Mengel. Characterizing arithmetic circuit classes by constraint satisfaction problems.
In Automata, Languages and Programming, volume 6755 of LNCS, pages 700–711. Springer
Berlin Heidelberg, 2011.

10 Ran Raz. Elusive functions and lower bounds for arithmetic circuits. Theory of Computing,
6:135–177, 2010.

11 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388,
2010.

12 Leslie G. Valiant. Completeness classes in algebra. In Symposium on Theory of Computing
STOC, pages 249–261, 1979.

13 Leslie G. Valiant. Reducibility by algebraic projections. In Logic and Algorithmic: Interna-
tional Symposium in honour of Ernst Specker, volume 30, pages 365–380. Monograph. de
l’Enseign. Math., 1982.

14 Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel compu-
tation of polynomials using few processors. SIAM Journal on Computing, 12(4):641–644,
1983.

Computing Information Flow Using Symbolic
Model-Checking
Rohit Chadha1, Umang Mathur2, and Stefan Schwoon3

1 University of Missouri, USA
2 Indian Institute of Technology - Bombay, India
3 LSV, ENS Cachan & CNRS, INRIA Saclay, France

Abstract
Several measures have been proposed in literature for quantifying the information leaked by
the public outputs of a program with secret inputs. We consider the problem of computing
information leaked by a deterministic or probabilistic program when the measure of information
is based on (a) min-entropy and (b) Shannon entropy. The key challenge in computing these
measures is that we need the total number of possible outputs and, for each possible output, the
number of inputs that lead to it. A direct computation of these quantities is infeasible because of
the state-explosion problem. We therefore propose symbolic algorithms based on binary decision
diagrams (BDDs). The advantage of our approach is that these symbolic algorithms can be easily
implemented in any BDD-based model-checking tool that checks for reachability in deterministic
non-recursive programs by computing program summaries. We demonstrate the validity of our
approach by implementing these algorithms in a tool Moped-QLeak, which is built upon Moped,
a model checker for Boolean programs. Finally, we show how this symbolic approach extends to
probabilistic programs.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs

Keywords and phrases Information leakage, Min Entropy, Shannon Entropy, Abstract decision
diagrams, Program summaries

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.505

1 Introduction

It is desirable for a program to never leak any information about its confidential inputs. For
example, when an adversary can make low-security observations of an execution, these should
be independent of the confidential inputs. This property is often too strong in practice,
mostly because it clashes with desired functionality. Therefore, many authors (cf. [22, 25])
have proposed to evaluate security by the amount of leaked confidential information. This
raises foundational questions of (a) how to measure that amount and (b) how to compute it.
These challenges have received much attention recently.

A usual approach is to employ information-theoretic tools. In this approach, a program is
modeled as an information channel that transforms a random variable taking values from the
set of confidential inputs into a random variable taking values from the set of public outputs
(i. e., the adversary’s observations). Based on this, one quantifies the adversary’s uncertainty
about the confidential inputs. The amount of information leaked by the program is then
modeled as the difference between the initial uncertainty and the uncertainty remaining in
the secret inputs after the adversary observes the execution. Commonly used measures of
uncertainty are Shannon entropy [22] and min-entropy [25]. Intuitively, leakage based on

© Rohit Chadha, Umang Mathur, and Stefan Schwoon;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 505–516

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.505
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

506 Computing Information Flow Using Symbolic Model-Checking

min-entropy measures vulnerability of the secret inputs to a single guess of the adversary who
observes the program execution, while, leakage based on Shannon entropy measures expected
number of guesses required for the adversary to guess the secret input having observed the
program execution. We refer to [25] for a detailed comparison between these two measures.

Though appealing from a conceptional viewpoint, these measures do not readily lend
themselves to feasible computation. For example, it has been shown in [27] that when
using Shannon’s entropy for measuring uncertainty, the problem of deciding whether the
information leaked by a loop-free deterministic Boolean program is less than a rational
number is harder than counting the number of satisfying assignments of a Boolean formula
in Conjunctive Normal Form. The hardness of the problem comes from the fact that one has
to compute (a) how many outputs are observable to the adversary and (b) for each possible
output, how many inputs lead to that particular output.

When Boolean deterministic programs contain loops, computing information leakage
becomes PSPACE-complete [28, 6, 26], for both min-entropy and Shannon entropy. Although
this is same complexity as checking safety of Boolean programs (or equivalently, reachability),
the decision procedures given in [28, 6, 26] are not feasible in practice. Instead researchers
have developed heuristics to exploit reachability tools to compute the amount of information
leaked. The reachability tools employed come from model checking [3, 18, 8, 9], static analysis
[11, 3], SMT solvers [21, 20, 23, 16], and statistical analysis [18, 7].

Contributions. We first consider the problem of evaluating the amount of information
leaked by the public outputs of Boolean deterministic programs with uniformly distributed
secret inputs. We exploit symbolic model-checking techniques to achieve our goals. More
precisely, we demonstrate how model checkers based on Binary Decision Diagrams (BDDs)
can very easily be enhanced to compute information leakage. As we shall see shortly, our
approach is informed by the model-checking algorithms used by these tools.

BDDs [19, 1, 5] are data structures used to store Boolean functions. Their efficiency has
led to many applications in program verification. Broadly, in this approach, the program is
viewed as a transition system in which a configuration contains the current line number and
the values of the variables. Transitions are encoded as BDDs, and reachability is encoded
as the least fixed-point solution to a set of Boolean equations. This solution is the result
of a fixed-point iteration with efficient BDD operations (Please see [5] for a discussion of
complexity of BDD operations). For certain BDD-based tools (cf. [13]), this fixed-point
computation yields the relation between the values of global variables at the start of the
program and the values of the global variables when the queried location is reached. By
querying the exit point, we can thus compute the relation between the inputs and the outputs
of the program, henceforth referred to as the summary of the program.

Our key observation is that this summary (which is given as a BDD) is indeed all the
information we need to quantify information leakage. We give symbolic algorithms that
extract information leakage from the summary according to either Shannon entropy or
min-entropy. This approach is appealing because these algorithms can be easily plugged into
existing BDD-based model-checking tools.

We validate this approach by implementing our algorithms in Moped [13], a BDD-based
symbolic model checker that checks for assertion errors in programs modeled as reachability
problems. Apart from providing support for Boolean data, Moped also supports integers of
variable length, arrays, and C-like structures. Our experience with these implementations are
promising, as the computation of information leakage (for both min-entropy and Shannon-
entropy) comes with little overhead over the reachability computation.

We then turn our attention to probabilistic non-recursive programs. For such programs,

R. Chadha, U. Mathur, and S. Schwoon 507

we need to compute, for each possible input-output pair (i, o), the conditional probability that
the program outputs o when the input is i. Usually, these quantities are stored as a matrix,
also called the channel matrix. We compute the channel matrix as the least fixed-point
solution to a system of linear equations [24], which can be done using Algebraic Decision
Diagrams (ADDs) [12], a generalization of BDDs. The summary for probabilistic programs
now encodes (symbolically) the channel matrix, and we construct symbolic algorithms to
extract the leaked information from the computed summary. We validate this approach
by extending the ability of Moped to compute the summary for probabilistic non-recursive
programs and implementing the symbolic algorithms for computing the information leakage.

The tool implementing the algorithms for entropy calculations is available for download
at http://people.cs.missouri.edu/~chadhar/mql/. For space reasons, we have omitted
proofs which can be found in the longer version of the paper available at the same site.

Related work. The problem of automatically computing information flow was first tackled
in [3]. This approach iteratively constructs equivalence classes on inputs: two inputs are
said to be equivalent if they lead to the same output. One starts with a single equivalence
class and progressively refines when these inputs lead to different outputs. At each step, the
equivalence relation is characterized using logical formulas and refined using experimental
runs of the program. Once a fixed point is reached, the sizes of the resulting equivalence
classes can be used to compute information leakage. This technique is optimized in [18],
where statistical techniques are used to estimate the equivalence classes. The effectiveness of
the approach is demonstrated through examples, and the authors suggest that an automated
tool based on these techniques can be built. The computation of the size of the equivalence
classes is further optimized in [15].

SMT solvers are used in [21, 20, 16, 23] to estimate min-entropy leakage in Boolean
straight-line programs. In this approach, the program summary is encoded as a SMT formula
and various model-counting techniques are used to obtain the information leaked. In [21, 20],
an upper bound on min-entropy leakage is computed by estimating an upper bound on the
number of feasible outputs. It is easy to construct examples where the computed bound is
far from the correct value. Our techniques in contrast yield exact values. [16] provides a
toolchain which first computes the program summary as a SAT formula that is then fed to a
custom-made #SAT solver to calculate the information leaked. [23] combines model-counting
techniques of #SMT solvers with the technique of symbolic executions. This tool can handle
real C and Java programs.

For probabilistic programs, the use of model-checking to compute information leakage
has been explored in [8, 2, 10, 4]. Please note that the models considered in these papers
are more general as they also allow for other observations than just the outputs at the end
of the program execution. [8] uses [14] to get the channel matrix and then computes the
information leakage by hand, [10] implements an explicit state model-checking algorithm,
and [4] computes the information leakage using (forward) symbolic executions. [2] also
proposes to compute the channel matrix using fix-point iterations. Once the channel matrix
is computed explicitly then information leakage can be computed. Our approach is different
in that we solve the fix-point iterations symbolically and use the symbolic representation of
the computed matrix directly in the computation of information leakage.

2 Preliminaries

We recall some standard definitions and establish notations. For a finite set A, |A| shall
denote the number of elements of A. For a function f : A→ B and b ∈ B, f−1(b) denotes

FSTTCS 2014

http://people.cs.missouri.edu/~chadhar/mql/

508 Computing Information Flow Using Symbolic Model-Checking

the set {a | f(a) = b}. We write 2A to mean both the set of functions A→ {true, false} as
well as the set of subsets of A. All logarithms are to the base 2 and 0 log 0 := 0. The set of
real numbers will be denoted by R and the non-negative reals by R+.

Boolean Programs. We first consider non-recursive Boolean deterministic programs in
this paper. The programs that we consider have global and local variables. Usually, it is
assumed that the set of global variables is partitioned into two: set of high-security input-only
variables and the set of low-security output-only variables. However, in this paper we will
assume that the secret inputs to the program are the initial values of the global variables
and that the public outputs are the final values of the global variables. Thus, we do not
explicitly separate high-security input-only variables and low-security output-only variables.
This does not cause a loss of expressiveness: if we want to make sure that changes to a
high-security input-only variable by a program are not visible to the adversary, we can set
them to false upon exit. Similarly, if we want to explicitly designate some variables as
low-security output-only variables, we can initialize all of them to false.

Assuming that local variables are always initialized to false, the semantics of a program P

with global variables G can be seen as a function FP : S → O where S = 2G and O = 2G∪{⊥}.
FP (ḡ0) = ⊥ iff P does not terminate on ḡo, otherwise FP (ḡ0) ∈ 2G is the valuation of the
global variables when P stops executing. From now on, we will confuse P with the function
FP . Note that we treat non-termination as an explicit observation of the attacker.

Assuming that the inputs are sampled from a distribution µ, let S be the random variable
taking values in S according to µ. µ can be extended to a joint probability distribution on S
and O by setting µ(O = o | S = s) = 1 if P (s) = o and 0 otherwise.

Information leakage in programs. Several measures of information leakage have been
considered in literature. Of these, we consider Shannon entropy and min-entropy. We assume
that the reader is familiar with information theory and introduce some abbreviations and
results that we shall need. For this section, we fix a Boolean program P. As discussed above,
the semantics of P is a function P : S → O. If S is sampled from a distribution µ, then µ
gives rise to a joint probability distribution on S and O.

Leakage based on Shannon entropy: In Shannon entropy, the information leaked by the
program P is defined as SEµ(P) := Iµ(S;O), where S and O are random variables taking
values in S and O respectively according to the joint distribution µ, and Iµ(S;O) is the mutual
information of random variables S and O. When P is deterministic and µ is U, the uniform
distribution on inputs, we have [3, 17]: SEU(P) = log |S| − 1

|S|
∑

o∈O |P−1(o)| log |P−1(o)|.
Leakage based on Min entropy: In min-entropy [25], the information leaked by the

program P on uniformly distributed inputs is defined as MEU(P) := log
∑
o∈O max

s∈S
µ(S =

s | O = o). When P is deterministic [25], we get that MEµ(P) := log |O′|, where O′ = {o ∈
O | ∃s ∈ S : P (s) = o} are the outputs that can actually be realized.

Algebraic Decision Diagrams. We assume that the reader is familiar with Binary Decision
Diagrams (BDDs) and merely recall some facts necessary for our presentation. Our presen-
tation follows closely the presentation in [24]. When speaking of BDDs, we always mean
their reduced ordered form [5]. BDDs are data structures for storing elements of 2V → {0, 1},
where V = {x1, . . . , xn} is a finite set of Boolean variables. They take the form of a rooted,
directed acyclic labeled graph. Non-terminal nodes are labeled by an element of V, and
terminals are either 0 or 1. There are two edges out of a non-terminal node, one labeled then
and the other labeled else. Assuming a fixed strict order < on V , an edge from a non-terminal

R. Chadha, U. Mathur, and S. Schwoon 509

x

y y

z z z z

1 0 0 1 1111

x

y

z z

1

Figure 1 An unreduced decision diagram (left) and a corresponding BDD (right).

labeled x to a non-terminal labeled y satisfies x < y . From now on we will often confuse a
function 2V → {0, 1} with its BDD representation.

I Example 1. Figure 1 shows how a BDD over the set V = {x, y, z} with the order x < y < z

would store the Boolean assignments satisfying x→ (y ↔ z). The figure on the left shows a
(non-reduced) diagram exhaustively listing all assignments, and the right-hand side shows
the resulting BDD, where for simplicity the terminal 0 and edges leading to it have been
omitted. The solid arrows are then branches and the dashed arrows are else branches.

ADDs generalize BDDs and store elements of the set 2V →M , where V = {x1, . . . , xn}
andM is an arbitrary set. The main difference between BDDs and ADDs is that the terminal
nodes contain elements of M and not just elements of {0, 1}. For our purposes, M will be
either R or R+. Analogous to BDDs, the value of a function f represented by an ADD T at
(z1, . . . , zn) ∈ 2V is given by the label of the terminal node along the unique path from the
root to a terminal node such that if a non-terminal node is labeled xi along the path then
the outgoing edge from xi must be labeled then if and only if zi is true.

Note that an BDD is an ADD where all the terminals are either 0 or 1. Henceforth, we
will refer to BDDs as 0/1-ADDs. Many efficient operations can be performed on ADDs. We
list the most relevant ones for our paper.
1. The function isConst(T) checks if T is a constant function. val(T) returns the value of T

if isConst(T) is true.
2. If op is a commutative and associative binary operator on R and V1 a subset of variables

of V then abstract(op,V1, T) returns the result of abstracting all the variables in V1 by ap-
plying the operator op over all possible values taken by variables in V1. abstract(op,V1, T),
thus obtained, is a function with domain as the set V \ V1 and range as R.
For example, if T represents the function f , then abstract(+, {x1, x2}, T) returns the ADD
which represents the function f(true, true, x3, . . . , xn) + f(true, false, x3, . . . , xn) +
f(false, true, x3, . . . , xn) + f(false, false, x3, . . . , xn).

3. If T is a 0/1-ADD and V1 a subset of V, then orAbstract(V1, T) returns the result of
abstracting all the variables in V1 by applying disjunction over all possible values taken
by variables in V1.

3 Leakage in non-probabilistic programs

In this section, we shall describe our ADD-based algorithms for computing the information
leaked by deterministic programs when the leakage is measured using (a) min-entropy and
(b) Shannon entropy. We fix some notation. Consider a set of variables G = {x1, . . . , xn}.
Let G′ = {x′1, . . . , x′n} be a set of distinct variables disjoint from G. Note that there is a
one-to-one correspondence between elements of 2G and 2G′ and every element (z′1, . . . , z′n)

FSTTCS 2014

510 Computing Information Flow Using Symbolic Model-Checking

s1

s′1

s2

s′2 s′2

o′1 o′1

o′2 o′2

1

(a)

s′1

s′2

o′1

1

(b)

s1

1

(c)

s′1

s′2

o′1

4

(d)

s1

1

(e)

Figure 2 (a) Transition relation of the program Pex. The ordering assumed is s1 < s′
1 < s2 <

s′
2 < o1 < o′

1 < o2 < o′
2. (b) All the possible outputs of the program Pex as an ADD. (c) All

possible inputs on which Pex terminates represented as an ADD. (d) Teq-size,P for Pex as an ADD.
(e) Tnon-term,P for the program Pex as an ADD.

of 2G′ can be identified with a unique element (z1, . . . , zn) of 2G and vice versa. G shall
represent the initial values of the variables of a program and G′ shall represent their final
values. In this section, we will assume that all possible valuations of G are valid inputs to
the program (and hence our input domain shall always be a power of 2). We discuss how to
restrict the domain in the longer version of the paper.

I Definition 2 (Summary of a Program). Let P be a program with G = {x1, . . . , xn} as
the set of global variables. Let G′ = {x′1, . . . , x′n} be a set of distinct variables disjoint
from G. The summary of P , denoted TP , is a function TP : 2(G∪G′) → {0, 1} such that for
every z1, . . . , zn, z

′
1, . . . , z

′
n ∈ {true, false}, we have TP (z1, . . . , zn, z

′
1, . . . , z

′
n) = 1 ⇐⇒

P (z1, . . . , zn) = (z′1, . . . , z′n).

Observe that thanks to the correspondence between OBDDs and Boolean functions, TP
can be considered as an OBDD on the set of variables G∪G′. Now, TP can be seen as the least
fixed point of a system of Boolean equations, which can efficiently be constructed by iterative
methods. For our purposes, it suffices to say that BDD-based model-checkers essentially
construct this relation for us (and, if not, can be modified to carry out this construction).
We assume for our paper that TP is constructed by a BDD-based model-checker. It remains
to show how to exploit TP to compute the information leaked by P .

I Example 3. Consider the following Boolean program Pex with global variables: s1, s2, o1
and o2.

o1 = false; o2 = false;
while s1 {};
o1 = false; o2 = s2;
s1 = false; s2 = false;

Here, variables s1 and s2 are high-security input-only variables and o1, o2 low-security input
variables. This is why we initialized o1 and o2 to be false and set s1 and s2 false before the
end of the program. Observe also that the program does not terminate when s1 is true at

R. Chadha, U. Mathur, and S. Schwoon 511

the beginning of the program. Assuming the order s1 < s′1 < s2 < s′2 < o1 < o′1 < o2 < o′2,

the transition relation of P is shown as a 0/1-ADD in Figure 2 (a).

For the rest of the section, unless otherwise stated, we will fix the Boolean program P. We
assume that G = {x1, . . . , xn} is the set of global variables of P and that G′ = {x′1, . . . , x′n}
is a set of distinct variables disjoint from G. The summary of P will be referred to as TP .

Leakage measured using min-entropy. The amount of information leaked by the program
P when using min-entropy as measure of information is as follows. Let post(2G) = {ḡ′ ∈ 2G |
∃ḡ ∈ 2G . P (ḡ) = ḡ′}. If the program P terminates on all inputs then the min-entropy leakage
is log |post(2G)|, otherwise it is log (|post(2G)|+ 1).

Thus, to compute the min-entropy leakage, we need to compute |post(2G)| and check if
there is an input on which the program P never terminates. The following lemma shows
how these two tasks can be achieved using ADDs.

I Lemma 4. Let Tout,P = orAbstract(G, TP) and Tterm,P = orAbstract(G′, TP).
1. |post(2G)| = val(abstract(+,G′, Tout,P)).
2. P terminates on every input iff isConst(Tterm,P) and val(Tterm,P) = 1.

I Example 5. Consider the program Pex in Example 3 with G = {s1, s2, o1, o2}. Observe
that the program terminates only when s1 is false, in which case the final value of s1 is
also false. The initial values of o1 and o2 do not effect the output. The final values of
s2 and o1 are always false. The value of o2 is exactly the value of s2. Thus, there are
two possible outputs (false, false, false, true) and (false, false, false, false), both of
which happen for exactly 4 inputs. The ADD representing Tout,P , the set of all possible
outputs of P is given in Figure 2 (b). Note that o′2 does not appear in the picture because the
then and else branches of o′2 lead to isomorphic subtrees. Observe that abstract(+,G′, Tout,P)
is the constant ADD 2. The ADD Tterm,P representing all possible inputs on which P

terminates is given in Figure 2 (c).

I Theorem 6. For a program P with global variables G = {x1, . . . , xn}, let G′ = {x′1, . . . , x′n}
be a set of distinct variables disjoint from G. Let TP be the summary of P represented as a
0/1-ADD on G ∪ G′. The Algorithm 1 computes MEU(P).

Algorithm 1: Symbolic computation of min-entropy leakage of a deterministic program
Input: G,G′ and TP the summary of P.
Output: MEU(P)

1 begin
2 Tout,P ←− orAbstract(G, TP)
3 numout ←− val(abstract(+,G′, Tout,P))
4 Tterm,P ←− orAbstract(G′, TP)
5 if isConst(Tterm,P) = false or val(Tterm,P) = 0 then
6 numout ←− numout + 1;
7 return log numout

Leakage measured using Shannon entropy. We now consider information leaked by P
when measured using Shannon entropy. We need to compute

∑
ḡ′∈2G′ |P−1(ḡ′)| log|P−1(ḡ′)|

+|P−1(⊥)| log|P−1(⊥)|. In order to compute this sum, we need a new auxiliary definition:

I Definition 7. Let ? : R+ ×R+ → R be the binary operator defined as r1 ? r2 = r1 log r1 +
r2 log r2.

FSTTCS 2014

512 Computing Information Flow Using Symbolic Model-Checking

Algorithm 2: Symbolic computation of Shannon entropy leakage of a deterministic
program

Input: G,G′ and TP the summary of P.
Output: SEU(P)

1 Let n be the number of variables in G.

2 begin
3 Teq-size,P ←− abstract(+,G, TP)
4 sum←− val(abstract(?,G′, Teq-size,P))
5 Tterm,P ←− orAbstract(G′, TP)
6 Tnon-term,P ←− cmpl(Tterm,P)
7 numnon-term ←− val(abstract(+,G, Tnon-term,P))
8 sum←− sum + numnon-term log(numnon-term)
9 return (n− sum

2n)

I Theorem 8. For a program P with global variables G = {x1, . . . , xn}, let G′ = {x′1, . . . , x′n}
be a set of distinct variables disjoint from G. Let TP be the summary of P represented as a
0/1-ADD on G ∪ G′. Algorithm 2 computes SEU(P).

I Example 9. Consider the program Pex in Example 3. Recall that there are two possible
outputs (false, false, false, true) and (false, false, false, false), both of which happen
for exactly 4 inputs. The ADD Teq-size,P for the Pex is depicted in Figure 2 (d). The program
does not terminate whenever s1 is false. The ADD Tnon-term,P is depicted in Figure 2 (e).

4 Experimental evaluation

In this section, we present some results based on our experiments for calculating the different
leakage values using the tool Moped-QLeak. It is based on the existing BDD-based symbolic
model-checker Moped [13]. Moped, apart from providing support for basic Boolean data, also
supports complex data types such as integers of variable length, arrays and C-like structures.
Moped uses the CUDD (Colorado University Decision Diagram) package to implement BDDs.

Moped-QLeak performs basic reachability analysis and generates a summary of an input
program written in Remopla. This summary is then used to calculate the information leakage.
Currently, Moped-QLeak only supports non-recursive programs and is currently available for
download at: http://people.cs.missouri.edu/~chadhar/mql/

Moped translates Remopla programs into BDDs. Moped-QLeak re-uses this as a frontend,
but internally works with the more generic ADDs to carry out the calculations. Other than
that, we made the following optimizations with respect to the standard behavior of Moped.

Algebraic operations: The input language of Moped understands expressions using algebraic
and Boolean operations. However, Moped was not conceived with large integer operands in
mind, and we detected some inefficiencies in these translations for integer operands having
large number of bits. These often drastically affected the overall time taken for calculation
of the summary, in which cases we improved the translation. Also, for the purpose of
experimental evaluation of the efficiency of Moped-QLeak, we encode all the examples with
variables having large range as Boolean programs and note a striking change in the running
times. Furthermore, Moped does not support integers with bit length > 30. Hence, all
examples with bit length > 30 were also coded as Boolean programs.

Size of ADDs and variable orderings: As usual with symbolic methods, their efficiency
is highly sensitive to the size of the decision diagrams generated during the course of the
reachability analysis, which, in turn, may depend on the variable ordering. (Finding the
most efficient ordering is a NP-hard problem). Moped does not automatically determine the

http://people.cs.missouri.edu/~chadhar/mql/

R. Chadha, U. Mathur, and S. Schwoon 513

Table 1 Examples used for evaluation.

Example Order ME SE Time Data types

Illustrative Example I 3 2.03966e-05 0.215 bool
Electronic Purse D 2 2 0.009 5 bit integers (Restricted)
Mix and Duplicate S 16 16 0.041 bool
Binary Search I 16 16 9.307 bool
Sanity Check I 4 1.16797e-7 0.060 bool
Implicit Flow D 2.80735 1.757e-07 0.016 30 bit integers
Implicit Flow D 2.80735 4.67189e-08 0.190 bool
Masked Copy I 16 16 0.038 bool
Sum Query D 4.80735 4.35132 0.034 5 bit integers (Restricted)
Ten Random Outputs D 3.32193 2.6355e-07 0.055 30 bit integers
Population Count I/D out-of-memory bool

best variable ordering and gives the user the flexibility to choose the ordering. Hence, the
examples for which the default ordering of variables (which entails the order of declaration
of the variables in the source file) was the overhead, have been re-written with supposedly
efficient variable orderings. The principal obstacle here is the computation of summary. The
computation of leakage itself adds little overhead.

We illustrate our orderings using the variables O (for public outputs) and S (for private
inputs). Let ON (O1) be the most (least) significant bit of O and likewise SN (S1) the most
(least) significant bit of S. We primarily used two kinds of orderings:

Contiguous ordering: This is the default ordering of the tool, where we set O1 < O′1 <

O2 · · ·O′N < S1 < S′1 < S2 < · · · < S′N .

Interleaved ordering: In this ordering, we set O1 < O′1 < S1 < S′1 < O2 < O′2 < S2 <

S′2 < · · ·ON < O′N < SN < S′N .
The choice of an ordering depends largely on the structure and semantics of the program.
The ADDs produced are generally smaller if a variable v1 is closer to a variable v2 such that
the value of v1 depends on the value of v2. Essentially, as long as variables are compared and
assigned to constants in the program, the default ordering works very well and in that case
we do not even attempt the interleaved ordering. For other examples, typically, we switch to
interleaved ordering as contiguous ordering becomes inefficient very fast with the number
of bits as the ADDs become very large. Going by this, we have also reordered variable
declarations in an example (see Mix and Duplicate below) so that variables with a constant
difference in the indices are closer.

Table 1 presents some selected benchmark programs that we used to test Moped-QLeak.
The examples have been derived from [21]. The experiments were conducted on a 64-bit
Xeon-X5650 2.67GHz Linux machine. Unless otherwise stated, S and O are 32-bit unsigned
integers in all the programs. For each example, we give the name, the ordering, the Shannon
entropy (SE) and min-entropy (ME) leakage values, the execution time of the tool in seconds,
and the data types that occur in the example, which are either all Boolean or integers with a
specified number of bits. If the example uses restricted domains then we mention it in the
data types. The order is either the contiguous default order (D), the interleaved order (I),
or another example-specific order (S). There is one example from [21], Population Count,
for which the computation of summary never succeeds as there is no good variable ordering
for that example. Note that we run the tool to compute the two leakage values separately
and report the worse case. The time difference between the computation of the two values is
almost always within a 3-4 microseconds.

FSTTCS 2014

514 Computing Information Flow Using Symbolic Model-Checking

Mix and Duplicate. The following program copies the XOR of the ith and the (i+ 16)th
bit of S to both the ith and the (i+ 16)th bit of O.

O = ((S >> 16) ^ S) & 0xffff;
O = O | O << 16;

It is thus that the ith and the (i+16)th bits of S and O are closely related. In fact, the ADDs
formed after reordering the variables to O17 < O′17 < O1 < O′1 < S17 < S′17 < S1 · · ·O′16 <

S32 < S′32 < S16 < S′16 have drastic reduction in the number of distinct nodes. Note that
intuitively, half the input bits are leaked in the example (namely the XOR of ith and (i+16)th
bits of S). This intuition is confirmed by the results.

Binary Search. The following program scans the first b bits of the input S and puts a 1 at
the ith bit of O iff the ith bit of S is 1.

O = 0;
for (i = 0; i < b; i++)

{m = 2^(31-i);
if (O + m <= S) O += m; }

For our experiments, we took b = 16. We converted this program to a Boolean program with
an interleaved ordering. We also unrolled the loop for b = 16. Also note that since O is 0 to
start with and m is a power of 2, the addition of O and m can be modelled as bitwise or
of O and m for the purpose of efficiency. It can also be checked (using assertion-checking
in Moped) that the (31 − i)th bit is false before the ith iteration, and thus the carry-bit is
always 0, justifying our simplification. Note that intuitively, half the input bits (the first 16
bits) are leaked by the program. This intuition is confirmed by the results.

Comparison with prototype sqifc [23]. As sqifc provides an automated tool (rather than
just a method), we ran the examples of Table 1 on sqifc. We consistently outperformed the
tool (with sqifc timing out on several examples). However, we point that it is not exactly a
fair comparison as we can guide the efficient computation of the summary by choosing the
variable ordering, which has a considerable effect on our timings. The same optimization
cannot be applied to sqifc because it is based on different concepts.

5 Leakage in probabilistic programs

We also generalized our algorithms for computing information leakage in programs that
allow probabilistic choices. The summary of a probabilistic program is the channel matrix.
The channel matrix on inputs S and outputs O is the S × O matrix such that its (s, o)
entry is the conditional probability of observing o given s. More precisely, for a probabilistic
program P with G = {x1, . . . , xn} as the set of global variables, and G′ = {x′1, . . . , x′n} a
set of distinct variables disjoint from G, the summary of program P , denoted by TP is
the function TP : 2(G∪G′) → R+ such that for every z1, . . . , zn, z

′
1, . . . , z

′
n ∈ {true, false},

TP (z1, . . . , zn, z
′
1, . . . , z

′
n) is the conditional probability that the programs outputs (z′1, . . . , z′n)

given that the input to the program P is (z1, . . . , zn).
Just as the case for non-probabilistic programs, the summary relation for probabilistic

programs can be computed using ADD-based fixed-point algorithms. Once again, we can give
symbolic algorithms to compute the information leaked. We have implemented these symbolic
algorithms in Moped-QLeak (currently we do not support restricted domains for probabilistic

R. Chadha, U. Mathur, and S. Schwoon 515

programs). Moped does not support probabilistic model-checking, so we also implemented
the symbolic fixed-point algorithms for computing the summary also in Moped-QLeak. We
used Moped-QLeak to compute information leakage in the dining cryptographer’s problem.
The symbolic algorithms and the results are discussed in detail in the longer version of the
paper available at http://people.cs.missouri.edu/~chadhar/mql/.

6 Conclusions and future work

We gave symbolic algorithms for computing the information leaked by Boolean programs when
information leakage is measured using min-entropy and Shannon entropy. The advantage of
our approach is that these algorithms can be integrated with any BDD-based model checking
tool that computes reachability in Boolean programs by computing program summaries. We
made such an integration with Moped, with promising experimental results. The leakage
calculations themselves add little overhead. The main limiting factor in these calculations
seems to be the size of the OBDDs constructed in the computation. As is standard with
symbolic approaches, the size of BDDs is sensitive to the variable ordering. Since Moped
by itself does not compute the most efficient ordering (and puts the onus on the user), we
sometimes had to rewrite our examples to achieve good performance. We also generalized
our symbolic algorithms for computing information leakage in probabilistic programs. These
algorithms have also been integrated in Moped.

In order to make symbolic model-checking more amenable to automation, many au-
tomated abstraction refinement techniques have been proposed in literature. We plan to
investigate these techniques for our symbolic algorithms. In particular, we plan to integrate
the counterexample guided abstraction-refinement framework in our symbolic algorithms.
Currently, our implementation only supports non-recursive programs. However, the algo-
rithms we presented for computing information leakage assume only that program summaries
be computed. Thus, in principle, we can support programs that have both recursion and
probabilistic choices, and we plan to extend support to such programs in future.

Acknowledgements. Rohit Chadha was supported by NSF grant CNS 1314338. Umang
Mathur was supported in part by an INRIA student internship. Stefan Schwoon was
supported by an INRIA chaire d’excellence.

References
1 S.B. Akers. Binary decision diagrams. IEEE Trans. Comput., 27(6):509–516, 1978.
2 M.E. Andrés, C. Palamidessi, P. van Rossum, and G. Smith. Computing the leakage of

information-hiding systems. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 373–389, 2010.

3 M. Backes, B. Köpf, and A. Rybalchenko. Automatic discovery and quantification of infor-
mation leaks. In IEEE Symposium on Security and Privacy, pages 141–153, 2009.

4 F. Biondi, A. Legay, L. Traonouez, and A. Wasowski. Quail: A quantitative security
analyzer for imperative code. In Computer Aided Verification, pages 702–707, 2013.

5 R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677–691, August 1986.

6 R. Chadha, D. Kini, and M. Viswanathan. Quantitative information flow in boolean pro-
grams. In Principles of Security and Trust, pages 103–119, 2014.

7 K. Chatzikokolakis, T. Chothia, and A. Guha. Statistical measurement of information
leakage. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 390–404, 2010.

FSTTCS 2014

http://people.cs.missouri.edu/~chadhar/mql/

516 Computing Information Flow Using Symbolic Model-Checking

8 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Probability of error in information-
hiding protocols. In IEEE Computer Security Foundations Symp., pages 341–354, 2007.

9 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. Anonymity protocols as noisy
channels. Information and Computation, 206(2-4), 2008.

10 T. Chothia, Y. Kawamoto, C. Novakovic, and D. Parker. Probabilistic point-to-point
information leakage. In IEEE Computer Security Foundations Symp., pages 193–205, 2013.

11 D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information flow in
a simple imperative language. Journal of Computer Security, 15(3):321–371, 2007.

12 E.M. Clarke, K. L. Mcmillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for large
boolean functions with applications to technology mapping. Formal Methods in System
Design, 10(2-3):137–148, 1997.

13 J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig interpolation
and symbolic pushdown systems. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, LNCS 3920, pages 489–503, 2006.

14 A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for automatic
verification of probabilistic systems. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 441–444, 2006.

15 V. Klebanov. Precise quantitative information flow analysis using symbolic model counting.
1st International Workshop on Quantitative Aspects of Security Assurance, 2012.

16 V. Klebanov, N. Manthey, and C. J. Muise. SAT-based analysis and quantification of
information flow in programs. In International Conference on Quantitative Evaluation of
Systems, pages 177–192, 2013.

17 B. Köpf and D.A. Basin. An information-theoretic model for adaptive side-channel attacks.
In ACM Conference on Computer and Communications Security, pages 286–296, 2007.

18 B. Köpf and A. Rybalchenko. Approximation and randomization for quantitative
information-flow analysis. In IEEE Computer Security Foundations Symp., pages 3–14,
2010.

19 C.Y. Lee. Representation of switching circuits by binary-decision programs. Bell System
Technical Journal, 38:985–999, 1959.

20 Z. Meng and G. Smith. Faster two-bit pattern analysis of leakage. 2nd International
Workshop on Quantitative Aspects of Security Assurance, 2013.

21 Z. Meng and G. Smith. Calculating bounds on information leakage using two-bit patterns.
In Workshop on Programming Languages and Analysis for Security, 2011.

22 J.K. Millen. Covert channel capacity. In IEEE Symposium on Security and Privacy, pages
60–66, 1987.

23 Q. Phan and P. Malacaria. Abstract model counting: a novel approach for quantification
of information leaks. In ACM Symposium on Information, Computer and Communications
Security, pages 283–292, 2014.

24 J.M. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for
Analyzing Concurrent and Probabilistic Systems. AMS, 2004.

25 G. Smith. On the foundations of quantitative information flow. In International Conference
on Foundations of Software Science and Computation Structures, pages 288–302, 2009.

26 P. Černý, K. Chatterjee, and T.A. Henzinger. The complexity of quantitative information
flow problems. In IEEE Computer Security Foundations Symposium, pages 205–217, 2011.

27 H. Yasuoka and T. Terauchi. Quantitative Information Flow – Verification Hardness and
Possibilities. In IEEE Computer Security Foundations Symposium, pages 15–27, 2010.

28 H. Yasuoka and T. Terauchi. Quantitative information flow as safety and liveness hyper-
properties. In Quantitative Aspects of Programming Languages and Systems, pages 77–91,
2012.

Information Leakage of Non-Terminating
Processes∗

Fabrizio Biondi1, Axel Legay1, Bo Friis Nielsen2,
Pasquale Malacaria3, and Andrzej Wąsowski4

1 INRIA Rennes, France, {fabrizio.biondi,axel.legay}@inria.fr
2 Technical University of Denmark, Denmark, bfn@imm.dtu.dk
3 Queen Mary University of London, p.malacaria@qmul.ac.uk
4 IT University of Copenhagen, Denmark, wasowski@itu.dk

Abstract
In recent years, quantitative security techniques have been providing effective measures of the
security of a system against an attacker. Such techniques usually assume that the system produces
a finite amount of observations based on a finite amount of secret bits and terminates, and the
attack is based on these observations. By modeling systems with Markov chains, we are able to
measure the effectiveness of attacks on non-terminating systems. Such systems do not necessarily
produce a finite amount of output and are not necessarily based on a finite amount of secret bits.
We provide characterizations and algorithms to define meaningful measures of security for non-
terminating systems, and to compute them when possible. We also study the bounded versions
of the problems, and show examples of non-terminating programs and how their effectiveness in
protecting their secret can be measured.

1998 ACM Subject Classification D.4.6 Security and Protection, G.3 Stochastic Processes, H.1.1
Systems and Information Theory

Keywords and phrases Quantitative information flow, Markov chain, information leakage, infin-
ite execution

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.517

1 Introduction

Information-theoretical quantitative security techniques evaluate the effectiveness of a system
in protecting a secret it depends on. Given a known finite size of a secret in bits, they
quantify how many bits of the secret can be inferred by an attacker able to observe the
system’s output. This value is referred to as information leakage, or just leakage. Leakage
quantification techniques have been successfully applied to security problems, including
proving the effectiveness of bug fixes to the Linux kernel [10], quantifying anonymity [6], and
analyzing side channel attacks to the cache of a processor [11].

The theory behind these techniques commonly assumes that the program under analysis
terminates at some point, and the computed leakage corresponds to the amount of information
that the attacker gains at program termination time. When the secret does not change
during computation, a program can be modeled as a channel matrix, assigning the conditional
probability of each possible output for each possible input. The size of the channel matrix is

∗ The research presented in this paper has been partially supported by the MEALS project and by the
MSR-INRIA project “Privacy-Friendly Services and Apps”.

© Fabrizio Biondi, Axel Legay, Bo Friis Nielsen, Pasquale Malacaria, and Andrzej Wąsowski;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 517–529

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.517
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

518 Information Leakage of Non-Terminating Processes

Secret Observation Leakage Leakage rate Reference

Finite Finite Finite 0 Paper [4]
Finite Infinite Finite 0 Section 3
Infinite Finite Finite 0 Section 3
Infinite Infinite Pot. infinite Finite Section 4

Figure 1 Leakage of various process topologies.

usually exponential in both secret and output size. We have previously proposed the use of
Markovian models instead to overcome this problem [4].

Markovian models can also be conveniently used to model non-terminating processes,
something finite-size channel matrices cannot do. This allows us to study leakage properties
of systems like webservices, server modules and operating system daemons.

In this paper we provide techniques and algorithms to quantify the Shannon leakage
and leakage rate of non-terminating processes. Shannon leakage has a clear operational
significance related to the number of attempts that an attacker has to try to guess a secret [13].
Other measures exist, modeling different security properties (e. g. [16]). Our contributions
are:

We characterize program-attacker scenarios according to the finiteness of the system’s
secret and the finiteness of the attacker’s observation. We show how this characterization
influences the finiteness of the information leakage in the scenario.
We provide a method to compute information leakage of a scenario with either an infinite
secret or an infinite observation. Such scenarios cannot even be modeled with a finite
size channel matrix. We demonstrate this method with an example.
We provide a method to compute the rate of information leakage per time unit, when
the leakage itself is infinite. This is the case when a scenario has an infinite secret and
an infinite observation, as is common e. g. in webservices. We demonstrate this method
using a mix node as an example.
We provide an algorithm to compute how much information is leaked from a given time
to another given time.
We show that determining the exact time in which a given amount of information is
leaked is hard, by reduction to the knowingly hard to decide Skolem’s problem.

We distinguish four possible scenarios, according to whether the observation by the
attacker is finite or infinite and whether the secret itself is finite or infinite. The cases are
summarized in Fig. 1. The case with finite observation over a program depending on a finite
secret is the terminating case we considered previously [4], while the others will be considered
in this paper. When only one of observation or secret is finite the leakage is finite but cannot
be computed using the method we introduced previously [4], thus we provide a new technique
in Section 3. When both observation and secret are infinite, the leakage is potentially infinite.
In this case we compute the rate of leakage, i. e. the amount of information leaked for each
time unit. Intuitively, this quantifies the average amount of information the attacker infers
for each time unit over an infinite time. This is presented in Section 4. In Section 5 we
analyze how much information is leaked in a given time frame and how much time it takes
to leak a given amount of information. Section 6 concludes the paper and discusses related
work.

F. Biondi, A. Legay, B. F. Nielsen, P. Malacaria, and A. Wąsowski 519

2 Background

We refer to literature [8] for the definitions of sample space S, probability of event P (E)
and so on. X is a discrete stochastic process if it is an indexed infinite sequence of discrete
random variables (X0, X1, X2, . . .). A discrete stochastic process is a Markov chain C =
(C0, C1, C2, . . .) iff ∀k ∈ N. P (Ck|Ck−1, Ck−2, . . . , C1, C0) = P (Ck|Ck−1). A Markov chain
on a sample space S can also be defined as follows:

I Definition 1. A tuple C = (S, s0, P) is a Markov Chain (MC), if S is a finite set of
states, s0∈S is the initial state and P is a single |S| × |S| probability transition matrix, so
∀s, t∈S. Ps,t≥0 and ∀s∈S.

∑
t∈S Ps,t = 1.

The probability of transitioning from any state s to a state t in k steps can be found as
the entry of index (s, t) in P k [8]. We write π(k) for the probability distribution vector over
S at time k and π(k)

s the probability of visiting the state s at time k; note that π(k) = π0P
k,

where π(0)
s is 1 if s = s0 and 0 otherwise. A probability distribution π̄ over the states of

the chain is stationary if π̄ = π̄P . Given an initial distribution π(0) we compute the unique
stationary limit distribution µ as µ = limk→∞ π(0)P k.

We write ξs for the expected residence time of state s ∈ S: ξs =
∑∞

k=0 P
k
s0,s. A state

s ∈ S is absorbing if Ps,s = 1. In the figures we do not draw the looping transition of the
absorbing states, to reduce clutter.

We will enrich our Markovian models with a finite set V of natural-valued variables, and
for simplicity we assume that there is a very large finite bit-size M such that a variable is
at most M bit long. We define an assignment function A : S → [0, 2M − 1]|V| assigning to
each state the values of the variables in that state. We write v(s) to denote the value of the
variable v ∈ V in the state s ∈ S. Consider a stochastic process representing the value of
a variable v over time, derived fro the behavior of a Markov chain labeled with valuations
of this variable. We will call this process the marginal process, or just marginal, C|v on v,
formally:

I Definition 2. Let C = (S, s0, P) be a Markov chain and v ∈ V a variable. Then we define
the marginal process C|v of C on v as a stochastic process (v1, v2, . . .) where ∀n. P (vk = n) =∑
{s|v(s)=n} π

(k)
s

We will use v to denote the marginal process when it is clear from the context that we
refer to it. Note that C|v is not necessarily a Markov chain. When it is, it can be drawn
like in Fig. 3bcd. In the paper we will allow assignments of sets of values to variables and
marginals on sets of variables; such extensions are straightforward, since multiple variables
can be seen as a single variable on their product space. Assume that the system modeled by
C has a single secret variable h and a single observable variable o. Then the distributions over
the marginal processes C|h and C|o model the behavior of the secret and observable variable
respectively at each time step, and their correlation quantifies the amount of information
about the secret that can be inferred by observing the observable variable.

Entropy is a measure of the uncertainty of a probability distribution. The following
definitions are standard:

I Definition 3 ([8]). Let X and Y be two random variables with probability mass functions
p(x) and p(y) respectively and joint probability mass function p(x, y). Then we define the
following non-negative real-valued functions:

Entropy H(X) = −
∑

x∈X p(x) log2 p(x)
Joint entropy H(X,Y) = −

∑
x∈X

∑
y∈Y p(x, y) log2 p(x, y)

FSTTCS 2014

520 Information Leakage of Non-Terminating Processes

Conditional entropy H(X|Y) = −
∑

x∈X

∑
y∈Y p(x, y) log2 p(x|y) =

=
∑

y∈Y p(y)H(X|Y = y) = −
∑

y∈Y p(y)
∑

x∈X p(x|y) log2 p(x|y) =
= H(X,Y)−H(Y) (chain rule)
Mutual information I(X;Y) =

∑
x∈X

∑
y∈Y p(x, y) log2

(
p(x,y)

p(x)p(y)

)
=

= H(X) +H(Y)−H(X,Y) ≤ min(H(X), H(Y))
Mutual information can be generalized to two vectors of random variables X̄, Ȳ as I(X̄; Ȳ) =∑

x̄∈X̄

∑
ȳ∈Ȳ p(x̄, ȳ) log2

(
p(x̄,ȳ)

p(x̄)p(ȳ)

)
.

I Definition 4. [8] Let X = (X1, X2, . . .) and Y = (Y1, Y2, . . .) be two stochastic processes.
Then we define the following non-negative real-valued functions:

Entropy H(X) = limk→∞H(X1, X2, . . . , Xk)
Entropy rate H̄(X) = limk→∞

1
kH(X1, X2, . . . , Xk) when the limit exists

Mutual information I(X ;Y) = limk→∞ I(X1, X2, . . . , Xk;Y1, Y2, . . . , Yk)
Mutual information rate Ī(X ;Y) = limk→∞

1
k I(X1, X2, . . . , Xk;Y1, Y2, . . . , Yk) when the

limit exists

Entropy and mutual information of stochastic processes always exist, as shown in Section
3. Entropy rate and mutual information rate may not exist in general, but exist when the
stochastic processes are Markov chains [8]; we discuss them in Section 4.

Since every state s in a MC C = (S, s0, P) has a discrete probability distribution over the
successor states we can calculate the entropy of this distribution, the local entropy:

I Definition 5. Let C = (S, s0, P) be a Markov chain. Then for each state s ∈ S we define
the local entropy of s as L(s) = −

∑
t∈S Ps,t log2 Ps,t

Note that L(s) ≤ log2(|S|) [5]. If a stochastic process is a Markov chain C, its entropy H(C)
can be computed by considering the local entropy L(s) as the expected reward of a state
s and then computing the expected total reward of the chain [5]: H(C) =

∑
s∈S L(s)ξs.

It is also known that the entropy rate can be computed similarly by summing the local
entropies of each state weighted by the state’s probability in the limiting distribution [8]:
H̄(C) =

∑
s∈S L(s)µs.

In this paper we use information theory to compute the amount of bits of a secret variable
h that can be inferred by an attacker able to observe the value of an observable variable
o at any moment in time. We call this amount Shannon leakage or just leakage, and it
corresponds to the mutual information I(C|o, C|h) between the marginal on the secret and
the marginal on the observable variable.

Operationally, Shannon leakage is related to the number of attempts that an attacker has
to do to guess the value of the secret. Other leakage measures exist, but Shannon leakage is
the only one for which the chain rule of Definition 3 holds; since the chain rule is used in
many results in this work, we do not expect such results to extend to other leakage measures.

The modeling of a process as a Markov chain in our context starts by dividing the
variables in private and public variables. Private variables, including the secret variable h,
are the ones whose value is not defined at compilation time. In each state of the Markov
chain a set of allowed values is assigned to each private variable. Public variables, including
the observable variable o and the program counter pc, are variables whose value is known to
the analyst. On each state a given value is assigned to each public variable.

Given the source code and a prior distribution over the private variables, we have enough
information to build a Markov chain representing the semantics, since for each state we can
determine its successor states and the corresponding transition probabilities. We show a

F. Biondi, A. Legay, B. F. Nielsen, P. Malacaria, and A. Wąsowski 521

1 secret int1 h;
2 observable int1 o;
3 public int1 r;
4 random r := randombit (0.75) ;
5 assign o := h ^ r;
6 return ;

Figure 2 Bit XOR example: source code.

Figure 3 Bit XOR example: a) Markov chain semantics C. b) Joint marginal C|(o,h). c) Secret’s
marginal C|h. d) Observer’s marginal C|o.

simple example, and refer to [4] for the complete semantics. The source code for the example
is shown in Fig. 2 and the corresponding Markov chain semantics in Fig. 3a.

Let h be a secret bit, o an observable bit and r a random bit being assigned the value 0
with probability 0.75 and 1 otherwise. We assign to o the result of the exclusive OR between
h and r and terminate. We want to quantify the amount of information about h that can be
inferred by knowing the value of o.

To compute the leakage we need to compute three marginals from the Markov chain
semantics:
Joint marginal The joint marginal process C|(o,h) models the joint behavior of the secret

and observable variables. It is shown in Fig. 3b.
Secret’s marginal The secret’s marginal process C|h models the behavior of the secret

variable. It is shown in Fig. 3c.
Observer’s marginal The observer’s marginal process C|o models the behavior of the observ-

able variable. It is shown in Fig. 3d.
Finally we compute the mutual information between the secret and observable variable
using the formula I(X;Y) = H(X) + H(Y) − H(X,Y), obtaining I(o; h) = I(C|o; C|h) =
H(C|o) +H(C|h))−H(C|(o,h))) = 1 + 1− 1.8112 . . . ≈ 0.1887 bits, proving that the program
leaks ≈ 0.1887 bits, or 18.87% of the secret.

3 Non-terminating Processes with Finite Leakage

The Markov chain semantics of the system describes the joint behavior of all variables. To
compute information leakage we are only interested in the secret and the observable variables,

FSTTCS 2014

522 Information Leakage of Non-Terminating Processes

so we can restrict to them only for simplicity. We assume that the system has a single
secret variable h with uniform prior distribution and a single observable variable o, but the
procedure does not change for multiple secret or observable variables. We remark that, even
though the attacker can perform multiple observations, we do not model the case in which
the attacker actually interacts with the system. In such case directed information would
have to be used as the leakage metric instead of mutual information. We refer to Alvim et
al. [2] for the details.

The behavior of the secret variable h is modeled by the marginal C|h, and similarly the
behavior of o is modeled by C|o and the joint behavior of the two variables by C|o,h. The
following lemma shows the existence of the entropy values of such marginals and a sufficient
condition for the finiteness of their mutual information:

I Theorem 6. Let C = (S, s0, P) be a Markov chain with secrets and observations and C|o
and C|h its marginals on the observable and secret variables, respectively. Then:

H(C|o), H(C|h) and I(C|o; C|h) exist;
H(C|o) <∞∨H(C|h) <∞⇒ I(C|o, C|h) <∞

Intuitively, if H(C|o) < ∞ and H(C|h) = ∞ then there is an infinite number of secret
bits but only a finite amount of observations we can analyze. In the opposite case where
H(C|o) =∞ and H(C|h) <∞ we can analyze an infinite number of observations, but there is
only a finite amount of secret bits to be discovered.

If eitherH(C|o)=∞ orH(C|h)=∞ thenH(C|o,h)=∞, sinceH(X,Y)≥max(H(X), H(Y)).
It follows that if either the observation or the secret are infinite but not both, the formula
I(C|o, C|h) = H(C|o) +H(C|h)−H(C|o,h) will produce an indeterminate form ∞−∞ and thus
cannot be directly used to compute the leakage. Nonetheless, in both cases leakage has a
finite value by Theorem 6.

If any marginal is a Markov chain, it is possible to compute its entropy in polynomial
time in the size of the chain [5]. Otherwise, consider that the entropies of the marginals
are limit computations, since H(C|v) = limk→∞H(v1, . . . , vk). This allows us to compute
mutual information using the limit of the entropies of the marginal processes:

I(C|o; C|h) = lim
k→∞

I(o1, . . . , ok; h1, . . . , hk)

= lim
k→∞

(H(o1, . . . , ok) +H(h1, . . . , hk)−H((o, h)1, . . . , (o, h)k))

The limit above computes information leakage in any case, but is not always the most
efficient option available. When it is known that the secret (resp. observation) is finite,
it is more efficient to use the formula I(C|o; C|h) = H(C|h) −H(C|h|C|o) (resp. I(C|o; C|h) =
H(C|o)−H(C|o|C|h)). Remember that when both secret and observation are finite the process
terminates, so the procedure we proposed in [4] can be used with some additional assumptions.

3.1 Example: A Non-terminating Program on a Finite Secret
We now solve a case in which the secret is finite and Markovian and the observation infinite.
Consider a program (Figure 4) with a secret bit h. If h is 0 the program produces an infinite
string of zeroes and ones with the same probability 0.5, starting with a zero. If h is 1 the
program also produces a string of zeroes and ones starting with a zero, but the probability
that it will produce a zero is 0.75. Note that this program cannot be encoded as a finite
channel matrix, as it has an infinite amount of possible outputs.

An attacker may be able to observe this infinite string and infer information about
the secret by studying the frequencies of zeroes and ones. The attacker starts with no

F. Biondi, A. Legay, B. F. Nielsen, P. Malacaria, and A. Wąsowski 523

1 secret int1 h;
2 if (h==0) then
3 observable int1 o:=0;
4 while (0==0) do
5 random o:= randombit

(0.5);
6 od
7 else
8 observable int1 o:=0;
9 while (0==0) do

10 random o:= randombit
(0.75) ;

11 od
12 fi
13 return ;

b)a)

Figure 4 Non-terminating leaking program example. On the left: program code. On the right:
Markov chain semantics a) joint marginal C|o,h b) secret’s marginal C|h.

knowledge of the secret, which is encoded as an initial uniform distribution over the secret
bit h. Reasonably, an attacker observing the output for an infinite time would be able to
decide whether the frequency of zeroes is 0.5 or 0.75 and infer the value of h consequently.
The Markov chain semantics for it is shown in Fig. 4a on the right.

Since h1 = h2 = h3 = . . . we will just call it h. The behavior of h is modeled by the
Markov chain in Fig. 4b on the right, and its entropy is H(h) = 1 bit. H(C|h|C|o) corresponds
to limk→∞H(h|o1, . . . , ok).

We compute H(h|o1, . . . , ok) for k → ∞. Note that at time 1 o is always 0, then it
changes randomly depending on the value of h. We will write down the joint distribution
of h and o as a function of k and use it to compute the marginal over o and finally the
conditional entropy.

The joint distribution of h and o is shown in the Appendix due to space constraints. Now
let wk ∈ {0, 1}k be a sequence of k bits. Consider the formula for conditional entropy:

H(h|o1, . . . , ok) =
∑

wk∈{0,1}k

P (o1, . . . , ok = wk)H(h|o1, . . . , ok = wk) (1)

In our case it holds that H(h|o) = limk→∞H(h|o1, . . . , ok) = 0 thus I(o; h) = H(h) −
H(h|o) = 1 − 0 = 1 bit. The leakage of the program in Fig. 4 is 1 bit, proving that an
attacker able to analyze the bit streams produced by the system will eventually learn the
value of the secret h with an arbitrary confidence. Note that this considers an attacker able
to observe the system for an infinite time.

More importantly, note that the marginal process of o is not a Markov chain. This
depends on the fact that the joint distribution depends also on the information that the
attacker has about h, so while the attacker gathers information about o and h the joint
distribution changes and thus the marginal distribution of o changes also. Nonetheless, the
marginal process can be represented in a closed form like the one in Fig. 4.

4 Leakage Rate of a Markov Chain

In the case in which H(C|o) =∞ and H(C|h) =∞, i. e. when the secret is an infinite number
of bits and the observer can observe it for an infinite time, then the leakage I(o, h) can be
infinite. In this case it is more interesting to compute how much information the process

FSTTCS 2014

524 Information Leakage of Non-Terminating Processes

Data: A Markov Chain C = (S, s0, P) and its initial probability distribution π(0).
Result: The limit probability distribution µ of the chain.

1 foreach transient state t do
2 µt ← 0;
3 foreach u ∈ S \ {t} do
4 π

(0)
u ← π

(0)
u + π

(0)
t

Pt,u

1−Pt,t

5 foreach s ∈ S \ {t} do
6 Ps,u ← Ps,u + Ps,t

Pt,u

1−Pt,t

7 Ps,t ← 0
8 end
9 end

10 end
11 foreach end component Ri do
12 Let π(∞)

Ri
=
∑

r∈Ri
π

(0)
s and Ei be a system of linear equations;

13 foreach r ∈ Ri do Add to Ei the equation µr =
∑

r′∈Ri
µr′Pr′,r ;

14 Solve the system E’ under the condition
∑

r∈Ri
µr = π

(∞)
Ri

to obtain µr for each
r ∈ Ri;

15 end
Algorithm 1. Compute the limit distribution of a Markov chain.

leaks for each time step. This quantity is known as leakage rate, and corresponds to the
mutual information rate of the secret and observable.

Note that the computation of leakage as a rate over time assumes that the attacker is able
to keep track of the discrete time, so in this section we will assume that every constant-time
operation takes 1 time step. This can be equivalently stated as saying that all transitions
between states of the Markov chain semantics represent observable steps.

To compute leakage rate, we encode the process-attacker scenario with a Markov chain
as shown in Section 2 and compute the joint, secret and attacker’s marginal, which may
not be Markovian. Then we can use the marginals to compute leakage rate by applying the
following definition:

I Definition 7. Let C = (S, s0, P) be a Markov chain and C|o,h, C|o and Ch its marginals
on (o,h), o and h respectively. Then the leakage rate Ī is defined as Ī(C|o; Ch) = H̄(C|o) +
H̄(C|h)− H̄(C|o,h).

Leakage rate can also be computed as a limit, since

Ī(C|o; C|h) = lim
k→∞

I(o1, . . . , ok; h1, . . . , hk)
k

= lim
k→∞

(H(o1, . . . , ok) +H(h1, . . . , hk)−H((o, h)1, . . . , (o, h)k))
k

when the limit exists.
Generally both entropy and leakage rate could be infinite, for instance for a program that

leaks 1 bit at time 1, 2 bits at time 2, and so on, the leakage rate would be infinite. Since we
postulated that there exists a very large but finite maximum size M for the variables declared
in the system, it is impossible to declare an unbounded amount of secret or observable bits on
each step of the program execution. We do not think that this restriction limits significantly

F. Biondi, A. Legay, B. F. Nielsen, P. Malacaria, and A. Wąsowski 525

the programs that can be analyzed, while guaranteeing that the entropy and leakage rate do
not diverge to positive infinity is a significantly useful result.

Both entropy rate and leakage rate may still oscillate, even though since they are defined
in terms of Cesàro limits this happens only in pathological cases. We do not expect these
cases to be common in normal secret-dependent systems, and leave finding a meaningful
measure of leakage for these cases an open problem. This reflects similar issues in related
definitions of leakage rate [7, 12].

A case in which both entropy and leakage rate exist is when the marginal processes
modeling the behavior of the observable and secret variables are both Markovian. Intuitively,
this happens when the secret gets periodically replaced with a new one, and thus the
information the attacker has on it is reset to the prior information. We will show this with
an example in Section 4.1.

When any of the marginals is a Markov chain it is possible to compute its entropy rate
efficiently as H̄(C) =

∑
s∈S L(s)µs, where µ is the limit distribution of the chain. The

entropy rate of a Markov chain with a given initial probability distribution π(0) exists and is
unique [8].

Computing the limit distribution can be accomplished on irreducible Markov chains by
solving a system of linear equations, but the Markov chains we consider are usually reducible,
so a new algorithm is required. Algorithm 1 computes the limit distribution of any Markov
Chain C = (S, s0, P). The algorithm uses the well-established concept of end components of
a MC; each end component Ri behaves as an irreducible MC, so it is sufficient to compute
the probability π(∞)

Ri
of eventually visiting Ri and redistribute π(∞)

Ri
among the states of Ri

by solving a system of linear equations.

I Theorem 8. Algorithm 1 terminates in polynomial time in |S| and when it does it returns
the limit distribution µ.

Due to space constraints we refer to the Appendix for the proof of this theorem and a
full explanation of the steps of Algorithm 1.

Since computing the local entropy of each state in time O(|S|2) is trivial, the formula
H̄(C) =

∑
s∈S L(s)µs can be used to compute entropy rate of a Markov chain in polynomial

time. Note that this is a particular case of the computation of an expected infinite-horizon
reward rate of a reward function defined on the transitions of a Markov chain.

Having computed the entropy rates of the joint, secret and attacker’s marginals we can
apply Definition 7 to obtain the leakage rate of the system.

4.1 Example: Leaking Mix Node Implementation
We show an example of a program leaking an infinite amount of information and we compute
its leakage rate using the method described above.

A mix node [9] is a program meant to scramble the order in which packages are routed
through a network, to increase the anonymity of the sender. Even if the packages are
encrypted, some information about the sender could be inferred by observing the order in
which they are forwarded. A mix node changes this order to a random one, thus making it
harder for an attacker to connect each package to its sender.

A mix node waits until it has accumulated a fixed amount of packages, and then forwards
them in a random order. If the exit order of the packages is independent from the entrance
order, then no information about the latter can be inferred by observing the former. We
will present an implementation of a mix node where the entrance and exit order are not
independent and compute the rate of the information leakage.

FSTTCS 2014

526 Information Leakage of Non-Terminating Processes

1 secret int3 inorder ;
2 public int3 rand;
3 observable int3 outorder ;
4 while (0==0) do
5 assign inorder := [0 ,5];
6 random rand := random (0 ,5);
7 assign outorder :=
8 (inorder ^ rand)%6;
9 od

10 return ;

Figure 5 A leaking implementation of a mix node.

The implementation of the mix node is shown in Fig. 5. This particular node waits until
it has accumulated 3 packages and then sends them in a random order. Naming the packages
A, B and C there are 6 possible entrance orders: ABC, ACB, BAC, BCA, CAB, and CBA.
We will number them from 0 to 5.

In line 5 of the code a random number from 0 to 5 is assigned to the secret variable
inorder, modeling the secret entrance order. Then in line 6 a random value uniformly
distributed from 0 to 5 is assigned to the variable rand. Finally, in line 7 the bitwise exclusive
OR modulo 6 of the variables inorder and rand is assigned to the observable variable
outorder, which represents the order in which the packages exit from the mix node and is
observable to the attacker. After producing an exit order the mix node receives three more
packages in a new entrance order, scrambles them the same way and forwards them, and so
on forever.

Assume that the prior distribution over the input order is uniform. The resulting
probability distribution on the exit order is P (outorder) = {0 7→ 5/18, 1 7→ 5/18, 2 7→
2/18, 3 7→ 2/18, 4 7→ 2/18, 5 7→ 2/18}. This depends on the fact that bitwise OR and modulo
operations do not preserve distribution uniformity.

The Markov chain semantics of the system has more than 300 states. It can be computed
and analyzed automatically in less than a second. Assuming that each line of code is
executed in one time step, the entropy rates of the marginals are H̄(inorder) = 0.86165 . . .
bits, H̄(outorder) = 0.82766 . . . and H̄(inorder, outorder) = 1.59367 . . ., giving a leakage
rate of Ī(inorder; outorder) = H̄(inorder) + H̄(outorder) − H̄(inorder, outorder) =
0.86165 . . .+ 0.82766 . . .− 1.59367 . . . ≈ 0.09564 bits.

The leakage rate for each time unit is ≈ 0.09564 bits. Since the entropy rate of the secret
is ≈ 0.86165 bits, we can conclude that this implementation of a mix node has a rate of
leakage 0.09564/0.86165 ≈ 11.1% of each of its infinite secrets.

Note that in this simple case the loop always takes 3 time units to complete, so it would
have been possible to just compute the leakage of one loop and divide it by 3, but in general
loops do not compute for a fixed number of time units, e. g. if they contain multiple return
statements.

5 Bounded Time/Leakage Analysis

We consider two similar bounded approaches to the leakage problem: computing the leakage
of a Markov chain within a given time frame, or computing how long it takes for the Markov
chain to leak a given amount of information.

F. Biondi, A. Legay, B. F. Nielsen, P. Malacaria, and A. Wąsowski 527

Data: A Markov Chain C = (S, s0, P) with the variables o and h, two integers t1 and
t2 satisfying t1 ≤ t2.

Result: The leakage from time t1 to time t2 I(t1,t2)(o, h)
1 for x ∈ {o, h, (o, h)} do
2 Compute the marginal C|x, and let π(t1)

|x be the probability distribution over its
states at time t1 and H(t1)(C|x) = H(π(t1)

|x);
3 end
4 Compute I(t1,t1) = H(t1)(C|o) +H(t1)(C|h)−H(t1)(C|o,h);
5 for i = t1 + 1 to t2 do
6 for x ∈ {o, h, (o, h)} do
7 H(i)(C|x)← H(i−1)(C|x) +

∑
s∈S|x

π
(i−1)
|x (s)L|x(s);

8 π
(i)
|x ← π

(i−1)
|x P

(i−1,i)
|x ;

9 end
10 I(t1,i) ← H(i)(C|o) +H(i)(C|h)−H(i)(C|o,h);
11 end
12 return I(t1,t2);

Algorithm 2. Compute the leakage of a MC from a time t1 to a time t2.

5.1 Bounded Time
We want to compute the leakage for an attacker that is able to observe the behavior of the
program for t <∞ time units. We abstract time by considering each time unit as a step in
the evolution of the Markov chain modeling the system. The definition of mutual information
from a time t1 to a time t2 > t1 is as follows:

I Definition 9. Let X and Y be two stochastic processes. Then the mutual information
between Xi and Yi from time t1 to time t2 is I(Xt1 , . . . , Xt2 ;Yt1 , . . . , Yt2) = H(Xt1 , . . . , Xt2)+
H(Yt1 , . . . , Yt2)−H(Xt1 , . . . , Xt2 , Yt1 , . . . , Yt2)

We will refer to it as I(t1,t2)(X ;Y) for simplicity.
Consider as usual the Markov chain semantics C = (S, so, P) modeling the behavior of

the system. We present an iterative algorithm to compute I(t1,t2)(o, h) in time O(t2|S|2):
the algorithm first computes the distribution at time t1 and then computes the behavior of
the chain until time t2 while keeping track of the amount of leakage accumulated. In the
algorithm let S|x be the state space of the marginal, π(i)

|x the distribution on the marginal at
time i, and P (i,j)

|x the probability of transitioning from i to j in the marginal.

I Theorem 10. Algorithm 2 terminates in time O(t2|S|2) and when it does it outputs
I(t1,t2)(o, h).

Note that Algorithm 2 is pseudopolynomial, as it depends not only on the size of the
chain but also on the parameter t2. Also note that due to the Markov property it holds that
I(t1,t2) = I(t′

1,t′
2) whenever π(t1)

|o,h = π
(t′

1)
|o,h and t2 − t1 = t′2 − t′1.

5.2 Bounded Leakage
We want to determine how many time units it takes for the system to leak a given amount c
of bits of information. The problem is more complex than the one analyzed in the previous

FSTTCS 2014

528 Information Leakage of Non-Terminating Processes

section, since leakage is a complex function of the behavior of the system in time and finding
a way to bound or reverse it is not obvious.

We start by considering the qualitative version of the problem: does there exist a time t
such that It(CO, Ch) ≥ c? To answer we note that the the sequence of leakages is monotonic
non-decreasing over time, so if the answer is yes then the leakage will remain greater than
c for each time t′ ≥ t. This allows us to answer the qualitative question by computing the
leakage on the infinite time horizon as shown in Section 3; let it be l∞. If l∞ < c then there
is no time t such that the leakage is c, while if l∞ > c then such time exists. If l∞ = c

then the system leaks c bits on the infinite time horizon but we have no guarantee that this
amount will be reached in finite time.

In the case in which l∞ ≥ c we can ask the quantitative question, i. e. at what time
t the system will have leaked at least c bits. If l∞ > c we know that such time t exists,
while if l∞ = c it may not. We will define the bounded leakage problem as follows: given a
Markov chain C = (S, s0, P) labeled with secrets and observations and a positive real number
c, determine if there exists a finite time t such that the information leakage of the chain at
time t is exactly c.

The problem is harder than it seems. For deterministic programs, it has been shown
by Terauchi that it is not a k-safety property for any k [17]. The problem has also been
addressed computationally by Heusser and Malacaria [10]. For randomized programs, we will
show that the problem can be reduced from Skolem’s problem [14]. While smaller instances
have been shown to be decidable, the full decidability of Skolem’s problem is still an open
question [15]. Akshay et al. [1] show that Skolem’s problem is equivalent to the following:
given a Markov chain C = (S, s0, P), a state s and a probability r determine whether there
is a time t such that π(t)

s = r. We will call this Skolem’s Markov chain reachability problem.
Intuitively, information leakage is a harder problem than reachability, as formally stated by
the following theorem:

I Theorem 11. Let A be an algorithm deciding the bounded leakage problem. Then A decides
Skolem’s Markov chain reachability problem.

6 Conclusions and Related Work

We have shown how to provide meaningful measures of the effectiveness of a secret-dependent
non-terminating program in protecting its secret, by computing Shannon leakage when its
value is finite and Shannon leakage rate otherwise. Operationally, Shannon leakage is related
to the expected number of guesses it will take for the attacker to find out the secret’s value,
so leakage and leakage rate can be used to understand the amount of time that the attacker
will require to infer the system’s secret [13]. To the same aim, we provided an algorithm
that computes the amount of leakage from a program in a given time frame. Finally, we
have shown that a precise quantification of the time required to leak a given amount is a
hard problem, proving the complexity of the problem.

The quantification of leakage for an infinite observation and a finite or infinite secret has
been recently considered by Chothia et al. [7]. Their framework is different from ours as they
study probabilistic “point to point” leakage; also they provide no algorithms to compute
leakage. The authors do not consider the case in which the observation is finite and the
secret infinite. Also, in the infinite secret and observation case they explicitly do not consider
the leakage rate per time unit, preferring to compute the leakage for each occurrence of the
secret command in their framework.

F. Biondi, A. Legay, B. F. Nielsen, P. Malacaria, and A. Wąsowski 529

Alvim et al. [2] study the setting of interactive systems, where secrets and observables
can alternate during the computation and influence each other. They show that in this
case mutual information is only an upper bound on leakage and “direct information” is a
more precise leakage measure. This work is related to ours in that it investigates multi-stage
processes but it presents significant differences as it doesn’t investigate infinite leakage nor
Markovian processes.

Recently Backes et al. also present a method for leakage rate computation based on
stationary distribution of Markov chains, which they compute using PageRank [3]. We expect
that Algorithm 1 would be a useful addition to their approach.

References
1 S. Akshay, Joël Ouaknine, Timos Antonopoulos, and James Worrell. Reachability problems

for Markov chains. Personal communication, November 2013.
2 Mário S. Alvim, Miguel E. Andrés, and Catuscia Palamidessi. Quantitative information

flow in interactive systems. Journal of Computer Security, 20(1):3–50, 2012.
3 Michael Backes, Goran Doychev, and Boris Köpf. Preventing side-channel leaks in web

traffic: A formal approach. In NDSS. The Internet Society, 2013.
4 Fabrizio Biondi, Axel Legay, Pasquale Malacaria, and Andrzej Wasowski. Quantifying

information leakage of randomized protocols. In Roberto Giacobazzi, Josh Berdine, and
Isabella Mastroeni, editors, VMCAI, 2013.

5 Fabrizio Biondi, Axel Legay, Bo Friis Nielsen, and Andrzej Wasowski. Maximizing entropy
over Markov processes. In Adrian Horia Dediu and Carlos Martín-Vide, editors, LATA,
2013.

6 Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panangaden. Anonymity
protocols as noisy channels. Inf. Comput., 206(2-4):378–401, 2008.

7 Tom Chothia, Yusuke Kawamoto, Chris Novakovic, and David Parker. Probabilistic point-
to-point information leakage. In CSF, pages 193–205. IEEE, 2013.

8 T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, 2012.
9 George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a type iii

anonymous remailer protocol. In IEEE Symposium on Security and Privacy, pages 2–15.
IEEE, 2003.

10 Jonathan Heusser and Pasquale Malacaria. Quantifying information leaks in software. In
C. Gates, M. Franz, and J. P. McDermott, editors, ACSAC, pages 261–269. ACM, 2010.

11 Boris Köpf, Laurent Mauborgne, and Martín Ochoa. Automatic quantification of cache
side-channels. In P. Madhusudan and S.A. Seshia, editors, CAV, pages 564–580. Springer,
2012.

12 Pasquale Malacaria. Assessing security threats of looping constructs. In Martin Hofmann
and Matthias Felleisen, editors, POPL, pages 225–235. ACM, 2007.

13 J. L. Massey. Guessing and entropy. In Proc. of the 1994 IEEE International Symposium
on Information Theory, page 204, June 1994.

14 Joël Ouaknine. Decision problems for linear recurrence sequences. In L. Gasieniec and
F. Wolter, editors, FCT, volume 8070 of LNCS, page 2. Springer, 2013.

15 Joël Ouaknine and James Worrell. Positivity problems for low-order linear recurrence
sequences. In Chandra Chekuri, editor, SODA, pages 366–379. SIAM, 2014.

16 Geoffrey Smith. On the foundations of quantitative information flow. In Luca de Alfaro,
editor, FOSSACS, volume 5504 of LNCS, pages 288–302. Springer, 2009.

17 Hirotoshi Yasuoka and Tachio Terauchi. On bounding problems of quantitative information
flow. Journal of Computer Security, 19(6):1029–1082, 2011.

FSTTCS 2014

Multiple-Environment Markov Decision Processes∗

Jean-François Raskin and Ocan Sankur

Département d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium

Abstract
We introduce Multi-Environment Markov Decision Processes (MEMDPs) which are MDPs with a
set of probabilistic transition functions. The goal in an MEMDP is to synthesize a single controller
strategy with guaranteed performances against all environments even though the environment is
unknown a priori. While MEMDPs can be seen as a special class of partially observable MDPs,
we show that several verification problems that are undecidable for partially observable MDPs,
are decidable for MEMDPs and sometimes have even efficient solutions.

1998 ACM Subject Classification D.2.4 Software/Program verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, G.3 Probabilities and Statistics

Keywords and phrases Markov decision processes, probabilistic systems, multiple objectives

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.531

1 Introduction

Markov decision processes (MDP) are a standard formalism for modeling systems that ex-
hibit both stochastic and non-deterministic aspects. At each round of the execution of an
MDP, an action is chosen by a controller (resolving non-determinism), and the next state
is determined stochastically by a probability distribution associated to the current state
and the chosen action. A controller is thus a strategy (a.k.a. policy) that determines which
action to choose at each round according to the history of the execution so far. Algorithms
for finite state MDPs are known for a large variety of objectives including omega-regular
objectives [5], PCTL objectives [1], or quantitative objectives [18].

Multiple-Environment MDP (MEMDP). In an MDP, the environment is unique, and
this may not be realistic: we may want to design a control strategy that exhibits good
performances under several hypotheses formalized by different models for the environment,
and those environments may not be distinguishable or we may not want to distinguish
them (e. g. because it is too costly to design several control strategies.) As an illustration,
consider the design of guidelines for a medical treatment that needs to work adequately
for two populations of patients modeled by different stochastic models, even if the patients
cannot be diagnosed to be in one population or in the other. This can be modeled by an
MDP with two different models for the responses of the patients to the sequence of actions
taken during the cure. We want a therapy that possibly makes decisions by observing the
reaction of the patient and that works well (say reaches a good state for the patient with
high probability) no matter if the patient belongs to the first of the second population.

Facing two potentially indistinguishable environments can be easily modeled with a par-
tially observable MDPs. Unfortunately, this model is particularly intractable [3] (e. g. quan-
titative reachability, safety, and parity objectives, and even qualitative parity objectives

∗ Supported by the ERC starting grant inVEST (FP7-279499).

© Jean-François Raskin and Ocan Sankur;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 531–543

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.531
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

532 Multiple-Environment Markov Decision Processes

are undecidable.) To remedy to this situation, we introduce multiple-environment MDPs
(MEMDP) which are MDPs with a set of probabilistic transition functions, rather than
a single one. The goal in a MEMDP is to synthesize a single controller with guaranteed
performances against all environments even though the environment which is operating is
unknown a priori (it may be discovered during interaction but not necessarily.) We show that
problems that are undecidable for partially observable MDPs, are decidable for MEMDPs
and sometimes have even efficient solutions.

Results. We study MEMDPs with three types of objectives: reachability, safety and parity
objectives. For each of those objectives, we study both qualitative and quantitative threshold
decision problems. In this paper, we concentrate on MEMDPs with two environments as the
two-environment case exhibits all the conceptual difficulties of the general case and it will
easy the presentation of our results. The generalisation of the results for the n-environment
case is left for future works. We first show that winning strategies may need infinite memory
as well as randomization, and we provide algorithms to solve the decision problems. As it is
classical, we consider two variants for the qualitative threshold problems. The first variant,
asks to determine the existence of a single strategy that wins the objective with probability
one (almost surely winning) in all the environments of the MEMDP. The second variant
asks to determine the existence of a family of single strategies such that for all ε > 0, there
is one strategy in the family that wins the objective with probability larger than 1− ε (limit
sure winning) in all the environments of the MEMDP. For both almost sure winning and
limit sure winning, and for all three types of objectives, we provide efficient polynomial time
algorithmic solutions. Then we turn to the quantitative threshold problem that asks for the
existence of a single strategy that wins the objective with a probability that exceeds a given
rational threshold in all the environments. We show the problem to be NP-hard (already for
two environments and acyclic MEMDPs), so classical quantitative analysis techniques based
on LP cannot be applied easily. Instead, we show that finite memory strategies are sufficient
to approach achievable thresholds and we reduce the existence of bounded memory strategies
to solving quadratic equations, leading to solutions in polynomial space. Our solutions rely
on several new concepts (double-end components, good end-component, revealing edges,
etc.) that bring deep understanding of the problems. The proofs are omitted due to space
constraints, but a long version is available in [19].

Related Work. Interval Markov chains are Markov chains in which transition probabilities
are only known to belong to given intervals (see e. g. [13, 14, 4]). Similarly, Markov decision
processes with uncertain transition matrices for finite-horizon and discounted cases were
considered [17]. The latter work also mentions the finite scenario case in which the transition
probabilities are chosen among a finite set, as in our case. However, a solution is given only
for the case where these probabilities can independently change in each step. Independence
is a simplifying assumption that provides pessimistic guarantees. This means one ignores
all information one might obtain on the system along observed histories, and so the results
tend to be overly pessimistic.

Our work is related to reinforcement learning, where the goal is to develop strategies
which ensure good performance in unknown environments, by learning and optimizing si-
multaneously; see [12] for a survey. In particular, it is related to the multi-armed bandit
problem where one is given a set of systems with unknown reward distributions, and the
goal is to choose the best one while optimizing the overall cost incurred while learning. The
problem of finding the optimal one (without optimizing) with high confidence was considered

J.-F. Raskin and O. Sankur 533

in [9, 15], and is related to our constructions inside distinguishing double end-components
(see Section 5). However, our problems differ from this one as in multi-armed bandit prob-
lem models of the bandits are unknown while our environments are known but we do not
know a priori which environment is playing.

Multiple reachability objectives in MDPs were considered in [7]: given an MDP and mul-
tiple targets Ti, thresholds αi, decide if there is a strategy forcing each Ti with probability
at least αi. Multiple reachability in MDPs can be seen as a special case of the reachability
problem in MEMDPs (consider multiple copies of the same transition relation and for each
copy one target set Ti) but there is no easy reduction the other way around. Indeed, while
for multi-reachability objectives in MDPs with absorbing target states, optimal memoryless
strategies always exist [7], we show that for reachability objectives in MEMDPs with ab-
sorbing target states, we may need infinite memory to play optimally. The former problem
can be solved in polynomial time using linear programming; but we show that the quantita-
tive reachability problem for MEMDPs with two environments and absorbing target states
is NP-hard; so no polynomial time reduction to multi-reachability in MDPs is possible un-
less P=NP. An extension to multiple quantitative objectives were considered in [10], where
finite-memory strategies also suffice and the algorithm is uses linear programming.

2 Definitions

A finite Markov decision process (MDP) is a tuple M = (S,A, δ), where S is a finite set of
states, A a finite set of actions, where A(s) denotes the set of actions available from s ∈ S,
and δ : S ×A→ D(S) a partial function defined for each pair (s, a) such that a ∈ A(s), and
D(S) is the set of probability distributions on S. We define a run of M as a finite or infinite
sequence s1a1 . . . an−1sn . . . of states and actions such that δ(si, ai, si+1) > 0 for all i ≥ 1.
Finite runs are also called histories and denoted H(M).

Sub-MDPs and end-components. For the following definitions, we fix an MDP M =
(S,A, δ). A sub-MDP M ′ of M is an MDP (S′, A′, δ′) with S′ ⊆ S, ∅ 6= A′(s) ⊆ A(s)
for all s ∈ S′, and Supp(δ(s, a)) ⊆ S′ for all s ∈ S′, a ∈ A′(s) (here Supp(·) denotes the
support), and δ′ = δ|S′×A′ . By an abuse of notation, we may omit δ′, and refer to the
sub-MDP by (S′, A′). For any subset S′ ⊆ S for which there exists a sub-MDP (S′, A′, δ′),
let us denote by M |S′ the sub-MDP of M induced by S′, which is the sub-MDP with the
largest set of actions. In other terms, the sub-MDP induced by S′ contains all actions of S′
whose supports are inside S′. An MDP is strongly connected if between any pair of states
s, t, there is a run. An end-component of M = (S,A, δ) is a sub-MDP M ′ = (S′, A′, δ′)
that is strongly connected. It is known that the union of two end components with non-
empty intersection is an end-component; one can thus define maximal end-components. We
let MEC(M) denote the set of maximal end-components of M , computable in polynomial
time [6]. An absorbing state s is such that for all a ∈ A(s), δ(s, a, s) = 1.

Strategies. A strategy σ is a function (SA)∗S → D(A) such that for all h ∈ (SA)∗S ending
in s, we have Supp(σ(h)) ⊆ A(s). A strategy is pure if all histories are mapped to Dirac
distributions. A strategy σ can be encoded by a stochastic Moore machine, (M, σa, σu, α)
where M is a finite or infinite set of memory elements, α the initial distribution on M,
σu the memory update function σu : A × S × M → D(M), and σa : S × M → D(A)
the next action function where Supp(σ(s,m)) ⊆ A(s) for any s ∈ S and m ∈ M. We say
that σ is finite-memory if |M| <∞, and K-memory strategy if |M| = K; it is memoryless

FSTTCS 2014

534 Multiple-Environment Markov Decision Processes

if K = 1, thus only depends on the last state of the history. Otherwise a strategy is
infinite-memory. We define such strategies as functions s 7→ D(A(s)) for s ∈ S. An
MDP M , a strategy σ encoded by (M, σa, σu, α), and a state s determine a finite Markov
chain Mσ

s defined on the state space S ×M as follows. The initial distribution is such that
for any m ∈ M, state (s,m) has probability α(m), and 0 for other states. For any pair
of states (s,m) and (s′,m′), the probability of the transition (s,m), a, (s′,m′) is equal to
σa(s,m)(a)·δ(s, a, s′)·σu(s,m, a)(m′). A run ofMσ

s is a finite or infinite sequence of the form
(s1,m1), a1, (s2,m2), a2, . . ., where each (si,mi), ai, (si+1,mi+1) is a transition with nonzero
probability in Mσ

s , and s1 = s. In this case, the run s1a1s2a2 . . ., obtained by projection
to M , is said to be compatible with σ. When considering the probabilities of events in Mσ

s ,
we will often consider sets of runs of M . Thus, given E ⊆ (SA)∗, we denote by PσM,s[E]
the probability of the runs of Mσ

s whose projection to M is in E. For any strategy σ in a
MDP M , and a sub-MDP M ′ = (S′, A′, δ′), we say that σ is compatible with M ′ if for any
h ∈ (SA)∗S′, Supp(σ(h)) ⊆ A′(last(h)), where last(h) is the last state of h.

Let Inf(w) denote the disjoint union of states and actions that occur infinitely often in
the run w; Inf is thus seen as a random variable. By an abuse of notation, we say that Inf(w)
is equal to a sub-MDP D whenever it contains exactly the states and actions of D. It was
shown that for any MDP M , state s, strategy σ, PσM,s[Inf is an end-component] = 1 [6]. We
call a subset of states T transient if under all strategies, and starting from any state, almost
surely, T is visited finitely many times.

Objectives. Given a set T of states, we define a safety objective w.r.t. T , written Safe(T),
as the set of runs that only visit T . A reachability objective w.r.t. T , written Reach(T), is the
set of runs that visit T at least once. We also consider parity objectives. A parity function
is defined on the set of states p : S → {0, 1, . . . , 2d} for some nonnegative integer d. The set
of winning runs of M for p is defined as Pp = {w ∈ (SA)ω | min{p(s) | s ∈ Inf(w)} ∈ 2N}.
For any MDP M , state s, strategy σ, and objective Φ, we denote ValσΦ(M, s) = PσM,s[Φ] and
Val∗Φ(M, s) = supσ PσM,s[Φ]. We say that objective Φ is achieved surely if for some σ, all
runs of M from s compatible with σ satisfy Φ. Objective Φ is achieved with probability α
in M from s if for some σ, ValσΦ(M, s) ≥ α. If Φ is achieved with probability 1, we say that
it is achieved almost surely. Objective Φ is achieved limit-surely if for any ε > 0, there exists
a strategy σε which achieves Φ with probability 1 − ε. In MDPs, limit-sure achievability
coincides with almost-sure achievability since optimal strategies exist. We define AS(M,Φ)
as the set of states of M where Φ is achieved almost surely. Recall that for reachability,
safety, and parity objectives these states can be computed in polynomial time, and are
only dependent on the supports of the probability distributions [1, 6]. It is known that for
any MDP M , state s, and a reachability, safety, or parity objective, there exists a pure
memoryless strategy σ computable in polynomial time achieving the optimal value [18, 5].

In the next lemma, we recall that the optimal value inside any end-component is either 0
or 1, and that this only depends on the supports of the probability distributions.

I Lemma 1 ([6]). Let M = (S,A, δ) be a strongly connected MDP, and p a parity function.
Then, for any MDP M ′ = (S,A, δ′) such that for all s ∈ S, a ∈ A, Supp(δ(s, a)) =
Supp(δ′(s, a)), and for all states s ∈ S, there exists a strategy σ such that ValσPp(M, s) =
Val∗Pp(M, s) = Val∗Pp(M ′, s) = ValσPp(M ′, s) ∈ {0, 1}.

3 Multiple-Environment MDP

A multiple-environment MDP (MEMDP), is a tupleM = (S,A, (δi)1≤i≤k), where for each i,
(S,A, δi) is an MDP. We will denote by Mi the MDP obtained by fixing the edge proba-

J.-F. Raskin and O. Sankur 535

bilities δi, so that PσMi,s
[E] denotes the probability of event E in Mi from state s under

strategy σ. Intuitively, each Mi corresponds to the behavior of the system at hand under
a different environment; in fact, while the state space is identical in each Mi, the tran-
sition probabilities between states and even their supports may differ. In this paper, we
concentrate on the case of k = 2. We are interested in synthesizing a single strategy σ with
guarantees on both environments, without a priori knowing against which environment σ is
playing. We consider reachability, safety, and parity objectives, and again for readability,
we consider the case where the same objective is to hold in all environments. The general
quantitative problem is the following.

I Definition 2. Given MEMDP M , state s0, α1, α2 ∈ [0, 1], and Φ, a reachability, safety,
or a parity objective, decide if there is a strategy σ such that ∀i ∈ {1, 2},ValσΦ(Mi, s) ≥ αi.

We refer to the general problem as quantitative reachability (resp. safety, parity). Given
M , s0, (α1, α2), Φ, we say that Φ is achieved with probabilities (α1, α2) in M from s if there
is a strategy σ witnessing the above definition. We say that Φ is achieved almost surely inM
from s if it is achieved with probabilities (1, 1). Objective Φ is achieved limit-surely in M
from s if for any ε > 0, Φ is achieved inM from s with probabilities (1−ε, 1−ε). Almost-sure
reachability (resp. safety, parity) problems consist in deciding whether in a given M , from
a state s, a given objective is achieved almost surely. Limit-sure reachability (resp. safety,
parity) problems are defined respectively.

Given any MEMDPM = (S,A, δ1, δ2), we define the MDP ∪M = (S,A, δ) by taking, for
each action, the union of all transitions, and assigning them uniform probabilities. For any
sub-MDP (S′, A′, δ′) of ∪M , we define the sub-MEMDP induced by the sub-MDP (S′, A′, δ′)
as the MEMDP (S′, A′, δ′1, δ′2) where δ′i = δi|S′×A′ . For any subset S′ ⊆ S, the sub-MEMDP
ofM induced by S′ is the sub-MEMDP ofM induced by the sub-MDP of ∪M induced by S′.

Strategy Complexity. Unlike MDPs, all considered objectives may require infinite memory
and randomization, and Pareto-optimal probability vectors may not be achievable (a Pareto-
optimal vector is component-wise maximal). All counterexamples are given in Fig. 1.

I Lemma 3. For some MEMDPs M and objectives Φ:

There exists a randomized strategy that achieves Φ with higher probabilities in both en-
vironments than any pure strategy,
There exists an infinite-memory strategy that achieves Φ with higher probabilities in both
environments than any finite-memory strategy,
Objective Φ can be achieved limit-surely but not almost surely (showing Pareto-optimal
vectors are not always achievable).

Results. We give efficient algorithms for almost-sure and limit-sure cases:
(A) The almost-sure reachability, safety, and parity problems are decidable in polynomial

time (Theorems 5 and 19). Finite-memory strategies suffice.
(B) The limit-sure reachability, safety, and parity problems are decidable in polynomial

time (Theorems 12 and 20). Moreover, for any ε > 0, to achieve probabilities of at
least 1−ε, O(1

η2 log(1
ε))-memory strategies suffice, where η denotes the smallest positive

difference between the probabilities of M1 and M2.
The general quantitative problem is harder as shown by the next results. We call an MEMDP
acyclic if the only cycles are self-loops in all environments.

FSTTCS 2014

536 Multiple-Environment Markov Decision Processes

s

a

b

t

u

T = {u}
(a)

s tu
a

a

b

a

v

w

T = {v}
(b)

s t

a

a

c

b

u

v
T = {v}
(c)

Figure 1 We adopt the following notation in all examples: edges that only exist inM1 are drawn
in dashed lines, and those that only exist in M2 by dotted ones, and all probabilities are uniform
unless otherwise said. To see that randomization may be necessary, observe that in the MEMDPM

in Fig. 1a, the vector (0.5, 0.5) of reachability probabilities for target T can only be achieved by a
strategy that randomizes between a and b. In the MEMDP in Fig. 1b, where action a from s has
the same support in M1 and M2 but different distributions. Any strategy almost surely reaches u
in both Mi, since action a from s has nonzero probability of leading to u. Intuitively, the best
strategy is to sample the distribution of action a from s, and to choose, upon arrival to u, either a
or b according to the most probable environment. We prove that such an infinite-memory strategy
achieves a Pareto-optimal vector which cannot be achieved by any finite-memory strategy. Last, in
Fig. 1c, the MEMDP is similar to that of Fig. 1b except that action a from s only leads to s or t.
We will prove in Section 6, that for any ε > 0, there exists a strategy ensuring reaching T with
probability 1− ε in each Mi. The strategy consists in sampling the distribution of action a from s

a sufficient number of times and guessing the actual environment against which the controller is
playing. However, the vector (1, 1) is not achievable, which follows from Section 4.

(C) The quantitative reachability and safety problems are NP-hard on acyclic MEMDPs
both for arbitrary and memoryless strategies (Theorem 13).

We can nevertheless provide procedures to solve the quantitative reachability and safety
problems by fixing the memory size of the strategies.
(D) For any K ≥ 0, the quantitative reachability and safety problems restricted to K-

memory strategies can be solved in space polynomial in K and the size of M . (Theo-
rem 14).

The quantitative parity problem can be reduced to quantitative reachability, so the previous
result can also be applied for the quantitative parity problem.
(E) The quantitative parity problem can be reduced to quantitative reachability in poly-

nomial time (Theorem 20).
We show that finite-memory strategies are not restrictive if we are interested in approxi-
mately ensuring given probabilities.
(F) Finite-memory strategies suffice to approximate quantitative reachability, safety, and

parity problems up to any desired precision (Theorem 15).
We provide an approximate solution for quantitative reachability in the following sense. We
consider ε-gap problems where the goal is to give a correct answer on negative instances that
are “far” from the positive instances by ε, and on positive instances that are far from the
negative instances by ε, while giving no guarantees in the rest of the input [8, 11].

I Definition 4. The ε-gap problem for reachability consists, given MEMDP M , state s,
target set T , and probabilities α1, α2, in answering i YES if ∃σ, ∀i = 1, 2,PσMi,s

[Reach(T)] ≥
αi, ii NO if ∀σ, ∃i = 1, 2,PσMi,s

[Reach(T)] < αi − ε, iii and arbitrarily otherwise.

(G) There is a procedure for the ε-gap problem for quantitative reachability in MEMDPs
(Theorem 16). The ε-gap problem is NP-hard (Theorem 17).

J.-F. Raskin and O. Sankur 537

s t

u

T

T

a

b

Figure 2 MEMDP M where Reach(T) can be achieved almost surely. In fact, AS(Mi, T) =
{s, t, u} for all i = 1, 2, so M ′ = M , and ValReach(T)(M ′i , s) = 1 for i = 1, 2. The strategy returned
by the algorithm consists in choosing, at s, a and b uniformly at random. Notice that there is no
pure memoryless strategy achieving the objective almost surely.

Preprocessing. In an MEMDP with two environments, if one observes an edge that only
exists in one environment, then the environment is known with certainty and any good
strategy should immediately switch to the optimal strategy for the revealed environment.
Formally, an edge (s, a, s′) is i-revealing if δi(s, a, s′) 6= 0 and δ3−i(s, a, s′) = 0. We make
the following assumption w.l.o.g.:
I Assumption 1 (Revealed form). All MEMDPs M = (S,A, δ1, δ2) are assumed to be in
revealed form, that is, there exists a partition S = Su

⊎
R1

⊎
R2 satisfying the following

properties. 1. All states of R1 and R2 are absorbing in both environments, 2. For any i = 1, 2,
and any i-revealing edge (s, a, s′), we have s′ ∈ Ri. Conversely, any edge (s, a, s′) with s′ ∈ Ri
is i-revealing. States Ri are called i-revealed, denoted Ri(M). We write R = R1 ∪R2. The
remaining states are called unrevealed.
In other words, we assume that any i-revealing edge leads to a known set of i-revealed states
which are all absorbing. Assumption 1 can be made without loss of generality by redirecting
any revealing edge to fresh absorbing states.

For any reachability (resp. safety) objective T , once a state in T (resp. S \ T) is visited
the strategy afterwards is not significant since the objective has already been fulfilled (resp.
violated). Thus, we assume that the set of target and unsafe states are absorbing.
I Assumption 2. For all considered objectives Reach(T) (resp. Safe(T ′)), we assume that all
target states T (resp. unsafe states S \ T ′) absorbing for both environments.

Under assumptions 1 and 2, for any MEMDP M , and objective Φ, we denote RΦ
i (M)

the set of i-revealed states from which Φ holds almost surely in Mi, and define RΦ(M) =
RΦ

1 (M) ∪ RΦ
2 (M). We will apply Assumption 1 throughout the paper, and Assumption 2

for reachability or safety objectives.

4 Almost-Sure Reachability

The algorithm for almost sure reachability is described in Algorithm 1. First, the state
space is restricted to U since any state from which the objective holds almost surely in the
MEMDP M must also belong to an almost surely winning state of each Mi. Second, we
consider MEMDP M ′ induced by the states surely satisfying Safe(U) in ∪M . The problem
is then reduced to finding an almost surely winning strategy in each M ′i separately. If
such strategies exist, then we obtain our strategy by either 1) alternating between the two
strategies using memory, or 2) randomizing between them.

Figure 2 is an example where almost-sure reachability holds; and we saw the example of
Fig. 1c where almost-sure reachability does not hold.

I Theorem 5. For any MEMDP M , objective Reach(T), and a state s, Algorithm 1 decides
in polynomial time if Reach(T) can be achieved almost surely from s in M , and returns a
witnessing memoryless randomized strategy.

FSTTCS 2014

538 Multiple-Environment Markov Decision Processes

Input: MEMDP M , Reach(T), s0 ∈ S
U := AS(M1,Reach(T)) ∩ AS(M2,Reach(T));
M ′ := Sub-MEMDP of M induced by states s s.t. Val∗Safe(U)(∪M, s) = 1;
if ∀i = 1, 2,Val∗Reach(T)(M ′i , s0) = 1 then

Let σi for i = 1, 2, such that ValσReach(T)(M ′i , t) = 1 for all t ∈ U ;
Return σ′ defined as σ′(t) = 1

2σ1(t) + 1
2σ2(t), ∀t ∈ S;

else
Return NO;

end
Algorithm 1. Almost-sure reachability algorithm for MEMDPs.

5 Double end-components

End-components play an important role in the analysis of MDPs; see e. g. [6]. Because the
probability distributions in different environments of an MEMDP can have different sup-
ports, we need to adapt the notion for MEMDPs. We thus introduce double end-components
which are sub-MDPs that are end-components in both environments.

Formally, given an MEMDP M = (S,A, δ1, δ2, r), a double end-component (DEC) is a
pair (S′, A′) where S′ ⊆ S, and A′ ⊆ A such that (S′, A′) is an end-component in each Mi.
A double end-component (S′, A′) is distinguishing if there is (s, a) ∈ S′ × A′ such that
δ1(s, a) 6= δ2(s, a). As the union of two DECs with a common state is a DEC, we consider
maximal DECs (MDEC). MDECs ofM can be computed in polynomial time by eliminating
from M all actions with different supports, then computing the MECs of ∪M . A DEC is
trivial if it is an absorbing state.

By Assumption 1 a DEC does not contain any revealed states unless it is trivial; there-
fore the supports of all DECs in both environments are identical. By Assumption 2, for
reachability (resp. safety) objectives, non-trivial DECs do not contain target (resp. unsafe)
states neither. Trivial DECs made of target (resp. safe) states are called winning. A DEC D

is winning for a parity objective Pp, if there is a strategy compatible with D satisfying Pp
almost surely in both environments (a common strategy exists by Lemma 1).

Distinguishing DECs allow the strategy to learn the actual environment by sampling
the distribution of distinguishing actions. One can in fact construct a strategy that surely
stays inside a given DEC and guesses the actual environment with high confidence. Since
a distinguishing DEC is non-trivial, the learning phase will surely avoid unsafe states. One
then switches to the optimal strategy for the guessed environment:

I Lemma 6. Consider any MEMDP M = (S, s0, A, δ1, δ2), a distinguishing double end-
component D = (S′, A′), state s ∈ S′, ε > 0, and any objective Φ reachability, safety, parity.
For any ε > 0, there exists a strategy σ such that PσMi,s

[Φ] ≥ (1− ε)Val∗Φ(Mi, s),∀i = 1, 2.

We now present a transformation for general MEMDPs by contracting DECs, which
preserves the values up to any desired ε by Lemma 6. Given a DEC D = (S′, A′), a frontier
state s of D is such that there exists an action a ∈ A(s) \ A′(s), which is not in D, index
i ∈ {1, 2}, and s′ 6∈ S′ such that δi(s, a, s′) 6= 0. An action a ∈ A(s) \ A′(s) is a frontier
action for D. A pair (s, a) is called frontier state-action when a ∈ A(s) is a frontier action.

I Definition 7. Given an MEMDP M = (S,A, δ1, δ2), and reachability or safety objective
Φ, we define M̂ = (Ŝ, Â, δ̂1, δ̂2) as follows. a) Any distinguishing MDEC D is contracted
as in Fig. 3a where in Mi, action a leads to WD with probability vi = Val∗Φ(Mi, D), and to

J.-F. Raskin and O. Sankur 539

sD

WD

LD

a$
D

vi

1−
v
i

(a) Reducing distinguishing DECs,
where vi = Val∗φi(Mi, D).

sD

WD

LD

a$
D

smam

s1a1

s2a2

vi |
D

1−
vi|D

(b) Reduction of double end-components
where vi|D = Val∗Φ(Mi|D , D).

Figure 3 Reduction of double end-components.

LD with probability 1− vi. b) Any non-distinguishing MDEC D = (S′, A′) is replaced with
the module in Fig. 3b. The actions a$

D and {fiai}(fi,ai)∈F are available from sD where F is
the set of pairs of frontier state-actions of D. For any (fi, ai), the distribution δ̂j(sD, fiai)
is obtained from δj(fi, ai) by redirecting to sD all edges that lead inside S′. Define the new
objective Φ̂ by restricting Φ to Ŝ, and adding all states WD in the target (resp. safe) set.
We write Â : S → Ŝ (also denoted s 7→ ŝ) the mapping from the states of S to those of Ŝ.

The intuition is that when the play enters a distinguishing DEC D, by Lemma 6, we can
arbitrarily approximate probabilities vi = Val∗Φ(Mi, D); this is represented by action a$

D in
Fig. 3a. From a state s in a non-distinguishing DEC D in M , the play either stays forever
inside and obtains the value Val∗Φ(M1|D , s) = Val∗Φ(M2|D , s) (as it is non-distinguishing) –
represented by a$

D in Fig. 3b, or it eventually leaves D. The latter case is represented by
the actions leading to frontier states, since D is necessarily left from such a state. Note that
there is a strategy under which, from any state of D, in M1 and M2, all states of D, and in
particular its frontier states, are visited infinitely often (by considering a memoryless strategy
choosing all actions uniformly at random – see e. g. [18]). The equivalence betweenM and M̂
for reachability and safety is shown next. Note that the value vectors are preserved although
vectors achieved in M̂ may not be achievable in M (see Fig. 1c).

I Lemma 8. For MEMDPs M , and reachability of safety objectives Φ, Val∗Φ(M, s) =
Val∗Φ̂(M̂, ŝ). Any end-component D of M̂i is either a trivial DEC, or transient in M̂3−i.

By Definition 7, and Lemmas 8-8, the following assumption can be made w.l.o.g.

I Assumption 3. All MEMDPs are assumed to have only trivial DECs.

6 Limit-Sure Reachability

In this section, we describe our polynomial-time algorithm for limit-sure reachability in
MEMDPs. Throughout this section, we make Assumptions 1, 2, and 3.

We saw in the previous section how the strategy can safely learn the current environment
with high confidence inside DECs. It turns out that it is possible to apply such learning
strategies outside DECs. We need to introduce a new concept, called good end-components
in order to fully capture all subsets of states where such a learning strategy can be applied.
Consider the example of Fig. 4. Here, the MDP M1 has a MEC D with the following
property: the strategy σ compatible with D and choosing all actions of D uniformly at
random, achieves the objective almost surely inM2. In fact, a strategy that always chooses a
at states s and t almost surely reaches u in M2. In order to achieve the objective with
probability close to 1, one can run strategy σ for a large number of steps, and if state u is
still not reached, switch to the optimal strategy for M1, that is, choose b from s. It can

FSTTCS 2014

540 Multiple-Environment Markov Decision Processes

s t

u

v w

a

a

a

b

a

(a) MEMDP M
with T = {u,w}.

s t

u

v w

a

ab

a

MGEC D

(b) Assumptions 1 and 2 satisfied.
We have T = {u,w}.

u

v w

tD

a

(c) MEMDP M̃ with T̃ =
{tD, u, w} and Ã(s) = tD.

Figure 4 On the left, an MEMDP with objective Reach(T), which is not in revealed form; an
equivalent instanceM in revealed form is shown in the middle. Note thatM has only trivial DECs.
States {s, t} induce a good end-component D in M2; the strategy choosing action a at s and t is
almost surely winning in M1. The construction M̃ is shown on the right, where all states of D are
contracted as tD which is a target state. Because Ã(s) = tD, Φ is achieved limit-surely from s.

be shown that such a strategy achieves the objective with probabilities (1 − ε, 1 − ε), for
any ε > 0, from any state of such end-components. Here D is a good end-component of M1.

Formally, an end-component D of Mi is good if the strategy that chooses all edges of D
uniformly at random is almost sure winning for M3−i from any state in D. Under any
such strategy, any edge leaving D is revealing for M3−i. Observe that the union of good
end-components with non-empty intersection is a good end-component. We thus consider
maximal good end components (MGECs) which can be computed in polynomial time.

I Lemma 9. For any M , the MGECs of M1 and M2 can be computed in polynomial time.

We define a transformation to MEMDPs by contracting MGECs since we know that one
can learn the current environment from these states, without risking to lose.

I Definition 10 (Transformation M̃). For any MEMDP M , and reachability objective Φ,
we let M̃ = (S̃, Ã, δ̃1, δ̃2) by applying the following transformation to M and Φ. Mark any
state s that belongs to some MGEC D of Mi for some i = 1, 2, by D. If a state can be
marked twice, choose one marking arbitrarily. We define M̃ by redirecting any edge entering
a state marked by some D to a fresh absorbing state tD. For each i = 1, 2, the reachability
objective Φ̃ is defined by the union of Φ, with all states tD such that Φ can be ensured
almost surely from D in Mi. We let Ã(·) be the mapping from the states M to those of M̃ .

Intuitively, DECs and MGECs cover all subsets of states in which one can learn the actual
environment with high confidence; while in the absence of such components, limit-sure
becomes equivalent to almost-sure. The following lemma establishes this property.

I Lemma 11. For any MEMDP M , reachability objective Φ, and state s, Φ can be achieved
limit surely in M from s if, and only if Φ̃ can be achieved almost surely in M̃ from Ã(s).
Moreover, given an almost sure winning strategy for M̃ , for any ε > 0, one can compute a
strategy with memory O(log(ε)

log(1−p)) for M , where p is the smallest nonzero probability, that
achieves probabilities 1− ε, and this strategy can be computed.

The steps of the limit-sure reachability algorithm are thus as follows: 1. Contract DECs by
Def. 7. 2. Contract MGECs by Def. 10. 3. Solve almost-sure reachability by Algorithm 1.

I Theorem 12. The limit-sure reachability problem is decidable in polynomial-time.

J.-F. Raskin and O. Sankur 541

7 Quantitative Reachability

In this section, we study the quantitative reachability problem for MEMDPs. We first
establish NP-hardness, suggesting that it is unlikely to have a polynomial-time algorithm,
and that techniques based on linear programming often used for the quantitative analysis
of MDPs (e. g. [18]) cannot be applied. We prove the hardness result by reduction from the
product-partition problem [16].

I Theorem 13. Given an MEMDP M , target set T , and α1, α2 ∈ [0, 1], it is NP-hard to
decide whether for some strategy σ, PσMi,s0

[Reach(T)] ≥ αi for each i = 1, 2.

As an upper bound on the above problem, we show that quantitative reachability for
strategies with a fixed memory size can be solved in polynomial space. The algorithm
consists in encoding the strategy and the probabilities achieved by each state and each
environment, as a bilinear equation, and solving these in polynomial space in the equation
size (see [2] for general polynomial equations).

I Theorem 14. The quantitative reachability and safety problems for K-memory strategies
can be solved in polynomial space in K and in the size of M .

We now show that considering finite-memory strategies are hardly restrictive, in the
sense that they can always be used to approximately achieve the values. We give a bound on
strategy memories that is sufficient to approximate the value by given ε. The idea underlying
the proof of the following theorem is that along a long execution in MEMDPs, with high
probability, either one enters a subset of states that is identical in both environments, or one
has gathered enough samples on probability distributions to guess the actual environment
with high confidence.

I Theorem 15. For any MEMDP M satisfying Assumption 3, reachability objective Φ,
strategy σ, and ε > 0, there exists a N -memory strategy σ′ with ∀i = 1, 2,Pσ′

Mi,s
[Φ] ≥

PσMi,s
[Φ] − ε, where N = (|S| + |A|)

4|S|3|A|2

p|S|η2 log3(1/ε), with p the smallest nonzero probability
and η = min{|δ1(s, a, s′)− δ2(s, a, s′)| | s, a, s′ s.t. δ1(s, a, s′) 6= δ2(s, a, s′)}.

We derive our procedure by Theorems 14 and 15. The “gap” can be chosen arbitrarily
small, and the procedure is used to distinguish instances that are clearly feasible from those
that are clearly not feasible, while giving no guarantee in the borderline of size ε.

I Theorem 16. There is a procedure that runs in O(N · |M |) space solving the ε-gap problem
for quantitative reachability in MEMDPs.

It turns out that even the ε-gap problem is NP-hard. We prove this by identifying
instances where the achieved probabilities are isolated:

I Theorem 17. The ε-gap problem for MEMDPs is NP-hard.

8 Safety and Parity Objectives

I Lemma 18. Limit-sure safety is equivalent to sure safety in MEMDPs, and can be decided
in polynomial time.

For quantitative safety, the results of the previous section can be adapted without difficulty.
We give a polynomial-time algorithm for almost sure parity objectives, consisting in

1. restricting the states to almost surely winning ones for both Mi, 2. solving almost sure
reachability where all states that belong to winning end-components inM1 orM2 are targets.

FSTTCS 2014

542 Multiple-Environment Markov Decision Processes

I Theorem 19. The almost-sure parity problem is decidable in polynomial time.

We now describe a polynomial-time reduction from quantitative parity to quantitative
reachability preserving value vectors. The idea is to allow the strategy to irreversibly switch
to an optimal strategy for environment i from any MEC of Mi, and to represent this switch
by a target absorbing state. Intuitively, the new reachability condition is equivalent to the
parity objective for two reasons: first, all runs eventually enter an end-component and stay
there, which roughly corresponds to this switch, and second, the transformation only adds
new actions, so any strategy in the original MEMDP is still valid in the new one, and in
particular learning strategies. It follows 1) a polynomial-time algorithm for the limit-sure
parity problem, 2) any algorithm for quantitative reachability can be used to solve the
quantitative parity problem. In particular, results of Section 7 applies to parity.

I Theorem 20. The quantitative parity problem is polynomial-time reducible to the quanti-
tative reachability problem. The limit-sure parity problem is solvable in polynomial time.

References
1 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
2 John Canny. Some algebraic and geometric computations in pspace. In STOC’88, pages

460–467, New York, NY, USA, 1988. ACM.
3 Krishnendu Chatterjee, Martin Chmelik, and Mathieu Tracol. What is decidable about

partially observable markov decision processes with omega-regular objectives. In CSL,
volume 23 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013.

4 Taolue Chen, Tingting Han, and Marta Z. Kwiatkowska. On the complexity of model
checking interval-valued discrete time markov chains. Inf. Process. Lett., 113(7):210–216,
2013.

5 Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857–907, July 1995.

6 Luca de Alfaro. Formal verification of probabilistic systems. Ph.D. thesis, Stanford Uni-
versity, 1997.

7 Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis. Multi-
objective model checking of Markov decision processes. Logical Methods in Computer Sci-
ence, 4(4), 2008.

8 Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems
with applications to public-key cryptography. Information and Control, 61(2):159–173,
1984.

9 Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and
markov decision processes. In COLT’02, volume 2375 of LNCS, pages 255–270. Springer,
2002.

10 Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.
Quantitative multi-objective verification for probabilistic systems. In TACAS’11, volume
6605 of LNCS, pages 112–127. Springer, 2011.

11 Oded Goldreich. On promise problems (a survey in memory of Shimon Even [1935–2004]).
Manuscript, 2005.

12 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

13 Igor O. Kozine and Lev V. Utkin. Interval-valued finite markov chains. Reliable computing,
8(2):97–113, 2002.

14 Antonín Kučera and Oldřich Stražovský. On the controller synthesis for finite-state markov
decision processes. In FSTTCS 2005, volume 3821 of LNCS, pages 541–552. Springer, 2005.

J.-F. Raskin and O. Sankur 543

15 Shie Mannor and John N. Tsitsiklis. The sample complexity of exploration in the multi-
armed bandit problem. J. Mach. Learn. Res., 5:623–648, December 2004.

16 C.T. Ng, M. S. Barketau, T.C. E. Cheng, and Mikhail Y. Kovalyov. “Product Partition”
and related problems of scheduling and systems reliability: Computational complexity and
approximation. European Journal of Operational Research, 207(2):601–604, 2010.

17 Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with
uncertain transition matrices. Operations Research, 53(5):780–798, 2005.

18 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

19 Jean-François Raskin and Ocan Sankur. Multiple-environment markov decision processes.
CoRR, abs/1405.4733, 2014.

FSTTCS 2014

Summary-Based Inter-Procedural Analysis via
Modular Trace Refinement
Franck Cassez1, Christian Müller2, and Karla Burnett1

1 NICTA and UNSW, Australia
2 TU Munich, Germany

Abstract
We propose a generalisation of trace refinement for the verification of inter-procedural programs.
Our method is a top-down modular, summary-based approach, and analyses inter-procedural
programs by building function summaries on-demand and improving the summaries each time
a function is analysed. Our method is sound, and complete relative to the existence of a mod-
ular Hoare proof for a non-recursive program. We have implemented a prototype analyser that
demonstrates the main features of our approach and yields promising results.

1998 ACM Subject Classification D.2.4 [Software Engineering] Software/Program Verification,
D.3.1[Programming Languages] Formal Definitions and Theory, F.3.1 [Logics and Meanings of
Programs] Specifying and Verifying and Reasoning about Program

Keywords and phrases Program verification, Hoare Logic, Refinement, Automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.545

1 Introduction

Automated software verification has made tremendous progress in the last decade. Static
analysis tools are routinely used to analyse source code and have revealed many subtle bugs.

We address the problem of designing a context-sensitive, scalable inter-procedural analysis
framework. Our method is fully modular, and analyses each function without in-lining
function calls but rather by using an input/output summary for the functions. This provides
scalability. Context-sensitivity provides accuracy and is achieved by building function
summaries in a top-down manner and being able to refine these summaries (on-demand)
during the analysis. The result of our algorithm (when it terminates) is either a proof that a
program is error-free or an inter-procedural counter-example that witnesses the error.

Our method is a modular inter-procedural extension of refinement of trace abstraction [13]
and inherits the main features of this approach: it is sound and complete w.r.t. the existence
of a modular Hoare proof for the non-recursive program and strictly more powerful than
predicate abstraction refinement. Due to space limitation, technical proofs that were part of
the submitted version are now omitted.

2 Example

We consider inter-procedural programs like P1 in Listing 1. The variables in each function
(or procedure) are either input (read-only), output or local (read-write) integer variables. The
variable m is local to main and n is an output variable. The variables p,q are input variables
of inc and r is the output variable. The semantics of a function call like n = inc(1, m)
(line 3) is that the left-hand-side variables (n) are assigned the values of the corresponding
output variables (r) at the end of the computation of the callee (inc).

© Franck Cassez, Christian Müller, and Karla Burnett;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 545–556

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.545
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

546 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

2 3

E

40

5

Amain
m >= 1

error1,n = inc(1,m)

error1 == 0

error1 == 1

n >= 0

!(n >= 0)

error1 = 1

8

9

10
12

0

13

Ainc

p >= 0

!(p >= 0)

p >= 1
!(p >= 1)

r = q + 1 r = q

error2 = 1

Figure 1 Function automata for program P1.

Functions can be annotated with assume statements (e. g., m >= 1 holds after line 2)
and assert statements which assert predicates that should not be violated, otherwise the
program contains an error. The objective is to check whether a program contains an execution
that violates an assert statement. A function f is mapped to a function automaton, Af ,
which is an extended control flow graph (CFG) with a single entry (green) and a single exit
(red) node. To track assert statement violations across function boundaries in a modular
manner, we introduce an extra1 output variable, error, together with additional edges in
the CFG of a function: i) a call like n = inc(1,m) is virtually expanded in (error, n) =
inc(1,m) i. e., each function returns its internal error status; ii) each statement assert(ϕ)
is viewed as an if statement, such that if ϕ does not hold the variable error is set to 1 and
the control jumps to the exit node of the function; this is exemplified by edges 8 to 0 and 0
to 13 in automaton Ainc; iii) as errors may occur during function calls, the status of the
caller’s error variable is checked after each function call: if it is set the control goes to the
exit (red) node otherwise to the next instruction; this is exemplified by node E and edge E
to 5 in automaton Amain.

Program P1 has two possible causes of error: one
1 proc main () returns (n) {
2 assume (m >= 1);
3 n = inc (1, m);
4 assert (n >= 0);
5 }
6
7 proc inc(p,q) returns (r) {
8 assert (p >= 0);
9 if (p >= 1)

10 r = q + 1;
11 else
12 r = q;
13 endif ;
14 }

Listing 1 Program P1

is to call inc with a negative value for parameter
p (violating the assertion at line 8), and the other
is to violate the assertion on n at line 4 in main.
The (partial) correctness of inc can be expressed by
the Hoare triple2 {¬error2} inc {¬error2}. To check
whether the Hoare triple {¬error2} inc {¬error2}
holds we try to find a counter-example trace: if
we succeed we disprove the Hoare triple, if we fail
the triple is valid. To do so, we view Ainc as a
language acceptor with initial state entry (green)
and final state exit (red) and the existence of a
counter-example amounts to finding a feasible trace
in L(Ainc), the language accepted by Ainc. Determining whether such a feasible trace exists
can be achieved using an iterative trace refinement algorithm [13, 15]: 1) Pick a trace3
w ∈ L(Ainc); 2) Add the pre/post conditions ¬error2/error2 to the trace w and check whether

1 We introduce one indexed errork variable per function to simplify the technical developments. We can
equivalently use a global error variable to track the error status of a complete program.

2 We use error (resp. ¬error) as a shorthand for “every valuation such that error is 1 (resp. 0)”.
3 Traces of length n are written a1 · a2 · · · an−1 · an.

F. Cassez, C. Müller, and K. Burnett 547

the extended trace w′ = ¬error2 · w · error2 is feasible; 3) If it is, we have found a counter-
example and the triple is not valid. Otherwise, we look for a new trace in L(Ainc) \ {w}.
If L(Ainc) \ {w} is empty, the triple is valid; otherwise we start again at step 1 using a
refined language L(Ainc) \ {w} which does not contain w. Notice that this process may not
terminate4. A key result of [13] is that, for each infeasible trace w, a rejecting automaton,
A(w), can be computed that accepts traces that are infeasible for the same reasons as w.
Thus in the refinement step 3), we can remove all the traces accepted by automaton A(w)
and not only {w}.

The outcome of the iterative trace refinement algorithm (when it terminates) is either a
counter-example path or a confirmation that a triple holds. Our first result (Section 4) is that,
when we establish that {P} f {Q} holds, we get a better triple {P ′} f {Q′} with P =⇒ P ′

(weaker assumption on input) and Q′ =⇒ Q (stronger constraint on input/output relation).
Our main result (Section 5) is the extension of the trace refinement approach [13] to check
whether triples hold for inter-procedural programs without in-lining function calls.

The main idea of our extension is illustrated next. A function call is viewed as a standard
instruction: the call r = f(m) defines a relation between the input variables5 m and the
output variables r. The only difference to a standard instruction is that we do not exactly
know this relation, which is the strongest postcondition operator for the function.

This can be remedied as follows: for each function call to f, we use a summary which is
an over-approximation of the strongest postcondition of the function f. A summary for inc
could be p ≥ 1 =⇒ r ≤ q + 1 or, if we do not know anything about inc, True =⇒ True,
which means that the output variables can be assigned any value. To determine the status
of triple (H) {¬error1} main {¬error1}, we try to find a witness trace in main invalidating it,
i. e., starting in ¬error1 and ending in error1:
1. let w1 = m >= 1 · error1,n = inc(1,m) · error1 be a trace in L(Amain).
2. Using the semantics of each statement, and the over-approximate summary semantics

(True, True) for the function call, check whether w′1 = ¬error1 · w1 · error1 is feasible.
It is and we get a witness assignment for the values of the variables in w′1 that implies a
pre/postcondition π1 : p = 1 ∧ q = 1 ∧ ¬error2/error2 for inc to make w′1 feasible.

3. To determine whether π1 can be satisfied, we can establish the status of the opposite
triple {p = 1 ∧ q = 1 ∧ ¬error2} inc {¬error2}.
This triple holds and thus the corresponding witness pre/postcondition π1 in main is
infeasible. While establishing this, we have computed a stronger valid triple, {p ≥
0∧¬error2} inc {¬error2} that can, from now on, be used as a valid summary (G1, S1) =
(p ≥ 0 ∧ ¬error2,¬error2) for inc.

4. We again check the feasibility of w′1, this time with the new summary (G1, S1). Using
(G1, S1), w′1 becomes infeasible and thus w1 can be ruled out.

5. We pick a different trace w2 = m >= 1 · error1,n = inc(1,m) · ¬error1 · !(n >= 0) ·
error1 = 1 and check whether the extended trace w′2 = ¬error1 · w2 · error1 is feasible.
It is provided the call to inc can realise an input/output constraint given by a witness
assignment for w′2. Function inc cannot realise this witness assignment and the result of
this check is a new valid triple for inc, (G2, S2) = (p ≥ 1 ∧ q ≥ 1, r ≥ q + 1).

6. We again check the feasibility of w′2 with (G1, S1) and (G2, S2). w′2 is now declared
infeasible with (G1, S1) and (G2, S2) and this enables us to rule out w2 in main.

7. There is only one trace left to explore in main but it cannot set error1. The final result is
a triple {¬error1} main {¬error1 ∧ n ≥ m + 1} that is stronger than the initial one.

4 Verifying C-like programs is undecidable.
5 m and r are vectors of variables, however for clarity we omit vector notation.

FSTTCS 2014

548 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

3 Preliminaries

Programs are written in a simple inter-procedural programming language as commonly
assumed [2, 18]. There are no pointers, no global variables, and we restrict to integer
variables. This last restriction is not important as integer variables are expressive enough
to encode a very large class of errors in imperative programs e. g., array-out-of-bounds,
NULL pointer dereferences, etc. We assume a set of predicates over a set of variables e. g., in
Quantifier-Free Linear Integer Arithmetic. Given a predicate ϕ, Var(ϕ) is the set of variables
appearing in ϕ. We freely use the logical notation or set notation depending on which is
best suited, e. g., given two predicates P and Q, we use P ∧Q (logical and) or P ∩Q (set
intersection). False corresponds to the empty set and True to the set of all possible values.

The set of program statements Σ is comprised of: (i) simple assignments e. g., y = t
where y is a variable and t a linear term on variables, (ii) assume statements which are
predicates over the variables and (iii) function calls of the form r1,· · · ,rk = f(d1,· · · ,dn)
where f is a function and r1,· · · ,rk and d1,· · · ,dn are the input and output variables.

Given a simple assignment st and a predicate ϕ, post(st, ϕ) is the strongest condition that
holds after executing st from ϕ. For an assume statement st, the semantics are post(st, ϕ) =
ϕ ∧ st. The semantics of each function call are given by the strongest postcondition operator
post for the function (although we may not explicitly have it). The post operator extends
straightforwardly to traces in Σ∗.

A trace t satisfies a pre/post condition (P,Q) if post(t, P) ⊆ Q. A trace t is (P,Q)-feasible
if post(t, P) ∩Q 6⊆ False, otherwise it is infeasible. We let Infeas(P,Q) be the set of traces
over Σ∗ that are (P,Q)-infeasible. A trace t is infeasible if it is (True, True)-infeasible (or if
it satisfies (True, False)), otherwise it is feasible; Infeas is the set of infeasible traces.

A trace automaton [13, 15] is a tuple A = (L, δ,Linit,Lexit) where L is a finite set of
locations, δ ⊆ L× Σ× L is the transition relation, and Linit,Lexit ⊆ L are the initial and
final (accepting) locations. The language accepted by A is L(A).

A function f is represented by a function automaton which is a trace automaton Af =
(Lf, δf, {initf}, {exitf}). It is obtained from the CFG of f by adding the edges setting the
error variable to encode assert statement violations (see Amain and Ainc in Figure 1).

4 Checking Intra-Procedural Partial Correctness

We assume in this section that functions do not contain function calls. We show how to
construct automata that accept traces that satisfy Hoare triples. This extends the results
of [13]. A similar development is accounted for in [15] but we establish here a new useful
result in Theorem 5. Given a trace automaton A and two predicates P,Q (over the variables
of A), the Hoare triple {P} A {Q} is valid iff ∀t ∈ L(A), post(t, P) ⊆ Q. Program (or
function) correctness [13] is defined by: {P} f {Q} is valid iff {P} Af {Q} is valid. The
validity of a Hoare triple {P} Af {Q} can be expressed in terms of language inclusion:

I Theorem 1. {P} Af {Q} is valid iff L(Af) ⊆ Infeas(P,¬Q).

We also extend the notion of inductive interpolants [13] for infeasible traces to (P,Q)-
interpolants for (P,Q)-infeasible traces. Let t = st1 · · · stk be a (P,Q)-infeasible trace.
A sequence of predicates I0, I1, · · · , Ik is a (P,Q)-interpolant for t if: 1) P =⇒ I0, 2)
∀1 ≤ i ≤ k, post(sti, Ii−1) ⊆ Ii and 3) Ik ∧Q = False. For t ∈ Infeas(P,Q), we let itpP,Q(t)
be the set of (P,Q)-interpolants for t. For t ∈ Infeas, we let itp(t) be the set of interpolants
for t. By Craig’s interpolation theorem [10], we know that itp(t) 6= ∅. It follows that:

F. Cassez, C. Müller, and K. Burnett 549

I Lemma 2. If t ∈ Infeas(P,Q) then itpP,Q(t) 6= ∅.

Notice that the ability to compute actual interpolants (e. g., using SMT-solvers) is
inessential as inductive interpolant can always be obtained using weakest preconditions for t.

Let t = st1 · · · stk be an infeasible trace and I = I0, I1, · · · , Ik be an interpolant for
t. The canonical interpolant automaton [13] for (t, I) is a trace automaton At

I = (LI ,
δI , {initI}, {exitI}). An important property of canonical interpolant automata is that they
accept sets of infeasible traces:

I Theorem 3 ([13]). If t ∈ Infeas and I ∈ itp(t) then L(At
I) ⊆ Infeas.

We extend the definition of canonical interpolant automata to (P,Q)-interpolant automata.
Let t = st1 · st2 · · · stk ∈ Infeas(P,Q) and I = I0, I1, · · · , Ik ∈ itpP,Q(t). Then t is also in
Infeas(I0, Q). Let t′ = assume(I0) · t · assume(Q) (in the sequel we write such a trace I0 · t ·Q
omitting the assume statements). As t ∈ Infeas(I0, Q), we have t′ ∈ Infeas and moreover I ′ =
True, I0, · · · , Ik, False is an interpolant for t′. We can then build the canonical interpolant
automaton At′

I′ = (LI′ , δI′ , {initI′}, {exitI′}) for (t′, I ′). We define the corresponding (P,Q)-
interpolant automaton for (t, I) as the tuple A(P,Q)t

I = (LI , δI ,Linit
I ,Lexit

I) where: 1)
LI = LI′ \ {initI′ , exitI′}, 2) Linit

I = {` ∈ LI′ | (initI′ , P, `) ∈ δI′} and Lexit
I = {` ∈

LI′ | (`,Q, exitI′) ∈ δI′} and 3) δI = δI′ ∩ (LI × Σ × LI). (P,Q)-interpolant automata
accept sets of (P,Q)-infeasible traces:

I Theorem 4. If t ∈ Infeas(P,Q) and I ∈ itpP,Q(t) then L(A(P,Q)t
I) ⊆ Infeas(P,Q).

We can now introduce Algorithm 1, Hoare1, that can establish the status of a Hoare triple.
If the triple is valid, it returns a new stronger triple and otherwise a witness counter-example.
Algorithm 1 works as follows: the family of automata Ai, i ≥ 1 accept only infeasible traces.
If the condition of the while loop (line 1) is True, there is a trace t in the CFG of Af that has
not been declared (P,¬Q)-infeasible yet. This (P,¬Q)-infeasibility of trace t is investigated:
if it is feasible, the triple {P} Af {Q} does not hold and t is a witness (line 4). If it is
infeasible, an interpolant automaton An is built from t (lines 6 to 9) and added to the family
Ai, i ≥ 1. If the condition of the while loop (line 1) is False, all the traces of the CFG of Af

have been declared (P,¬Q)-infeasible and hence {P} Af {Q} holds. Moreover, as stated by
Theorem 5 the interpolants collected at each step during the refinement can be used to build
a stronger triple (line 10).

A triple {P ′} f {Q′} is stronger than {P} f {Q} if P =⇒ P ′ and Q′ =⇒ Q.
Line 9 of Algorithm 1 stores the interpolants each time a trace t is declared (P,¬Q)-

infeasible. It collects the interpolants I0 and Ik and stores them in the arrays Pn and Qn

(each interpolant automaton An is also stored). If the triple is valid, the interpolant automata
Ai cover the set of traces of Af, and Af satisfies the triple {∩n

i=1Pi} Af {∪n
i=1Qi}.

I Theorem 5. If Algorithm 1 terminates and returns itp(P ′, Q′) then {P ′} Af {Q′} is valid
and stronger than {P} Af {Q}.

If Algorithm 1 terminates it either returns: i) path(t), and then {P} f {Q} does not
hold and t is such that post(t, P) ∩ ¬Q 6⊆ False, or ii) itp(P ′, Q′) then {P ′} f {Q′} holds
and P =⇒ P ′ and Q′ =⇒ Q. Claim i) holds because there are no function calls and
the trace t selected at line 2 is such that post(t, P) ∩ ¬Q 6⊆ False. As post is exact for
statements which are not function calls, t is a counter-example. For ii), if Hoare1 returns
itp(P ′, Q′), Theorem 5 holds proving correctness in this case. Termination of Algorithm 1
is of course not guaranteed as the verification problem for C-like programs is undecidable.

FSTTCS 2014

550 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

Algorithm 1: Hoare1(Af, P,Q)
Input : A function automaton Af, two predicates P and Q.
Result : itp(P ′, Q′) with P =⇒ P ′ and Q′ =⇒ Q if {P} Af {Q} holds,

path(t) with post(P, t) ∩ ¬Q 6⊆ False otherwise.
Var :A: arrays of interpolant automata, initially empty

P ,Q: arrays of predicates, initially empty
n : integer, initially 0

1 while L(Af) 6⊆ ∪n
i=1L(Ai) do

/* There is a trace t from entry to exit in L(Af) \ ∪n
i=1L(Ai) */

2 Let t = st1 · · · stk ∈ L(Af) \ ∪n
i=1L(Ai);

3 if post(t, P) ∩ ¬Q 6⊆ False then
/* post(t, P) ⊆ Q does not hold, t is a counter-example */

4 return path(t);
5 else

/* t is (P,¬Q)-infeasible, we refine and iterate */
6 Let I = I0, · · · , Ik ∈ itpP,¬Q(t);
7 Let n := n+ 1;
8 Let An = A(P,¬Q)t

I ;
9 let Pn := I0 and Qn := Ik;

10 return itp(∩n
i=1Pi,∪n

i=1Qi);

However, similar to the trace refinement algorithm of [13], we can ensure incrementality
and progress. Incrementality is relative to the Hoare triple we are checking, and means
that once a (P,¬Q)-interpolant automaton has been computed it holds during the call to
Hoare1(f, P,Q) and we never have to withdraw it. Progress is ensured because if we discover
a (P,¬Q)-infeasible trace t at the n-th iteration of the while loop, it is accepted by the
corresponding automaton An and thus cannot be found in subsequent rounds. As pointed
out in [13], soundness of the algorithm i. e., if it terminates and declares a program error-free
the program is actually error-free, is implied by Theorem 5. Completeness i. e., if a program
is error-free, Hoare1 can declare it error-free, holds (as usual) for a trivial reason [13] and we
do not detail this.

5 Inter-Procedural Trace Refinement

Let f be a function with (formal) input parameters x = x1, . . . , xk and output parameters
y = y1, · · · , yn. We assume that input variables are not modified by a function and there are no
global variables6. A summary S(x, y) for f is a set of pairs of predicates (Pi(x), Qi(x, y))1≤i≤n

where ϕ(z) indicates that Var(ϕ) = {z1, · · · , zn}. A summary can equivalently be viewed as
a predicate ∧n

i=1
(
Pi(x) =⇒ Qi(x, y)

)
.

The exact post operator is not explicitly available for functions. We want to over-
approximate it while retaining enough information to prove a property of interest. We
approximate the post operator for functions using summaries. A context C is a mapping from
functions to summaries such that for each function f in the program, C(f) is a summary for

6 These limitations are not compulsory but are commonly admitted [2, 18].

F. Cassez, C. Müller, and K. Burnett 551

f. Given a context C we define an associated summary post operator p̂ost as follows:

p̂ost(C, st, ϕ) =
{

post(st, ϕ) if st is not a function call, or
∃r.ϕ ∧ C(f)(m, r) if st is the function call r = f(m).

In other words, only function call post operators are computed using summaries while other
statements’ strongest postcondition operators are preserved. As a function call r = f(m) only
alters the output variables r, the projection of the predicate ϕ on the other variables, ∃r.ϕ,
remains true after the execution of r = f(m). Moreover the target result variable r should
satisfy the constraints between the formal input and output variables C(f)(m, r) of f. C is an
over-approximating context (in short over-approximation) if for every function automaton
Af, every trace t ∈ L(Af) and every predicate ϕ, post(t, ϕ) ⊆ p̂ost(C, t, ϕ). The definitions
we introduced so far are also valid for the p̂ost operator: a trace t is (P,Q)-infeasible in
context C if p̂ost(C, t, P) ∩Q ⊆ False, otherwise it is feasible (in this context). We write t
is C-(P,Q)-feasible (resp. infeasible) for t is (P,Q)-feasible (resp. infeasible) in context C
If a context is an over-approximation, infeasibility in C implies infeasibility with the exact
strongest postcondition post operators for the functions called. However, a trace may be
(P,Q)-feasible in C, but not (P,Q)-feasible with the exact post operator for each function.
Valid Hoare triples can be used as over-approximations for functions:

I Proposition 6. Let (P,Q) be two predicates on the input and input/output variables of f
such that {P} Af {Q} holds. Then post(r = f(m), ϕ) ⊆ p̂ost(C : f 7→ {(P,Q)}, r = f(m), ϕ).

Proposition 6 generalises to summaries that are sets of pairs of predicates:

I Theorem 7. Let C be an over-approximation, f a function and (P,Q) be two predicates
on the input and input/output variables of f such that {P} Af {Q} holds. The context C′
defined by C′(h) = C(h) for h 6= f and C′(f) = C(f) ∪ {(P,Q)} is an over-approximation.

We can now propose our new modular trace refinement algorithm (Algorithms 2 and 3).
The main difference between Algorithm 1 and Algorithm 2 is in how feasibility of a trace
is checked using the summaries (call to Status at line 3). This step is more involved
and is detailed in Algorithm 3. Algorithm 2 determines the status of a candidate triple
{P} Af {Q} and either returns an inter-procedural (counter-example) path or a stronger
triple {P ′} Af {Q′}. An inter-procedural path for a trace t of function g is inductively defined
by a mapping path such that:

for statements st in t that are not function calls, path(st) = st,
for st a function call r = f(m), path(st) is an inter-procedural path for f.

n Algorithm 2, we assume that the context variable C is a global variable and is initialised
with default summaries e. g., (True, True) for each function. In Algorithm 2, line 3, the call
to Status(t, P,¬Q) (Status is defined in Algorithm 3) returns the status of t: it is either
(P,¬Q)-feasible and (True, path(t)) is returned or C-(P,¬Q)-infeasible and (False,⊥) is
returned (⊥ stands for the void path). Hoare2 is very similar to Algorithm 1 once the status
of a trace t is determined:

if t is C-(P,¬Q)-infeasible i. e., Status(t, P,¬Q) = (False,⊥), then it is (P,¬Q)-infeasible
(C is an over-approximation) and we can compute an interpolant automaton to reject
similar traces (lines 7 to 10 in Algorithm 2). Note also that the summary for the currently
analysed function is updated (line 11).
otherwise t is (P,¬Q)-feasible i. e., Status(t, P,¬Q) = (True, path(t)) and t is an inter-
procedural counter-example.

FSTTCS 2014

552 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

Algorithm 2: Hoare2(Af, P,Q)
Global : C: context with summaries for each function, initially (True, True)
Input : A function automaton Af, two predicates P and Q.
Result : If {P} Af {Q} holds, itp(P ′, Q′) with P =⇒ P ′ and Q′ =⇒ Q

Otherwise an inter-procedural path path(t) with post(P, t) ∩ ¬Q 6⊆ False.
Local : A: arrays of interpolant automata, initially empty

P ,Q: arrays of predicates, initially empty
n: integer, initially 0

/* Main refinement loop */
1 while L(Af) 6⊆ ∪n

i=1L(Ai) do
/* There is a trace from entry to exit in L(Af) \ ∪n

i=1L(Ai) */
2 Let t = st1 · · · stk ∈ L(Af) \ ∪n

i=1L(Ai);
/* Determine the status of t (and update summaries C) */

3 R, path(t) := Status(t, P,¬Q);
/* Status of t is settled */

4 if R then
/* {P} Af {Q} is not valid and path(t) a counter-example */

5 return path(t);
6 else

/* t is (P,¬Q)-infeasible, we refine and iterate */
7 Let I = I0, · · · , Ik ∈ itpP,¬Q(t);
8 n := n+ 1;
9 An := A(P,¬Q)t

I ;
10 Pn := I0 and Qn := Ik;

/* {P} Af {Q} is valid. Add to C and returns a stronger summary */
11 C(f) := C(f) ∪ {(∩n

i=1Pi,∪n
i=1Qi))};

12 return itp(∩n
i=1Pi,∪n

i=1Qi);

Status(t, P,¬Q) is defined in Algorithm 3 and determines the (P,¬Q)-feasibility status of a
trace t, and in doing so may recursively call Algorithm 2 (line 8). Algorithm 3 determines
the status of a trace t = st1 · st2 · · · stk as follows:

function call statements are collected and stored into FCall (line 2). Then path is initialised
with the default values for the statements that are not function calls (line 3).
the (P,¬Q)-feasibility status of t is determined in an iterative manner:

if t is C-(P,¬Q)-infeasible, the condition of line 5 is false and the else statement on
line 16 is executed. This implies t is (P,¬Q)-infeasible as C is an over-approximation,
and we can return (False,⊥).
if t is C-(P,¬Q)-feasible, we obtain some before/after witness values for the variables
for each function call and store them in pairs (νi, µi), i ∈ FCall. The for-loop at line 8
checks each function call w.r.t. to the feasibility of its before/after witness values. This
is done by recursively calling Hoare2 (Algorithm 2) on the callees by claiming that the
witness assignment is not realisable by the function. The result of these recursive calls
to Hoare2 are either a witness trace path(u) or a pair of predicates itp(P ′, Q′). If we
get a witness trace we store it in path(sti) (line 12), otherwise we do nothing (but the
context C has been updated by the call to Hoare2).

I Remark. One important feature of the algorithm to build the canonical interpolant
automata [13, 15] is the ability to add back edges (thus defining loops) to the initial
automaton that encodes the infeasible trace. An (back) edge labelled st can be added from

F. Cassez, C. Müller, and K. Burnett 553

Algorithm 3: Status(t, P,¬Q)
Global : C: context with summaries for each function
Input : A trace t, two predicates P and ¬Q
Result : (False,⊥) if t is C-(P,¬Q)-infeasible and thus (P,¬Q)-infeasible

(True, path(t)) with path(t) a (P,¬Q)-feasible full inter-procedural path.

1 Let t = st1st2 · · · stk;
2 Let FCall = {1 ≤ i ≤ k | sti is a function call};

/* Initialise path(t) for regular statements */
3 foreach i ∈ {1, · · · , k} \ FCall do path(sti) := sti;
4 while True do
5 if p̂ost(C, t, P) ∩ ¬Q 6⊆ False then

/* t is (P,¬Q)-feasible under C */
6 Let {(νi, µi), i ∈ FCall} be the set of witness before/after values;

/* Check whether each function call step is feasible */
7 foreach i ∈ FCall do path(sti) = ⊥;
8 foreach i ∈ FCall(t) do
9 Let sti be a call to f with f defined by f(x):y ;

10 switch Hoare2(x = νi, Af,¬(y = µi)) do
11 case path(u)

/* u s.t. post(u, x = νi) = y = µi */
12 path(sti) := path(u);
13 case itp(P ′, Q′)

/* f satisfies {x = νi} Aq {¬(y = µi)} */
/* (P ′, Q′) has been added to summary of f */

14 if
∧

l∈FCall path(stl) 6= ⊥ then
15 return (True, path(t))

16 else
/* t is (P,¬Q)-infeasible under C and thus (P,¬Q)-infeasible */

17 return (False,⊥);

a location associated with an interpolant I to another associated with J if post(st, I) ⊆ J .
As the contexts contain only over-approximations for function calls we can safely check
whether a back edge can be added or not. Checking whether post(st, I) ⊆ J still requires an
SMT-solver even if we use inductive interpolants computed using weakest preconditions.

The following Theorem establishes the (partial) correctness of Algorithm 2:

I Theorem 8. Let C be an initial over-approximation. If Hoare2(Af, P,Q) terminates and
there are less than n calls to Hoare2, then:
a) the result of Hoare2(Af, P,Q) is correct i. e.,

1. if it returns itp(P ′, Q′), {P ′} Af {Q′} holds, with P =⇒ P ′, Q′ =⇒ Q,
2. if it returns path(t) then path(t) is a finite inter-procedural path and post(P, path(t))∩
¬Q 6⊆ False,

b) during the computation C is always an over-approximation.

Theorem 8 proves that Hoare2 is sound by a.1). If the Hoare triple is not valid, and if
the post operator is exact then the returned counter-example is also feasible by a.2). The
algorithm is also trivially complete (as in [13]) relative to the existence of a modular Hoare
proof for the non-recursive program: if a program is error-free, there exists a context C such
that we can establish correctness.

FSTTCS 2014

554 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

The assumption that the post operator is exact for simple statements can be lifted while
still preserving soundness. An over-approximation for post (e. g., for programs with non linear
assignments, we can compute a linear over-approximation) ensures soundness. However, we
may return a witness counter-example which is infeasible, and get some false positives.

Finally, as trace refinement is strictly more powerful [13] refinement-wise than predicate
abstraction refinement, we obtain a modular inter-procedural analysis technique that is
strictly more powerful than predicate abstraction refinement based modular inter-procedural
analysis [2, 18].

6 Implementation and Experiments

We have implemented Algorithms 2 and 3 in a prototype iProc (written in Scala). The
input language of iProc is a simple inter-procedural language and we use SMT-Interpol [9]
as the back-end solver to check feasibility and generate inductive interpolants when needed.
We have implemented our own algorithm to build interpolant automata. An initial Hoare
triple {P} main {Q} is specified using assume and assert (e. g., Program P1, Listing 1).

We have experimented with small test cases inspired from industrial case studies submitted
by Goanna [8] customers and users. We focussed on array-out-of-bounds and NULL pointer
dereferences detection as this can be encoded in our programming language with integers.
We specifically analysed inter-procedural programs that were generating false positives with
the tool Goanna. The results show that we correctly analyse all the programs removing all
the false positives generated by the latest release of Goanna. This clearly demonstrates an
improvement with regard to accuracy.

We are now building a more versatile version of our prototype to be able to parse and
analyse C programs and properly demonstrate scalability compared to other tools. Extensions
to support arrays and pointer aliasing [7] are currently being investigated.

7 Related Work

Algorithms for inter-procedural (data flow) analysis of imperative programs can be traced
back to 1978 with the seminal work of Sharir and Pnueli [19], and later by Reps et al. [17].
However, practical techniques and tools have only been discovered in the last decade.
Slam [4] is certainly the best known tool and has been successfully applied to large case
studies (e. g., checking violations of API rules in device drivers.) It relies on powerful
automated predicate abstraction refinement techniques. Blast [5] and CpaChecker [6]
have been successfully applied to medium size projects. The previous tools perform predicate
abstraction (and refinement) rather than trace abstraction (and refinement), and to the
best of our knowledge they do not fully support modular inter-procedural computation of
increasingly precise summaries, but rather perform (some form of) function call in-lining.

The use of interpolants to extract summaries has been the subject of some recent papers.
Two approaches are close in spirit to our work: Whale [2] and FunFrog [18]. There are
fundamental differences between the algorithm in Whale and FunFrog and ours. Whale
builds under-approximations of functions which has a major drawback: an already computed
summary is valid provided the summaries of other functions are valid; if it turns out that
an existing summary is invalidated (which can happen as only an under-approximation of
a function has been explored), all the dependent computed summaries are invalidated as
well. FunFrog [18] is based on bounded model-checking and thus proves properties of
functions upto a bounded unrolling for loops and recursive calls. The summaries computed

F. Cassez, C. Müller, and K. Burnett 555

by FunFrog are thus valid only for the bounded unrolling of the function (e. g., this might
prevent this approach from discovering loop invariants). Moreover, the computation of the
summaries themselves is not modular: if a trace is feasible using the currently available
summaries, and must be further investigated, this is done by in-lining suspicious calls to check
whether they are actually feasible. Smash [12] is another tool using function summaries.
However, it relies on quantifier elimination to compute the summaries, which is expensive
and performs parallel computation of may and must summaries which increases complexity.
Saturn [1, 11] has been applied successfully to find bugs in the Linux kernel. It is summary-
based but bottom-up, and the sizes of summaries are bounded in order to ensure termination.
An extension of Saturn, Calysto [3] can extract counter-examples.

Finally, the intra-procedural trace refinement approach of [13] that we build on is
implemented in Ultimate Automizer [20]. It has been extended to inter-procedural programs
in [14]. The extension is very elegant and uses nested words to model inter-procedural traces
and the corresponding notion of nested interpolant automata to prove partial correctness of
recursive programs. However, it requires trace in-lining and thus is not modular. Designing
a fully modular approach based on trace refinement is thus a challenge and the method we
propose in this paper is a non obvious extension.

8 Conclusion

We have proposed a new algorithm which performs inter-procedural analysis in a fully
modular way. Our algorithm extends the intra-procedural trace refinement algorithm of [13].
It analyses a function using available summaries for other functions and never performs any
form of function or trace in-lining; it refines a function’s summary each time the function is
analysed; it is top-down, context-sensitive and provides a counter-example when a program
is incorrect. We have implemented the algorithm in a prototype analysis tool. We have
analysed small non-recursive programs inspired from industrial case studies that contain
inter-procedural defects or are hard to prove correct. The results are promising, and the next
step is to demonstrate that the approach is scalable, which we believe is the case. Indeed, we
can easily obtain a parallel version of our algorithm, as checking whether each function call
(line 8 in Algorithm 3) satisfies a pre/postcondition can be done concurrently. Our method is
also robust and independent of the technique to establish the validity of Hoare triples. Any
suitable analysis technique e. g., abstract interpretation, bounded model-checking, etc. can
be used.

Finally, the method we presented also suggests we break existing functions into smaller
parts (almost out-lining), e. g., sequences, while loops, if statements. This makes units to
analyse smaller, increases independence and enables us to compute valid Hoare triples that
are often re-usable like loop invariants.

Acknowledgments. The authors would like to thank the anonymous referees for their most
valuable comments that helped in preparing the final version of this paper.

NICTA is funded by the Australian Government through the Department of Communica-
tions and the Australian Research Council through the ICT Centre of Excellence Program.

References
1 Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and Peter Hawkins.

An overview of the saturn project. In Manuvir Das and Dan Grossman, editors, PASTE,
pages 43–48. ACM, 2007.

FSTTCS 2014

556 Summary-Based Inter-Procedural Analysis via Modular Trace Refinement

2 Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An interpolation-based
algorithm for inter-procedural verification. In Viktor Kuncak and Andrey Rybalchenko,
editors, VMCAI, volume 7148 of LNCS, pages 39–55. Springer, 2012.

3 Domagoj Babic and Alan J. Hu. Calysto: scalable and precise extended static checking.
In Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors, ICSE, pages 211–220.
ACM, 2008.

4 Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software model
checking with SLAM. Commun. ACM, 54(7):68–76, 2011.

5 Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast. STTT, 9(5-6):505–525, 2007.

6 Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, CAV, volume 6806 of
LNCS, pages 184–190. Springer, 2011.

7 Sebastian Biallas, Mads Chr. Olesen, Franck Cassez, and Ralf Huuck. Ptrtracker: Prag-
matic pointer analysis. In SCAM, pages 69–73. IEEE, 2013.

8 Mark Bradley, Franck Cassez, Ansgar Fehnker, Thomas Given-Wilson, and Ralf Huuck.
High performance static analysis for industry. ENTCS, 289:3–14, 2012.

9 Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An Interpolating
SMT Solver. In Alastair F. Donaldson and David Parker, editors, SPIN, volume 7385 of
LNCS, pages 248–254. Springer, 2012.

10 William Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory
and Proof Theory. J. Symb. Log., 22(3):269–285, 1957.

11 Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable path-sensitive
analysis. In Rajiv Gupta and Saman P. Amarasinghe, editors, PLDI, pages 270–280. ACM,
2008.

12 Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep Tetali. Compositional
may-must program analysis: unleashing the power of alternation. In Hermenegildo and
Palsberg [16], pages 43–56.

13 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement of trace abstrac-
tion. In Jens Palsberg and Zhendong Su, editors, SAS, volume 5673 of LNCS, pages 69–85.
Springer, 2009.

14 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested interpolants. In
Hermenegildo and Palsberg [16], pages 471–482.

15 Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software model checking for
people who love automata. In Natasha Sharygina and Helmut Veith, editors, CAV, volume
8044 of LNCS, pages 36–52. Springer, 2013.

16 Manuel V. Hermenegildo and Jens Palsberg, editors. Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,
Madrid, Spain, January 17-23, 2010. ACM, 2010.

17 Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco, California,
USA, January 23-25, 1995, pages 49–61, 1995.

18 Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Interpolation-based function
summaries in bounded model checking. In Kerstin Eder, João Lourenço, and Onn Shehory,
editors, HVC, volume 7261 of LNCS, pages 160–175. Springer, 2011.

19 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.
Technical report, 1978. Dpt. Of Computer Science, Courant Institute, NY, USA.

20 Ultimate Automizer. http://ultimate.informatik.uni-freiburg.de/automizer/.

http://ultimate.informatik.uni-freiburg.de/automizer/

A Two-Level Logic Approach to Reasoning about
Typed Specification Languages
Mary Southern1 and Kaustuv Chaudhuri2

1 University of Minnesota, USA
marys@cs.umn.edu

2 INRIA and LIX/École polytechnique, France
kaustuv.chaudhuri@inria.fr

Abstract
The two-level logic approach (2LL) to reasoning about computational specifications, as imple-
mented by the Abella theorem prover, represents derivations of a specification language as an
inductive definition in a reasoning logic. This approach has traditionally been formulated with
the specification and reasoning logics having the same type system, and only the formulas being
translated. However, requiring identical type systems limits the approach in two important ways:
(1) every change in the specification language’s type system requires a corresponding change in
that of the reasoning logic, and (2) the same reasoning logic cannot be used with two specifica-
tion languages at once if they have incompatible type systems. We propose a technique based on
adequate encodings of the types and judgements of a typed specification language in terms of a
simply typed higher-order logic program, which is then used for reasoning about the specification
language in the usual 2LL. Moreover, a single specification logic implementation can be used as
a basis for a number of other specification languages just by varying the encoding. We illustrate
our technique with an implementation of the LF dependent type theory as a new specification
language for Abella, co-existing with its current simply typed higher-order hereditary Harrop
specification logic, without modifying the type system of its reasoning logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic: Proof theory

Keywords and phrases Abella theorem prover, two-level logic, typed specification languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.557

1 Introduction

Higher-order abstract syntax (HOAS) [13], also known as λ-tree syntax (λTS) [8], has become
a standard representational style for data structures with variable binding. Such data are
pervasive in the syntax of programming languages, proof systems, process calculi, formalized
mathematics, etc. Variable binding issues are a particularly tricky aspect of the meta-theory
of computational systems given in the form of structural operational semantics (SOS). Such
specifications are nearly always formulated as relations presented in the form of an inference
system; for instance, the typing judgement for the simply typed λ-calculus is a relation
between λ-terms and their types, usually defined in terms of a natural deduction proof system.
Such relations on higher-order data can then be systematically formalized as higher-order
logic programs in languages such asλProlog [9] orTwelf [14], which lets us directly animate the
specifications by means of logic programming interpreters and compilers such as Teyjus [11].

In this paper, we are concerned with proving properties about such higher-order relational
specifications. For example, if the specification is of the typing relation for simply typed λ-
terms, then we may want to prove that a given λ-term has exactly one type (type-uniqueness),

© Mary Southern and Kaustuv Chaudhuri;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 557–569

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.557
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

558 A Two-Level Logic Approach for Typed Specification Languages

or that the type of a λ-term remains stable during evaluation (type-preservation). This kind
of reasoning proceeds by induction on the derivations of the specified relations, so we need a
formalism that supports both inductive definitions and reasoning by induction. The two-level
logic approach (2LL) is a general scheme for such reasoning systems, where the specification
language derivations are viewed as an inductively defined object in a reasoning logic. In
this reasoning logic, the specification language derivations are given a closed world reading,
which is to say that that derivability in the specification language is completely specified: it
can not only establish that certain specification formulas or judgements are derivable, but
also that others are not derivable, or that two specification derivations are (bi)similar. We
focus on the Abella implementation of the 2LL, which is an interactive tactics-based theorem
prover designed to reason about a subset of higher-order λProlog programs seen as the logic
of higher-order hereditary Harrop (HOHH) formulas [20, 19].

We consider an extension of the 2LL that can use a single reasoning logic to reason about a
number of different specification languages in the same development. The HOHH language has
only simple types, which makes both the specifications and the reasoning somewhat verbose
because structural invariants must be separately specified and explicitly invoked in theorems.
Richer type systems can often encode such invariants intrinsically in the types; to illustrate,
dependent types can be used to define a type of (representations of) well-typed λ-terms,
which is not possible with just simple types. Moreover, with such richer type systems one
can often use the inductive structure of the terms themselves to drive the inductive argument
rather than using auxiliary relations.

Unfortunately, the 2LL as currently defined [6] does not sufficiently address these desiderata.
In particular, the specification and reasoning languages are required to have the same type
system because the specification-level constants and their types are directly lifted to reasoning-
level constants with the same type. Thus, if we required a version of Abella based on a
dependent type theory as a specification language, we would need to also change its reasoning
logic G to be dependently typed. This goes against the 2LL philosophy where the reasoning
logic is seen as common, static, and eternal. More importantly, it both breaks portability of
developments and causes duplication of effort.

Our position is that we should extend the 2LL in such a way that the reasoning-level and
specification-level type systems are separated. Indeed, the specification types and judgements
must themselves be encoded as terms and formulas of the reasoning logic. This encoding must
be coherent with that of specification-level terms and formulas, both of which are encoded
as reasoning-level atomic formulas. This is achieved by guaranteeing that our encoding of
the type systems is adequate; that is, the encoding of the specification-level type system
must be able to represent all specification-level typing derivations, and that reasoning about
the specification-level type system should be reducible to reasoning, by induction, on the
encoding. An essential ingredient of adequacy is a right-inverse of the encoding that extracts
a specification-level typing judgement from a reasoning-level formula when the formula is in
the image of the encoding.

To be concrete, we illustrate the extended 2LL in this paper by giving an encoding of the
LF dependent type theory, which is then implemented as a translation layer in Abella. The
reasoning logic of Abella is left untouched, as is the existing HOHH specification language for
reasoning about λProlog programs. Our encoding of LF is based on that of [17, 18], suitably
modified to the context of interactive theorem proving rather than logic programming. Since
both LF and HOHH are based on intuitionistic logic, our extension of Abella uses a core
implementation of an intuitionistic specification language that is shared by both the HOHH
and the LF languages. Interestingly, the details of the encoding into this core language can

M. Southern and K. Chaudhuri 559

almost entirely be obscured for the user; in particular, to use the system the user does not
need to know how the specification language is encoded, since the system uses the right
inverse mentioned above to present the types, terms, and judgements of the specification
language in their native forms.

The rest of the paper is organized as follows. Section 2 presents the two-level logic
approach (2LL) and its implementation in the Abella theorem prover. Section 3 presents LF
and its adequate translation into a simply typed higher-order logic programming language.
This is then used in Section 4 to explain our extension of the 2LL by means of adequate
translations. Related work is surveyed in Section 5.

2 Background

This section sketches the two-level logic approach (2LL) as implemented in theAbella theorem
prover [20]. More details, including the full proof systems and their meta-theory, can be
found in the following sequence of papers: [19, 6].

2.1 The Reasoning Logic G
The reasoning logic ofAbella, G, is a predicative and intuitionistic version of Church’s Simple
Theory of Types. Types are built freely from primitive types, which includes the type prop
of formulas, using the function type constructor →. Intuitionistic logic is introduced into
this type system by means of the constants true, false : prop, binary connectives ∧,∨,⊃:
prop → prop → prop, and an infinite family of quantifiers ∀τ ,∃τ : (τ → prop) → prop
for types τ that do not contain prop. For every type τ not containing prop, we also add
an atomic predicate symbol =τ : τ → τ → prop to reason about intensional (i.e., up to
αβη-conversion) equality. Following usual conventions, we write ∧,∨,⊃, and =τ infix, and
write ∀x : τ . A for ∀τ (λx.A) (and similarly for ∃). We also omit the type subscripts and
type-ascription on variables when unambiguous.

To provide the ability to reason on open λ-terms, which is necessary when reasoning
about HOAS representations, G also supports generic reasoning. This is achieved by adding,
for each type τ not containing prop, an infinite set of nominal constants and a generic
quantifier ∇τ : (τ → prop)→ prop. We also add a weaker form of intensional equality called
equivariance that equates two terms whose free nominal constants may be systematically
permuted to each other. Note that equivariance is only used to match conclusions to
hypotheses in the G proof system; = continues to have the standard λ-conversion semantics.
The support of a term t, written supp(t), is the multiset of nominal constants that occur in
it; whenever we introduce a new eigenvariable, such as using the ∀-right or ∃-left rules, we
raise the eigenvariables over the support of the formula. This raising is needed to express
permitted dependencies on these nominal constants.

To accommodate fixed-point definitions, G is parameterized by sets of definitional clauses.
Each such clause has the form ∀~x. (∇~z.A) , B where A (the head) is an atomic formula
whose free variables belong to ~x or ~z, while B (the body) is any arbitrary formula that
can only mention the variables in ~x, and can additionally have recursive occurrences of the
predicate symbol in the head. Each clause partially defines a relation named by the predicate
in the head. We additionally require that supp(∇~z.A) and supp(B) be both empty, and
that recursive predicate occurrences satisfy a stratification condition [5].1 Finally, some of

1 Roughly, stratification prevents definitions such as p , ¬p, which would lead to inconsistency.

FSTTCS 2014

560 A Two-Level Logic Approach for Typed Specification Languages

seq L (G1 &G2) , seq L G1 ∧ seq L G2

seq L (F ⇒ G) , seq (F :: L) G

seq L (pi F) , ∇x. seq L (F x)

seq L A , mem F L ∧ bch L F A

seq L A , prog F ∧ bch L F A

bch L (F1 & F2) A , bch L F1 A ∨ bch L F2 A

bch L (G⇒ F) A , seq L G ∧ bch L F A

bch L (pi F) A , ∃t. bch L (F t) A

bch L A A , true

Figure 1 EncodingHOHH using definitional clauses in G. F andG range over arbitrary specification
formulas, while A ranges over atomic specification formulas. All clauses are implicitly universally
closed over their capitalized variables.

these definitions in G can be marked as inductive or co-inductive, in which case the set of
definitional clauses for that relation are given least or greatest fixed-point semantics. This is
approximated in Abella by means of size annotations, which are formally defined and proved
correct in [4].

2.2 The Specification Language: HOHH

The essence of the 2LL is to encode the deductive formalism of the specification language in
terms of an inductive definition. However, before this can be done, the terms and formulas –
and types! – of the specification language must be represented in the reasoning logic. This
is trivial if the specification and reasoning logics have the same term and type language,
which is the case for the HOHH language. To encode HOHH formulas, we use a new basic
type o, and formula constructors ⇒,& : o → o → o (written infix), and an infinite family
of specification-level quantifiers piτ : (τ → o) → o (standing for universal quantification,
written prenex) for types τ that do not contain o. To prevent circularity, we disallow the
type prop and the reasoning level formula constructors from occurring inside specification
level types and terms.

The proof system for HOHH is a standard focused sequent calculus for this fragment of
the logic, assuming that all atoms have negative polarity; this is equivalent to saying that
the proof system implements backchaining [19]. This proof system is implemented in G
using two predicates, seq : olist→ o→ prop and bch : olist→ o→ o→ prop, standing
for goal reduction and backward chaining respectively, with the definitional clauses shown
in figure 1. Here, specification contexts have the type olist, the type of lists of o, with
constructors nil : olist and (::) : o→ olist→ olist (written infix), and a membership
relation mem : o→ olist→ prop that has the obvious inductive definition. In Abella, these
two relations are displayed using the more evocative notation {L `G} and {L, [F] `G} for
seq L G and bch L F G. The final clause for seq uses a separate predicate prog : o→ prop
that is true exactly for the clauses in the specification program. It is easy to see that with
this syntax, the definitional clauses of figure 1 are precisely the inductive definition of a
backchaining proof system.

2.3 Example: Type Uniqueness
The need for the two kinds of specification sequents and the mechanism for proving properties
about the specification logic are best described with an example. Consider the simply typed
λ-calculus, itself specified as an object logic in HOHH. The simple type system is represented
using a new basic type ty with two constructors, i : ty (a basic sort), and arr : ty→ ty→ ty
for constructing arrow types. The λ-terms are typed using a different basic type tm with

M. Southern and K. Chaudhuri 561

two constructors: app : tm → tm → tm and abs : ty → (tm → tm) → tm. The λ-term
λx:i. λf :i→ i. fx would be represented as abs i (λx. abs (arr i i) (λf. app f x)). The
relation between terms (of type tm) and types (of type ty) is usually expressed in the form
of an inference system such as:

Γ, x:A `M : B
Γ ` (λx:A.M) : A→ B

→I

Γ `M : A→ B Γ `N : A
Γ `M N : B

→E Γ, x:A ` x : A
var

This relation is succinctly expressed as a pair of HOHH program clauses for the predicate
of : tm→ ty→ o, which is used both for assumptions of the form x:A and for conclusions of
the form M : A in the inference system above.

pi a:ty. pi b:ty. pi m:tm. pi n:tm. of m (arr a b)⇒ of n a⇒ of (app m n) b.
pi a:ty. pi b:ty. pi r:tm→ tm. (pix:tm.of x tm⇒ of (r x) tm)⇒ of (abs a r) (arr a b).

Note that there is no clause for var; rather, it is folded into an assumption in the body
of the abs case, which delimits its scope. It is generally easier to read such clauses when
they are written using the standard λProlog syntactic convention of using capital letters for
universally closed variables, writing implications in the reverse direction with the head first,
and separating assumptions by commas rather than repeated implications. Thus, the above
clauses correspond to:

of (app M N) B ⇐ of M (arr A B), of N A.
of (abs A R) (arr A B) ⇐ pi x\ of (R x) B ⇐ of x A.

The formula pi (λx. F) is rendered as pi x\ F in the concrete syntax, and the scope of x
extends as far to the right as possible. Note that all the types are inferred.

In the reasoning mode of Abella, the above λProlog specification is imported by reflecting
all specification constants and types in the reasoning signature, and by generating a definition
for prog that is true only for the two clauses for of. The typing judgement x:A, y:B `M : C
in the inference system (2.3), for instance, would be represented by seq (of y B :: of x A ::
nil) (of M C). As an example of reasoning on this specification, we can prove that of is
deterministic in its second argument:

forall M A B, { ` of M A} → { ` of M B} → A = B.

This theorem is proved by induction on the derivation of one of the seq assumptions,
such as the first one. This induction would repeatedly match the form seq nil M A against
the left hand sides of the definitional clauses in figure 1; for every successful match, the
corresponding right hand side of the clause would give us new assumptions, which may then
be used in the inductive hypothesis.

Initially, the only clause that matches is the final one for seq corresponding to backchaining
on a program clause. In the case where the clause for abs is selected, the corresponding bch
clause for it would in turn call seq with a different list of assumptions. Thus, the inductive
argument cannot proceed with empty dynamic specification contexts (the first argument to
seq and bch) alone: we must also allow for reasoning under an abstraction. This is achieved
in the reasoning logic by inductively characterizing all such dynamic context extensions with
a new atom, say ctx : olist→ prop, with the following inductive definitional clauses:

ctx nil , true.

∀A.∀G. (∇x. ctx (of x A ::G)) , ctx G.

We can then prove a stronger lemma:
forall G M A B, ctx G → {G ` of M A} → {G ` of M B} → A = B.

FSTTCS 2014

562 A Two-Level Logic Approach for Typed Specification Languages

φ (Πx:A.P) := φ (A)→ φ (P)
φ (a M1 · · · Mn) := lfobj

φ (type) := lftype

〈c〉 := c

〈x〉 := x

〈M1 M2〉 := 〈M1〉 〈M2〉

〈λx:A.M〉 := λx:φ (A). 〈M〉

Figure 2 Encoding of LF types and kinds as simple types and LF objects as simply typed λ-terms.

Now, when the dynamic context does grow when backchaining on the clause for abs, it will
grow exactly by the form in the head of the second clause of ctx, i.e., with a formula of
the form of n A where n is a nominal constant that does not occur in A nor in the original
context G. Thus, when we in turn backchain on the dynamic clauses (using the penultimate
clause for ctx in figure 1), we will know the precise form of the selected clause.

3 An Adequate Translation of LF to HOHH

The Edinburgh Logical Framework (LF) is a dependently typed λ-calculus which is used
for specifying formal systems. Terms of this language belong to one of the following three
syntactic categories:

Kinds K ::= type | Πx:A.K
Types A,B ::= a M1 . . .Mn | Πx:A.B
Objects M,N ::= c | x | λx:A.M | M N

Types, sometimes called families, classify objects and kinds classify types. Here a represents
a type-level constant, c an object level constant, and x an object level variable. Following
standard convention, we will write A → B as a shorthand for Πx:A.B when x does not
appear free in B. We will use U to denote both types and objects and P for both kinds
and types, so U : P will stand either for a typing or a kinding judgement. We will write
U [M1/x1, . . . ,Mn/xn] to denote the capture avoiding substitution of M1, . . . ,Mn for free
occurrences of x1, . . . , xn respectively.

An LF specification is a list of object or type constants together with their types or kinds,
called a signature. Let us revisit the example of the simply typed λ-calculus and its associated
typing relation used in Section 2.3. The λ-terms are encoded using the following signature:

ty : type. tm : type.
i : ty. app : tm → tm → tm.
arr : ty → ty → ty. abs : ty → (tm → tm) → tm.

For the typing relation of, in LF we declare it as a dependent type rather than as a predicate
as inHOHH. The clauses of the of type are then viewed as constructors for the dependent type,
and are therefore also given names. Here, the concrete syntax {x:A} B denotes Πx:A.B.

of : tm → ty → type.
ofApp : {A:ty} {B:ty} {M:tm} {N:tm}

of M (arr A B) → of N A → of (app M N) B.
ofAbs : {A:ty} {B:ty} {R:tm → tm}

({x:tm} of x A → of (R x) B) → of (abs A R) (arr A B).

The LF type system is formally defined in [7] and will not be repeated here. Instead, we
will directly give an adequate encoding of the LF type system in terms of HOHH, based on
the variant of the encoding in [3] defined in [17], with the inverse mapping defined in [18].

The encoding proceeds in two steps. First, we transform our dependently typed terms
into simply typed HOHH terms. The encoding of types and kinds is defined as a mapping,
written φ (−). These types indicate that the term is an encoding of an LF type and an LF
object, respectively. For each constant c : P in the LF signature, we generate a simply typed

M. Southern and K. Chaudhuri 563

{{Πx:A.P}} := λm:φ (Πx:A.P). pi x:φ (A). {{A}}x⇒ {{P}}(m x)
{{a M1 · · · Mn}} := λm:lfobj. hastype m (a 〈M1〉 · · · 〈Mn〉)

{{type}} := λm:lftype. istype m

Figure 3 Encoding of LF types and kinds using the hastype and istype predicates.

term c of type φ (P). Using this mapping, the dependently typed λ-terms are converted
into simply typed λ-terms using the mapping 〈−〉. Figure 2 contains the rules for both 〈−〉
and φ (−). Note that φ (−) erases not just the type dependencies but also the identities
of the types. For an atomic type A = a M1 · · · Mn, we further write 〈A〉 to stand for
a 〈M1〉 · · · 〈Mn〉.

The second pass uses two new predicates, hastype : lfobj→ lftype→ o and istype :
lftype→ o, to encode the type and kind judgements of LF. Whenever M : A is derivable in
LF under a given signature, it must be the case that {{A}}〈M〉 is derivable in HOHH from
the clauses for hastype and istype produced from encoding the signature. Likewise, when
A : K is derivable, it should be the case that {{K}}〈A〉 is derivable. The rules for this
encoding are shown in figure 3.

I Theorem 1 (Adequacy, [17]). The LF hypothetical judgement x1 : P1, . . . , xn : Pn `M : A
is derivable in the LF type theory [7] from an LF signature Σ if and only if the HOHH
formula {{P1}}x1 ⇒ · · · ⇒ {{Pn}}xn ⇒ {{A}}〈M〉 is derivable from the HOHH encoding of
Σ according to the rules in figures 2 and 3. J

Because this encoding is adequate, it is possible to define a right-inverse that maps a
HOHH formula in the image of the translation in figure 3 back to an LF judgement. This
inverse will be very useful in the next section where we will use the encoding of LF to extend
the 2LL via translations. The user of the system will not need to be aware of the details of
the encoding as the HOHH formulas will be inverted into their corresponding LF judgements.

Defining such an inverse requires a small amount of care. We obviously cannot invert
every HOHH formula, just those that correspond to a given signature. However, even for
formulas constructed using the encodings of an LF signature, we may not necessarily be able
to invert them; for instance, the formula may be the translation of a malformed or ill-typed
LF judgement. This inverse will also not necessarily recover exactly the LF judgement used
to construct the HOHH formula in the first place; rather, the inversion will only produce a
unique inverse (if one exists) up to βη-conversion.

The inversion operation is defined in terms of the following four sequent forms:

Γ ` hastype m a −→M : A inverting typing; M , A output
Γ ` istype a −→ A : type inverting kinding; A output
Γ `m : A M inverting canonical terms; M output
Γ `m M : A inverting atomic terms; M , A output

The rules are shown in figure 4. In each case, Γ contains the type and kind information for the
signature constants and the typing assumptions for the bound variables in the input terms.
A and B range over LF types, M and N over LF terms, F and G over HOHH formulas and a,
m and n over simply typed λ-terms produced by 〈−〉. The rules for inverting typing and
kinding are novel, but those for inverting terms are standard from bidirectional type-checking,
and have already been developed in [18] (in a slightly more general form).

I Theorem 2 (Right inverse). If {{P}}〈U〉 = F under the translation of Γ and Γ ` F −→
U ′ : P , then Γ ` U =βη U

′ : P in LF.

FSTTCS 2014

564 A Two-Level Logic Approach for Typed Specification Languages

(a:Πx1:A1. · · ·Πxk:Ak. B) ∈ Γ

Γ `m1 : A1 M1
· · ·

Γ, x1:A1, . . . , xk−1:Ak−1 `mk : Ak Mk

Γ `m : a M1 · · · Mk M

Γ ` hastype m (a m1 · · · mk) −→M : a M1 · · · Mk
inv-has

(a:Πx1:A1. · · ·Πxk:Ak. type) ∈ Γ

Γ `m1 : A1 M1
· · ·

Γ, x1:A1, . . . , xk−1:Ak−1 `mk : Ak Mk

Γ ` istype (a m1 · · · mk) −→ a M1 · · · Mk : type
inv-is

Γ ` F −→ R : A R =η x Γ, x:A `G −→M : B
Γ ` pi x:a. F ⇒ G −→ (λx:A.M) : Πx:A.B inv-nest

. .
Γ, x:A `m : B M

Γ ` (λx:T .m) : (Πx:A.B) λx:A.M inv-lam
Γ `m M : Πx:A.B Γ ` n : A N

Γ `m n M N : B[N/x]
inv-app

Γ `m M : A
Γ `m : A M

inv-switch
(x:A) ∈ G

Γ ` x x : A
inv-hyp

(c:A) ∈ G
Γ ` c c : A inv-const

Figure 4 Inverting the LF encoding of judgements (−→) and terms ().

Proof. By structural induction on the inversion derivation. Note the requirement for η-
contraction of the term to a variable in the second premise of inv-nest is necessary, for
otherwise the rule would produce an unsound abstraction. If the formula F was generated
from the translation of figures 2 and 3, then this η-contraction check will always succeed. J

4 Translational Two-level Logic Approach

We will now use both the translation of LF signatures to HOHH formulas and its inverse to
extend the 2LL in such a way that we can reason about LF signatures just as we were able to
reason on λProlog specifications as shown in the example of Section 2.3.

4.1 Importing the LF Specification
As the type system of LF and G are different, we cannot directly reflect the constants and
types of the LF specification logic like we did with HOHH in Section 2. Instead, for every LF
constant c of LF type or kind P in the LF signature, we do the following: (1) add a constant
c : φ (P) to the G signature; and (2) add the clause {{P}}c to the prog definition. Note that
because the clauses are always of the form {{P}}c for a constant c, there will never be any
redexes in the clauses, i.e., the generated clauses are β-normal. They are also η-long, because
the definition of {{−}} traverses the type or kind until it is atomic.

I Example 3. Consider again the LF signature in Section 3. When it is imported into G,
the following constants are added to the G signature by step (1):

ty : lftype . tm : lftype .
i : lfobj. app : lfobj → lfobj → lfobj.
arr : lfobj → lfobj. abs : lfobj → (lfobj → lfobj) →

lfobj.

of : lfobj → lfobj → lftype .
ofApp : lfobj → lfobj → lfobj → lfobj → lfobj → lfobj → lfobj.
ofAbs : lfobj → lfobj → (lfobj → lfobj) →

(lfobj → lfobj → lfobj) → lfobj.

The following clauses are then added to prog by step (2) described above:

M. Southern and K. Chaudhuri 565

lfisty ty.
lfhas i ty.
lfhas (arr Z1 Z2) ty ⇐ lfhas Z1 ty , lfhas Z2 ty.

lfisty tm.
lfhas (app Z1 Z2) tm ⇐ lfhas Z1 tm , lfhas Z2 tm.
lfhas (abs Z1 Z2) tm ⇐

lfhas Z1 ty , (pi x\ lfhas x tm ⇒ lfhas (Z2 x) tm).

lfisty (of Z1 Z2) ⇐ lfhas Z1 tm , lfhas Z2 ty.
lfhas (ofApp A B M N Z1 Z2) (of (app M N) B) ⇐

lfhas A ty , lfhas B ty , lfhas M tm , lfhas N tm ,
lfhas Z1 (of M (arr A B)), lfhas Z2 (of N A).

lfhas (ofAbs A B R Z1) (of (abs A (x\ R x)) (arr A B)) ⇐
lfhas A ty , lfhas B ty ,
(pi x\ lfhas x tm ⇒ lfhas (R x) tm),
(pi x\ lfhas x tm ⇒ pi z\ lfhas z (of x A) ⇒

lfhas (Z1 x z) (of (R x) B)).

The variables named Zi are generated by the translator for those variables that are omitted
from the input signature by the use of → instead of Π. We write clauses using standard
λProlog syntax for clarity; it is simple to take the output of translation into this form.

It is instructive to compare these clauses to those for the pure HOHH version in Section 2.3.
Although, on the surface, these two look quite different, there are similarities in the kinds of
subgoals that are produced for the three constructors of of. For example, consider the case
of ofApp. Two of the formulas, hastype Z1 (of M (arr A B)) and hastype Z2 (of N A)
are already present in nearly this form in the HOHH specification. The additional assumptions
are just repetitions of the typing assumptions for the arguments to ofApp; indeed, many
of them are redundant since the ofApp term is already assumed to be type-correct. This
kind of redundancy analysis can be used to further improve the translation, making it nearly
identical to the simply typed specification [17, 18].

4.2 Representing LF Hypothetical Judgements
We use the concrete syntax 〈M : A〉 or 〈A : K〉 to depict {{A}}M or {{K}}A, respectively.
In fact, since the LF type system is given in terms of hypothetical derivations, we generalize
this syntax to the form: 〈x1 : P1, ..., xn : Pn ` U : P 〉 as an abbreviation for: seq (〈x1 : P1〉::
· · · :: 〈xn : Pn〉) (〈U : P 〉). As an example,2 the uniqueness theorem for the of relation is
(eliding types):

∀G,M,A,B, P1, P2, ctx G ⊃ 〈G ` P1 : of M A〉 ⊃ 〈G ` P2 : of M B〉 ⊃ A = B. (1)

Here, P1 and P2 are (encodings of) the LF proof-terms for the judgements of M A and
of M B respectively; these proof terms are built out of the constructors for the of relation,
viz. ofApp and ofAbs.

Of course, in order to prove this theorem we would require a suitable ctx definition.
Unlike in the simply typed case, the recursive case for λ-abstractions not only introduces a
new variable but also a proof that it has a given LF type at the same time. This gives us the
following definitional clauses.

ctx nil , true.

∇x:lfobj.∇p:lfobj. ctx (〈x : tm〉 :: 〈p : of x A〉 ::G) , ctx G.

2 The fullAbella/LF development may be interactively browsed online at http://abella-prover.org/lf.

FSTTCS 2014

http://abella-prover.org/lf

566 A Two-Level Logic Approach for Typed Specification Languages

It is interesting to note that, because variables are introduced (bound) in a different place
than their typing assumptions, it would be just as valid to use the following clause instead
for the second clause above:

∇x:lfobj.∇p:lfobj. ctx (〈p : of x A〉 :: 〈x : tm〉 ::G) , ctx G.

This reordering of the context that is not strictly allowed in the LF type system poses no
problems for us. Indeed, when we reason about the elements of the context, we can always
recover these two assumptions that are always simultaneously added to the context.

forall G, nabla p x,
ctx (G x p) → mem 〈 x : tm 〉 (G x p) →

exists A, mem 〈 p : of x A 〉 (G x p) ∧ fresh p A ∧ fresh x A.

The dependency of G on x and p is indicated explicitly using application. For A, this
dependency is implicit, because the exists occurs in the scope of the corresponding nablas,
so we use the predicate fresh : lfobj → lfobj → prop to further assert that its first
arguments are nominal constants that do not occur in its second arguments. This is definable
with the single clause: ∀A. (∇x. fresh x A) , true.

The proof of (1) proceeds by induction on the second assumption, 〈G ` P1 : of M A〉,
using the clauses added to prog when importing the specification. There are exactly three
backchaining possibilities for prog clauses, corresponding to the ofApp and ofAbs cases,
respectively. Finally, when backchaining on the dynamic clauses in G, we use the ctx
definition to characterize the shape of the selected clause: if the selected clause is 〈x : tm〉,
then the branch immediately succeeds since 〈x : tm〉 will not unify with 〈P1 : of M A〉. Thus,
the only backchaining case worth considering is when the selected dynamic clause is of
the form 〈p : of x A′〉. In this case, we continue by case-analysis of the second derivation,
〈P2 : of M B〉, in which case again the only possibility that is not immediately ruled out by
unification is the case of 〈p′ : of x B′〉 being selected from G. In this case, we appeal to a
uniqueness lemma [1] of the following form:

∀G,X,A,B, P1, P2, ctx G ⊃ mem 〈P : of X A〉 G ⊃ mem 〈P2 : of X B〉 G ⊃ A = B.

The rest of the proof is fairly systematic, and largely identical in structure to that of the
HOHH case. It is also worth remarking that once we have shown that the types A and B are
identical in (1), we can then also show that the proof terms P1 and P2 must also be equal
(up to αβη, of course).

forall G M A B P1 P2 , ctx G →
〈 G ` P1 : of M A 〉 → 〈 G ` P2 : of M B 〉 → P1 = P2.

This is expected from the LF type theory, but would be difficult to state in LF itself because
of the lack of equality as a built-in relation.

4.3 The Implementation
The implementation of the translational 2LL can be found in the lf branch of the Abella
repository.3 This implementation also comes with a few examples of reasoning on LF
specifications that can be browsed online without needing to run Abella. We have made the
following observations about these developments:

3 Details for downloading and building this branch can be found in http://abella-prover.org/lf.

http://abella-prover.org/lf

M. Southern and K. Chaudhuri 567

The user of the system never needs to look at the encoding of LF in HOHH directly.
The system always translates LF judgements, written using 〈−〉, transparently to HOHH,
and also inverts any HOHH formulas in the image of the translation back into an LF
(hypothetical) judgement. Hence, the only domain knowledge the user needs to use the
system is the tactics-based proof language of Abella itself.
Our implementation currently does not perform type-checking on the LF judgements
written by the user, either in the specification itself or as part of reasoning. This is not
as such a problem, since we can never prove anything false about well-typed judgements.
However, without type checking we have no way to verify that the theorem which has
been proved is really meaningful since we are allowed to reason about ill-formed LF
judgements. It would also be useful for users to have a type-checker as a sanity check.
For the time being, we run the input specification through the Twelf system [14], both to
type-check it and to get an explicit form of the specification.

5 Related Work and Conclusion

We have proposed here a translational extension to the two-level logic approach for reasoning
about specifications. By adding a translation layer to the Abella theorem prover we have
been able to reason over dependently typed LF specifications without needing to change the
reasoning logic, and allowing LF to co-exist with the HOHH specification logic. We are already
in the process of extending this implementation to arbitrary pure type systems instead of just
LF; in particular, extending the type system with polymorphism, which is the most common
feature request for Abella, should be encodable via our translation that realizes specification
types as reasoning terms.

The translation ofLF toHOHH used in this work is a minor variant of the simple translation
from [17], which is itself based on earlier work [3], while the inversion on terms is similar to
the definition in [18], omitting meta-variables. Various optimized versions of this translation
have been used to use λProlog as an engine for logic programming with LF specifications;
in particular, the Parinati system [17] and its extension to meta-variables in [18]. The
meta-theory of the optimized translation is not as immediate as for the simple translation,
but it would be interesting to investigate its use for the Abella/LF variant in the future.
The combination of Parinati and Abella/LF gives us both an efficient execution model for
dependently typed logic programs and a mechanism to reason about the meta-theory of such
specifications in the extended 2LL. In effect, LF becomes as much a first class citizen of the
Abella ecosystem as HOHH and λProlog have traditionally been.

There are many other systems designed to reason with and about LF specifications.
The most mature implementation is Twelf [14], which has a very efficient type-checker
incorporating sophisticated term and type reconstruction. As mentioned in Section 4.3, we
useTwelf to type-check and elaborate the LF specifications we import inAbella. In addition to
the type-checker, Twelf has a suite of meta-theoretic tools that can verify certain properties
of LF specifications, such as that a declared relation determines a total function. Twelf is,
however, not powerful enough to reason inductively on arbitrary LF derivations. For example,
although Twelf can check coverage, it cannot express the logical formula that corresponds to
the coverage property.

Some of these expressive deficiencies of Twelf have been addressed in theDelphin [16] and
Beluga [15] systems that add a functional programming language that can manipulate and
reason inductively on LF syntax. TheBeluga system, in particular, extends the LF type theory
with contextual modal types [12] that give a type-theoretic treatment for meta-variables

FSTTCS 2014

568 A Two-Level Logic Approach for Typed Specification Languages

and explicit substitutions; in addition, Beluga also allows abstraction over contexts and
substitutions [2]. The type-checker of Beluga is therefore very sophisticated and performs
many kinds of reasoning on contexts automatically that must be done manually inAbella. On
the flip-side, Abella has a small trusted core based on the logic G with a well-understood and
– importantly! – stable proof system [10, 5]. It would be interesting to formally compare the
representational abilities of Abella/LF and Beluga. Moreover, Abella has recently acquired a
Plugin architecture that allows arbitrary (but soundness-preserving) user-written extensions
to its automation capabilities [1], which might help us add more automation in the future.

References
1 Olivier Savary Bélanger and Kaustuv Chaudhuri. Automatically deriving schematic theo-

rems for dynamic contexts. In LFMTP’14, pages 9:1–9:8. ACM, 2014.
2 Andrew Cave and Brigitte Pientka. Programming with binders and indexed data-types. In

POPL, pages 413–424. ACM, 2012.
3 Amy Felty and Dale Miller. Encoding a dependent-type λ-calculus in a logic programming

language. In CADE, volume 449 of LNAI, pages 221–235. Springer, 1990.
4 Andrew Gacek. A Framework for Specifying, Prototyping, and Reasoning about Computa-

tional Systems. PhD thesis, University of Minnesota, 2009.
5 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Information

and Computation, 209(1):48–73, 2011.
6 Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic approach to reasoning

about computations. J. of Automated Reasoning, 49(2):241–273, 2012.
7 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal

of the ACM, 40(1):143–184, 1993.
8 Dale Miller and Gopalan Nadathur. A computational logic approach to syntax and seman-

tics. 10th Symp. of the Mathematical Foundations of Computer Science, May 1985.
9 Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge

University Press, June 2012.
10 Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. on Com-

putational Logic, 6(4):749–783, October 2005.
11 Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus – A compiler and

abstract machine based implementation of λProlog. In CADE, number 1632 in Lecture
Notes in Artificial Intelligence, pages 287–291. Springer, 1999.

12 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual model type theory.
ACM Trans. on Computational Logic, 9(3):1–49, 2008.

13 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In PLDI, pages 199–208.
ACM Press, June 1988.

14 Frank Pfenning and Carsten Schürmann. System description: Twelf – A meta-logical
framework for deductive systems. In 16th Conf. on Automated Deduction (CADE), number
1632 in LNAI, pages 202–206, Trento, 1999. Springer.

15 Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming and reasoning
with deductive systems (system description). In IJCAR, pages 15–21. Springer LNCS 6173,
2010.

16 Adam Poswolsky and Carsten Schürmann. System description: Delphin – A functional
programming language for deductive systems. In LFMTP, volume 228, pages 113–120,
2008.

17 Zachary Snow, David Baelde, and Gopalan Nadathur. A meta-programming approach to
realizing dependently typed logic programming. In PPDP, pages 187–198, 2010.

M. Southern and K. Chaudhuri 569

18 Mary Southern and Gopalan Nadathur. A λProlog based animation of Twelf specifications,
July 2014. Available at http://arxiv.org/abs/1407.1545.

19 Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek, and Gopalan Nadathur. Reasoning
about higher-order relational specifications. In PPDP, pages 157–168, Madrid, Spain,
September 2013.

20 The Abella web-site. http://abella-prover.org/, 2013.

FSTTCS 2014

http://arxiv.org/abs/1407.1545
http://abella-prover.org/

On the Complexity of Computing Maximum
Entropy for Markovian Models
Taolue Chen1 and Tingting Han2

1 Department of Computer Science, Middlesex University London, UK
2 Department of Computer Science and Information Systems,

Birkbeck, University of London, UK

Abstract
We investigate the complexity of computing entropy of various Markovian models including
Markov Chains (MCs), Interval Markov Chains (IMCs) and Markov Decision Processes (MDPs).
We consider both entropy and entropy rate for general MCs, and study two algorithmic ques-
tions, i.e., entropy approximation problem and entropy threshold problem. The former asks for
an approximation of the entropy/entropy rate within a given precision, whereas the latter aims
to decide whether they exceed a given threshold. We give polynomial-time algorithms for the
approximation problem, and show the threshold problem is in PCH3 (hence in PSPACE) and
in P assuming some number-theoretic conjectures. Furthermore, we study both questions for
IMCs and MDPs where we aim to maximise the entropy/entropy rate among an infinite family
of MCs associated with the given model. We give various conditional decidability results for
the threshold problem, and show the approximation problem is solvable in polynomial-time via
convex programming.

1998 ACM Subject Classification G.3 Probability and Statistics, D.2.4 Software/Program Veri-
fication

Keywords and phrases Markovian Models, Entropy, Complexity, Probabilistic Verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.571

1 Introduction

Entropy is one of the most fundamental notions in information theory which usually refers
to the Shannon entropy in this context [16]. In a nutshell, it is the expected value of the
information contained in a message. Markovian processes and entropy are related since the
introduction of entropy by Shannon. In particular, Shannon defined and studied technically
the entropy rate of a discrete-time Markov chain (henceforth MC in short) with a finite state
space, which is one of the main topics of the current paper.

We identify two types of “entropy” defined in literature for MCs. Essentially entropy
is a measure of uncertainty in random variables, and MCs, as a stochastic process, are a
sequence of random variables. Naturally this view yields two possible definitions, intuitively
the “average” and the “sum” of the entropy of the random variables associated with the MC,
respectively:

the classical definition of entropy, dating back to Shannon, typically known as the entropy
rate. Informally, this is the time density of the average information in a stochastic process.
Henceforth, we refer to this definition as entropy rate.
the definition given by Biondi et al [7], which is the joint entropy of the (infinite) sequence
of random variables in a stochastic process. Although being infinite in general, the
authors argue that this represents, for instance, the information leakage where the states

© Taolue Chen and Tingting Han;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 571–583

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.571
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

572 On the Complexity of Computing Maximum Entropy for Markovian Models

of the MC are the observables of a deterministic program [7]. Henceforth, we refer to this
definition as entropy.

Formal accounts are given in Section 3. Definitions of entropy of MCs raise algorithmic
challenges. One natural question is, given an MC, how to “compute” its entropy? Note that
in general, it is not a rational (even not an algebraic) number, which prompts the question
what computing means exactly. Technically there are (at least) two possible interpretations
which we formulate as the entropy approximation problem and the entropy threshold problem,
respectively. Let D be an MC and ~ denote the entropy/entropy rate of D.

The entropy approximation problem aims to compute, given the error bound ε > 0, a
rational number θ such that |~− θ| ≤ ε;
The entropy threshold problem aims to decide, given the rational number θ, whether
~ ./ θ, where ./ ∈ {<,≤,=,≥, >}.

Observe that general speaking the approximation problem is no harder than the threshold
problem, since it can be solved by a simple binary search with the threshold problem as the
oracle. However, the converse does not hold in general.

On top of a purely probabilistic model like MCs, it is probably more interesting to consider
probabilistic models with nondeterminism, typically Interval Markov chains (IMCs) and
Markov Decision Processes (MDPs). MDPs [26] are a well-established model which is widely
used in, for instance, robotics, automated control, economics, and manufacturing. IMCs [22]
are MCs where each transition probability is assumed to be within a range (interval). They
are introduced to faithfully capture the scenario where transition probabilities are usually
estimated by statistical experiments and thus it is not realistic to assume they are exact.

By and large, a probabilistic model with nondeterminism usually denotes an (infinite)
family of pure probabilistic models. Among these models, selecting the one with the
maximum entropy is one of the central questions in information theory [16]. As before, it
raises algorithmic challenges as well, i.e., given an IMC or MDP which denotes an infinite
family of MCs, how to “compute” the maximum entropy? Note the dichotomy of the
approximation and the threshold problem exists here as well, which we shall refer to the
maximum entropy approximation problem and the maximum entropy threshold problem,
respectively.

Entropy of probabilistic models has a wide range of applications, in particular in security
[12, 6, 30]. As a concrete example which is one of the motivations of the current paper, in a
recent paper [7], all possible attacks to a system are encoded as an IMC, and the channel
capacity computation reduces to finding an MC with highest entropy. Note that tool support
has been already available [8].

Contributions. In this paper we are mainly interested in the algorithmic aspects of entropy
for Markovian models. In particular, we carry out a theoretical study on the complexity of
computing (maximum) entropy for MCs, IMCs, and MDPs. The main contributions are
summarised as follows:
1. We consider the definition of entropy rate for general (not ergodic) MCs, and give a

characterisation in terms of local entropy;
2. We identify the complexity of the entropy approximation problem and the entropy

threshold problem for MCs;
3. We identify the complexity of the approximation problem for maximum entropy/entropy

rate for IMCs, and we obtain conditional decidability for the threshold problem. These
results can be adapted to the MDP model as well.

The main results of the paper are summarised in Table 1.

T.Chen and T.Han 573

Table 1 Complexity of computing entropy/entropy rate

approximation threshold
MC P PCH3 (conditional in P)

IMC/MDP P conditional decidable

Some remarks are in order:
Regarding 1, in literature entropy rate is defined exclusively over irreducible (sometimes
called ergodic) MCs where the celebrated Shannon-McMillan-Breiman theorem [16]
actually gives a characterisation in terms of stationary distribution and local entropy.
However, for computer science applications, MC models are seldom irreducible. Hence
we provide a characterisation for general (finite-state) MCs, inspired by the one in [7].
For the “computation” of entropy of MCs, [7] states that it can be done in polynomial
time. Although not stated explicitly, this actually refers to the approximation problem.
The threshold problem is not addressed in [7], nor the corresponding problems wrt. the
entropy rate.
For the “computation” of maximum entropy of IMCs, [7] considers the approximation
problem. The authors reduce the problem to non-linear programming (over a convex
polytope though) to which no complexity result is given. Here, instead, we show, by
reducing to convex programming, the approximation problem can be solved in polynomial
time. Note that the formulation in [7] is not convex in general, so we cannot start from
there straightforwardly.
For maximisation of entropy rate, it is actually a classical topic for MCs and semi-MCs.
A classical result, due to Parry [24], shows how to define a (stationary) MC (called
Shannon-Parry MC) over a given strongly connected graph to achieve the maximum
entropy rate. More recent results focus on finding a (semi-)MC with the maximum
entropy rate when its stationary distribution is constrained in certain ways, see, e.g., [19].
In contrast, here we work on the entropy rate for general IMCs and MDPs. To the best
of our knowledge this is the first work of this type.

Related work. Apart from the work we have discussed before, [30, 12] studied the complexity
of quantitative information flow for boolean and recursive programs, whereas [11] studied the
information-leakage bounding problem (wrt. Shannon entropy) for deterministic transition
systems. [9] studied entropy in process algebra. These models and questions are considerably
different from ours. [13, 27, 15, 25, 4] studied IMCs and their model checking problems.
The technique to solve convex programming is inspired by [25]. We also mention that [2]
generalised Parry’s result to the graph generated by timed automata.

An extended version of the paper [14] contains proofs, detailed expositions, and in
particular, all results for MDPs.

2 Preliminaries

Let N,Q,R denote the set of natural, rational, real numbers, respectively. Given any finite set
S, we write ∆(S) for the set of probabilistic distributions over S, i.e., functions µ : S → [0, 1]
with

∑
s∈S µ(s) = 1. For any vector ~x, we write ~xi for the entry of ~x corresponding to the

index i, and ~x ≥ 0 if ~xi ≥ 0 for each i. Throughout this paper, X,Y, · · · denote discrete
random variables (RVs), usually over a finite set of outcomes. For the RV X, we often denote

FSTTCS 2014

574 On the Complexity of Computing Maximum Entropy for Markovian Models

the set of outcomes as X = {x1, · · · , xn} which is ranged over by x. In this context, we also
write Pr(X = x) or simply p(x) for the probability mass function.

2.1 (Interval) DTMCs
I Definition 1 (MC). A (discrete-time) Markov chain (MC) is a tuple D = (S, α,P), where
S is a finite set of states; α ∈ ∆(S) is the initial distribution; and P : S × S → [0, 1] is the
transition probability matrix, satisfying ∀s ∈ S,

∑
s′∈S P(s, s′) = 1.

Alternatively, an MC can be defined as a stochastic process {Xn}n≥0, where each Xn is
a discrete RV over S. The process respects the Markov property, i.e., Pr(Xn = sn|Xn−1 =
sn−1, · · · , X0 = s0) = Pr(Xn = sn|Xn−1 = sn−1) = P(sn−1, sn) for any s0, s1, · · · , sn ∈ S
and n ∈ N. Note that Pr(Xn = s) denotes the probability of being in state s at time n. The
transient distribution of D is denoted by π(n) ∈ ∆(S), which can be computed by π(n) = αPn.
It is known that Pr(Xn = s) = π

(n)
s .

For a finite MC, we often use graph-theoretical notations which refer to the underlying
digraph of D. Essentially the vertices of the digraph are states of D, and there is an edge
from s to t iff P(s, t) > 0. The following notions are standard.

I Definition 2. A subset T ⊆ S is strongly connected if for each pair of states s, t ∈ T , t
is reachable from s. A strongly connected component (SCC) T of an MC D denotes a
strongly connected set of states such that no proper superset of T is strongly connected.
A bottom strongly connected component (BSCC) T is an SCC from which no state outside
T is reachable.

We write E(D) for the set of all SCCs of D and B(D) ⊆ E(D) for the set of all BSCCs of D.

I Definition 3. A state s is absorbing if P(s, s) = 1, i.e. s contains only a self-loop. An
MC is absorbing if every state can reach an absorbing state.
A state s is transient if, starting in state s, there is a non-zero probability that it will
never return to s; otherwise s is recurrent.
A state s is deterministic if the distribution P(s, ·) is Dirac, i.e. there is a unique t such
that P(s, t) = 1; otherwise s is stochastic.
An MC is irreducible if its underlying digraph is strongly connected.

I Definition 4 (IMC). An interval-valued (discrete-time) Markov chain (IMC) is a tuple
I = (S, α,Pl,Pu), where S, α are defined as in Definition 1; Pl,Pu : S × S → [0, 1] are two
transition probability matrices, where Pl(s, s′) (resp. Pu(s, s′)) gives the lower (resp. upper)
bound of the transition probability from state s to s′.

Semantics. There are two semantic interpretations of IMCs [27], i.e., Uncertain Markov
Chains (UMC) and Interval Markov Decision Processes (IMDP). In this paper, following [7],
we mainly focus on the UMC semantics. An IMC I = (S, α,Pl,Pu) represents an infinite set
of MCs, denoted by [I], where for each MC (S, α,P) ∈ [I], Pl(s, s′) ≤ P(s, s′) ≤ Pu(s, s′)
for all pairs of states s, s′ ∈ S. Intuitively, under this semantics we assume that the external
environment nondeterministically selects an MC from the set [I] at the beginning and then
all the transitions take place according to the chosen MC. Without loss of generality, we only
consider IMC I with [I] 6= ∅, i.e., there exists at least one implementation. This condition
can be easily checked.

Similar to MCs, we can also view an IMC as a digraph such that there is an edge from s

to t iff Pu(s, t) > 0. In this way, we can speak of the set of all SCCs and BSCCs of an IMC
I which we denote by E(I) and B(I), respectively.

T.Chen and T.Han 575

For complexity consideration, for the introduced probabilistic models, we assume that all
the probabilities are rational numbers. We define the size of D (resp. I), denoted by]D (resp.
]I), as the size of the representation of D (resp. I). Here rational numbers (probabilities)
are represented as quotients of integers written in binary. The size of a rational number is
the sum of the bit lengths of its numerator and denominator and the size of a matrix is the
sum of the sizes of its entries. When stating a complexity result, we assume the standard
Turing model.

2.2 Information theory
For a RV X with outcomes {x1, · · · , xn}, the Shannon entropy of X is defined as H(X) =
−
∑n
i=1 p(xi) log p(xi). (Note that by convention we define 0 log 0 = 0 as limx→0 x log x = 0).

All logarithms are to the base 2; however our results are independent of the base. The definition
of Shannon entropy is easily generalised to joint entropy, the entropy of several RVs computed
jointly. Namely H(X1, · · · , Xn) = −

∑
x1∈X1

· · ·
∑
xn∈Xn

p(x1, · · · , xn) log p(x1, · · · , xn). We
also define conditional entropy which quantifies the amount of information needed to describe
the outcome of a random variable Y given that the value of another random variable X
is known. Namely H(Y |X) =

∑
x∈X ,y∈Y p(x, y) log p(x)

p(x, y) . The chain rule relates the

joint entropy and the conditional entropy, namely, H(Y |X) = H(X,Y)−H(X). It follows
that the joint entropy can be calculated using conditional entropy, i.e., H(X0, · · · , Xn) =
H(X0) + H(X1|X0) + · · ·+ H(Xn|X1, · · · , Xn−1).

3 Entropy of MCs

In this section, we define and characterise the entropy/entropy rate for an MC which we fix
to be D = (S, α,P). D is equipped with a stochastic process as {Xn}n∈N. Let’s start from a
basic property which can be deduced from the memoryless property.

I Lemma 5. H(Xn|X1, · · · , Xn−1) = H(Xn|Xn−1).

It turns out that the notion of local entropy [7] plays a central role in developing a
characterisation of entropy/entropy rate for MCs which are amenable to computation.

I Definition 6 ([7]). For any given MC D and state s ∈ S, the local entropy L(s) is defined
as H(P(s, ·)), i.e, −

∑
t∈S P(s, t) log P(s, t).

3.1 Entropy for absorbing MCs
I Definition 7 ([7]). Given an MC D, the entropy of D, denoted H(D), is defined as
H(D) = H(X0, X1, · · ·).

We note that [7] also provides an elegant characterisation. Define ξ(s) =
∑∞
n=0 π

(n)
s . (It

is called residence time in [7].) Note that basic theory of MCs implies that the state s is
recurrent if ξ(s) =∞, and is transient iff ξ(s) <∞. We write ~ξ for the vector (ξ(s))s∈S .

I Theorem 8. H(D) =
∑
s∈S L(s)ξ(s) + H(α), where H(α) = −

∑
s∈S α(s) logα(s).

I Remark. [7] defines the entropy for general MCs whereas here we assume MCs are absorbing.
This does not lose any generality. Mostly we are only interested in MCs with finite entropy,
and one easily observes: H(D) is finite iff the local entropy of each recurrent state is 0. Note

FSTTCS 2014

576 On the Complexity of Computing Maximum Entropy for Markovian Models

that absorbing MCs admits that each recurrent state is made absorbing and thus has local
entropy 0.

We also note there is slight difference on H(α) between our version and that of [7] in
Theorem 8. The paper [7] assumes a unique initial state in MCs (i.e., α is Dirac) where
H(α) = 0; here we assume a (slightly more) general initial distribution α.

3.2 Entropy rate for general MCs
In contrast to the entropy, the entropy rate is defined as

I Definition 9. Given an MC D, the entropy rate of D, denoted ∇H(D) is defined as

∇H(D) = lim
n→∞

1
n
H(X0, · · · , Xn)

As before we characterise ∇H(D) by local entropy. Define ζ(s) = limn→∞
1
n

∑n−1
i=0 π

(i)
s and

write ~ζ for the vector (ζ(s))s∈S . We have the following result:

I Theorem 10. ∇H(D) =
∑
s∈S L(s)ζ(s).

I Remark. Typically in literature (e.g. [16, 19]), the entropy rate is defined only for an ergodic
MC. In that case, one has ∇H ′(D) = limn→∞H(Xn | X1, · · · , Xn−1). For ergodic MCs
(more generally all stationary processes where MCs are a special case), these two quantities
coincide and by Lemma 5, the entropy rate is given by ∇H ′(D) = limn→∞H(Xn | Xn−1).

4 Computing entropy in MCs

In this section, we will focus on the entropy threshold problem which asks: given an MC
D and θ ∈ Q, does H(D) ./ θ hold for ./ ∈ {≤, <,=, >,≥}? We assume some familiarity
with straight-line programs and the counting hierarchy (cf. [1] or [14]). In particular, the
problem PosSLP is to decide, given a straight-line program, whether the integer it represents
is positive. PosSLP belongs to the complexity class PCH3 and thus to the fourth-level of the
counting hierarchy [1]. We note that counting hierarchy is contained in PSPACE, but it is
unlikely to be complete to PSPACE. The following propositions are slight generalisations of
[12] and [18], respectively.

I Proposition 11. Given p1, · · · , pn, q1, · · · , qn, θ ∈ Q, deciding whether
∑n
i=1 pi log qi ./ θ

for ./ ∈ {≤, <,>,≥} reduces to PosSLP in polynomial time.

I Proposition 12. Given p1, · · · , pn, q1, · · · , qn, θ ∈ Q,
∑n
i=1 pi log qi = θ is decidable in

polynomial time.

ABC/Lang-Waldschmidt conjecture implies P. An interesting question is whether one
could obtain a lower-bound. This is left as an open question, but the following result
somehow discourages such efforts. Indeed, the following proposition can be easily obtained
by essentially [18, Proposition 3.7(1)].

I Proposition 13. Assume p1, · · · , pn, q1, · · · , qn, θ ∈ Q. If the ABC conjecture holds, or
if the Lang-Waldschmidt conjecture holds, then

∑n
i=1 pi log qi ./ θ for ./ ∈ {≤, <,>,≥} is

decidable in polynomial time.

T.Chen and T.Han 577

Note that the ABC and the Lang-Waldschmidt conjecture (cf. [18] for precise formulations
and reference therein) are conjectures in transcendence theory which are widely believed
to be true. (For instance, in 2012 there was an announced proof of the ABC conjecture by
S. Mochizuki.)

Below we apply these results to the entropy threshold problem of MCs.

4.1 Entropy
Owing to Theorem 8, computing H(D) reduces to computing ~ξ. In [7] it is stated that ξ can
be computed in polynomial time. Here we need to elaborate this claim to obtain complexity
results. This is rather straightforward. For a given absorbing MC which has t transient states

and r absorbing states, the transition probability matrix P can be written as P =
[
Q R

0 Ir

]
,

where Q is a t× t matrix, R is a nonzero t× r matrix, and Ir is an r × r identity matrix. A
basic property of absorbing MCs is that the fundamental matrix I−Q is invertible [21], and
we have the following:

I Proposition 14 ([21]). For absorbing MC, ~ξ = α′(I−Q)−1 where α′ is the restriction of
α to the t transient states.

Basic linear algebra reveals that ~ξ can be computed in cubic-time via, e.g., Gauss
elimination, and the size of ~ξ is polynomially bounded by]D (see, e.g., [20]). It then follows
from Proposition 11 and Proposition 12 that:

I Theorem 15. Given an MC D,
Deciding H(D) ./ θ for ./ ∈ {<,≤,≥, >} is in PCH3 , and is in P assuming the ABC or
the Lang-Waldschmidt conjecture.
Deciding H(D) = θ is in P.

4.2 Entropy rate
Owing to Theorem 10, computing ∇H(D) reduces to computing ~ζ. For (finite) irreducible
MC, ~ζ coincides to the stationary distribution π which is unique and independent of the
initial distribution. In this case, Theorem 10 yields that ∇H(D) =

∑
s∈S L(s)π(s), which is

exactly the classical result, see, e.g., [16]. For general MCs, the transition probability matrix
P has the form

P =


Q R1 R2 · · · Rh
0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bh


where Q corresponds to transient states, and Bi (1 ≤ i ≤ h) corresponds to the BSCCs
(recurrent states).

I Proposition 16. For any MC,

~ζ = α ·


0 (I−Q)−1R11T~y1 (I−Q)−1R21T~y2 · · · (I−Q)−1Rh1T~yh
0 1T~y1 0 · · · 0
0 0 1T~y2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1T~yh



FSTTCS 2014

578 On the Complexity of Computing Maximum Entropy for Markovian Models

where ~yi is the solution of the system of linear equations:

~yiBi = ~yi and 1~y = 1

and 1 = (1, · · · , 1).

Similar to the previous section, the size of ~ζ is polynomially bounded by]D. It then
follows from Proposition 11 and Proposition 12 that:

I Theorem 17. Given an MC D,
Deciding ∇H(D) ./ θ for ./ ∈ {<,≤,≥, >} is in PCH3 , and is in P assuming the ABC
or the Lang-Waldschmidt conjecture.
Deciding ∇H(D) = θ is in P.

4.3 Approximation problems

To complete the picture, we show that one can easily approximate
∑n
i=1 pi log qi up to a

given error bound ε in polynomial time.
Let N = n ·max1≤i≤n |pi|. For each 1 ≤ i ≤ n, we can compute θi ∈ Q in polynomial-time

[10, 18] such that | log qi − θi| < ε
N (note that the size of N is bounded polynomially by the

size of the input). Observe that∣∣∣∣∣
n∑
i=1

pi log qi −
n∑
i=1

piθi

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

pi(log qi − θi)

∣∣∣∣∣ ≤
n∑
i=1
|pi|

ε

N
≤ ε.

Hence
∑n
i=1 piθi, which can be computed in polynomial-time, is an approximation of∑n

i=1 pi log qi up to ε. Note that, however, unfortunately this does not yield an efficient
decision procedure for

∑n
i=1 pi log qi ./ θ. It follows that

I Theorem 18. Given an MC D and ε > 0, both H(D) and ∇H(D) can be approximated
up to ε in polynomial-time in]D and log(1

ε).

(Note that this result for entropy is implied in [7] without proof.)

5 Computing the maximum entropy in IMCs

In this section, we turn our attention to IMCs. Recall that an IMC I represents a set of MCs
[I]. We are interested in maximising the entropy/entropy rate of I. The formal definitions
are given as follows:

I Definition 19. Given an IMC I,
the maximum entropy of I, H(I), is defined as H(I) = sup{H(D) | D ∈ [I]};
the maximum entropy rate of I, ∇H(I), is defined as ∇H(I) = sup {∇H(D) | D ∈ [I]}.

Below we focus on the computation of maximum entropy/entropy rate. In contrast to the
previous section, we mainly concentrate on the approximation problem. Results regarding
the threshold problem are presented in Section 5.3, though. Throughout this section, we fix
an IMC I = (S, α,Pl,Pu).

T.Chen and T.Han 579

5.1 Entropy
As pointed out by [7], it could be the case that H(I) =∞ even if for all D ∈ [I], H(D) <∞.
To tackle this issue, an algorithm is given there to determine whether H(I) =∞. In light
of this, we assume that H(I) <∞. One sufficient condition to guarantee finite maximum
entropy is to impose that for any states s and t, Pu(s, t) > 0 implies Pl(s, t) > 0. This is
actually a mild assumption in practice (for instance, see [7], Fig. 5). Note that it is also a
(lightweight) syntactic way to impose the Positive UMC semantics [13].

For I with H(I) <∞, it cannot be the case that a state is recurrent in some implement-
ation and stochastic in another implementation [7]. Namely, if a state is recurrent in some
implementation, it must be deterministic in all implementations, and thus is made absorbing.
We denote by G ⊆ S the set of states which are recurrent in some implementation of I; G is
easily identified by the algorithm in [7].

For each state s ∈ S \G, we introduce a vector of variables ~xs = (xs,t)t∈S , and a vector
of variables ~y = (ys)s∈S . We define Ω(s) to be a set of vectors as:

~xs ∈ Ω(s) iff
{∑

t∈S xs,t = 1
Pl(s, t) ≤ xs,t ≤ Pu(s, t), for each t ∈ S

(1)

(Note that here we abuse the notation slightly by identifying variables and valuations of the
variables.) For simplicity, we define, for ~xs and ~y,

Γ(~xs, ~y) =
∑
t∈S

xs,tyt −
∑
t∈S

xs,t log xs,t . (2)

We then consider the following non-linear program over ~xs for all s ∈ S \G and ~y:

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s /∈ G

ys = 0 s ∈ G

(3)

I Proposition 20. The optimal value of (3) is equal to H(I)−H(α).

We remark that (3) is reminiscent of the expected total reward objective (or the stochastic
shortest path problem) for MDPs [26, 17, 5]. This does not come in surprise in light of
Theorem 8, which might give some intuition underlying (3); cf. [14].

Nevertheless it remains to solve (3). This is rather involved and we only give a rough
sketch here. Observe that we have a nested optimisation problem because of the presence of
an inner optimisation max~xs∈Ω(s) Γ(~xs, ~y) in (3). The main strategy is to apply the Lagrange
duality to replace it by some "min" (see Γ̃ below). We introduce, apart from ~y, variables
~λls = (λls,t)t∈S , ~λus = (λus,t)t∈S and νs for each s ∈ S \G.

It can be shown that (3) is equivalent to

minimise
∑
s∈S\G

α(s)ys

subject to ys ≥ Γ̃(~λs, νs, ~y) s /∈ G
ys = 0 s ∈ G
λls,t ≥ 0, λus,t, νs ≥ 0 s /∈ G, t ∈ S

(4)

FSTTCS 2014

580 On the Complexity of Computing Maximum Entropy for Markovian Models

where Γ̃(~λs, νs, ~y) = −~bTs ~λus + ~aT
s
~λls − νs + e−1 log e · 2νs · (

∑
t∈S 2~λ

u
s,t−~λ

l
s,t+yt) and ~as =

(Pl(s, t))t∈S and ~bs = (Pu(s, t))t∈S . (Note that log is to base 2.)
It turns out that (4) is a convex program which can be solved by, e.g., the ellipsoid

algorithm or interior-point methods in polynomial time [3, 20]. We obtain

I Theorem 21. Given an IMC I and ε > 0, H(I) can be approximated upper to ε in
polynomial-time in]I and log(1

ε).

5.2 Entropy rate

In this section, we study the approximation problem for ∇H(I). Firstly we assert that
∇H(I) <∞ (cf. [14]).

Recall E(I) is the set of SCCs of I. For each SCC B ∈ E(I), we introduce a variable r,
a vector of variables ~y = (ys)s∈B, and for each s ∈ B, a vector of variables ~xs = (xs,t)t∈S .
Recall that Ω(s) and Γ(~xs, ~y) are defined as in (1) and (2), respectively. We consider the
following non-linear program:

minimise r

subject to r + ys ≥ max
~xs∈Ω(s)

Γ(~xs, ~y) s ∈ B (5)

For each B, we obtain rB as the optimal value of (5). Note that each state s must belong to a
unique B ∈ E(I). For simplicity, we define, for a given vector (zs)s∈S , Λ(~xs, ~z) =

∑
t∈S xs,t ·zt.

We then consider the following non-linear program

minimise
∑
s∈S

α(s)zs

subject to zs ≥ max
~xs∈Ω(s)

Λ(~xs, ~z) s ∈ S

zs ≥ rB s ∈ S and s ∈ B

(6)

I Proposition 22. ∇H(I) is equal to the optimal value of (6) (which depends on (5)).

As before, we remark that (6) and (5) are reminiscent of the limiting average reward
objective for MDPs [26, 5]. This does not come in surprise in light of Theorem 10, which
might give some intuition; cf. also [14].

It remains to solve (5) and (6). In the same vein as in Section 5.1, for each B we can
approximate rB by some θB ∈ Q upper to the given ε > 0. We then substitute (6) for each
θB , and solve the resulting program. It remains to show that (6) does not “propagate” the
error introduced in θB as it is merely an approximation of the real value rB. To this end,
observe that the optimal value of (6) can be regarded as a function g over ~r = (rB)B∈E(I).
We have the following result showing the value of (6) is bounded by the “perturbation” of
its parameters rB ’s. (Note that ‖ · ‖ denotes the ∞-norm for vectors.)

I Proposition 23. If ‖~r − ~r′‖ ≤ ε, then |g(~r)− g(~r′)| ≤ ε.

We conclude that

I Theorem 24. Given an IMC I and ε > 0, ∇H(I) can be approximated upper to ε in
polynomial-time in]I and log(1

ε).

T.Chen and T.Han 581

5.3 Threshold problem
In this section, we focus on the maximum entropy/entropy rate threshold problem, namely,
to decide whether H(I) ./ θ or ∇H(I) ./ θ for a given θ ∈ Q. Recall that we assume
H(I) <∞ otherwise the problem is trivial. Below we present two conditional decidability
results; the unconditional decidability is left as an open problem. We mainly present the
results for H(I) and the case ./=≥. Other cases can be derived in a similar way and can be
found in the full version [14].

By first-order theory. It turns out deciding H(I) ≥ θ amounts to checking

∃~x, ~y.
∧


∑
s∈S\G α(s)ys ≥ θ

ys =
∑
t∈S xs,tyt −

∑
t∈S xs,t log xs,t ∀s ∈ S \G

ys = 0 ∀s ∈ G
Pl(s, t) ≤ xs,t ≤ Pu(s, t) ∀s ∈ S \G, t ∈ S∑
t∈S xs,t = 1 ∀s ∈ S \G

where ~x is the concatenation of ~xs = (xs,t)t∈S for s ∈ S \G and ~y = (ys)s∈S . Recall that
G is the set of states which are recurrent in some implementation of I. Evidently this is a
formula in the first-order theory of ordered real fields extended with exponential functions
(R,+,−, ·, ex, 0, 1,≤). The theory is known to be o-minimal by the celebrated Wilkie’s
theorem [29]. However, its decidability is a long-standing open problem in model theory,
known as Tarski’s exponential function problem. A notable result by Macintyre and Wilkie
[23] asserts that it is decidable provided the Schanuel’s conjecture in transcendence theory
is true (which is widely believed to be the case; in fact only a (weaker) real version of the
conjecture is needed.) Hence, we obtain a conditional decidability for the maximum entropy
threshold problem of IMCs. Note that it is high unlikely that the problem is undecidable,
because it would refute the Schanuel’s conjecture.

By non-singularity assumption. We can obtain the decidability of the maximum entropy
threshold problem by assuming thatH(I) 6= θ. To see this, one can simply compute a sequence
of approximations of H(I) by the approach in Section 5.1, i.e., ~n with |H(I)− ~n| ≤ 1

2n .
The procedure stops when ~n − 1

2n − θ and ~n + 1
2n − θ have the same sign. Then H(I) > θ

iff ~n − 1
2n > θ (or equivalently ~n + 1

2n > θ). Note that we assume H(I) 6= θ, so n must
exist as one can take n = dlog(1

|H(I)−θ|
)e although n is not bounded a priori.

We conclude this section by the following theorem:

I Theorem 25. Given an IMC I. We have that
if the first-order theory of (R,+,−, ·, ex, 0, 1,≤) is decidable (which is implied by Schanuel’s
conjecture), then H(I) ./ θ and ∇H(I) ./ θ are decidable for ./ ∈ {≤, <,=, >,≥};
if H(I) 6= θ (resp. ∇H(I) 6= θ), then H(I) ./ θ (resp. ∇H(I) ./ θ) is decidable for
./ ∈ {≤, <,>,≥}.

6 Conclusion

We have studied the complexity of computing (maximum) entropy/entropy rate of Markovian
models including MCs, IMCs and MDPs. We obtained a characterisation of entropy rate for
general MCs based on which the entropy approximation problem and threshold problem can
be solved efficiently assuming number-theoretic conjectures. For IMCs/MDPs, we obtained

FSTTCS 2014

582 On the Complexity of Computing Maximum Entropy for Markovian Models

polynomial-time algorithms to approximate the maximum entropy/entropy rate via convex
programming, which improved a result in [7]. We also obtained conditional decidability for
the threshold problem.

Open problems include unconditional polynomial-time algorithms for the entropy threshold
problem for MCs and unconditional decidability for maximum entropy threshold problem for
IMCs/MDPs. Furthermore, we believe it would be promising to explore more algorithmic
aspects of information theory along the line of the current work, for instance, for timed
automata [2].

References
1 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On

the complexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.
2 Nicolas Basset. A maximal entropy stochastic process for a timed automaton,. In Fedor V.

Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, ICALP (2),
volume 7966 of Lecture Notes in Computer Science, pages 61–73. Springer, 2013.

3 Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Optimization: Ana-
lysis, Algorithms, and Engineering Applications. Society for Industrial and Applied Math-
ematics, 1987.

4 Michael Benedikt, Rastislav Lenhardt, and James Worrell. Ltl model checking of interval
markov chains. In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795 of
Lecture Notes in Computer Science, pages 32–46. Springer, 2013.

5 Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2011.
6 Fabrizio Biondi, Axel Legay, Pasquale Malacaria, and Andrzej Wasowski. Quantifying

information leakage of randomized protocols. In Roberto Giacobazzi, Josh Berdine, and
Isabella Mastroeni, editors, VMCAI, volume 7737 of Lecture Notes in Computer Science,
pages 68–87. Springer, 2013.

7 Fabrizio Biondi, Axel Legay, Bo Friis Nielsen, and Andrzej Wasowski. Maximizing entropy
over markov processes. In Adrian Horia Dediu, Carlos Martín-Vide, and Bianca Truthe,
editors, LATA, volume 7810 of Lecture Notes in Computer Science, pages 128–140. Springer,
2013.

8 Fabrizio Biondi, Axel Legay, Louis-Marie Traonouez, and Andrzej Wasowski. Quail: A
quantitative security analyzer for imperative code. In Sharygina and Veith [28], pages
702–707.

9 Michele Boreale. Quantifying information leakage in process calculi. Inf. Comput.,
207(6):699–725, 2009.

10 Richard P. Brent. Fast multiple-precision evaluation of elementary functions. J. ACM,
23(2):242–251, 1976.

11 Pavol Cerný, Krishnendu Chatterjee, and Thomas A. Henzinger. The complexity of quant-
itative information flow problems. In CSF, pages 205–217. IEEE Computer Society, 2011.

12 Rohit Chadha and Michael Ummels. The complexity of quantitative information flow in
recursive programs. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan,
editors, FSTTCS, volume 18 of LIPIcs, pages 534–545. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2012.

13 Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-checking omega-
regular properties of interval Markov chains. In Roberto M. Amadio, editor, FoSSaCS,
volume 4962 of Lecture Notes in Computer Science, pages 302–317. Springer, 2008.

14 Taolue Chen and Tingting Han. On the complexity of computing maximum entropy for
Markovian models. Technical report, Middlesex University London, 2014. Available via
http://www.cs.mdx.ac.uk/staffpages/taoluechen/pub-papers/fsttcs14-full.pdf.

http://www.cs.mdx.ac.uk/staffpages/taoluechen/pub-papers/fsttcs14-full.pdf

T.Chen and T.Han 583

15 Taolue Chen, Tingting Han, and Marta Z. Kwiatkowska. On the complexity of model
checking interval-valued discrete time markov chains. Inf. Process. Lett., 113(7):210–216,
2013.

16 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley and
Sons, Inc., New York, NY, USA, 1991.

17 Luca de Alfaro. Computing minimum and maximum reachability times in probabilistic
systems. In Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR, volume 1664 of
Lecture Notes in Computer Science, pages 66–81. Springer, 1999.

18 Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis. A note on the complexity
of comparing succinctly represented integers, with an application to maximum probability
parsing. TOCT, 6(2):9, 2014.

19 Valerie Girardin. Entropy maximization for Markov and semi-Markov processes. Method-
ology and Computing in Appplied Probability, 6:109–127, 2004.

20 Martin Grotschel, Laszlo Lovasz, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Algorithms and Combinatorics. Springer-Verlag, 1987.

21 John G. Kemeny and J. Snell. Finite Markov Chains. Undergraduate Texts in Mathematics.
Springer-Verlag, 3rd printing 1983 edition edition, 1983.

22 Igor Kozine and Lev V. Utkin. Interval-valued finite Markov chains. Reliable Computing,
8(2):97–113, 2002.

23 A. J. Macintyre and A. J. Wilkie. On the decidability of the real exponential field. Odifreddi,
P.G., Kreisel 70th Birthday Volume, CLSI, 1995.

24 William Parry. Intrinsic markov chains. Trans. Amer. Math. Soc., 112:55–66, 1964.
25 Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia.

Polynomial-time verification of pctl properties of mdps with convex uncertainties. In Shary-
gina and Veith [28], pages 527–542.

26 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, New York, 1994.

27 Koushik Sen, Mahesh Viswanathan, and Gul Agha. Model-checking Markov chains in the
presence of uncertainties. In Holger Hermanns and Jens Palsberg, editors, TACAS, volume
3920 of Lecture Notes in Computer Science, pages 394–410. Springer, 2006.

28 Natasha Sharygina and Helmut Veith, editors. Computer Aided Verification – 25th Inter-
national Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
volume 8044 of Lecture Notes in Computer Science. Springer, 2013.

29 Alex J. Wilkie. Model completeness results for expansions of the ordered field of real
numbers by restricted pfaffian functions and the exponential functions. J. Amer. Math.
Soc., 9:1051–1094, 1996.

30 Hirotoshi Yasuoka and Tachio Terauchi. Quantitative information flow – verification hard-
ness and possibilities. In CSF, pages 15–27. IEEE Computer Society, 2010.

FSTTCS 2014

New Time-Space Upperbounds for Directed
Reachability in High-genus and H-minor-free
Graphs∗

Diptarka Chakraborty1, A. Pavan2, Raghunath Tewari3,
N. V. Vinodchandran4, and Lin Forrest Yang5

1 Indian Institute of Technology, Kanpur, diptarka@cse.iitk.ac.in
2 Iowa State University, pavan@cs.iastate.edu
3 Indian Institute of Technology, Kanpur, rtewari@cse.iitk.ac.in
4 University of Nebraska–Lincoln, vinod@cse.unl.edu
5 Johns Hopkins University, lyang@pha.jhu.edu

Abstract
We obtain the following new simultaneous time-space upper bounds for the directed reachabil-
ity problem. (1) A polynomial-time, Õ(n2/3g1/3)-space algorithm for directed graphs embed-
ded on orientable surfaces of genus g. (2) A polynomial-time, Õ(n2/3)-space algorithm for all
H-minor-free graphs given the tree decomposition, and (3) for K3,3-free and K5-free graphs, a
polynomial-time, O(n1/2+ε)-space algorithm, for every ε > 0.

For the general directed reachability problem, the best known simultaneous time-space upper
bound is the BBRS bound, due to Barnes, Buss, Ruzzo, and Schieber, which achieves a space
bound of O(n/2k

√
logn) with polynomial running time, for any constant k. It is a significant open

question to improve this bound for reachability over general directed graphs. Our algorithms beat
the BBRS bound for graphs embedded on surfaces of genus n/2ω(

√
logn), and for all H-minor-free

graphs. This significantly broadens the class of directed graphs for which the BBRS bound can
be improved.

1998 ACM Subject Classification F.1.3 [Theory of Computation] Complexity Measures and
Classes

Keywords and phrases Reachability, Space complexity, Time-Space Efficient Algorithms, Graphs
on Surfaces, Minor Free Graphs, Savitch’s Algorithm, BBRS Bound

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.585

1 Introduction

Given a graph G and two vertices s and t, is there a path from s to t in G? This problem,
known as the reachability problem, is of fundamental importance in the study of space
bounded complexity classes as various versions of it characterize important complexity classes
(such as NL, RL, L and NC1 [16, 17, 3]). Progress in understanding the space complexity of
graph reachability problems directly relates to the progress in space complexity investigations.
We refer the readers to a survey by Wigderson [24] to further understand the significance
of reachability problems in complexity theory. Because of its central role, designing space
and time efficient deterministic algorithms for reachability problems is a major concern of

∗ Research supported in part by NSF grants 0916797, 0916525, 1421163, 1422668, and Research-I
Foundation.

© Diptarka Chakraborty, A. Pavan, Raghunath Tewari, N.V. Vinodchandran, Lin Forrest Yang;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 585–595

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.585
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

586 Time-Space Upperbounds for Directed Reachability

complexity theory. In this paper we focus on algorithms for reachability over directed graphs
that run in polynomial-time and use sub-linear space.

Two basic algorithms for directed reachability are the Breadth First Search algorithm
(BFS) and Savitch’s algorithm [19]. BFS uses linear space and runs in polynomial time,
whereas Savitch’s algorithm uses only O(log2 n) space, but takes super-polynomial (θ(nlogn))
time. Thus BFS is time-efficient and Savitch’s algorithm is space-efficient. Hence a natural
and significant question that researchers have considered is whether we can design an
algorithm for reachability whose time-bound is better than that of Savitch’s algorithm and
the space-bound is better than that of BFS. A concrete open question is: Can we design a
polynomial-time algorithm for the directed graph reachability problem that uses only O(n1−ε)
space for some small constant ε? [24].

The best known result in this direction is the bound due to Barnes, Buss, Ruzzo, and
Schieber [2]. By cleverly combining BFS and Savitch’s algorithm, they designed a polynomial-
time algorithm for reachability that uses O(n/2k

√
logn) space, for any constant k. Henceforth

we refer to this bound as the BBRS bound. Improving the BBRS bound remains a significant
open question regarding the complexity of the graph reachability problem.

Recently there has been some progress on improving the BBRS bound for certain restricted
classes of directed graphs. Asano and Doerr showed that, for any ε > 0, there is a polynomial-
time algorithm that takes O(n1/2+ε) space for reachability over directed grid graphs [1]. In
[12], it was shown that, for any ε > 0, the directed planar reachability problem can also be
solved in polynomial-time and O(n1/2+ε) space. In [20], it was shown that the reachability
problem for directed acyclic graphs with O(n1−ε) sources nodes and embedded on surfaces
of O(n1−ε) genus can be solved in polynomial time and O(n1−ε) space. See a recent survey
article [22] for more details on known results.

In this paper we design reachability algorithms that beat the BBRS bound for a substan-
tially larger class of graphs than known before. Our main approach is to use a space-efficient
kernelization where we compress the given graph to a smaller kernel graph preserving reacha-
bility. Once such a kernel graph is computed, we can use known algorithms (such as BFS)
on the kernel graph to solve the reachability problem.

There are indications that it may be difficult to improve the BBRS bound for general
directed graphs using earlier known techniques. This is because there are matching lower
bounds known for general reachability on certain restricted model of computation known
as NNJAG [5, 15, 9]. All the known algorithms for the general reachability problem can be
implemented in NNJAG without significant blow up in time and space. However, we believe
that our kernel-based approach has a potential to overcome the NNJAG bottleneck.

Our main motivation to design space-efficient algorithms for reachability problems comes
from their importance in computational complexity theory. However, designing polynomial-
time, sub-linear space algorithms is of clear significance from a general algorithmic perspective,
especially in the context of computations over large data sets. Thus our algorithms may be
of interest to a more general audience.

Our Contributions
Our first result is a new algorithm for the directed reachability problem for surface-embedded
graphs.

I Theorem 1. There is an algorithm that, given a directed graph G embedded on an orientable
surface of genus g with the combinatorial embedding and two vertices s and t, decides whether
there is a directed path from s to t in G. This algorithm runs in polynomial-time and uses
Õ(n2/3g1/3) space, where n is the number of vertices of the graph.

D. Chakraborty, A. Pavan, R. Tewari, N. V. Vinodchandran, and L. F. Yang 587

For the case when g = n1−ε, our algorithm uses Õ(n1−ε/3) space and runs in polynomial
time (by Õ(s(n)) we mean O(s(n)(logn)O(1))). In general, for graphs that are embedded on
surfaces of genus g = n/2ω(

√
logn), our algorithm beats the BBRS bound.

For proving the above theorem, we first give an algorithm for constructing a planarizing
set (a set S of nodes of a graph G, so that G \S is a planar graph) of size O(n2/3g1/3) of the
underlying undirected graph in polynomial-time and space Õ(n2/3g1/3). This space-efficient
algorithm for computing a planarizing set may be of independent interest.

There are known algorithms that compute a planarizing set of a high-genus graph [8, 11, 10].
However, we cannot rely on these existing algorithms since the starting point of all these
algorithms is a BFS tree computation of the input graph. In general computing a BFS tree
(even for an undirected graph) is as difficult as the directed reachability problem. Avoiding
a BFS tree computation of the entire graph is the the main technical challenge that we
overcome in our space efficient algorithm for constructing a planarizing set.

Once a planarizing set is computed, we construct a new directed graph G̃, called the
kernel graph on G whose vertex set is the planarizing set, so that reachability in G reduces
to reachability in G̃. This reduction uses the O(n1/2+ε) space algorithm for directed planar
reachability from [12] as a subroutine. Finally we solve reachability on G̃ using BFS. Since
the size of G̃ is O(n2/3g1/3), we get the desired space bound.

Our second contribution is a new reachability algorithm for H-minor-free graphs, that
improves upon the BBRS bound, where H is an arbitrary but fixed graph. To design this
algorithm we assume that we are provided with the tree decomposition of the H-minor-free
graph.

I Theorem 2. Given a graph H, there is an algorithm that, given any H-minor-free graph
G together with
(i) a tree decomposition (T,X) of G, and
(ii) for every Xi ∈ X, the combinatorial embedding of the subgraph G0 of G[Xi],
and two vertices s and t in G, decides whether there is a directed path from s to t in G. The
algorithm runs in polynomial-time and uses Õ(n2/3) space, where n is the number of vertices
of the graph.

The reader may refer to Section 4.1 to understand the notation that we use in Theorem 2.
This theorem is proved by first designing a Õ(n2/3)-space and polynomial-time algorithm for
constructing a 2/3-separator of size O(n2/3) for the given graph. Once such a separator is
obtained, we use ideas from [12] to design the reachability algorithm. To construct such a
separator for H-minor-free graphs, we use the tree decomposition of the given graph by [18]
and find a “separating node” in that tree. Then we construct a bounded-genus graph from
the graph induced by the separating node. Finally by using the planarizing set construction
used to prove Theorem 1, we design an algorithm to construct a planarizing set of size
O(n2/3) of the underlying undirected graph in polynomial-time and Õ(n2/3) space.

For K3,3-free and K5-free graphs we give a better upper bound than the one given in
Theorem 2. Kuratowski’s theorem states that planar graphs are exactly those graphs that
do not contain K3,3 and K5 as minors. Hence it is a natural question whether results on
planar graphs can be extended to graphs that do not contain either a K3,3 minor (known
as K3,3-free graphs) or a K5 minor (known as K5-free graphs). Certain complexity upper
bounds that hold for planar graphs have been shown to hold for K3,3-free and K5-free graphs
[4, 21, 6, 7]. On the other hand, there are problems for which upper bounds that hold for
planar graphs are not known to extend to such minor-free graphs (such as computing a
perfect matching in bipartite graphs [13]). We show that the time-space bound known for

FSTTCS 2014

588 Time-Space Upperbounds for Directed Reachability

planar graphs can also be obtained for both these classes of graphs. Here it is important
to note that even though directed reachability in K3,3-free and K5-free graphs reduces to
directed planar reachability[21], the reduction blows up the size of the graph by a polynomial
factor and hence we can not use this approach for our purposes.

I Theorem 3. For any constant 0 < ε < 1/2, there is a polynomial time and O(n1/2+ε)
space algorithm that given a directed K3,3-free or K5-free graph G on n vertices, decides
whether there is a directed path from s to t in G.

Although for Theorem 2 we require additional inputs (such as the tree decomposition
and the embeddings of the bounded genus parts), in Theorem 3 we do not have any such
requirements. The proof idea of Theorem 3 is similar to that of Theorem 2. However we use
the known algorithm to compute a planar separator instead of a bounded genus separator.
This gives better space bound compared to the case of H-minor-free graphs.

The rest of the paper is organized as follows. In Section 2 we give some basic definitions
and notations that we use. In Section 3, we give a construction of planarizing set for
high-genus graphs and also provide a proof of Theorem 1. In Section 4, we present the
algorithm for reachability in H-minor-free graphs and as a corollary we show Theorem 3.
Due to space constraints, most of the proofs appear in the Appendix.

2 Preliminaries

We first define some notations which will be used later in this paper. Given a graph G and a
set of vertices X, G[X] denotes the subgraph of G induced by X and V (G) denotes the set
of vertices present in the graph G. Now we define necessary notions on graphs embedded
on surfaces. We refer the reader to the excellent book by Mohar and Thomassen [14] for
a comprehensive treatment of this topic. In this paper we only consider closed orientable
surfaces. These surfaces are obtained by adding “handles” to a sphere.

Let G = (V,E) be a graph and for each v ∈ V , let πv be a cyclic permutation of edges
incident on v. Let Π = {πv | v ∈ V }. We say that Π is a combinatorial embedding of G. Given
a combinatorial embedding we can define Π-facial walk. Let e = 〈v1v2〉 be an edge. Consider
the closed1 walk f = v1e1v2e2v3 · · · vkekv1 where πvi+1(ei) = ei+1, and πv1(ek) = e1. We call
f a face of the graph G.

Given a Π-embedding of a graph G, the Π-genus of G is the g such that n−e+f = 2−2g,
where n, e and f denote the number of vertices, edges and faces of the graph G. This is
popularly known as the Euler-Poincaré formula.

It is known that given any graph with Π-genus g, it can be embedded on a closed
orientable surface of genus g such that every face is homeomorphic to an open disc. Let Π
be a combinatorial embedding of a graph G and H be a subgraph of G. The embedding Π
naturally induces an embedding Π′ on G \H. By abuse of notation, we still refer to the
induced embedding as Π-embedding.

Given a cycle C of a graph, we can define left and right sides of the cycle C. Two vertices
are on the same side of C if they are path connected such that the path does not cross the
cycle C. We use Gl(C) and Gr(C) to denote the left and right sides of G. Given a cycle C,
we say that it is contractible if one of Gl(C)∪C or Gr(C)∪C has Π-genus zero (i.e. planar).
We say that a cycle is surface separating if Gl(C) and Gr(C) have no edges in common. Note

1 A priori it is not obvious that that this leads to a closed walk. However, it can shown that this walk
comes back to v1. See [14] Chapter 3.2 for a proof.

D. Chakraborty, A. Pavan, R. Tewari, N. V. Vinodchandran, and L. F. Yang 589

that every contractible cycle is surface separating. A cycle that is not surface separating is
called a non-separating cycle. We now mention some fundamental facts about these cycles
that are used throughout this paper.

I Proposition 1. Let C be a cycle of a graph with Π-genus g. If C is non-separating, then
Π-genus of G \ C is ≤ g − 1. If C is surface separating, then sum of Π-genera of Gl(C) ∪ C
and Gl ∪ C equals g.

An edge that appears on a facial walk f may appear once or twice on f . Any edge that
appears twice on a facial walk is called singular edge.

I Proposition 2. Let G be a graph with Π-genus g, and e be a singular edge such that G \ e
is connected. The Π-genus of G \ e is g − 1.

The notions of planarizing set and separator defined below are crucial in this paper. A
set S of vertices of a graph G is called a planarizing set if G \ S is a planar graph. An
(α, β)-separator of a graph G = (V,E) having n vertices, is a subset S of V such that
|S| ≤ O(α) and every connected component in V \ S has at most βn vertices.

Next we state two theorems about planar graphs that are used in this paper. In [12] the
authors construct a (n1/2, 8/9)-separator. By running their algorithm repeatedly (a constant
number of times), we can obtain a (n1/2, 1/3) separator.

I Theorem 4 ([12]). Given a planar graph G there is an algorithm that computes a (n1/2, 1/3)-
separator of G in polynomial time and Õ(n1/2) space.

We refer to the algorithm of this theorem as PlanarSeparator algorithm. In [12], this
algorithm is used to obtain a time-space efficient algorithm for reachability on directed planar
graphs

I Theorem 5 ([12]). For any constant 0 < ε < 1/2, there is an algorithm that, given a
directed planar graph G and two vertices s and t, decides whether there is a path from s to
t. This algorithm runs in time nO(1/ε) and uses O(n1/2+ε) space, where n is the number of
vertices of G.

3 A Reachability Algorithm for High Genus Graphs

In this section we prove Theorem 1. We will use a space-efficient construction of a planarizing
set to establish this result. We first assume that the following theorem holds and then prove
Theorem 1. Proof of Theorem 6 will appear in Section 3.1.

I Theorem 6. There is an algorithm that given a combinatorial embedding of an undirected
graph G embedded on an orientable surface of genus g, outputs a planarizing set of G of size
O(n2/3g1/3). This algorithm runs in polynomial time and uses space Õ(n2/3g1/3). Here n
denotes the number of vertices of G.

Proof of Theorem 1. Let 〈G, s, t〉 be an instance of reachability where G whose Π-genus is
g. Consider the underlying undirected graph Gun. By using the algorithm from Theorem 6
we first compute a planarizing set S of Gun. Let S = S ∪ {s, t}. Let Gp be the planar graph
obtained by removing all vertices (and the edges incident on them) of S from G.

Consider the following reduction that outputs an instance 〈G, s, t〉, where G = (S, E).
Given two nodes a and b in S, we place a directed edge from a to b in E , if there is a directed
edge from a to b in the original directed graph G. Additionally, we place an edge from a to

FSTTCS 2014

590 Time-Space Upperbounds for Directed Reachability

b in E , if there exist vertices u and v in the vertex set of Gp such that all of the following
conditions hold: 1) there is a directed edge from a to u in G, 2) there is a directed edge
from v to b in G, and 3) there is a directed path from u to v in the directed planar graph
Gp. Determining whether there is path from u to v in Gp can be done in polynomial-time
and O(n2/3) space, by setting ε to 1/6 by Theorem 5. By Theorem 6, S can be computed in
polynomial time and Õ(n2/3g1/3) space. Thus this reduction runs in polynomial time and
uses Õ(n2/3g1/3) space.

We now claim that there is a path from s to t in G if and only if there is a path from s

to t in G. Consider any s-t path in G, let e1, e2, · · · ek be the edges of this path. Consider
an edge ei = (a, b). Note that the reduction places this edge in G when, either there is a
directed path or an edge from a to b in G. This implies that there is path from s to t in G.
Now we prove the converse direction. Let P be a path from s to t in G. We can decompose
P into p1e1q1h1p2e2q2h2 · · · pk. Here ei is an edge from a vertex in S to a vertex in Gp and
hi is an edge from a vertex in Gp to a vertex in S, qi is the part of the path P from head
of ei to the tail of hi so that it completely lies within Gp, and pi is the part of the path P
that completely lies in the graph induced by the planarizing set S. By the construction of G,
there is an edge oi from the tail of ei to the head of hi in G. Thus p1o1p2o2 · · · pk is a path
from s to t in G.

Reachability in the directed graph G can be solved using BFS. Since the number of vertices
in G is O(n2/3g1/3), the BFS algorithm runs in polynomial-time and uses in Õ(n2/3g1/3)
space. By combining the above reduction with the reachability algorithm on G, we obtain an
algorithm that solves reachability in G that runs in polynomial time and uses Õ(n2/3g1/3)
space. This completes the proof of Theorem 1. J

3.1 Proof of Theorem 6
The structure of the proof is as follows. Given an embedded graph, we decompose the graph
into several regions. We first look for a small non-contractible cycle C inside some region. If
we find one, then we add the vertices of C into the planarizing set. If C is non-separating, by
Proposition 1, removal of the vertices of C will result in a graph whose genus ≤ g − 1. If C
is surface separating, since C is non-contractible, by Proposition 1, we get two components
each with genera 0 < g1, g2 < g so that g1 + g2 = g. In both cases, since the genus of each
component is < g, we can iterate this process. If this iteration stops, then all the regions
of all the resulting components are homeomorphic to an open disc. In this case, for each
component we identify a small subgraph based on the regions, and argue that this subgraph is
a planarizing set of that component. Our final planarizing set is the collection of planarizing
sets of each component together with the non-contractible cycles. Notice that at any stage
the components obtained can be implicitly represented by the original graph and the cycles
that are removed. Thus we do not have to explicitly store the components. We only store
the non-contractible cycles that are removed. We now proceed to give a formal proof. The
algorithm given in the following lemma is the core of the planarizing set algorithm.

I Lemma 7. There is an algorithm that given a connected undirected graph G, its Π-
embedding, and an integer k as input, outputs one of the following:
1. A non-separating cycle of size O(k) or a singular edge e so that G \ e is connected. The

output of this step (either a cycle or a singular edge) is called a genus reduction set.
2. a non-contractible and surface-separating cycle of size O(k)
3. a planarizing set of size O((n/k + g)

√
k)

The algorithm runs in polynomial-time and uses Õ(n/k + k) space.

D. Chakraborty, A. Pavan, R. Tewari, N. V. Vinodchandran, and L. F. Yang 591

The proof of the above lemma is given in the Appendix. Now using this lemma, we prove
Theorem 6.

Proof of Theorem 6. The planarizing set construction algorithm applies the algorithm from
Lemma 7 iteratively. We will describe the algorithm by describing an iteration. After the
ith iteration, we will have a collection of components G1, G2, . . . , Gm. We will describe the
(i+1)st iteration: The algorithm considers the first component Ĝ whose Π-genus ĝ is non-zero
and apply the algorithm from Lemma 7 on Ĝ. This results in either (1) a genus-reduction set
of Ĝ, (2) non-contractible surface separating cycle of Ĝ, or (3) planarizing set of Ĝ. In cases
(1) and (2) the algorithm stores the corresponding cycles. In case (3) it adds the planarizing
set obtained to the final planarizing set. This process stops when all the components are
planar.

We claim that after any iteration, the total number of vertices in all of the components
together is at most n, and the total genera of all of the components together is at most g.
Assume that this claim holds after ith iteration. Let Ĝ be the component considered at the
(i+ 1)st iteration. In case (1), by Propositions 1 and 2, Ĝ is reduced to a component whose
genus is at most ĝ − 1. In case (2), since we have a non-contractible surface separating cycle,
by Proposition 1, we get two components whose sum of the genera is at most ĝ. In case (3),
Ĝ is reduced to a planar graph. Thus sums of the genera of all components is ≤ g and, since
no vertex is repeated in more than one component, vertices in all of the components together
is at most n.

Clearly this algorithm produces a planarizing set and runs in polynomial-time. We will
now bound the size of the planarizing set and the space used by the algorithm.

Notice that the algorithm stores only the cycles and singular edges and will not store the
components: At any stage, given the original graph, the cycles or singular edges computed so
far, and an index of the component, the edge relations of that component can be computed
without additional space. After at most g iterations, we are left with at most g components
each of whose genus is at most 1. Since each iteration may produce a cycle of length O(k),
the algorithm will store at most 2g cycles each of length O(k). Consider a component Gi in
which case (3) of the lemma happens. The size of the corresponding planarizing set produced
is O(ni/k + gi)

√
k. Since

∑
i ni ≤ n and

∑
i gi ≤ g, the total size of the planarizing set is

O((n/k + g)
√
k + kg). Total space used is Õ(n/k + k + kg + (n/k + g)

√
k) (including the

space to store the planarizing set).
By choosing k = max{(n/g)2/3, 1}, we get that the total space-bound of the algorithm to

compute the planarizing set is Õ(n2/3g1/3), and the size of the planarizing set produced is
O(n2/3g1/3). J

4 A Reachability Algorithm for H-minor-free Graphs

In this section, we prove Theorem 2 by first giving an algorithm to construct a separator of
the input graph. Towards this we define the notion of a tree decomposition of a graph which
is crucial to the construction.

4.1 Graph Minor Decomposition Theorem

A graph H is said to be a minor of a graph G if H can be obtained from a subgraph of G by
contracting some edges. A graph G is said to be H-minor-free if G does not contain H as a
minor, for some graph H.

FSTTCS 2014

592 Time-Space Upperbounds for Directed Reachability

I Definition 8. A tree decomposition of a graph G = (V,E) is the tuple (T,X) where
T = (VT , ET) is a tree and X = {Xi | i ∈ VT }, such that, (a) ∪iXi = V , (b) for every edge
(u, v) in G, there exists i, such that u and v belong to Xi, and (c) for every v ∈ V , the set of
nodes {i ∈ VT | v ∈ Xi} forms a connected subtree of T .

We will refer to the Xi’s as bags of vertices. Note that each bag corresponds to a node
(we call vertices of T as nodes) in the tree T . The width of a tree decomposition (T,X),
is the maximum over the size of Xi’s minus 1. The treewidth of a graph is the minimum
width over all possible tree decompositions of G. A tree decomposition is said to be a path
decomposition if T = (VT , ET) is a path and pathwidth of a graph is the minimum width
over all possible path decompositions of G.

For a fixed graph H, Robertson and Seymour, gave a tree decomposition for every
H-minor-free graph [18]. Before we see the Theorem we need to state some definitions.

A graph G is called almost h-embeddable if there exists a set of vertices Y (called the
apices) of size at most h such that, (i) G \ Y can be written as G0 ∪G1 ∪ . . . ∪Gh, (ii) G0
has an embedding on a surface of genus at most h (say S), (iii) for i = 1, · · · , h, Gi’s are
pairwise disjoint (we shall refer to them as vortices), (iv) there exists faces F1, · · · , Fh of
G0 and pairwise disjoint discs D1, · · · , Dh on S such that for all i ∈ {1, . . . , h}, Di ⊆ Fi and
Ui := V (G0)∩V (Gi) = V (G0)∩Di, and (v) for each graph Gi, there is a path decomposition
(Pu)u∈Ui of width at most h such that u ∈ Pu, for all u ∈ Ui. The sets of vertices in Pu are
ordered according to the ordering of the corresponding u’s as vertices along the boundary of
face Fi in G0.

Let G and H be two graphs each containing cliques of equal sizes. The clique-sum of G
and H is formed by identifying pairs of vertices in these two cliques to form a single shared
clique, and then possibly deleting some of the clique edges (may be none). A k-clique-sum is
a clique-sum in which both cliques have at most k vertices. The k-clique-sum of G and H is
denoted as G⊕k H. The set of shared vertices in this operation is called the join set.

We are now ready to state the decomposition theorem for H-minor-free graphs.

I Theorem 9 ([18]). For every graph H, depending only on |V (H)|, there exists an integer
h ≥ 0 such that every H-minor-free graph can be represented as at most h-clique-sum of
“almost h-embeddable” graphs in some surface on which H cannot be embedded.

Henceforth, we will assume that the tree decomposition of the original graph and the
combinatorial embedding of all subgraphs (the G0’s in each almost h-embeddable graph)
that are embedded on the surface are provided as part of the input. We will refer to this as
tree decomposition with combinatorial embedding of H-minor-free graphs.

4.2 Constructing Separator for H-minor-free Graphs
Now we will show that given a decomposition of a H-minor-free graph stated in the last
subsection, how to construct a separator. We start with the following lemma whose proof is
given in the Appendix.

I Lemma 10. There exists a log-space algorithm, that given a tree decomposition (T,X)
of a graph G on n vertices, outputs a node i ∈ T such that every connected component in
G[V \Xi] has at most n/2 vertices.

We now give a separator construction for all H-minor-free graphs which is the main
contribution of this whole section.

D. Chakraborty, A. Pavan, R. Tewari, N. V. Vinodchandran, and L. F. Yang 593

I Theorem 11. Given a H-minor-free graph G and its tree decomposition with combinato-
rial embedding, there exists an Õ(n2/3) space, polynomial time algorithm that computes a
(n2/3, 2/3)-separator of G.

Proof. Given an input graph G and its tree decomposition, compute the vertex i using
Lemma 10. The separator for G that we would construct would be a subset of Xi. Let i
have m neighbors in T , say i1, . . . , im. Now for every j ∈ [m], G[Xi] is joined with G[Xij]
using the clique-sum operation of at most h (constant depending only on H) vertices. Let
C = {C1, C2, . . . , Cm} where Cj is a set of at most h vertices in Xi, such that G[Xi] is joined
with G[Xij] via Cj . Let Tj be the connected subtree of T \ i containing the node j. We
define the subgraph Gj to be the induced subgraph of G corresponding to the vertices in the
subtree Tj . In other words, Gj = G[∪l∈TjXl]. Let kj = |Gj |.

Now if |Xi| ≤ O(n2/3), then it follows from Lemma 10 that Xi is a (n2/3, 1/2)-separator
of G. Otherwise, consider the node i and its corresponding almost h-embeddable graph
K = G[Xi]. Now consider the representation of K using apices and vortices. Let Y be
the set of apices and K \ Y can be written as K0 ∪K1 ∪ · · · ∪Kh where each of Ki has a
path decomposition (Pu)u∈Ui of width less than h. Now build a new graph K ′ from K0
using the following steps: for i = 1, · · · , h, add a cycle of length |Pu| attached to the vertex
u ∈ Ui inside the face Fi and then connect those cycles such that they form a path like
structure similar to the corresponding path decomposition. The new graph K ′ is a graph
embedded on a constant genus and so from Theorem 6, we can get a (n2/3, 2/3)-separator
S (which is union of planarizing set of K ′, say Z and output of PlanarSeparator on the
graph K ′ \ Z) using Õ(n2/3) space and polynomial time. If S contains some vertices from
a newly added cycle, then we add all the vertices present in the corresponding “bag” of
vertices of the respective path decomposition. We also add all the apices of K0 and we get
a new set S′. As the size of S is O(n2/3), so the size of S′ will be at most O(hn2/3) = O(n2/3).

I Claim 1. S′ is a (n2/3, 2/3)-separator of K.

Proof. Observe that by construction, K ′ is a graph embedded on a bounded genus surface.
Moreover there is a canonical injective map (say σ) from vertices in K to vertices in K ′. To
see this, note that K ′ = K0 ∪ {newly added cycles} and by construction, for every vertex in
the bag Xi there is a vertex in the newly added cycle in K ′.
Since S is a (n2/3, 2/3)-separator of K ′, S′ is also a (n2/3, 2/3)-separator of K. Let C be a
connected component in K \ S′. Then the vertices corresponding to C in K ′ (via the map σ)
also form a connected component. Since every connected component in K ′ \ S has size at
most 2|K ′|/3, so S′ is a (n2/3, 2/3)-separator of K. J

By running the above construction repeatedly (a constant number of times), we can get a
(n2/3, 1/6)-separator S. As according to Lemma 10, G[V \Xi] contains at most n/2 vertices,
so the set S also acts as a (n2/3, 2/3)-separator for the whole graph G. It is clear from the
construction of S that this algorithm will take Õ(n2/3) space and polynomial time. J

We also consider the special case when H is either the K3,3 or the K5.

I Theorem 12 ([23, 21]). Let (T,X) be a tree decomposition of a K3,3-free or K5-free graph
G. Then
(i) for every Xi ∈ X, G[Xi] is either a planar graph or the K5 (if G is K3,3-free) or V8 (if

G is K5-free), and
(ii) G is the 3-clique-sum of G[Xi] and G[Xj] for every adjacent vertices i, j in T .

FSTTCS 2014

594 Time-Space Upperbounds for Directed Reachability

Moreover given a K3,3-free or K5-free graph G, such a tree decomposition can be computed
in logspace.

Thierauf and Wagner have shown how to compute the tree decomposition of a K3,3-free or
K5-free graph given in Theorem 12 in log-space [21] and thus we get the following corollary
for these special class of H-minor-free graphs.

I Corollary 13. Given a K3,3-free or K5-free graph G, there exists an Õ(n1/2) space,
polynomial time algorithm that computes a (n1/2, 2/3)-separator of G.

The detailed proof of the above stated corollary is given in the Appendix.

Proof of Theorem 2. Observe that the planar reachability algorithm of Theorem 5 essentially
uses the properties that (I) a subgraph of a planar graph is also planar, and (II) their exists
an algorithm that computes a (n1/2, 2/3)-separator of a planar graph in polynomial time and
Õ(n1/2) space. Note that by the definition itself, all the subgraphs of a H-minor-free graph is
also H-minor-free and given a tree decomposition, from Theorem 11 we get an algorithm that
computes a (n2/3, 2/3)-separator of a H-minor-free graph in polynomial time and Õ(n2/3)
space. Now using the algorithm stated in Theorem 5, we get our desired result. J

Just mimicking the above proof, we can achieve a better simultaneous time-space bound
for the directed reachability problem over K3,3-free or K5-free graphs as stated in Theorem 3
using the separator obtained from the Corollary 13.

References
1 Tetsuo Asano and Benjamin Doerr. Memory-constrained algorithms for shortest path

problem. In CCCG, 2011.
2 Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear space,

polynomial time algorithm for directed s-t connectivity. In Proceedings of the Seventh
Annual Structure in Complexity Theory Conference, pages 27–33, 1992.

3 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences, 38:150–164,
1989.

4 Chris Bourke, Raghunath Tewari, and N.V. Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Transactions on Computation Theory, 1(1):1–17, 2009.

5 Stephen A. Cook and Charles Rackoff. Space lower bounds for maze threadability on
restricted machines. SIAM J. Comput., 9(3):636–652, 1980.

6 Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner.
Planar graph isomorphism is in log-space. In Annual IEEE Conference on Computational
Complexity, pages 203–214, 2009.

7 Samir Datta, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner. Graph iso-
morphism for K{3, 3}-free and K5-free graphs is in log-space. In FSTTCS, pages 145–156,
2009.

8 Hristo Djidjev and Shankar M. Venkatesan. Planarization of graphs embedded on surfaces.
In Workshop on Graph Theoretic Concepts in Computer Science, pages 62–72, 1995.

9 Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. Tight lower bounds for st-
connectivity on the NNJAG model. SIAM J. Comput., 28(6), 1999.

10 John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separator theorem for
graphs of bounded genus. J. Algorithms, 5(3):391–407, 1984.

11 Joan P. Hutchinson and Gary L. Miller. Deleting vertices to make graphs of positive genus
planar. Discrete Algorithms and Complexity Theory, 1986.

D. Chakraborty, A. Pavan, R. Tewari, N. V. Vinodchandran, and L. F. Yang 595

12 T. Imai, K. Nakagawa, A. Pavan, N.V. Vinodchandran, and O. Watanabe. An O(n1/2+ε)-
Space and Polynomial-Time Algorithm for Directed Planar Reachability. In IEEE Confer-
ence on Computational Complexity (CCC), pages 277–286, 2013.

13 Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources and sinks.
SIAM Journal on Computing, 24:1002–1017, 1995.

14 Bojan Mohar and Carsten Thomassen. Graphs on surfaces. 2001. Johns Hopkins Stud.
Math. Sci, 2001.

15 Chung Keung Poon. Space bounds for graph connectivity problems on node-named jags
and node-ordered jags. In FOCS, pages 218–227, 1993.

16 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.
17 Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks on regular digraphs

and the RL vs. L problem. In STOC’06: Proceedings of the thirty-eighth annual ACM
Symposium on Theory of Computing, pages 457–466, New York, NY, USA, 2006. ACM.

18 Neil Robertson and P. D. Seymour. Graph minors. xvi. excluding a non-planar graph. J.
Comb. Theory Ser. B, 89(1):43–76, September 2003.

19 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. J. Comput. Syst. Sci., 4:177–192, 1970.

20 Derrick Stolee and N.V. Vinodchandran. Space-efficient algorithms for reachability in
surface-embedded graphs. In IEEE Conference on Computational Complexity (CCC), pages
326–333, 2012.

21 Thomas Thierauf and Fabian Wagner. Reachability inK3,3-free Graphs andK5-free Graphs
is in Unambiguous Log-Space. In 17th International Conference on Foundations of Compu-
tation Theory (FCT), Lecture Notes in Computer Science 5699, pages 323–334. Springer-
Verlag, 2009.

22 N.V. Vinodchandran. Space complexity of the directed reachability problem over surface-
embedded graphs. Technical Report TR14-008, ECCC, 2014.

23 K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen,
114(1):570–590, 1937.

24 Avi Wigderson. The complexity of graph connectivity. Mathematical Foundations of Com-
puter Science 1992, pages 112–132, 1992.

FSTTCS 2014

Polynomial Min/Max-weighted Reachability is in
Unambiguous Log-space
Anant Dhayal, Jayalal Sarma, and Saurabh Sawlani

Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai, India

Abstract
For a graph G(V,E) and a vertex s ∈ V , a weighting scheme (w : E → N) is called a min-unique
(resp. max-unique) weighting scheme, if for any vertex v of the graph G, there is a unique path of
minimum(resp. maximum) weight1 from s to v. Instead, if the number of paths of minimum(resp.
maximum) weight is bounded by nc for some constant c, then the weighting scheme is called a
min-poly (resp. max-poly) weighting scheme.

In this paper, we propose an unambiguous non-deterministic log-space (UL) algorithm for
the problem of testing reachability in layered directed acyclic graphs (DAGs) augmented with a
min-poly weighting scheme. This improves the result due to Reinhardt and Allender [11] where
a UL algorithm was given for the case when the weighting scheme is min-unique.

Our main technique is a triple inductive counting, which generalizes the techniques of [7, 12]
and [11], combined with a hashing technique due to [5] (also used in [6]). We combine this with
a complementary unambiguous verification method, to give the desired UL algorithm.

At the other end of the spectrum, we propose a UL algorithm for testing reachability in
layered DAGs augmented with max-poly weighting schemes. To achieve this, we first reduce
reachability in DAGs to the longest path problem for DAGs with a unique source, such that the
reduction also preserves the max-poly property of the graph. Using our techniques, we generalize
the double inductive counting method in [8] where UL algorithms were given for the longest path
problem on DAGs with a unique sink and augmented with a max-unique weighting scheme.

An important consequence of our results is that, to show NL = UL, it suffices to design
log-space computable min-poly (or max-poly) weighting schemes for DAGs.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Alternation and Non-
determinism

Keywords and phrases Reachability Problem, Space Complexity, Unambiguous Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.597

1 Introduction

Reachability testing in graphs (Reach) is an important algorithmic problem that encapsulates
central questions in space complexity. Given a graph G(V,E) and two special vertices s
and t, the problem asks to test if there is a path from s to t in the graph G. The problem
admits a (deterministic) log-space algorithm for the case of trees and undirected graphs (by a
breakthrough result due to Reingold[10]). The directed graph version of the problem captures
the complexity class NL. Designing a log-space algorithm for the problem is equivalent to
proving NL = L. (See [1] for a survey.) Even in the case when the graph is a layered DAG2,
the problem is known to be NL-complete.

1 Weight of a path p is the sum of the weights of the edges appearing in p.
2 A DAG is layered, if V can be partitioned as V = V1 ∪ . . . V` s.t. edges go from Vi to Vi+1 for some i.

© Anant Dhayal, Jayalal Sarma, and Saurabh Sawlani;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 597–609

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.597
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

598 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

An important intermediate class of algorithms for reachability is when the non-determinism
is unambiguous - when the algorithm accepts in at most one of the non-deterministic paths.
The class of problems which can be solved by such restricted non-deterministic algorithms
using only log-space is called Unambiguous Log-space (UL). Under a non-uniform polynomial-
sized advice, the reachability problem is known to have a UL algorithm[11], thus showing
NL/poly = UL/poly . Central to arriving at this complexity theoretic result was the following
algorithmic result that Reinhardt and Allender [11] had established: testing reachability in a
graph G augmented with a log-space computable weighting scheme that maps w : E → N
such that there is a unique minimum-weight path from s to any vertex v in the graph,
can be done by a non-deterministic log-space algorithm unambiguously and hence is in the
complexity class UL. (We call such weighting schemes as min-unique weighting schemes.)
This also led to other important developments including an unambiguous log-space algorithm
for directed planar reachability [4] - which was achieved by designing a log-space computable
min-unique weighting scheme for reachability in grid-graphs (a special class of planar graphs
for which reachability is as hard as planar DAG reachability[2]). An important open problem
in this direction is to design a log-space min-unique weighting scheme for general graphs.
The UL-computable version of this is also known to be equivalent to showing NL = UL.

Our Results: We make further progress on this algorithmic front by relaxing the restriction
on the number of paths of minimum weight from one to polynomially many paths. We call a
weighting scheme a min-poly weighting scheme if it results in at most polynomially many (in
terms of n = |V |) paths of minimum weight from s to any vertex v in a graph G(V,E).

I Theorem 1. Testing reachability in layered DAGs, augmented with log-space comput-
able min-poly weighting schemes, can be done by a non-deterministic log-space algorithm
unambiguously and hence is in the complexity class UL.

Our algorithms use a technique of triple inductive counting. The inductive counting
method was originally discovered and employed as an algorithmic technique in [7] and [12]
in order to design non-deterministic log-space algorithms for testing non-reachability in
graphs. A double inductive version of this was used again by Reinhardt and Allender [11] for
designing unambiguous non-deterministic algorithms for testing reachability in min-unique
graphs. We use a triple inductive version of the inductive counting method, keeping track
of one extra parameter (which is the sum of the number of minimum weight paths to each
vertex). Along with a hashing technique (also used in [6]), this leads to a non-deterministic
algorithm where each accepting configuration has at most one path leading to it on any input
(the corresponding complexity class is known as FewUL). Finally, we convert this algorithm
to a UL algorithm using an unambiguous complementary verification, thus completing the
proof of the theorem.

A natural complementary question is if similar complexity bounds hold in the case of
graphs with weighting assignments that result in unique maximum weight paths from s

to any vertex v (such weighting schemes are called max-unique weighting schemes). In [8],
the longest path problem on DAGs augmented with max-unique weighting assignments
and having a unique sink t, was shown to be in UL. The corresponding weighting scheme
with polynomially many paths of maximum weight will be called a max-poly weighting
scheme. Using our triple inductive and complementary verification techniques, we adapt their
algorithms to improve their results by relaxing the constraint on the weighting assignments -
from max-unique to max-poly. We present our theorem in terms of the reachability problem,
as we also show a reduction (Lemma 5) from the reachability problem to the longest path
problem on single source DAGs, where the max-poly property of the graph is preserved.

A. Dhayal, J. Sarma, and S. Sawlani 599

I Theorem 2. Testing reachability in layered DAGs augmented with log-space computable
max-unique weighting schemes, can be done by a non-deterministic log-space algorithm
unambiguously and hence is in the complexity class UL.

I Remark. Observing that Theorem 1 and Theorem 2 hold even when the min-poly weighting
scheme is UL-computable, and combining with the results of [9], it follows that: for any graph
G there is a UL-computable min-poly weighting scheme if and only if there is a UL-computable
min-unique weighting scheme. We also remark that, by a minor variant the proof technique
in [9], we can show (the details are deferred to the appendix) that showing NL = UL is
equivalent to designing UL-computable (min)max-unique weighting schemes which, thus,
is equivalent to designing UL-computable (min)max-poly weighting schemes. However, we
stress the importance of this relaxation of the constraints from uniqueness as this potentially
can help designing weighting schemes for arbitrary layered DAGs.

Related Work: An important comparison of our results is with a complexity theoretic
collapse result shown by [6]. FewL is the class of problems that has non-deterministic
algorithms with only polynomially (in n) many accepting paths on any input of length n.
Clearly, FewL contains all problems in UL - however, the converse is not known. In its
algorithmic flavor, this question asks if reachability in a graph with at most polynomially
many paths from s to t, can be done by a non-deterministic algorithm in log-space, producing
at most one accepting path. ReachUL and ReachFewL are the corresponding complexity
classes where the uniqueness and polynomially boundedness constraints are respectively
applied for the number of paths from s to any other v ∈ V . Clearly, ReachUL is contained
in ReachFewL and they were shown to be equal recently [6]. It is worthwhile noting that
this establishes unambiguous log-space algorithms for reachability in graphs where there are
only polynomially many paths from the start vertex to any vertex in the graph. The class
of graphs that we discussed above (min/max-poly) also includes such graphs trivially. By
assigning a weight of 1 to every edge in such a graph, there can only be polynomially many
paths of minimum(or maximum) weight. Theorem 2, in particular, implies UL algorithms
for reachability in graphs with max-unique weighting schemes where there need not exist a
unique sink in the graph (and hence is a strengthening of the results in [8]).

2 Preliminaries

We assume basic familiarity with standard space complexity classes and reductions (see [3]
for a standard textbook). The graphs considered in this paper are directed, acyclic and
layered. Building on the terminology from the introduction, we say a DAG, G(V,E), is
min(max)-unique if it is augmented with a min(max)-unique weighting scheme. Similarly,
a graph is said to be min(max)-poly if it is augmented with a min(max)-poly weighting
scheme. A graph augmented with a weighting scheme w : E → N, can be converted to an
un-weighted graph, by replacing each edge e ∈ E with a path of length w(e). Notice that
this new graph also can be layered in log-space with edges allowed to jump forward, skipping
layers arbitrarily. In particular, there is a log-space computable numbering for the vertices
such that for each (u, v) ∈ E, u is given a smaller number as label than v. Additionally, in
the algorithms presented in later sections, we also verify whether the input graph is min-poly
and max-poly respectively.

In this new graph, we encode paths using numbers in the following way. Consider a path
of length k − 1, p : (x1, x2, . . . , xk) where the xis are the distinct integers representing the
vertices in the path. Let us represent this path p with the integer wp := 2x1 + 2x2 + . . .+ 2xk .

FSTTCS 2014

600 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

In other words, each path is represented by an n-bit integer, where the ith bit is 1 if and only
if vertex i is in the path. Observe that, since the graph is a layered DAG, edges are always
directed from a vertex of lower index to a vertex of higher index. Thus, a set of vertices is
enough to represent a path, irrespective of their order. Hence, each path p can be represented
by the unique number wp. In the case of min(max)-poly graphs, the algorithm cannot store
all s v paths to check whether they are different from each other or not. Hence, we use
the following hashing technique. For v ∈ V , let Pv be a set of min(max)-length s v paths.
Ps, by convention, contains one s s path of length 0. Let Sv = {wp | p ∈ Pv}. Clearly,
|Sv| = |Pv| ≤ nc.

Hashing the weights of paths: For any path p : s v, we define φm(p) := (
∑
u∈p2u)

mod m. We say that any integer m is good for a vertex v ∈ V , if no two s v paths p1 and
p2 satisfy φm(p1) = φm(p2). We say that m is good for a graph G, if it is good for all v ∈ V .
The following proposition ensures that there is always a polynomial sized good m.

I Proposition 1. [5] For every constant c there is a constant c′ so that for every set S of
n-bit integers with |S| ≤ nc there is a c′ logn-bit prime number m so that for all x, y ∈ S,
x 6= y =⇒ x 6≡ y mod m.

Guessing paths in lexicographic order: Our algorithms often require guessing several paths
to a vertex v in sequence and checking whether the guessed paths are in lexicographic order
w.r.t φm. Here, we outline a method of doing this in log-space.

Keep a counter c of log ` bits to keep track of how far we have traversed along a path.
Initialize this to 0. Keep logn bits to store the current vertex ρ of the current path π. Let
π′ be the previous path. Keep two variables, δπ and δπ′ , of logm bits each. to store the
intermediate value of φm(π) and previously calculated final value of φm(π′) respectively.
Repeat the following two steps until c reaches `. (1) δπ = (δπ + 2ρ) mod m. (2) Increment c
and choose one of ρ’s neighbour vertices non-deterministically and replace ρ by this neighbour.

Setting δπ to δπ′ and setting δπ, ρ and c to 0, repeat the steps in the previous paragraph
till we have guessed all the q paths. Each time, before updating δπ′ , check if δπ is strictly
less than δπ′ . If not, reject there itself.

Now we fix some notation. For any vertex v ∈ V , we denote by d(v) (and D(v)), the
minimum-distance (and maximum distance) of v from s. For any vertex v ∈ V , p(v) (and
P (v)) is the number of minimum-length (and maximum-length) s v paths.

3 FewUL Algorithm for Reach in min-poly layered DAGs

The UL algorithm given by Reinhardt and Allender [11] solves Reach for min-unique graphs.
In this section, we introduce a modification of their algorithm to work for min-poly graphs. To
handle polynomially many minimum-length paths, we introduce a new inductive parameter
pk which stores the sum of the number of minimum length paths from s to every vertex
v with d(v) ≤ k. To inductively compute this new parameter for each k, we will use the
method of guessing paths p in lexicographic order with respect to their hashed values (φm)
assuming that the guess of m is good.

However, we are still faced with the problem of obtaining a good m. In the following set
of routines, we will guess the value of m and use it while simultaneously detecting if it is
not good. Note that this routine will not be unambiguous any more, because there could be
several choices of m which are good for the given graph. However, each choice of m will lead

A. Dhayal, J. Sarma, and S. Sawlani 601

Algorithm Main-min-FewUL: Main FewUL routine to check reachability on min-poly
graphs.

1: Input: (G, s, t)
2: Non-deterministically guess 2 ≤ m < nc′

3: k := 1
4: c0 := 1; Σ0 := 0; p0 := 1
5: (c1,Σ1, p1) = Update-min(G, s, 0, c0,Σ0, p0,m)
6: while k < n− 1 and (ck−1,Σk−1, pk−1) 6= (ck,Σk, pk) do
7: (ck+1,Σk+1, pk+1) = Update-min(G, s, k, ck,Σk, pk,m)
8: k := k + 1
9: end while

10: if Test-min(G, s, t, k, ck,Σk, pk,m) > 0 then
11: Go to state ACCEPT-m
12: else
13: REJECT
14: end if

Algorithm Update-min: Deterministic (barring Test-min calls) routine computing ck+1,
Σk+1 and pk+1.

1: Input: (G, s, k, ck,Σk, pk,m)
2: Output: ck+1,Σk+1, pk+1

3: ck+1 := ck; Σk+1 := Σk; pk+1 := pk;
4: num := 0;
5: for v ∈ V do
6: if Test-min(G, s, v, k, ck,Σk, pk,m) = 0 then
7: for x such that (x, v) ∈ E do
8: num := num+ Test-min(G, s, x, k, ck,Σk, pk,m);
9: if num > nc then

10: REJECT
11: end if
12: end for
13: if num > 0 then
14: ck+1 := ck+1 + 1; Σk+1 := Σk+1 + k + 1; pk+1 := pk+1 + num;
15: end if
16: end if
17: end for

to exactly one accept state. Hence, we can label these accept states with their respective
choices of m, thus making it a FewUL routine.
Algorithm: Here we give the outline of the FewUL algorithm for L = { (G(V,E), s, t) | ∃s t

path and ∀v ∈ V, p(v) ≤ nc}, where the value of c is known. We fix some basic notations.
ck = |{v ∈ V : d(v) ≤ k}|, Σk =

∑
d(v)≤k d(v). The extra parameter pk is equal to∑

d(v)≤k p(v). First, building on the central idea of [11], we design an unambiguous log-space
routine (Test-min) to determine if d(v) ≤ k and return p(v) (in at most one non-deterministic
path), assuming the correct values of ck,Σk, pk and m. The modification is that, for each
vertex x ∈ V the algorithm will guess the number of paths (q - in the algorithm q = 0 is
interpreted as "guessing that d(v) > k") from s to x, their length `, and the paths themselves
in strictly decreasing order with respect to φm. Using this subroutine, we then compute
inductively, the values of ck+1,Σk+1 and pk+1. We will inductively compute p(v) and check if
it is greater than the polynomial bound nc. If p(v) exceeds this number, the subroutine rejects
as the underlying graph is not min-poly. This is described in the pseudocode Update-min.
The main FewUL algorithm will inductively compute ck, Σk and pk starting from k = 1 to
n− 1.

FSTTCS 2014

602 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

Algorithm Test-min: Unambiguous Log-space routine to return p(v) if d(v) ≤ k (returns
0 if d(v) > k, rejects if p(v) ≥ nc), given correct values of ck,Σk, pk and a good m.

1: Input: (G, s, v, k, ck,Σk, pk,m)
2: count := 0; sum := 0; paths := 0; paths.to.v := 0;
3: for x ∈ V do
4: Nondeterministically guess 0 ≤ q ≤ nc

5: if q 6= 0 then
6: Nondeterministically guess 0 ≤ ` ≤ k
7: Nondeterministically guess q paths p1, p2, . . . pq of length exactly ` each from s to x.
8: if ((∃i < j, φm(pi) ≤ φm(pj)) OR (paths are not valid)) then
9: REJECT

10: end if
11: count := count+ 1; sum := sum+ `; paths := paths+ q;
12: if x = v then
13: paths.to.v := q;
14: end if
15: end if
16: end for
17: if count = ck, sum = Σk and paths = pk then
18: Return the value of paths.to.v
19: else
20: REJECT
21: end if

I Claim 1. If m is good, given the correct values of ck, Σk and pk, the algorithm Test-min
has exactly one non-rejecting path, and it returns the correct value of p(v).

Proof. We argue that, since m is good, there is a unique way to guess the d(v) and p(v)
(∀v ∈ V), to satisfy count = ck, sum = Σk and paths = pk. We analyze this by cases.

If the algorithm, in a non-deterministic choice, guesses q > 0 for some vertex v (i.e.
d(v) ≤ k) for which d(v) > k, then it will not be able to guess any path of length ≤ k,
and hence will end up rejecting in that non-deterministic choice. If it guesses q = 0 for
some vertex v (i.e. d(v) > k) for which d(v) ≤ k, it will not increment count. But then, to
compensate this loss, for count to reach ck, the algorithm, in this non-deterministic choice,
will have to guess q > 0 for some vertex u for which d(u) > k, and thereby will reject.

If the algorithm, in a non-deterministic choice, guesses ` < d(v) (q > p(v)) for any v,
then it will not be able to find - a path of such length (that many paths) and hence will
end up rejecting in that non-deterministic choice. If it guesses ` > d(v) (q < p(v)), then to
compensate, it will have to guess ` < d(u) (q > p(u)) for some other vertex u, and hence will
reject in that non-deterministic path.

Hence, only the path in which, for all vertices, q and ` are guessed correctly and all q
paths of length ` are guessed in lexicographical order w.r.t. φm, will be a non-reject path
and will return the value of p(v) correctly. J

I Claim 2. If the algorithm Test-min works correctly for parameter k, then given the correct
values of ck,Σk and pk, the algorithm Update-min computes the correct values of ck+1,Σk+1
and pk+1.

Proof. The algorithm first assigns ck+1 := ck,Σk+1 := Σk and pk+1 := pk. Now, to update
these values we need the exact set of vertices with d(v) = k + 1. The algorithm, for each v,
checks if d(v) > k and for each of its neighbours x, checks if d(x) ≤ k. For the neighbours

A. Dhayal, J. Sarma, and S. Sawlani 603

passing this test, we know that d(x) = k. If any of the neighbours passes the test (num > 0
in line 13), d(v) = k + 1. Hence, ck+1 is incremented by 1, Σk+1 is incremented by k + 1,
and pk+1 is incremented by

∑
(x,v)∈E,d(x)=k p(x) (which is stored in num after loop 7-12).

Hence all the three parameters get updated correctly and hence the proof. J

I Observation 1. Observe that, since we begin with the correct values of c0, Σ0 and p0, by
induction, Claims 1 and 2 imply that the values of ck, Σk and pk calculated at any time in
the algorithm are always correct.

I Claim 3. If m is good, the algorithm Main-min-fewUL has at most one path to state
ACCEPT-m.

Proof. Using Observation 1 and Claim 1, we know that there is exactly one non-rejecting
path in each call to Test-min. Thus, there is exactly one non-rejecting path in each call
to Update-min, as Update-min is deterministic barring the calls to Test-min. Similarly,
there is exactly one non-rejecting path in Main-min-fewUL, as Main-min-fewUL - for
a particular choice of m - is deterministic barring the calls to Update-min. If t is indeed
reachable from s, this non-rejecting path goes to ACCEPT-m, as m is guessed initially and
is not changed thereafter. J

I Claim 4. If m is not good, given the correct values of ck, Σk and pk, the algorithm
Test-min (and hence both Update-min and Main-min-FewUL) always rejects.

Proof. If m is not good, then there exists a vertex v such that there exist at least two s v

paths p1 and p2 for which φm(p1) = φm(p2). So, if we guess q = p(v), then the paths cannot
be in strictly decreasing order w.r.t. φm and the algorithm will reject. If we guess q > p(v) ,
then the algorithm will fail to find q paths and reject. If we guess q < p(v) , then paths will
never be equal to pk, as the q for some other vertex u will then need to be greater than p(u)
(for paths to become equal to pk), which is not possible. J

I Theorem 3. The algorithm Main-min-FewUL is correct and FewUL.

Proof. If the value of m guessed is not good, then the algorithm Main-min-FewUL always
rejects (by Claim 4 and Observation 1), and if it is good, there is at most one path which
reaches ACCEPT-m (Claim 3). As there are polynomially many possible values of m,
Main-min-FewUL is in FewUL. After covering all the reachable vertices, the while loop
(line 6-9) in Main-min-FewUL terminates with correct values of ck, Σk and pk (Observation
1) and before reaching ACCEPT-m we do a final check to see whether or not vertex t has
been covered. As this case occurs only when m is good (Claims 3 and 4), the correct values
of p(v) will be returned (Claim 1) and thus the final decision will be correct. J

4 UL Algorithm for Reach in min-poly layered DAGs

The algorithm presented in the previous section is not unambiguous because there can be
more than one good m. To address this, we modify the Main-min-FewUL routine in such
a way that we always use the least good m (let us call this integer f). The Test-min and
Update-min routines are already unambiguous and need no change.

The idea is to non-deterministically guess f , and to verify that f is the smallest good
integer for the graph G. This is done by running an unambiguous routine which checks all
integers m < f and, for each value, verifies that it is not good and proceeds to the next value.
Finally it reaches f , and accepts if and only if it is good and there is a path from s to t.

FSTTCS 2014

604 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

Algorithm Update-fault-min: UL routine to verify our choice of f .
1: Input: (G, s,m)
2: non-deterministically guess 1 < k1 < n

3: c0 := 1; Σ0 := 0; p0 := 1; k := 1
4: while k < k1 do
5: (ck,Σk, pk) = Update-min(G, s, k, ck−1,Σk−1, pk−1,m)
6: k := k + 1
7: end while
8: match_found := false

9: for v ∈ V do
10: if Test-min(G, s, v, k − 1, ck−1,Σk−1, pk−1,m) = 0 then
11: valid := false

12: for x such that (x, v) ∈ E do
13: if Test-min(G, s, x, k − 1, ck−1,Σk−1, pk−1,m) > 0 then
14: valid := true

15: end if
16: end for
17: if valid then
18: for (a, b)|(a, v) and (b, v) ∈ E do
19: α := Test-min(G, s, a, k − 1, ck−1,Σk−1, pk−1,m)
20: β := Test-min(G, s, b, k − 1, ck−1,Σk−1, pk−1,m)
21: if (α > 0) ∧ (β > 0) ∧ (Find-match(G, s, k, a, b, α, β,m) = true) then
22: Return
23: end if
24: end for
25: end if
26: end if
27: end for
28: REJECT

If an integer m < f is not good, there must be a least integer k1(m) (from s) such that
there exists a vertex v for which d(v) = k1(m) and for which m is not good. It suffices to
find this vertex in order to certify that m is not good. For any such vertex v, there must
exist a, b ∈ V such that a, b are in-neighbours of v at distance k1(m)− 1 from s and there
must be two paths, pa through a and pb through b such that φm(pa) = φm(pb). Indeed,
a 6= b, since otherwise it contradicts the choice of k1(m). This is done by an unambiguous
non-deterministic algorithm Find-match((G, s, k, a, b, α, β,m), which guesses α(respectively
β) number of s a (s b) paths and pairwise checks for collision with respect to φm
between s a and s b paths. This is used as a subroutine in Update-fault-min.

I Theorem 4. The algorithm Main-min-UL is correct and unambiguous log-space.

Proof. Let f ′ be the smallest good value for graph G. We first argue that, if m is not
good then there exists exactly one non-reject path in Update-fault-min. We do this by
considering the following cases : If k1 > k1(m), then in the while loop (lines 4-7), when
k = k1(m), Update-min will find two paths p1 and p2 satisfying φm(p1) = φm(p2) and
will reject. If k1 < k1(m) then Find-match will never find two paths p1 and p2 satisfying
φm(p1) = φm(p2). So, it will always return false and thus, Update-fault-min will reject
at line 28. If k1 = k1(m) : let u be the lexicographically first vertex such that there exist
two s u paths p1 and p2 satisfying φm(p1) = φm(p2). Hence, in line 22, when v = u, the
algorithm will return, and this is the only non-reject path.

Now we argue that, if m is good then Update-fault-min rejects. Notice that, irrespective

A. Dhayal, J. Sarma, and S. Sawlani 605

of the value of k1 guessed, Find-match will not be able to find two paths p1 and p2 such
that φm(p1) = φm(p2) as m is good. Hence, in line 22, Update-fault-min algorithm will
never return and thus will reject in line 28.

Now we are ready to argue unambiguity of Main-min-UL. More specifically, we argue
that if f = f ′, Main-min-UL accepts in at most one path, and if f 6= f ′, Main-min-UL
rejects. Consider the case f = f ′. In each iteration of the first while loop (lines 4-7) in
Main-min-UL, m is not good and thus by the above argument, the while loop terminates in
exactly one path. The rest of the algorithm (lines 8-19) is identical to Main-min-FewUL. So,
by Claim 3 there is at most one accept path. Note that here, unlike in Main-min-FewUL,
we will reach a unique accept state corresponding to m = f = f ′.

Now consider f 6= f ′. If f < f ′, then at line 7, when the first while loop terminates,
m = f < f ′, and Update-min with f as parameter will reject because of Claim 4 and
Observation 1. If f > f ′, then when in first while loop m = f ′ (and hence m is good),
Update-fault-min will reject (as shown above).

Now we argue correctness. As argued, line 15 in Main-min-UL will be reached only
when f = f ′. At this point, ck,Σk, pk are calculated correctly, as Observation 1 still holds.
Thus, by Claim 1, Test-min outputs the correct value of p(t) as m = f ′ is good and thus
the final result is correct. J

5 Reach in max-poly layered DAGs

In order to arrive at the algorithm for Reach in max-poly graphs, we solve a harder problem
on a more specific class of graphs. This is a variant of the Long-path problem (Given
(G, s, t, j) where s and t are vertices in the graph G, and j is an integer - the Long-Path
problem asks to check if there is a path from s to t of length at least j) where the graph
G has a unique source s. We first give the reduction from Reach to this special case of
Long-path.

I Lemma 5. There is a function f , computable in log-space, that transforms an instance
(G(V,E), s, t) of Reach to an instance (G′(V ′, E′), s′, t, 2n + 1) of Long-Path, where
n = |V |, such that t is reachable from s in G if and only if there exists a path of length
at least 2n + 1 from s′ to t in G′. In addition, if G is max-unique (max-poly), then G′ is
max-unique (max-poly).

Proof. As mentioned in the preliminaries, without loss of generality, we can assume that
the vertices of the graph G(V,E) are numbered such that, edges always go from a lower
numbered vertex to a higher numbered vertex. Let V = {v1, v2, . . . , vn} be this numbering.
We will construct G′(V ′, E′) as follows: In addition to the edges among the vertices in V ,
we add a new source vertex s′ and add edges from s′ to all other vertices in V . We assign
weights to the newly added edges (which we later remove by replacing the edges with paths
of length equal to the weight of the edge). The weight of the edge (s′, s) = 2n and for vertices
vi 6= s, weight of (s′, vi) is 2i. Note that G′ has exactly one source vertex s′ and hence is a
valid input for our algorithm to solve Long-Path.

Now we argue the that if G had a unique path (polynomially many paths) of maximum
length from s to any vertex v, then so will be the case with G′. This condition is easily seen
for v /∈ V . For a vertex vi ∈ V , we claim that among all the paths not going through s,
there is exactly one path of maximum length and this is the path corresponding to the edge
(s′, vi) of length 2i. If not, choose a longest path (say p) which is not corresponding to the
edge (s′, vi). Let vj (j < i) be the first vertex in p from V . Clearly, p must use the path

FSTTCS 2014

606 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

Algorithm Main-min-UL: Main UL routine to check reachability.
1: Input: (G, s, t)
2: Non-deterministically guess 2 ≤ f < nc′

3: m := 2
4: while m < f do
5: Update-fault-min(G, s,m)
6: m := m+ 1
7: end while
8: k := 1
9: c0 := 1; Σ0 := 0; p0 := 1

10: (c1,Σ1, p1) = Update-min(G, s, 0, c0,Σ0, p0,m)
11: while k < n− 1 and (ck−1,Σk−1, pk−1) 6= (ck,Σk, pk) do
12: (ck+1,Σk+1, pk+1) := Update-min(G, s, k, ck,Σk, pk,m)
13: k := k + 1
14: end while
15: if Test-min(G, s, t, k, ck,Σk, pk,m) > 0 then
16: ACCEPT
17: else
18: REJECT
19: end if

Algorithm (Find-match): UL routine to find paths with matching φm values.
1: Input: (G, s, k, a, b, α, β,m)
2: for i = 1 to α do
3: Guess a path π of length k − 1 from s to a
4: if (i ≥ 2) ∧ (φm(π) ≥ X) then
5: REJECT
6: end if
7: X := φm(π)
8: for j = 1 to β do
9: Guess a path π′ of length k − 1 from s to b

10: if (j ≥ 2) ∧ (φm(π′) ≥ Y) then
11: REJECT
12: end if
13: Y := φm(π)
14: if X = Y then
15: Return true

16: end if
17: end for
18: end for
19: Return false

A. Dhayal, J. Sarma, and S. Sawlani 607

corresponding to the weighted edge (s′, vj). Hence, the length of the path p can at most be
2j + (i− j) = i+ j < 2i. This contradicts the choice of p.

Thus, for a vertex vi ∈ V that is not reachable from s, the maximum length path in
G′ is unique. For a vertex vi ∈ V that is reachable from s, the maximum length path not
through s is of weight exactly 2i, but the paths from s′ to vi through s are of length at least
2n+ 1 > 2i. Additionally, we can see that, if there were ` paths of maximum length from s

to any vertex vi in G, then the number of maximum length paths from s′ to vi is also `.
We now argue correctness of our reduction. Suppose that t is not reachable from s

in G. In this case, none of the paths from s′ to t will pass through s. Hence, using the
above argument, we know that the length of any path from s′ to t cannot be greater than
2n. On the other hand, if t is reachable from s in G (say by path p), then the path (s′, s)
concatenated with p is a path of length ≥ 2n+ 1 from s′ to t. J

Now we turn to this special case of the Long-path problem. As mentioned in the
introduction, Long-Path for max-unique graphs with a unique source has been studied by
[8]. The UL algorithm in [8] is for Long-Path on max-unique graphs having a single sink t.
In our version of Long-Path, we will consider paths from s (as opposed to paths to t in
[8]) and hence we will consider only graphs with a unique source s. We will extend their
algorithm to max-poly graphs, by first giving a FewUL algorithm, and then converting it to
a UL algorithm using a strategy similar to the min-poly Reach algorithm in Section 4 .

5.1 FewUL Algorithm for Reach in max-poly Layered DAGs
In a way similar to our adaptation of the algorithm for min-unique graphs of [11] to work
with min-poly layered DAGs, we adapt the algorithm proposed in [8] for max-unique graphs
(with a unique sink) to the case for max-poly graphs with a unique source. Along with
the reduction we mentioned above from Reach to Long-path in such graphs (preserving
the max-unique or max-poly property), this gives an algorithm for reachability testing in
such graphs. We build the intuition through an example setting where the idea used in the
min-poly algorithm (Test-min) fails. Suppose we have the correct values of ck, Σk and
pk. Even then, suppose for a vertex v, we guess D(v) < k whereas actually D(v) ≥ k. The
algorithm, in this non-deterministic choice can still compensate and make it to the original
summation by guessing for another u that D(u) ≥ k where actually D(u) < k. This is
possible because the algorithm does not verify guesses of the kind D(u) ≥ k (that is, q = 0).
In [8], this problem is addressed by introducing a new parameter M =

∑
v∈V D(v). The

value of M is also non-deterministically guessed, which if guessed correctly, will facilitate
verification of the guess D(u) ≥ k.

In a similar way, corresponding to the inductively computed parameter pk, we introduce
P =

∑
v∈V P (v). In what follows, we will outline a FewUL algorithm with this new parameter

and give a proof sketch.

Overview of the Algorithm: We introduce notation required for our exposition. We reuse
ck to denote the number of vertices v ∈ V for which D(v) ≥ k. Σk =

∑
v:D(v)<kD(v),

pk =
∑
v:D(v)<k P (v). Notice that c0 = n.

We first introduce Test-max(G, s, v, ck,Σk, pk,m), which given the correct values of ck,
Σk and pk, tests unambiguously whether D(v) ≥ k and outputs (D(v), P (v)) if D(v) < k or
outputs (0, 0) if D(v) ≥ k. We then initialize count = n and

∑
and paths to 0. For each

vertex x, we guess if D(x) ≥ k. If we guess NO, then the algorithm runs on similar lines as
Test-min, where we guess the maximum path length, the number of paths of that length

FSTTCS 2014

608 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

from s to x, and the paths themselves in strictly decreasing order with respect to φm. We
decrement count, and increment sum and paths appropriately. If we guess YES, then we
perform a similar check by guessing the maximum path length, the number of paths of that
length (now at least k) from s to x, and the paths themselves in strictly decreasing order
with respect to φm. However this time, we increment sum′ and paths′ (instead of sum and
path) respectively. Once we run through all the vertices, we verify the guesses of the kind
D(v) < k by matching count with ck, sum with Σk and paths with pk. In addition, we verify
the guesses of the kind D(v) ≥ k by matching sum+ sum′ = M and paths+ paths′ = P .

The inductive computation of ck+1, Σk+1 and pk+1 from ck,Σk, and pk is done by the
routine Update-max (along the lines of Update-min). For each vertex with D(v) = k,
it decrements ck by 1, Σk by k and pk by

∑
(x,v)∈E,D(x)=k−1 P (v) to compute ck+1, Σk+1

and pk+1 respectively. In order to find vertices with D(v) = k, this routine, for each node v,
verifies if D(v) = k by invoking the routine Test-max on v and its in-neighbours.

The main reachability test algorithm, given (G′, s′, t′) as the input, constructs, in log-space,
the instance (G, s, t, j) of the special case of Long-path problem. It runs the remaining
algorithm with this new graph. The algorithm guessesm,M and P , and inductively computes
ck, Σk and pk until they stabilize (which happens only at ck = 0, since G is a single source
graph). Finally, to answer the original reachability problem, it suffices to test if D(t) ≥ j.
Since ck, Σk and pk are available, this can be decided using the Test-max algorithm.

Proof (Sketch) of Correctness and Unambiguity. Let T and S be the correct values of M
and P respectively. We claim that, irrespective of the guessed values of M and P , if the
input values ck, Σk and pk are correct, then all non-reject paths of Test-max return the
correct values of P (v) and D(v) for v if D(v) < k. (For other vertices it returns (0, 0)). If, in
addition, M and P were correct and m is ’good’, then there is exactly one non-reject path in
Test-max and hence in Main-max-FewUL.

It can be seen that if either M or P are guessed larger than the correct value, then
sum+ sum′ = M (paths+ paths′ = P) will never be true. If at least one of them is guessed
lesser than their correct value, then for the integer k such that D(v) < k for all vertices
v ∈ V , we will obtain sum = Σk (paths = pk) and sum′ = 0 (paths′ = 0). However, due
to the correctness of the value of Σk (pk), Σk = T (pk = S), the check sum + sum′ = M

(paths+ paths′ = P) will fail. Hence the algorithm is correct and is FewUL. J

5.2 UL Algorithm for Reach in max-poly Layered DAGs
The FewUL algorithm presented in Section 3 is not unambiguous because there could be
several choices of m which are good for G. However, there is a conceptual difficulty in guessing
the lexicographically first good m (which we call f). Unlike in the case of min-poly graphs,
here, for the each vertex v ∈ V , the guesses D(v) ≥ k also require verification. Suppose,
m < f is not good - i.e., there are two paths p1 and p2 to a vertex u with D(u) = k1−1 (let k1
be the least such integer) such that φm(p1) = φm(p2). For any vertex x with D(x) ≥ k1 − 1,
the value of m is not guaranteed to be good. Hence there could be several computation paths
on which the algorithm rejects and there is no unambiguous way to skip to m+ 1.

We outline an idea to fix this issue, which leads to the design of a UL algorithm. We
defer the details to the full version of this paper. As in the case of min-poly graphs, for each
m, the algorithm Update-fault-max guesses the least integer k1 such that there is a u
with D(u) = k1 − 1, and two s u paths p1 and p2 with φm(p1) = φm(p2). Prior to this
point, we run Update-max with φm and φf both being calculated for the paths - and φm
being computed only for the paths to vertices with D(v) < k. We verify whether there are

A. Dhayal, J. Sarma, and S. Sawlani 609

two such paths with the same end point v with D(v) = k1 − 1 using Find-match. In this
modified algorithm, the guesses D(v) > k can be verified by using φf values, since we are
assuming that f is good (which is later verified).

If Find-match does not return true, the algorithm rejects. If Find-match returns true,
then the algorithm continues in a unique path to complete the computation beyond this
point, but only for f and not for m. This way, M , T and f are verified (although it is done
f − 1 times). In the same way, we move through every m < f and if the algorithm does not
reject anywhere, it means our initial choice of f was correct.

References
1 Eric Allender. Reachability problems: An update. In Proc. of CiE 2007, pages 25–27, 2007.
2 Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sam-

buddha Roy. Planar and grid graph reachability problems. Theor. Comp. Sys., 45(4):675–
723, July 2009.

3 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

4 Chris Bourke, Raghunath Tewari, and N.V. Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):4:1–4:17, February 2009.

5 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
worst case access time. J. ACM, 31(3):538–544, June 1984.

6 Brady Garvin, Derrick Stolee, Raghunath Tewari, and N.V. Vinodchandran. ReachFewL
= ReachUL. computational complexity, 23(1):85–98, 2014.

7 Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Com-
put., 17(5):935–938, October 1988.

8 Nutan Limaye, Meena Mahajan, and Prajakta Nimbhorkar. Longest paths in planar dags
in unambiguous logspace. In Proc. of CATS 2009, pages 101–108, 2009.

9 Aduri Pavan, Raghunath Tewari, and N.V. Vinodchandran. On the power of unambiguity
in log-space. Computational Complexity, 21(4):643–670, 2012.

10 Omer Reingold. Undirected st-connectivity in log-space. In Proceedings of STOC 2005,
pages 376–385, 2005.

11 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Com-
put., 29(4):1118–1131, 2000.

12 R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Inf., 26(3):279–284, November 1988.

FSTTCS 2014

On Bounded Reachability Analysis of Shared
Memory Systems∗

Mohamed Faouzi Atig1, Ahmed Bouajjani2, K. Narayan Kumar3,
and Prakash Saivasan3

1 Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

2 LIAFA, Université Paris Diderot, France
abou@liafa.univ-paris-diderot.fr

3 Chennai Mathematical Institute, India
{kumar,saivasan}@cmi.ac.in

Abstract
This paper addresses the reachability problem for pushdown systems communicating via shared
memory. It is already known that this problem is undecidable. It turns out that undecidability
holds even if the shared memory consists of a single boolean variable. We propose a restriction
on the behaviours of such systems, called stage bound, towards decidability. A k stage bounded
run can be split into a k stages, such that in each stage there is at most one process writing to the
shared memory while any number of processes may read from it. We consider several versions of
stage-bounded systems and establish decidability and complexity results.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Reachability problem, Pushdown systems, Counter systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.611

1 Introduction

Shared memory concurrent programs are present at different levels of the software stack, from
high level applications to low level software implementing system services on multicores. These
programs are notoriously complex and hard to get right, which makes extremely important
developing verification methods for checking their correctness. However, the design of
automatic verification for these programs remains a highly challenging problem. First, it is
well known that when threads can perform recursive procedure calls, the state reachability
problem (which is relevant for checking safety properties) for these programs is undecidable,
even when the manipulated data are finite. In the case where recursion is not allowed (or
bounded), the problem is PSPACE-complete and the complexity grows exponentially in terms
of the number of threads. Therefore, important issues are investigating the decidability of
the state reachability problem under various assumptions on the behaviors of these programs,
exploring how far the limits of decidability can be pushed, and understanding the trade-
offs between behavior coverage, decidability, and complexity. This paper is a contribution
addressing these issues.

To carry out our study, we adopt a formal model that is a network of processes with a
shared store ranging over a finite domain, and we consider that processes can be pushdown

∗ This work was partially supported by the CNRS LIA Informel, the Infosys Foundation, TCS PhD
Fellowship and the Uppsala Programming for Multicore Architectures Research Center (UPMARC).

© Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 611–623

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.611
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

612 On Bounded Reachability Analysis of Shared Memory Systems

systems, or 1-counter systems (seen as pushdown systems with a single element stack
alphabet), or simply finite-state systems. Each of these processes may perform reads and
writes on the shared store.

First, we prove that in order to get decidability of the state reachability, restricting only
the data domain of the shared store is not sufficient. Indeed, we show that two parallel
1-counter systems sharing only one bit are able to encode any 2-counter machine. This result
implies that, to get decidability, it is necessary to restrict the way information flows through
the shared memory.

Then, the idea we consider is the following: For each computation, consider a decomposi-
tion into what we call stages, where in each stage only one process is unrestricted while all
the others are only allowed to read. Then, we only consider computations up to some fixed
bound on the number of stages. Notice that this notion of bounding, called stage-bounding,
does not restrict the way stacks and counters are accessed. It is rather imposing that writes
by different processes to the memory cannot interleave in an unbounded manner (while
reads are allowed to interleave unboundedly with any kind of operations from any process).

The notion of stage-bounding is somehow inspired by the notion of context-bounding
introduced by Qadeer and Rehof in [13]. However, it is clear that stage-bounding is strictly
more general than context-bounding in term of behavior coverage. This is due to the fact
that operations (reads and writes) by different processes can alternate unboundedly within
one single stage.

Interestingly, for networks of finite-state systems, the stage-bounded analysis is NP-
complete (while the unbounded analysis is PSPACE-complete as mentioned earlier). So,
stage-bounded analysis in this case has the same complexity as context-bounded analysis,
while it allows for significantly more coverage. However, considering networks with two
pushdown systems makes stage-bounded analysis much harder. We show that for systems
with precisely two pushdown systems the complexity of stage-bounded analysis is (at least)
non-primitive recursive. The decidability in this case is actually still an open problem, but
we can prove that for two pushdown systems and one 1-counter system the state reachability
problem under stage-bounding is undecidable.

On the other hand, we prove, and this is our main result, that for networks with at
most one pushdown system and any number of 1-counter systems, stage-bounded analysis is
decidable, and we show that it is in NEXPTIME while it is PSPACE-hard. We establish this
decidability result by a non-trivial reduction to the state reachability problem for pushdown
systems with reversal-bounded counters (i.e., counters where the number of ascending and
descending phases is bounded) [11], which is quite surprising since the use of the counters is
unrestricted in the original system. Detailed proofs are omitted here for want of space and
may be found in the full version of this paper.

Related work: Several bounding concepts have been considered in the literature in the last
few years such as context-bounding and phase-bounding [12]. Stage-bounded analysis strictly
generalizes context-bounded analysis, while it is incomparable with phase-bounding which is
based on restricting accesses to stacks (i.e., push and pop operations by different processes in
each phase) rather than restricting accesses to the shared memory. Another work based on
restricting the access to stacks is for instance [1]. Again, the results there are incomparable
with those we present here.

In [2], acyclic networks of communicating pushdown systems are considered. While such an
acyclic network can encode computations within one stage (since in a stage information flows
unidirectionally from the writer to all other processes), it has been shown that switching once

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 613

between acyclic communication topologies in a network is enough to get undecidability [3].
In contrast, our main result show a case where information flow can be redirected any finite
number of times.

In [8], a context-bounded analysis is proposed for a model of multithreaded programs
with counters based on multi-pushdown systems with reversal bounded counters. The
results of that paper are incomparable with ours since they concern different models and
different analyses, and they are established using different techniques, though both works
show reductions to reachability in pushdown systems with reversal bounded counters.

In [7, 6], networks of pushdown systems with non-atomic writes are considered. Atomic
read-writes cannot be implemented in that model, which means that only a weak form of
synchronization is possible. It is shown that for a fixed number of processes the reachability
problem is undecidable, while in the parametrized case the problem becomes decidable [7]
and is PSPACE-complete [6]. In contrast, our results hold even for the case where atomic
read-writes are allowed and show a decidable case for a fixed number of processes. The
parametrized case in the context of our stage-bounded analysis is still open and cannot be
reduced to the problem considered in [7, 6].

2 Preliminaries

Let Σ be a finite alphabet. We use Σ∗ and Σ+ to denote the set of all finite words and
non-empty finite words respectively over Σ; and use ε to denote the empty word. We also
write Σε for Σ ∪ {ε}. We let |w| denote the length of the word w. A language is a (possibly
infinite) set of words. Consider a word w = a1 · · · an over Σ. We define the reverse word of
w as wR := an · · · a1. We write w(i) for ai and w[1..j] for w(1) · · ·w(j). We use w1 · w2 or
simply w1w2 to denote the concatenation of two given words w1 and w2.

We define � Σ∗ × Σ∗ to be the sub-word relation: For every u = a1 · · · an ∈ Σ∗ and
v = b1 · · · bm ∈ Σ∗, u � v if and only if there are i1, . . . , in ∈ {1, . . . ,m} such that i1 < i2 <

· · · < in and for every j : 1 ≤ j ≤ n, aj = bij . For w ∈ Σ∗, Γ ⊆ Σ, we define w|Γ ∈ Γ∗ for
the projection of w on the Γ. Given a language L ⊆ Σ∗, the upward closure (resp. downward
closure) of L (w.r.t. �) is the set L↑ (resp. L ↓) containing all the words w ∈ Σ∗ such that
there is a word u ∈ L and u � w (resp. w � u). Given a word w = a1a2 · · · an, we define
stuttering St(w) = a+

1 a
+
2 · · · a+

n .

3 Shared-memory Concurrent Pushdown Systems

In this section we describe the SCPS model which consists of a set of pushdown systems that
communicate through shared memory.

3.1 Pushdown Systems and Counter Systems
A pushdown system (PDS) is a tuple (Q,Γ,Σ, δ, s) where Q is the set of states, Γ is the stack
alphabet, Σ is the tape alphabet, s ∈ Q is the initial state and δ is the transition relation.
We assume that Γ contains the special bottom of stack element ⊥. The transition set δ is a
subset of Q× Γε × Σ× Γε ×Q with the restriction that if τ = (q, α,m, β, q′) ∈ δ then either
α = β = ⊥ (emptiness test) or α, β ∈ Γε \ {⊥} and |αβ| ≤ 1. When β 6= ε and α = ε (α 6= ε

and β = ε) we say τ is a push (resp. pop) transition.
The configuration of a PDS A = (Q,Γ,Σ, δ, s) is a pair (q, γ) with q ∈ Q and γ ∈

(Γ \ {⊥})∗⊥. The initial configuration is the pair (s,⊥). The transition relation a→A, a ∈ Σ,
on the set of configurations is defined as follows:

FSTTCS 2014

614 On Bounded Reachability Analysis of Shared Memory Systems

1. (q, αγ) a→A (q′, γ) if (q, α, a, ε, q′) ∈ δ. Pop move.
2. (q, γ) a→A (q′, βγ) if (q, ε, a, β, q′) ∈ δ. Push move.
3. (q, γ) a→A (q′, γ) if (q, ε, a, ε, q′) ∈ δ. Internal move.
4. (q,⊥) a→A (q′,⊥) if (q,⊥, a,⊥, q′) ∈ δ. Emptiness test.

We omit the A and write a→ when A is clear from the context. We write (q, γ) w−→ (q′, γ′)
for w = a1 . . . an ∈ Σ∗ to mean that there is a sequence of transitions of the form (q, γ) =
(q0, γ0) a1→ (q1, γ1) a2→ . . .

an−1→ (qn−1, γn−1) an→ (qn, γn) = (q′, γ′). Given a configuration c, we
use L(A, c) to denote the set of words w such that (s,⊥) w−→ c. Given two configurations
c1, c2, we use L(A, c1, c2) to denote the set of words w such that c1

w−→ c2.
A counter system (CS) is a pushdown system where Γ = {α,⊥}. In this case we refer to

the push and pop moves as increment and decrement and the emptiness test as zero test.
Finally, if the stack alphabet Γ = {⊥} the PDS is just a finite state system (FSS).

3.2 Concurrent Pushdown System with Shared Memory
We consider a set of pushdown systems communicating with each other via a shared memory.
The contents of this memory is drawn from a finite set M and in each move one of the
pushdown systems from the collection either writes a value from M into the shared memory
or reads the current value in the shared memory.

Let OM = {!m, ?m |m ∈M} denote the tape alphabet, where !m denotes writing the
value m to the shared memory while ?m refers to reading the value m from the shared
memory. The value m0 ∈M is the initial memory value. We shall write RM (WM) for
the set {?m |m ∈M} ({!m |m ∈M}). A Shared-memory Concurrent Pushdown System
(SCPS) over a set of memory valuesM is a tuple (I,P,m0) where I is a finite set of indices
and P = {Pi | i ∈ I} is an I-indexed collection of pushdown systems Pi = (Qi,Γi,OM , δi, si).

A configuration of a SCPS (I,P,m0) over M is a triple (q,γ,m) where q assigns an
element of Qi to each i ∈ I, m ∈M is the contents of the shared memory and γ assigns an
element of ((Γi \ {⊥})∗ · {⊥}) to each i ∈ I such that (q(i),γ(i)) is a configuration of Pi.
The initial configuration of the system is the triple (s,⊥,m0) where for each i, (s(i),⊥(i))
is the initial configuration of Pi.

The transition relation op→i, op ∈ OM , i ∈ I, relating configurations of the SCPS is
defined as follows: (q,γ,m) op→i (q′,γ′,m′) iff (q(i),γ(i)) op→ (q′(i),γ′(i)), (q(j),γ(j)) =
(q′(j),γ′(j)) for j 6= i and further one of the following holds
1. op = ?m and m′ = m (a read operation)
2. op = !m′ (a write operation)
We write op→ for

⊎
i∈I

op→i. This naturally extends to a relation w−→ for w ∈ O∗M . We write
(q,γ,m) −→ (q′,γ′,m′) if there is some w ∈ O∗M such that (q,γ,m) w−→ (q′,γ′,m′)

I Remark 1. Communication via shared memory is unreliable. This is because, the reader
may skip some of the values (lossiness) while reading some values multiple times (stut-
tering). It is easy to eliminate stuttering errors, unidirectionally, using a protocol that
writes a delimiter between every adjacent pair of values. Eliminating lossiness would require
acknowledgements from the reader, arranged using some a protocol (for eg. see Theorem 3).

I Remark 2. It is easy to extend the set of operations to include τ , indicating that the
memory is not accessed, and ?m1!m2 indicating an atomic operation that reads the value
m1 from the memory and replaces it with m2. None of the undecidability or lower-bounds
proved in this paper require these instructions and the stage-bounded decidability arguments
extend easily if they are included. Hence, they have been omitted here.

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 615

4 The Reachability Problem for SCPS

A natural and important problem in verification is the control state reachability problem,
which asks whether a particular (bad) control state can be reached via some execution of the
system. Formally, given a SCPS (I,P,m0) and a configuration (q,γ,m) determine whether
(s,⊥,m0) −→ (q,γ,m). Unfortunately, this problem is undecidable.

I Theorem 3. The reachability problem for SCPS is undecidable even when |M | = 2, |I| = 2
and both the pushdown systems in P are counter systems.

Proof. (sketch) Fix a 2-counter machine A with two counters named 1 and 2. We construct
a SCPS with two components, and we refer to them as the master and the slave. The
master simulates the control state of A as well as the values of the counter 1. The job of the
slave is to maintain the value of the counter 2. We show that it is possible for the master
to communicate, unambiguously, a value from the set {1, 2, 3} to the slave, standing for
increment, decrement and test for zero respectively and also obtain a confirmation from the
slave if it is able to complete the operation successfully. First we show how the master may
communicate a single value from {1, 2, 3} and then extend it to sequences of such values.

Assume that the memory contains the value 0. To communicate the value i ∈ {1, 2, 3}
the master carries out the sequence of operations (!1?0)i.(?1!0)i on the memory. The slave
guesses the value j being sent and executes a sequence of the form (?1!0)j .(!1?0)j . There
are three possibilities and we analyze each of them:
1. i = j. In this case there is exactly one successful interleaving of the two sequences and

it is of the form (!1m?1s!0s?0m)i.(!1s?1m!0m?0s)i (where, the component involved in
the memory operation is marked as a subscript). Further it leaves the memory with the
value 0.

2. i < j. In this case, the interleaved runs reaches a deadlock after a sequence of the form
(!1m?1s!0s?0m)i where both components wait for the other one to write the value 1 to
proceed further.

3. i > j. In this case, the interleaved runs reaches a deadlock after a sequence of the form
(!1m?1s!0s?0m)i(!1m!1s + !1s!1m) and both components wait for the other one to write
the value 0 to proceed further.

Since all unsuccessful runs deadlock, it follows that the protocol can be repeated for any
sequence of values and the system will either deadlock or succeed in communicating the
sequence correctly to the slave. Finally, handling the confirmation from the slave to the
master is also easy. After guessing the next operation the slave attempts to carry out the
operation and only on success does it enter the protocol described above. The details are
easy to formalize. J

5 Stage-bounded Computations

We introduce hereafter the concept of stage-bounding. We divide a run into segments,
called stages, where in each stage at most one component is allowed to write on the shared
memory while there is no restriction on the number of readers. We emphasize that there is
no restriction placed on the number of writes or the number of context switches between the
different components nor is there any restriction on the accesses to stacks during a stage.
We then place an a priori bound on the number of stages in the run. Formally

I Definition 4. Let ρ = c0
op1→p1 c1

op2→p2 . . . cn−1
opn→ pn

cn be a run of the SCPS (I,P,m).
We say that ρ is a p-run if for all 1 ≤ i ≤ n, pi = p whenever opi ∈ WM . That is, all the
write transitions are contributed by the same process p.

FSTTCS 2014

616 On Bounded Reachability Analysis of Shared Memory Systems

We say that ρ is a 1-stage run if it is a p-run for some p ∈ I and a run ρ is a k-stage run
if we may write ρ = c0

w1−→ c1
w2−→ . . . ck−1

wk−→ ck such that each ci−1
wi−→ ci is a 1-stage

run for each 1 ≤ i ≤ n.

Stage-bounded Reachability Problem: Given a SCPS (I,P,m0), an integer k and a configura-
tion (q,γ,m) determine whether there is a k-stage run (s,⊥,m0) −→ (q,γ,m).

I Remark 5. Stage-bounding restricts the ability to eliminate lossiness in shared-memory
communication via acknowledgements (see Remark 1). This makes the undecidability of
stage-bounded reachability non-trivial, in particular the proof of Theorem 7, and it is also
crucial for Theorem 8.

5.1 Stage bounded reachability for Communicating FSS
We next show that stage-bounding is relevant even when all components of the SCPS
are finite-state. In this case stage bounded reachability problem is indeed easier than the
unrestricted reachability problem.

I Theorem 6. The reachability problem for an SCPS where every component is a FSS
is Pspace-complete while the stage bounded reachability problem for SCPS where every
component is a FSS is NP-complete.

Proof. (sketch) When there is no bound on the number of stages, it is easy to see that an
SCPS with n FSS components is equivalent to the product (intersection) of n FSS and hence
the reachability problem is Pspace-complete.

To solve the stage bounded reachability problem, we show that it suffices to consider
runs where in each stage every one of the readers participates in at most |Ai| transitions,
where Ai is the ith automaton. We then use this to show that in addition we may restrict to
runs where in each stage the writer participates in at most O((

∑
i |Ai|)2) transitions. This

immediately yields a polynomial bound on the length of stage-bounded computations to be
explored to solve the reachability problem and hence a decision procedure in NP. J

5.2 Undecidability of Bounded-Stage Reachability
Unfortunately, stage bounding does not lead to decidability in the general case. We can
indeed prove that SCPS with two pushdown systems and one 1-counter system are able to
encode the computation of any Turing machine.

I Theorem 7. The 3-stage reachability problem for SCPS consisting of two pushdown systems
and one counter system is undecidable.

Proof. We will reduce the halting problem for Turing machines to the stage-bounded
reachability problem in a SCPS with two pushdown systems and one counter. We refer to
the two pushdowns as the generator and the replayer. If somehow a writer and a reader
could follow a protocol that ensures that every letter that is written is read exactly once
then the undecidability would follow quite easily without the counter. However, doing this
using shared memory in a stage bounded manner is tricky and details are as follows. In
what follows we assume that stuttering errors are eliminated using a suitable delimiter (see
Remark 1).

The simulation of a (potential) accepting run of the TM is carried out in 4 steps which
use 3 stages in all. We fix a suitable encoding of the configurations as a word over some
alphabet Γ and assume that this alphabet does not contain the symbol #. In the first step,

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 617

the generator writes down a (initial) configuration C1 of the TM in its stack followed by the
symbol. While doing so, it uses the shared memory to send a value, say $, to the counter
for each letter in C1. The counter counts the number of such values. Since stuttering has
been eliminated, the value of the counter c1 is ≤ |C1| at the end of this step.

In step 2, the generator guesses a sequence of configurations C2,C3,. . . Cn ending in an
accepting configuration, writes them down, separated by #s, in its stack. It also writes
the same sequence to the memory, as it is generated, which in turn is read by the replayer
and copied on to its stack. At the end of step 2, the contents of the generator’s stack is
CRn #CRn−1# . . . CR1 while that of the replayer is y = DR

m#DR
n−1# . . . DR

1 , m ≤ n− 1 and y is
a subword of CRn #CRn−1# . . . CR2 . It indicates the end of this stage by writing some suitable
value to the memory which signals the end of this stage to the replayer and the counter. In
all we have used one stage so far.

In step 3, the counter sends its value c1 to the generator using the shared memory by
writing c1 copies of some fixed value ending with some special value to indicate the completion
of this sequence. The generator removes one non-# symbol from his stack for each such
value. At the end of this sequence of operations if the top of stack is not a # the generator
will reject this run. Thus, a successful completion of this step will mean that |Cn| ≤ c1
and thus, |Cn| ≤ |C1|. At the end of this step, the contents of the generator’s stack is
CRn−1#CRn−2# . . . CR1 and the counter is empty. This constitutes the second stage.

In the last step, the replayer removes the contents of its stack one element at a time and
writes the removed value to the shared memory for the generator to read. It writes a special
end marker at the end of the sequence and enters an accepting state. The sequence read by
the generator would therefore be of the form z = ERp #ERp−1# . . . ER1 (followed by the end
marker) where p ≤ m ≤ n− 1. Clearly z is a subword of y. The generator, as it reads ERp
removes symbols from its stack verifying that Cn−1 may be reached in one step from the
configuration Ep (we write Ep ⇒ Cn−1 to indicate this), entering a reject state if either this
is false or if they are not of the same length. It then repeats this procedure for Ep−1 and
Cn−2 and so on. It enters an accepting state only if it empties its stack at the end of the
entire sequence.

Observe that if the generator reaches its accepting state then p has to be n− 1, |En−1| =
|Cn−1|, . . ., |E1| = |C1| and En−1 ⇒ Cn−1, . . ., E1 ⇒ C1. Further, since z is a subword
of y, y is a subword of CRn #CRn−1# . . . CR2 and p = n− 1, we have Ei � Di � Ci+1 for all
1 ≤ i ≤ n− 1. Thus,

|C1| = |E1| ≤ |C2| = |E2| ≤ . . . ≤ |Cn−1| = En−1 ≤ |Cn| .

But |Cn| ≤ |C1| and thus,

|C1| = |E1| = |C2| = |E2| . . . = |Cn−1| = |En−1| = |Cn| .

Therefore E1 = C2, E2 = C3, . . ., En−1 = Cn and the result follows. J

6 Decidability for single pushdown plus counters

We present in this section our main result:

I Theorem 8. The stage bounded reachability problem for SCPS with at most one pushdown
system is in NExptime.

FSTTCS 2014

618 On Bounded Reachability Analysis of Shared Memory Systems

Basically, we show that each counter system can be simulated by an exponential sized
bounded-reversal counter system thus reducing the problem to reachability in a pushdown
automaton1 (PDA) with reversal bounded counters (which is known to be in NP).

The proof proceeds in three steps. The first step is applicable to any SCPS. In this step,
we eliminate the shared memory, decouple the different pushdown systems as a collection
of pushdown automata (PDA) and reduce the reachability problem for the SCPS to the
emptiness of the intersection of these PDAs. (This problem, in general, is undecidable, but
we will be able to restrict ourselves to the case where the PDAs are of a restricted variety.)
In a shared memory system, the sequence of values written by the writer in a stage is not
transmitted with precision to the reader as the reader may miss some values while reading
others multiple times and this is what permits the decoupling.

We fix an SCPS S = (I,P,m0) over the set of memory valuesM where P = {Pi | i ∈ I}
is an I indexed collection of pushdown systems Pi = (Qi,Γi,OM , δi, si), for the rest of
this section. For the moment, consider one stage runs where p ∈ I identifies the writer.
Suppose we are interested in the existence of one stage runs starting at the configuration
((si)i∈I , (ρi)i∈I ,m) and ending at some configuration ((qi)i∈I , (γi)i∈I ,m′). Now, consider
the languages Li, i ∈ I, i 6= p, defined as

Li = {m1m2 . . .mn | ?m1?m2 . . . ?mn ∈ L(Pi, (si, ρi), (qi, γi))}

and Lp given by

{m.m1 . . .mn.m
′ | ?m∗!m1?m1

∗!m2 . . . !mn?mn
∗!m′?m′∗ ∈ L(Pp, (sp, ρp), (qp, γp))} .

Then, the existence of a one stage run from ((si)i∈I , (ρi)i∈I ,m) to ((qi)i∈I , (γi)i∈I ,m′)
(with p as the writer) is equivalent to the non-emptiness of

St(Lp) ↓ ∩
⋂
i6=p

Li ↑ .

Moreover, the languages St(Lp) ↓ and Li ↑ are easily realized as the languages of PDAs
Ap and Ai constructed from the PDSs Pp and Pi respectively. These automata maintain
the stack and control state of the PDS they simulate as well. Observe that the language
accepted by these PDAs are either upward or downward closed.

We are however interested in k stage runs where the identity of the writer (and hence
the closures to be applied) changes with the stage. Further, across the stage boundaries, we
have to preserve the control state and stacks of each component as well as the content of the
shared memory.

It is useful to work with a fixed sequence τ of length k over I identifying the writers in
the k stages. Let τ := p1, p2, . . . , pk, pi ∈ I be such a sequence. Let (s,⊥,m0) and (q,γ,m)
be the initial and target configurations of the SCPS and we wish to determine if there is a k
stage run consistent with τ that goes from the initial to the target configuration. In this case,
the pushdown automaton Aτi plays the role played by the automaton Ai in the one stage
setting. It simulates Pi and its runs break up into k parts, where in the jth part it applies
either a stuttering downward closure or upward closure to the behaviour of Pi depending on
whether j = τ(j) or not. Notice that Aτi maintains the control state and stack of Pi. Aτi
also makes explicit the boundary points between stage i and stage i+ 1 by using a letter of

1 We plan to use "automata" instead of systems when they are used as language generators and to avoid
ambiguity with the components of the SCPS.

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 619

the form (m, i) (instead of just m). These marker letters allow us to synchronize the stage
boundaries of the different Aτi ’s. Further, these markers are also used to ensure that the
contents are of the memory are correctly transferred across stages. We formalize these ideas
below.

We useMi (resp. Mτ) to denoteM∗ ·(M×{i}) for all i ∈ [1..k] (resp.
⋃
i∈[1..k]Mi∪M).

I Lemma 9. For every p ∈ I, we can construct, in polynomial time in |S|, a PDA Aτp over
the stack alphabet Γp, with a target configuration cp such that

if w ∈ L(Aτp , cp) then w ∈M1 ·M2 · · ·Mk. (unambiguous breakup)
if w ∈ L(Aτp , cp) and w = w1w2 . . . wk with wi ∈Mi for all 1 ≤ i ≤ k then w′1.w′2. . . . w′k ∈
L(Aτp , cp) for all w′1, . . . w′k such that, for all i, w′i ∈ Mi and either p = τ(i) and
w′i ∈ St(wi) ↓ or p 6= τ(i) and w′i ∈ (wi ↑ ∩Mi). (closure)
There is a k stage run from (s,⊥,m0) to (q,γ,m) with τ(i) as the writer in the ith
stage iff

⋂
p∈I L(Aτp , cp) 6= ∅. (decoupling)

In the second step we exploit the fact that the language of each Aτp is a finite unambiguous
concatenation of languages that are upward or downward closed. Towards this we first state
two propositions which explain the importance of closures.
I Proposition 10 (Downward closure of CFLs [5]). Given a pushdown automaton P and two
configurations ci, cf , we can construct, in time and space at most exponential in size of P , ci
and cf , a FSA A with two configurations c′i and c′f such that L(A, c′i, c′f) = L(P, ci, cf)↓.
I Proposition 11 (Upward closure of CFLs). Given a pushdown automaton P and two
configurations ci, cf , we can construct, in time and space at most exponential in size of P , ci
and cf , a FSA A with two configurations c′i and c′f such that L(A, c′i, c′f) = L(P, ci, cf)↑.

This means that, if we are dealing with a single stage then we may replace the PDA Ai,
i ∈ I, described earlier, by exponential sized finite automata Bi, i ∈ I (for all i, including
the writer p). Thus we have reduced the problem to the emptiness of the intersection for
FAs. However the k stage case is somewhat more complex. This is because, as Aτi switches
from one stage to the next, it has to preserve the configuration of Pi (i.e. the contents of the
stack) as well as the contents of the memory. While this is trivial when Aτi is a pushdown, it
is not possible to do this using finite number of states. However, all is not lost as we may
convert Aτi into a 2k-turn PDA Bτi . A run of pushdown automaton is said to be 1-turn if
the stack height of the sequence of configurations is either uniformly non-increasing (does
not involve a push move) or non-decreasing (does not involve a pop move). A k-turn run is
concatenation of k sequences of 1-turn runs. A k-turn PDA is one which only allows at most
k-turn runs (see [9]).

We explain the ideas behind the construction of Bτi now. Let us fix a pushdown automaton
A. For any γ ∈ Γ∗⊥ we say that a run χ from (q, ρ) to (q′, ρ′) is a γ-run if γ is the longest
suffix of ρ that appears as a suffix of the contents of the stack in every configuration along
the run χ. Observe that, this implies that γ must be a suffix of ρ and ρ′ and further there is
a configuration in χ whose stack content is exactly γ. (Observe that every run from (q, ρ) to
(q′, ρ′) is a γ-run for some (unique) suffix γ of ρ). We write Lγ(c, c′) to refer to the set of
words accepted on γ-runs from c to c′. Let c = (q, ρ) to c′ = (q′, ρ′). Then, L(c, c′), the set
of words accepted on runs from c to c′ is

{x.y | x ∈ Lγ(c, (q′′, γ)), y ∈ Lγ((q′′, γ), c′), γ a suffix of ρ, q′′ ∈ Q} .

We write Cl(L) to refer to the upward or downward closure of L when the identity of the
closure does not matter. Thus Cl(L(c, c′)) is

{x.y | x ∈ Cl(Lγ(c, (q′′, γ))), y ∈ Cl(Lγ((q′′, γ), c′)), γ a suffix of ρ, q′′ ∈ Q} .

FSTTCS 2014

620 On Bounded Reachability Analysis of Shared Memory Systems

For each α ∈ Γ and q1, q2 ∈ Q, we let:

L−α (q1, q2) = {w | (q1, α⊥) w−→ (q2,⊥) without using emptiness tests }

L+
α (q1, q2) = {w | (q1,⊥) w−→ (q2, α⊥) without using emptiness tests }

L⊥(q1, q2) = {w | (q1,⊥) w−→ (q2,⊥)}

We can see that the language Lγ(c, (q′′, γ)) (resp. Lγ((q′′, γ), c′)) can be rewritten as
a concatenation of the following languages L−α1

(q, q1) · L−α2
(q1, q2) · · ·L−α`

(q`−1, q
′′) · L with

ρ = α1α2 · · ·α`γ (resp. L · L+
α1

(q′′, q1) · L+
α2

(q1, q2) · · ·L+
α`

(q`−1, q
′) with ρ′ = α`α`−1 · · ·α1γ)

and L = {ε} if γ 6= ⊥ and L = L⊥(q′′, q′′) otherwise.
Hence, any word w∈Cl(L(c, c′)) can be rewritten as the concatenation of three words (i.e.,

w = w1w2w3). The first word w1 is in Cl(L−α1
(q, q1)) ·Cl(L−α2

(q1, q2)) · · ·Cl(L−α`
(q`−1, q

′′))
for some letters α1α2 · · ·α` and stack content γ such that ρ = α1α2 · · ·α`γ. The second
word w2 is in Cl(L⊥(q′′, q′′)) if γ = ⊥, and in {ε} otherwise. The last word w3 is in
Cl(L+

α′1
(q′′, q′1)) ·Cl(L+

α′2
(q′1, q′2)) · · ·Cl(L+

α′m
(q′m−1, q

′)) for some letters α′1α′2 · · ·α′m such that
ρ′ = α′mα

′
m−1 · · ·α′1γ.

Furthermore, the languages L−α (q1, q2), L+
α (q1, q2) and L⊥(q1, q2) are context-free and

their upward and downward closures are effectively regular (see Propositions above) and
so let B−α (q1, q2), B+

α (q1, q2) and B⊥(q1, q2) be finite automata recognizing Cl(L−α (q1, q2)),
Cl(L+

α (q1, q2)) and Cl(L⊥(q1, q2)) respectively.
Now, we describe the PDA B: It uses the same stack alphabet as A and maintains the

current state of A as part of its local state. Its run consists of 3 phases. The first phase
consists in generating the first word w1 by repeating the following a number of times: it
guesses a triple (q1, α, q2), verifies that q1 is the current state of A, pops the top of stack and
verifies that it is indeed α, simulates a run of B−α (q1, q2) and then changes the current state
of A to q2. In the optional second phase, it will generate the second word w2 by verifying
that the stack is empty, guessing a pair (q1, q2), checking that q1 is the current state of A,
simulating a run of B⊥(q1, q2) and then changing the current state of A to q2. The third
stage consists of generating the word w3 by repeating the following a number of times: it
guesses triples of the form (q1, α, q2), verifies that q1 is the current state of A, pushes α on to
the stack, simulates a run of B+

α (q1, q2) and then changes current state of A to q2. Observe
that these runs involve only two turns one during the pop phase and one during the push
phase. The language of B while starting at the stack configuration γ with q as the current
state of P and ending with stack configuration γ′ and q′ as the current state of P is the
language Cl(L(c, c′)). But, if L(c, c′) is already closed then Cl(L(c, c′)) = L(c, c′). Thus, in
this case B simulates a (arbitrary) run of A from c to c′ using a single turn run and further
maintains the configuration reached by A at the end of this run.

Since the language of Aτp in each stage is either upward or downward closed, by concate-
nating k appropriately chosen copies of the automata B (with correct closures in each stage
depending on the sequence τ) we construct a 2k-turn PDA Bτp that has the same language
as Aτp as stated by the following Lemma

I Lemma 12. For every p ∈ I, it is possible to construct, in exponential time in the size of
Aτp, a 2k turn PDA Bτp and a configuration c′p, such that L(Bτp , c′p) = L(Aτp , cp).

Unfortunately, the emptiness of the intersection of even two 2-turn PDAs is undecidable,
as can be seen from an easy reduction from the Post’s correspondence problem (PCP). The
situation is quite different when the PDAs are counters. In fact, we can show:

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 621

I Lemma 13. Let k be a natural number. Let A1 be a 2k turn PDA and A2, . . . , An a
sequence of 2k-turn counter automata. Let ci be a configurations of Ai for all i : 1 ≤ i ≤ n.
Then, the problem of checking whether L(A1, c1)∩ · · · ∩L(An, cn) is not empty can be decided
in nondeterministic time that is polynomial in the size of Ai and k, and exponential in n.

The proof of Lemma 13 is done by a reduction to the state reachability problem for
pushdown systems with reversal-bounded counters where each counter is allowed a bounded
number of alternation between modes. (The latter problem is known to be NP-complete
[10].) A counter mode is a run of the system where the performed sequence of transitions
on this counter consists, apart from internal transitions, only of increment transitions or
only of decrement transitions or only of zero test transitions. A pushdown system with
k reversal-bounded counters is pushdown system augmented with counters where any run
decomposes into at most k modes for each counter. Then, the reduction consists simply in
constructing a pushdown system S augmented with counters that simulates the synchronous
product of A1, . . . , An while observing that any run of a 2k-turn counter automaton performs
at most 3k modes in S (Note that zero tests are counted as a reversal (mode) but are not
counted as a turn). These arguments can be formalized to obtain a complete proof.

Thus we have reduced the k stage bounded reachability problem of an SCPS consisting
of one PDS and (n− 1) counter systems to exponentially2 many instances of the emptiness
problem for the intersection of a polynomial sized 2k-turn PDA and (n− 1) 2k-turn counter
automata of exponential size (Lemma 9 and Lemma 12). We have also shown that each
instance of the latter problem can be decided in Nexptime (Lemma 13). Combining these
results yields to a Nexptime upper-bound and a proof of Theorem 8.

7 Lower Bounds for the Stage-bounded Reachability Problem

We have so far shown that the stage bounded reachability problem for systems with at least
two pushdowns and one counter is undecidable while it can be decided in NExptime for
systems containing at most one pushdown. This problem remains open for SCPS with exactly
two pushdowns. In the following, we show that even if it is decidable its complexity cannot
be primitive recursive.

The regular post embedding problem is the following: Let Σ and Γ be two alphabets.
Given two functions f : Σ→ Γ+ and g : Σ→ Γ+, extended homomorphically to Σ+, and a
regular language R ⊆ Σ+, does there exist a w ∈ R such that f(w) � g(w)? As shown in [4],
this problem is decidable but cannot be solved by any algorithm with primitive recursive
complexity. We reduce the regular post embedding problem to the stage-bounded reachability
problem for SCPS with two pushdowns to obtain the following theorem

I Theorem 14. The 2-stage bounded reachability problem for SCPS with two pushdowns
cannot be solved by any algorithm whose complexity is primitive recursive.

The emptiness problem for the intersection of a collection of n finite automata is known
to be Pspace complete and we reduce this problem to the n-stage bounded reachability
problem for SCPS with n counters to obtain the following theorem

I Theorem 15. The stage-bounded reachability problem for SCPS consisting only of counter
systems is Pspace-Hard.

2 The exponential blow-up comes from the guess of the sequence of writers.

FSTTCS 2014

622 On Bounded Reachability Analysis of Shared Memory Systems

8 Conclusion

We have introduced a new concept for bounding the analysis of shared memory concurrent
systems. This concept is based on bounding the number of switches between writes by
different processes to the shared memory, without restricting the way reads can be performed
by any of the processes in the system.

Stage-bounding allows to improve significantly the behaviors coverage w.r.t. context-
bounding. We have shown that for networks of finite-state systems, the complexity of
stage-bounded analysis is NP-complete, as for context-bounding. In practice, this implies
that this analysis can be implemented using a complete bounded model-checking with a
polynomial bound. In the case of networks of infinite-state systems, we have mainly shown
that the state reachability problem in networks of counter systems with a shared store
is decidable under stage-bounding, and that the same still holds for networks with one
additional pushdown.

Several questions remain open. One of them is closing the gap between the known
upper and lower bounds on the complexity. Also, the case two pushdown systems is open,
although we know that even if it is decidable, it would be with a high complexity. Finally,
an interesting open question is whether it is possible to generalize our decidability result to
dynamic or parametrized networks of counter systems, by considering that each component
in the network is allowed to be the single writer in a bounded number of stages.

References
1 Mohamed Faouzi Atig. Model-checking of ordered multi-pushdown automata. Logical

Methods in Computer Science, 8(3), 2012.
2 Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. On the reachability analysis

of acyclic networks of pushdown systems. In CONCUR, volume 5201 of Lecture Notes in
Computer Science, pages 356–371. Springer, 2008.

3 Mohamed Faouzi Atig and Tayssir Touili. Verifying parallel programs with dynamic com-
munication structures. In CIAA, volume 5642 of Lecture Notes in Computer Science, pages
145–154. Springer, 2009.

4 Pierre Chambart and Ph. Schnoebelen. Post embedding problem is not primitive recur-
sive, with applications to channel systems. In FSTTCS, volume 4855 of Lecture Notes in
Computer Science, pages 265–276. Springer, 2007.

5 Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS,
44:178–186, 1991.

6 Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In CAV, volume 8044 of Lecture Notes in Computer
Science, pages 124–140. Springer, 2013.

7 Matthew Hague. Parameterised pushdown systems with non-atomic writes. In FSTTCS,
volume 13 of LIPIcs, pages 457–468. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2011.

8 Matthew Hague and Anthony Widjaja Lin. Synchronisation- and reversal-bounded anal-
ysis of multithreaded programs with counters. In CAV, volume 7358 of Lecture Notes in
Computer Science, pages 260–276. Springer, 2012.

9 J. E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley series in computer science. Addison-Wesley, 1979.

10 Rodney R. Howell and Louis E. Rosier. An analysis of the nonemptiness problem for classes
of reversal-bounded multicounter machines. J. Comput. Syst. Sci., 34(1):55–74, 1987.

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 623

11 Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.
ACM, 25(1):116–133, 1978.

12 Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class of
context-sensitive languages. In LICS, pages 161–170. IEEE Computer Society, 2007.

13 Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent software.
In TACAS, volume 3440 of Lecture Notes in Computer Science, pages 93–107. Springer,
2005.

FSTTCS 2014

Parameterized Communicating Automata:
Complementation and Model Checking∗

Benedikt Bollig1, Paul Gastin1, and Akshay Kumar2

1 LSV, ENS Cachan & CNRS, France
{bollig,gastin}@lsv.ens-cachan.fr

2 Indian Institute of Technology Kanpur, India
kakshay@iitk.ac.in

Abstract
We study the language-theoretical aspects of parameterized communicating automata (PCAs),
in which processes communicate via rendez-vous. A given PCA can be run on any topology of
bounded degree such as pipelines, rings, ranked trees, and grids. We show that, under a context
bound, which restricts the local behavior of each process, PCAs are effectively complementable.
Complementability is considered a key aspect of robust automata models and can, in particular,
be exploited for verification. In this paper, we use it to obtain a characterization of context-
bounded PCAs in terms of monadic second-order (MSO) logic. As the emptiness problem for
context-bounded PCAs is decidable for the classes of pipelines, rings, and trees, their model-
checking problem wrt. MSO properties also becomes decidable. While previous work on model
checking parameterized systems typically uses temporal logics without next operator, our MSO
logic allows one to express several natural next modalities.

1998 ACM Subject Classification F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation, F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords and phrases parameterized verification, complementation, monadic second-order logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.625

1 Introduction

The “regularity” of an automata model is intrinsically tied to characterizations in algebraic
or logical formalisms, and to related properties such as closure under complementation and
decidability of the emptiness problem. Most notably, the robustness of finite automata is
witnessed by the Büchi-Elgot-Trakhtenbrot theorem, stating their expressive equivalence
to monadic second-order (MSO) logic. In the past few years, this fundamental result has
been extended to models of concurrent systems such as communicating finite-state machines
(see [10] for an overview) and multi-pushdown automata (e. g., [11, 12]). Hereby, the system
topology, which provides a set of processes and links between them, is usually supposed to be
static and fixed in advance. However, in areas such as mobile computing or ad-hoc networks,
it is more appropriate to design a program, and guarantee its correctness, independently of
the underlying topology, so that the latter becomes a parameter of the system.

There has been a large body of literature on parameterized concurrent systems [9, 8, 6, 2, 1],
with a focus on verification: Does the given system satisfy a specification independently of

∗ Supported by LIA InForMel.

© Benedikt Bollig, Paul Gastin, and Akshay Kumar;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 625–637

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.625
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

626 Parameterized Communicating Automata: Complementation and Model Checking

the number of processes? A variety of different models have been introduced, covering a
wide range of communication paradigms such as broadcasting, rendez-vous, token-passing,
etc. So far, however, it is fair to say that there is no such thing as a canonical or “robust”
model of parameterized concurrent systems.

This paper tries to take a step forward towards such a model. It is in line with a study
of a language theory of parameterized concurrent systems that has been initiated in [3, 4].
We resume the model of parameterized communicating automata (PCAs), a conservative
extension of classical communicating finite-state machines [5]. While the latter run a fixed
set of processes, a PCA can be run on any topology of bounded degree, such as pipelines,
rings, ranked trees, or grids. A topology is a graph, whose nodes represent processes that
are connected via interfaces. Every process will run a local automaton executing send and
receive actions, which allows it to communicate with an adjacent process in a rendez-vous
fashion. As we are interested in language-theoretical properties, we associate, with a given
PCA, the set of all possible executions. An execution includes the underlying topology, the
events that each process executes, and the causal dependencies that exist between events.
This language-theoretic view is different from most previous approaches to parameterized
concurrent systems, which rather consider the transition system of reachable configurations.
Yet, it will finally allow us to study such important concepts like complementation and MSO
logic. Note that logical characterizations of PCAs have been obtained in [3]. However, those
logics use negation in a restricted way, since PCAs are in general not complementable. This
asks for restrictions of PCAs that give rise to a robust automata model. In this paper, we
will therefore impose a bound on the number of contexts that each process traverses. We
explain this notion below.

The efficiency of distributed algorithms and protocols is usually measured in terms of
two parameters: the number n of processes, and the number k of contexts. Here, a context,
sometimes referred to as round, restricts communication of a process to patterns such as
“send a message to each neighbor and receive a message from each neighbor”. In this paper,
we consider more relaxed definitions where, in every context, a process may perform an
unbounded number of actions. In an interface-context, a process can send and receive an
arbitrary number of messages to/from a fixed neighbor. A second context-type definition
allows for arbitrarily many sends to all neighbors, or receptions from a fixed neighbor.

In general, basic questions such as reachability are undecidable for PCAs, even when we
restrict to simple classes of topologies such as pipelines. To get decidability, it is therefore
natural to bound one of the aforementioned parameters, n or k. Bounding the number n of
processes is known as cut-off. However, the trade-off between n and k is often in favor of an
up to exponentially smaller k. Moreover, many distributed protocols actually restrict to a
bounded number of contexts, such as P2P protocols and certain leader-election protocols.
Therefore, bounding the parameter k seems to be an appropriate way to overcome the
theoretical limitations of formally verifying parameterized concurrent systems.

The most basic verification question of context-bounded PCAs has been considered in
[4]: Is there a topology that allows for an accepting run of the given PCA? In the present
paper, we go beyond such nonemptiness/reachability issues and consider PCAs as language
acceptors. We will show that, under suitable context bounds, PCAs form a robust automata
model that is closed under complementation. Complementability relies on a disambiguation
construction, which is the key technical contribution of the paper.

Our complementation result has wider applications and implications. In particular, we
obtain a characterization of context-bounded PCAs in terms of MSO logic. Together with
the results from [4], this implies that context-bounded model checking of PCAs against MSO

B. Bollig, P. Gastin, and A. Kumar 627

logic is decidable for the classes of pipelines, rings, and trees. Note that MSO logic is quite
powerful and, unlike in [7, 2], we are not constrained to drop any (next) modality. Actually,
a variety of natural next modalities can be expressed in MSO logic, such as process successor,
message successor, next event on a neighboring process, etc.

Context-bounds were originally introduced for (sequential) multi-pushdown automata as
models of multi-threaded recursive programs [15]. Interestingly, determinization procedures
have been used to obtain complementability and MSO characterizations for context-bounded
multi-pushdown automata [11, 12]. A pattern that we share with these approaches is that of
computing summaries in a deterministic way. Overall, however, we have to use quite different
techniques, which is due to the fact that, in our model, processes evolve asynchronously.

In Section 2, we settle some basic notions such as topologies and message sequence
charts, which describe the behavior of a system. PCAs and their restrictions are introduced
in Section 3. Section 4 presents our main technical contribution: We show that context-
bounded PCAs are complementable. This result is exploited in Section 5 to obtain a
logical characterization of PCAs and decidability of the model-checking problem wrt. MSO
logic. Omitted proofs can be found in the full version of the paper, which is available at:
http://hal.archives-ouvertes.fr/hal-01030765/.

2 Preliminaries

For n ∈ N, we set [n] := {1, . . . , n}. Let A be an alphabet and I be an index set. Given a
tuple ā = (ai)i∈I ∈ AI and i ∈ I, we write āi to denote ai.

Topologies. We will model concurrent systems without any assumption on the number of
processes. However, we will have in mind that processes are arranged in a certain way, for
example as pipelines or rings. Once such a class and the number of processes are fixed, we
obtain a topology. Formally, a topology is a graph. Its nodes represent processes, which are
connected via interfaces. Let N = {a, b, c, . . .} be a fixed nonempty finite set of interface
names (or, simply, interfaces). When we consider pipelines or rings, then N = {a, b} where
a refers to the right neighbor and b to the left neighbor of a process, respectively. For grids,
we will need two more names, which refer to adjacent processes above and below. Ranked
trees require an interface for each of the (boundedly many) children of a process, as well as a
pointer to the father process. As N is fixed, topologies are structures of bounded degree.

I Definition 1. A topology over N is a pair T = (P,) where P is the nonempty finite
set of processes and ⊆ P × N × N × P is the edge relation. We write p a b q for
(p, a, b, q) ∈ , which signifies that the a-interface of p points to q, and the b-interface of q
points to p. We require that, whenever p a b q, the following hold:
(a) p 6= q (there are no self loops),
(b) q b a p (adjacent processes are mutually connected), and
(c) for all a′, b′ ∈ N and q′ ∈ P such that p a′ b′ q′, we have a = a′ iff q = q′ (an interface

points to at most one process, and two distinct interfaces point to distinct processes).

We do not distinguish isomorphic topologies.

I Example 2. Example topologies are depicted in Figures 1 and 2. In Figure 2, five
processes are arranged as a ring. Formally, a ring is a topology over N = {a, b} of the form
({1, . . . , n},) where n ≥ 3 and = { (i, a, b, (i mod n) + 1) | i ∈ [n]} ∪ {((i mod n) +
1, b, a, i) | i ∈ [n]}. A ring is uniquely given by its number of processes. Moreover, as we do
not distinguish isomorphic topologies, it does not have an “initial” process. A pipeline is of

FSTTCS 2014

http://hal.archives-ouvertes.fr/hal-01030765/

628 Parameterized Communicating Automata: Complementation and Model Checking

a

b

a

a

b

cd

a

aa

b b

c d

b

c c d

Figure 1 A topology over {a, b, c, d}.

a

b
a

a

b

a
b

bb

a

Figure 2 A ring topology.

the form ({1, . . . , n},) where n ≥ 2 and = { (i, a, b, i+1) | i ∈ [n−1]}∪{(i+1, b, a, i) |
i ∈ [n− 1]}. Similarly, one can define ranked trees and grids [3]. J

MSO Logic over Topologies. The acceptance condition of a parameterized communicating
automaton (PCA, as introduced in the next section) will be given in terms of a formula from
monadic second-order (MSO) logic, which scans the final configuration reached by a PCA:
the underlying topology together with the local final states in which the processes terminate.
If S is the finite set of such local states, the formula thus defines a set of S-labeled topologies,
i.e., structures (P, , λ) where (P,) is a topology and λ : P → S. The logic MSOt(S) is
given by the grammar F ::= u a b v | u = v | λ(u) = s | u ∈ U | ∃u.F | ∃U.F | ¬F | F ∨ F
where a, b ∈ N , s ∈ S, u and v are first-order variables (interpreted as processes), and U is a
second-order variable (ranging over sets of processes). Note that we assume an infinite supply
of variables. Given a sentence F ∈ MSOt(S) (i.e., a formula without free variables), we write
L(F) for the set of S-labeled topologies (P, , λ) that satisfy F . Hereby, satisfaction is
defined in the expected manner (cf. also Section 5, presenting an extended logic).

Message Sequence Charts. Recall that our primary concern is a language-theoretic view
of parameterized concurrent systems. To this aim, we associate with a system its language,
i.e., the set of those behaviors that are generated by an accepting run. One single behavior
is given by a message sequence chart (MSC). An MSC consists of a topology (over the given
set of interfaces) and a set of events, which represent the communication actions executed by
a system. Events are located on the processes and connected by process and message edges,
which reflect causal dependencies (as we consider rendez-vous communication, a message
edge has to be interpreted as “simultaneously”).

I Definition 3. A message sequence chart (MSC) over N is a tuple M = (P, , E,C, π)
where (P,) is a topology over N , E is the nonempty finite set of events, C ⊆ E×E is the
acyclic edge relation, which is partitioned into Cproc and Cmsg, and π : E → P determines
the location of an event in the topology; for p ∈ P , we let Ep := {e ∈ E | π(e) = p}. We
require that the following hold:

Cproc is a union
⋃
p∈P Cp where each Cp ⊆ Ep × Ep is the direct-successor relation of

some total order on Ep,
there is a partition E = E!] E? such that Cmsg ⊆ E! × E? defines a bijection from E! to
E?,
for all (e, f) ∈ Cmsg, we have π(e) a b π(f) for some a, b ∈ N , and
in the graph (E,C∪C−1

msg), there is no cycle that uses at least one Cproc-edge (this ensures
rendez-vous communication).

B. Bollig, P. Gastin, and A. Kumar 629

a b a b a b a b

M1

Cmsg

Cproc

8
>><
>>:

ab

a! b?

a!
b?

s3s2 s4s1 s3

M2

a b a b a b a b ab
s1 s4s4 s2s1

Figure 3 Two MSCs over a ring topology; local states labeling the topology in a PCA run.

Let Σ = {a! | a ∈ N} ∪ {a? | a ∈ N}. We define a mapping `M : E → Σ that associates
with each event the type of action that it executes: For (e, f) ∈ Cmsg and a, b ∈ N such that
π(e) a b π(f), we set `M (e) = a! and `M (f) = b?.

The set of MSCs (over the fixed set N) is denoted by MSC. Like for topologies, we do
not distinguish isomorphic MSCs.

I Example 4. Two example MSCs are depicted in Figure 3, both having the ring with five
processes as underlying topology (for the moment, we ignore the state labels si of processes).
The events are the endpoints of message arrows, which represent Cmsg. Process edges are
implicitly given; they connect successive events located on the same (top-down) process line.
Finally, the mapping `M1 is illustrated on a few events. J

3 Parameterized Communicating Automata

In this section, we introduce our model of a communicating system that can be run on
arbitrary topologies of bounded degree.

The idea is that each process of a given topology runs one and the same automaton,
whose transitions are labeled with an action of the form (a!,m), which emits a message m
through interface a, or (a?,m), which receives m from interface a.

I Definition 5. A parameterized communicating automaton (PCA) over N is a tuple
A = (S, ι,Msg,∆,F) where S is the finite set of states, ι ∈ S is the initial state, Msg is
a nonempty finite set of messages, ∆ ⊆ S × (Σ ×Msg) × S is the transition relation, and
F ∈ MSOt(S) is a sentence, representing the acceptance condition.

Let M = (P, , E,C, π) be an MSC. A run of A on M will be a mapping ρ : E → S

satisfying some requirements. Intuitively, ρ(e) is the local state of π(e) after executing e. To
determine when ρ is a run, we define another mapping, ρ− : E → S, denoting the source
states of a transition: whenever fCproc e, we let ρ−(e) = ρ(f); moreover, if e is Cproc-minimal,
we let ρ−(e) = ι. With this, we say that ρ is a run of A on M if, for all (e, f) ∈ Cmsg, there
are a, b ∈ N and a message m ∈ Msg such that π(e) a b π(f), (ρ−(e), (a!,m), ρ(e)) ∈ ∆,
and (ρ−(f), (b?,m), ρ(f)) ∈ ∆. To determine when ρ is accepting, we collect the last states
of all processes and define a mapping λ : P → S as follows. Let p ∈ P . If Ep = ∅, then
λ(p) = ι; otherwise, λ(p) is set to ρ(e) where e is the unique Cproc-maximal event of p. Now,
run ρ is accepting if (P, , λ) ∈ L(F). The set of MSCs that allow for an accepting run is
denoted by L(A).

While a run of a PCA is purely operational, it is actually natural to define the acceptance
condition in terms of MSOt(S), which allows for a global, declarative view of the final
configuration. Note that, when we restrict to pipelines, rings, or ranked trees, the acceptance
condition could be defined as a finite (tree, respectively) automaton over the alphabet S.

FSTTCS 2014

630 Parameterized Communicating Automata: Complementation and Model Checking

(a!, 1)

(a!, 0)

(a!, 0)

(b?, 1)

(b?, 0)

(a!, 1)

◆

s1

s2

s3

s4

(b?, 1)

(b?, 0)

F ⌘ 8u.�(u) 2 {s1, . . . , s4}
F 0 ⌘ F ^ 9=1u.�(u) = s1

Figure 4 The PCA A′
token.

I Example 6. The PCA from Figure 4 describes a simplified version of the IEEE 802.5
token-ring protocol. For illustration, we consider two different acceptance conditions, F and
F ′, giving rise to PCAs Atoken and A′token, respectively. In both cases, a single binary token,
which can carry a value from m ∈ {0, 1}, circulates in a ring. Recall that, in a ring topology,
every process has an a-neighbor and a b-neighbor (cf. Figure 2). Initially, the token has
value 1. A process that has the token may emit a message and pass it along with the token
to its a-neighbor. We will abstract the concrete message away and only consider the token
value. Whenever a process receives the token from its b-neighbor, it will forward it to its
a-neighbor, while (i) leaving the token value unchanged (the process then ends in state s2 or
s3), or (ii) changing the token value from 1 to 0, to signal that the message has been received
(the process then ends in s4). Once the process that initially launched the token receives the
token with value 0, it goes to state s1.

Note that the acceptance condition F of Atoken permits those configurations where all
processes terminate in one of the states s1, . . . , s4. MSC M1 from Figure 3 depicts an
execution of the protocol described above, and we have M1 ∈ L(Atoken). The state labelings
of processes indicate the final local states that are reached in an accepting run. However,
one easily verifies that we also have M2 ∈ L(Atoken), though M2 should not be considered as
an execution of a token-ring protocol: there are two processes that, independently of each
other, emit a message/token and end up in s1. To model the protocol faithfully and rule
out such pathological executions, we change the acceptance condition to F ′, which adds the
requirement that exactly one process terminates in s1. We actually have M1 ∈ L(A′token)
and M2 6∈ L(A′token). J

Note that [3, 4] used weaker acceptance conditions, which cannot access the topology.
However, Example 6 shows that an acceptance condition given as an MSOt-formula offers
some flexibility in modeling parameterized systems. For example, it can be used to simulate
several process types [4], the idea being that each process runs a local automaton according
to its type. All our results go through in this extended setting. Also note that messages
(such as the token value in Example 6) could be made apparent in the MSCs. However, we
will always need some “hidden” messages, which are common in communicating automata
with fixed topology [10] and significantly extend their expressive power.

Context-Bounded PCAs. Our main results will rely on a restricted version of PCAs, where
every process is constrained to execute a bounded number of contexts. As discussed in the
introduction, contexts come very naturally when modeling distributed protocols. Actually,

B. Bollig, P. Gastin, and A. Kumar 631

the behavior of a single process is often divided into a small, or even bounded, number of
rounds, each describing some restricted communication pattern. Usually, one considers that
a round consists of sending a message to each neighbor followed by receiving a message from
each neighbor [13]. In this paper, we consider contexts, which are somewhat more general
than rounds: in a context, one may potentially execute an unbounded number of actions.
Moreover, a round can be simulated by a bounded number of contexts. Actually, there exist
several natural definitions. A word w ∈ Σ∗ is called an

(s⊕r)-context if w ∈ {a! | a ∈ N}∗ or w ∈ {a? | a ∈ N}∗,
(s1+r1)-context if w ∈ {a! , b?}∗ for some a, b ∈ N ,
(s⊕r1)-context if w ∈ {a! | a ∈ N}∗ or w ∈ {b?}∗ for some b ∈ N ,
intf-context if w ∈ {a! , a?}∗ for some a ∈ N .

The context type s1⊕r (w ∈ {a!}∗ for some a ∈ N or w ∈ {b? | b ∈ N}∗) is dual to s⊕r1, and
we only consider the latter case. All results for s⊕r1 in this paper easily transfer to s1⊕r.

Let k ≥ 1 be a natural number and ct ∈ {s⊕r, s1+r1, s⊕r1, intf} be a context type. We
say that w ∈ Σ∗ is (k, ct)-bounded if there are w1, . . . , wk ∈ Σ∗ such that w = w1 · · ·wk and
wi is a ct-context, for all i ∈ [k]. To lift this definition to MSCs M = (P, , E,C, π), we
define the projection M |p ∈ Σ∗ of M to a process p ∈ P . Let e1 Cproc e2 Cproc . . . Cproc en
be the unique process-order preserving enumeration of all events of Ep. We let M |p =
`M (e1)`M (e2) . . . `M (en). In particular, Ep = ∅ implies M |p = ε. Now, we say that M
is (k, ct)-bounded if M |p is (k, ct)-bounded, for all p ∈ P . Let MSC(k,ct) denote the set
of all (k, ct)-bounded MSCs. Given two sets L and L′ of MSCs, we write L ≡(k,ct) L

′ if
L ∩MSC(k,ct) = L′ ∩MSC(k,ct).

I Example 7. Consider the PCAs Atoken and A′token from Figure 4. Every process executes
at most two events so that we have L(A′token) ⊆ L(Atoken) ⊆ MSC(2,ct) for all context
types ct ∈ {s⊕r, s1+r1, s⊕r1, intf}. In particular, the MSCs M1 and M2 from Figure 3 are
(2, ct)-bounded.

4 Context-Bounded PCAs are Complementable

Let ct ∈ {s⊕r, s1+r1, s⊕r1, intf}. We say that PCAs are ct-complementable if, for every PCA
A and k ≥ 1, we can effectively construct a PCA A′ such that L(A′) ≡(k,ct) MSC \L(A). In
general, PCAs are not complementable, and this even holds under certain context bounds.

I Theorem 8. Suppose N = {a, b}. For all context types ct ∈ {s⊕r, s1+r1}, PCAs are not
ct-complementable.

The proof uses results from [16, 14]. However, the situation changes when we move to
context types s⊕r1 and intf. We now present the main result of our paper:

I Theorem 9. For all ct ∈ {s⊕r1, intf}, PCAs are ct-complementable.

The theorem follows directly from a disambiguation construction, which we present as
Theorem 10. We call a PCA A unambiguous if, for every MSC M , there is exactly one
run (accepting or not) of A on M . An unambiguous PCA can be easily complemented by
negating the acceptance condition.

I Theorem 10. Given a PCA A, a natural number k ≥ 1, and ct ∈ {s⊕r1, intf}, we can
effectively construct an unambiguous PCA A′ such that L(A) ≡(k,ct) L(A′).

FSTTCS 2014

632 Parameterized Communicating Automata: Complementation and Model Checking

The PCA from Figure 4 is not unambiguous, since there are runs of Atoken (or A′token) on
the MSC M1 from Figure 3 ending, for example, in configurations s1s2s4s3s3 or s1s2s2s4s3.
Unfortunately, a simple power-set construction is not applicable to PCAs, due to the hidden
message contents. Note that, in the fixed-topology setting, there is a commonly accepted
notion of deterministic communicating automata [10], which is different from unambiguous.
We do not know if Theorem 10 holds for deterministic PCAs.

Proof of Theorem 10
In the remainder of this section, we prove Theorem 10. The proof outline is as follows:
We first define an intermediate model of complete deterministic asynchronous automata
(CDAAs). We will then show that any context-bounded PCA can be converted into a CDAA
(Lemma 13) which, in turn, can be converted into an unambiguous PCA (Lemma 12).

I Definition 11. A complete deterministic asynchronous automaton (CDAA) over the set
N is a tuple B = (S, ι, (δ(a,b))(a,b)∈N×N ,F) where S, ι, and F are like in PCAs and, for
each (a, b) ∈ N ×N , we have a (total) function δ(a,b) : (S × S)→ (S × S).

The main motivation behind introducing CDAAs is that, for a given process p, the
functions (δ(a,b))(a,b)∈N×N can effectively encode the transitions at each of the neighbors
of p. Similarly to PCAs, a run of B on an MSC M = (P, , E,C, π) is a mapping
ρ : E → S such that, for all (e, f) ∈ Cmsg, there are a, b ∈ N satisfying π(e) a b π(f) and
δ(a,b)(ρ−(e), ρ−(f)) = (ρ(e), ρ(f)). Whether a run is accepting or not depends on F and is
defined exactly like in PCAs. The set of MSCs that are accepted by B is denoted by L(B).

I Lemma 12. For every CDAA B, there is an unambiguous PCA A such that L(B) = L(A).

Proof. The idea is that the messages of a PCA “guess” the current state of the receiving
process. A message can only be received if the guess is correct, so that the resulting
PCA is unambiguous. Let B = (S, ι, (δ(a,b))(a,b)∈N×N ,F) be the given CDAA. We let
A = (S, ι,Msg,∆,F) where Msg = N × N × S × S and ∆ contains, for every transition
δ(a,b)(s1, s2) = (s′1, s′2), the tuples (s1, a!(a, b, s1, s2), s′1) and (s2, b?(a, b, s1, s2), s′2). Note
that A is indeed unambiguous. Let M = (P, , E,C, π) be an MSC and ρ : E → S. From
the run definitions, we obtain that ρ is an (accepting) run of B on M iff it is an (accepting,
respectively) run of A on M . It follows that L(B) = L(A). J

Next, we will describe how an arbitrary context-bounded PCA can be transformed into
an equivalent CDAA. This construction is our key technical contribution.

I Lemma 13. Let ct ∈ {s⊕r1, intf}. For every PCA A and k ≥ 1, we can effectively
construct a CDAA B such that L(A) ≡(k,ct) L(B).

The remainder of this section is dedicated to the proof of Lemma 13. We do the proof
for the more involved case ct = s⊕r1. Let A = (S, ι,Msg,∆,F) be a PCA and k ≥ 1. In the
following, we will construct the required CDAA B = (S′, ι′, (δ(a,b))(a,b)∈N×N ,F ′).

The idea behind our construction is that the current sending process simulates the
behavior of all its neighboring receiving processes, storing all possible combinations of global
source and target states. In Figure 5, in the beginning, p2 starts sending to p3 and p1. Hence,
p2 keeps track of the local states at p1 and p3 as well. This computation spans over what
we call a zone (the gray-shaded areas in Figure 5). Whenever a sending (receiving) process
changes into a receiving (sending, respectively) process, the role of keeping track of the
behavior of neighboring processes gets passed on to the new sending process, which results

B. Bollig, P. Gastin, and A. Kumar 633

(2, {a},
a 7! 3
b 7! 1

)

(1, {a, b},
a 7! 1
b 7! 1

)

(1, a,
a 7! 1
b 7! 0

)

(2, a,
a 7! 2
b 7! 0

)

(2, {a, b},
a 7! 3
b 7! 2

)

(3, b,
a 7! 1
b 7! 2

)

a b a b a b
p1 p2 p3 p4

(i)
(ii)

(iii)

(2, {a},
a 7! 1
b 7! 1

)

Figure 5 Computing zones in a CDAA B.

◆ ◆ ◆

s1
1

s1
2

s2
1

s2
2

s3
2

s3
3

(1, {a, b},
a 7! 1
b 7! 1

, R2
1)

(2, {a, b},
a 7! 3
b 7! 2

, R2
2)

(1, a,
a 7! 1
b 7! 0

, ;)

(2, a,
a 7! 2
b 7! 0

, ;)

(1, b,
a 7! 0
b 7! 1

, ;)

(3, b,
a 7! 1
b 7! 2

, ;)

(2, {a},
a 7! 1
b 7! 1

, R3
2)

2R2
1

2R2
2

(1, b,
a 7! 0
b 7! 2

, ;)

a b a b a b

p1 p2 p3 p4

s3
1

◆

2R3
2

s4
1

Figure 6 Illustration of F ′ ∈ MSOt(S′).

in a zone switch. We will see that a bounded number of such changes suffice (Lemma 14).
Finally, the acceptance condition F ′ checks whether the information stored at each of the
processes can be coalesced to get a global run of the given PCA A.

Zones. Let M = (P, , E,C, π) be an MSC. An interval of M is a (possibly empty)
subset of E of the form {e1, e2, . . . , en} such that e1 Cproc e2 Cproc . . .Cproc en. A send context
of M is an interval that consists only of send events. A receive context of M is an interval
I ⊆ E such that there is a ∈ N satisfying `M (e) = a? for all e ∈ I.

A set Z ⊆ E is called a zone of M if there is a nonempty send context I such that the
corresponding receive contexts Ia = {f ∈ E | eCmsg f for some e ∈ I such that `M (e) = a!}
are intervals for all a ∈ N , and Z = I ∪

⋃
a∈N Ia.

Zones help us to maintain the summary of a possibly unbounded number of messages in
a finite space. By Lemma 14 below, since there is a bound on the number of different zones
for each process, the behavior of a PCA can be described succinctly by describing its action
on each of the zones.

I Lemma 14. [cf. [4]] Let M = (P, , E,C, π) be a (k, s⊕r1)-bounded MSC. There is a
partitioning of the events of M into zones such that, for each process p ∈ P , the events of
Ep belong to at most K := k · (|N |2 + 2|N |+ 1) different zones.

A CDAA that Computes Zones. We now construct a CDAA that, when running on a
(k, s⊕r1)-bounded MSC, computes a “greedy” zone partitioning, for which the bound K

from Lemma 14 applies. We explain the intuition by means of Figure 5, which depicts an
MSC along with a partitioning of events into different zones. The crucial point for processes
is to recognize when to switch to a new zone. Towards this end, a summary of the zone
is maintained. Each process stores its zone number together with the zone number of its
neighboring receiving processes. A sending (receiving) process enters a new zone if the stored
zone number of a neighbor does not match the actual zone number of the corresponding
neighboring receiving (sending, respectively) process.

In Figure 5, the zone number of p3 in p2’s first zone is 1. However, at the time of sending
the second message from p2 to p3, the zone number of p3 is 2 which does not match the
information stored with p2. This prompts p2 to define a new zone and update the zone
number of p3.

FSTTCS 2014

634 Parameterized Communicating Automata: Complementation and Model Checking

A sending process enters a new zone when (a) it was a receiving process earlier, or (b)
the zone number of a receiving process does not match. Similarly, a receiving process enters
a new zone when (a) it was a sending process earlier, or (b) it was receiving previously from
a different process, or (c) the zone number of the sending process does not match. This is
formally defined in Equations (1) and (2) below.

We now formally describe the CDAA B. A zone state is a tuple (i, τ, κ,R) where
i ∈ {0, . . . ,K} is the current zone number, which indicates that a process traverses its
i-th zone (or, equivalently, has switched to a new zone i− 1 times),
τ ∈ 2N ∪ N denotes the role of a process in the current zone (if τ ⊆ N , it has been
sending through the interfaces in τ ; if τ ∈ N , it is receiving from τ),
κ : N → {0, . . . ,K} denotes the knowledge about each neighbor, and
R ⊆ (SN∪{self})2 is the set of possible global steps that the zone may induce; each step
involves a source and target state for the current process as well as its neighbors. As the
sending process simulates the receivers’ steps, we let R = ∅ whenever τ ∈ N .

Let Z be the set of zone states. For (a, b) ∈ N ×N , we define a partial “update” function
δzone(a,b) : (Z × Z) ⇀ (Z × Z) by

δzone(a,b)((i1, τ1, κ1, R1), (i2, τ2, κ2, R2)) = ((i′1, τ ′1, κ1[a 7→ i′2], R′1), (i′2, b, κ2[b 7→ i′1], ∅))

where

i′1 =
{
i1 + 1 if i1 = 0 or τ1 ∈ N or (a ∈ τ1 and κ1(a) 6= i2)
i1 otherwise

(1)

i′2 =
{
i2 + 1 if τ2 6= b or κ2(b) 6= i1

i2 otherwise
(2)

τ ′1 =
{
{a} if i′1 = i1 + 1
τ1 ∪ {a} otherwise

R′1 =
{
R if i′1 = i1 + 1
R1 ◦R otherwise

with R being the set of pairs (s̄, s̄′) ∈ (SN∪{self})2 such that there is m ∈ Msg with
(s̄self , (a!,m), s̄′self) ∈ ∆, (s̄a, (b?,m), s̄′a) ∈ ∆, and s̄c = s̄′c for all c ∈ N \ {a}.

The function δzone(a,b) is illustrated in Figure 5 (omitting the R-component) for the three
different cases that can occur: (i) both processes increase their zone number; (ii) only the
receiver increases its zone number; (iii) none of the processes increases its zone number.

A state of B is a sequence of zone states, so that a process can keep track of the
zones that it traverses. Formally, we let S′ be the set of words over Z of the form
(0, ∅, κ0, ∅)(1, τ1, κ1, R1) . . . (n, τn, κn, Rn) where n ∈ {0, . . . ,K} and κ0(a) = 0 for all a ∈ N .
The initial state is ι′ = (0, ∅, κ0, ∅). Actually, S′ will also contain a distinguished sink state,
as explained below. Note that the size of S′ is exponential in K (and, therefore, in k).

We are now ready to define the transition function δ(a,b) : (S′ × S′) → (S′ × S′).
Essentially, we take δzone(a,b), but we append a new zone state when the zone number is
increased. Let z1 = (i1, τ1, κ1, R1) ∈ Z and z2 = (i2, τ2, κ2, R2) ∈ Z. Moreover, suppose
δzone(a,b)(z1, z2) = (z′1, z′2) where z′1 = (i′1, τ ′1, κ′1, R′1) and z′2 = (i′2, τ ′2, κ′2, R′2). Then, we let

δ(a,b)(w1z1 , w2z2) =


(w1z

′
1 , w2z

′
2) if i′1 = i1 and i′2 = i2

(w1z
′
1 , w2z2z

′
2) if i′1 = i1 and i′2 = i2 + 1

(w1z1z
′
1 , w2z2z

′
2) if i′1 = i1 + 1 and i′2 = i2 + 1

Note that the case i′1 = i1 + 1 ∧ i′2 = i2 can actually never happen. Nonetheless, δ(a,b) is still
a partial function. However, adding a sink state, we easily obtain a function that is complete.

B. Bollig, P. Gastin, and A. Kumar 635

The Acceptance Condition. It remains to determine the acceptance condition of B. The
formula F ′ ∈ MSOt(S′) will check whether there is a concrete choice of local states that
is consistent with the zone abstraction and, in particular, with the relations R collected
during that run in the zone states. Let T be the set of sequences of the form ιs1 . . . sn where
n ∈ {0, . . . ,K} and si ∈ S for all i. The idea is that si is the local state that a process reaches
after traversing its i-th zone. The formula will now guess such a sequence for every process
and check if this choice matches the abstract run. To verify if the local states correspond to
the relation R stored in some constituent sending process p, it is sufficient to look at the
adjacent neighbors of p.

This is illustrated in Figure 6 for the zone abstraction from Figure 5. Process p2, for
example, stores both the relations R2

1 and R2
2, and we have to check if this corresponds to

the sequences from T that the formula had guessed for every process (the white circles).
To do so, it is indeed enough to look at the neighborhood of p2, which is highlighted
in gray. The guess is accepted only if the state at the beginning of a zone matches the
state at the end of the previous zone. For example, in Figure 6, the formula collects the
pair of tuples ((ι, ι, ι), (s1

1, s
2
1, s

3
1)) and verifies if it is contained in R2

1. Also, it collects the
pair ((s1

1, s
2
1, s

3
2), (s1

2, s
2
2, s

3
3)) and checks if it is contained in R2

2. Similarly, looking at the
neighborhood of p3, it verifies whether ((s2

1, s
3
1, ι), (s2

1, s
3
2, s

4
1)) ∈ R3

2.
Let us be more precise. Suppose the final configuration reached by B is (P, , λ′) with

λ′ : P → S′. By means of second-order variables Ut, with t ranging over T , the formula
F ′ guesses an assignment σ : P → T . It will then check that, for all p ∈ P with, say,
λ′(p) = ι′(1, τ1, κ1, R1) . . . (np, τnp

, κnp
, Rnp

) ∈ S′, the following hold:
the sequence σ(p) is of the form s0s1 . . . snp (in the following, we let σ(p)i refer to si),
for all i ∈ [np] with τi ⊆ N , there is (s̄, s̄′) ∈ Ri such that (i) s̄self = si−1 and s̄′self = si,
and (ii) for all p a b q such that a ∈ τi, we have s̄a = σ(q)κi(a)−1 and s̄′a = σ(q)κi(a).

These requirements can be expressed in MSOt(S′). Finally, to incorporate the acceptance
condition F ∈ MSOt(S), we simply replace an atomic formula λ(u) = s, where s ∈ S, by the
disjunction of all formulas u ∈ Ut such that t ∈ T ends in s. This concludes the construction
of the CDAA B.

5 Monadic Second-Order Logic

MSO logic over MSCs is two-sorted, as it shall reason about processes and events. By
u, v, w, . . . and U, V,W, . . ., we denote first-order and second-order variables, which range
over processes and sets of processes, respectively. Moreover, by x, y, z, . . . and X,Y, Z, . . .,
we denote variables ranging over (sets of, respectively) events. The logic MSOm is given by
the grammar ϕ ::= u a b v | u = v | u ∈ U | ∃u.ϕ | ∃U.ϕ | ¬ϕ | ϕ ∨ ϕ | xCproc y | xCmsg y |
x = y | x@u | x ∈ X | ∃x.ϕ | ∃X.ϕ where a, b ∈ N .

MSOm formulas are interpreted over MSCs M = (P, , E,C, π). Hereby, free variables
u and x are interpreted by a function I as a process I(u) ∈ P and an event I(x) ∈ E,
respectively. Similarly, U and X are interpreted as sets. We write M, I |= u a b v if
I(u) a b I(v) and M, I |= x@u if π(I(x)) = I(u). Thus, x@u says that “x is located at u”.
The semantics of other formulas is as expected. When ϕ is a sentence, i.e., a formula without
free variables, then its truth value is independent of an interpretation function so that we
can simply write M |= ϕ instead of M, I |= ϕ. The set of MSCs M such that M |= ϕ is
denoted by L(ϕ).

I Example 15. Let us resume the token-ring protocol from Example 6. We would like
to express that there is a process that emits a message and gets an acknowledgment that

FSTTCS 2014

636 Parameterized Communicating Automata: Complementation and Model Checking

results from a sequence of forwards through interface a. We first let fwd(x, y) ≡ x a b

y ∧ ∃z.(x Cproc z Cmsg y) where x a b y is a shorthand for ∃u.∃v.(x@u ∧ y@v ∧ u a b

v). It is well known that the transitive closure of the relation induced by fwd(x, y) is
definable in MSOm-logic, too. Let fwd+(x, y) be the corresponding formula. It expresses
that there is a sequence of events leading from x to y that alternatingly takes process
and message edges, hereby following the causal order. With this, the desired formula is
ϕ ≡ ∃x, y, z.(xCproc y ∧ xCmsg z ∧ x a b z ∧ fwd+(z, y)) ∈ MSOm. Consider Figures 3 and
4. We have M1 |= ϕ and M2 6|= ϕ, as well as L(A′token) ⊆ L(ϕ). J

I Theorem 16. Let ct ∈ {s⊕r1, intf}, k ≥ 1, and L ⊆ MSC. There is a PCA A such that
L(A) ≡(k,ct) L iff there is a sentence ϕ ∈ MSOm such that L(ϕ) ≡(k,ct) L.

The direction “=⇒” follows a standard pattern and is actually independent of a context
bound. For the direction “⇐=”, we proceed by induction, crucially relying on Theorem 9.
Note that there are some subtleties in the translation, which arise from the fact that MSOm
mixes event and process variables.

By the results from [4], we obtain decidability of MSOm model checking as a corollary.

I Theorem 17. Let T be one of the following: the class of rings, the class of pipelines, or
the class of ranked trees. The following problem is decidable, for all ct ∈ {s⊕r1, intf}:
Input: A PCA A, a sentence ϕ ∈ MSOm, and k ≥ 1.
Question: Do we have M |= ϕ for all MSCs M = (P, , E,C, π) ∈ L(A) ∩MSC(k,ct)

such that (P,) ∈ T ?

Note that MSOm is a powerful logic and it may actually be used for the verification of
extended models that involve registers to store process identities (pids). MSO logic is able
to trace back the origin of a pid so that an additional equality predicate on pids can be
reduced to an MSO formula over a finite alphabet. This would allow us to model and verify
leader-election protocols. It will be worthwhile to explore this in future work.

References
1 P.A. Abdulla, F. Haziza, and L. Holík. All for the price of few. In VMCAI’13, volume

7737 of LNCS, pages 476–495. Springer, 2013.
2 B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking of token-

passing systems. In VMCAI’14, volume 8318 of LNCS, pages 262–281. Springer, 2014.
3 B. Bollig. Logic for communicating automata with parameterized topology. In CSL-

LICS’14. ACM Press, 2014.
4 B. Bollig, P. Gastin, and J. Schubert. Parameterized Verification of Communicating Auto-

mata under Context Bounds. In RP’14, volume 8762 of LNCS, pages 45–57, 2014.
5 D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2), 1983.
6 G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the parameterized

verification of ad hoc networks. In FoSSaCS’11, volume 6604 of LNCS, pages 441–455.
Springer, 2011.

7 E.A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J. Found. Comput. Sci.,
14(4):527–550, 2003.

8 J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification. In
STACS’14, volume 25 of LIPIcs, pages 1–10, 2014.

9 J. Esparza, P. Ganty, and R. Majumdar. Parameterized verification of asynchronous shared-
memory systems. In CAV’13, volume 8044 of LNCS, pages 124–140. Springer, 2013.

10 B. Genest, D. Kuske, and A. Muscholl. On communicating automata with bounded chan-
nels. Fundam. Inform., 80(1-3):147–167, 2007.

B. Bollig, P. Gastin, and A. Kumar 637

11 S. La Torre, P. Madhusudan, and G. Parlato. The language theory of bounded context-
switching. In LATIN’10, volume 6034 of LNCS, pages 96–107. Springer, 2010.

12 S. La Torre, M. Napoli, and G. Parlato. Scope-bounded pushdown languages. In DLT’14,
volume 8633 of LNCS, pages 116–128. Springer, 2014.

13 N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
14 O. Matz, N. Schweikardt, and W. Thomas. The monadic quantifier alternation hierarchy

over grids and graphs. Information and Computation, 179(2):356–383, 2002.
15 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In

TACAS’05, volume 3440 of LNCS, pages 93–107. Springer, 2005.
16 W. Thomas. Elements of an automata theory over partial orders. In POMIV’96, volume 29

of DIMACS. AMS, 1996.

FSTTCS 2014

Distributed Synthesis for Acyclic Architectures
Anca Muscholl1 and Igor Walukiewicz2

1 Université de Bordeaux, France
2 CNRS, Université de Bordeaux, France

Abstract
The distributed synthesis problem is about constructing correct distributed systems, i.e., systems
that satisfy a given specification. We consider a slightly more general problem of distributed con-
trol, where the goal is to restrict the behavior of a given distributed system in order to satisfy the
specification. Our systems are finite state machines that communicate via rendez-vous (Zielonka
automata). We show decidability of the synthesis problem for all ω-regular local specifications,
under the restriction that the communication graph of the system is acyclic. This result extends
a previous decidability result for a restricted form of local reachability specifications.

1998 ACM Subject Classification D.2.4 [Software Engineering] Software/Program Verification,
F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs

Keywords and phrases Distributed synthesis, distributed control, causal memory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.639

1 Introduction

Synthesizing distributed systems from specifications is an attractive objective, since distrib-
uted systems are notoriously difficult to get right. Unfortunately, there are very few known
decidable frameworks for distributed synthesis. We study a framework for synthesis of open
systems that is based on rendez-vous communication and causal memory. In particular,
causal memory implies that although the specification can say when a communication takes
place, it cannot limit the information that is transmitted during communication. This
choice is both realistic and avoids some pathological reasons for undecidability. We show a
decidability result for acyclic communication graphs and local ω-regular specifications.

Instead of synthesis we actually work in the more general framework of distributed control.
Our setting is a direct adaptation of the supervisory control framework of Ramadge and
Wonham [17]. In this framework we are given a plant (a finite automaton) where some of
the actions are uncontrollable, and a specification. The goal is to construct a controller
(another finite automaton) such that its product with the plant satisfies the specification.
The controller is not allowed to block uncontrollable actions, in other words, in every state
there is a transition on every uncontrollable action. The controlled plant has less behaviours,
resulting from restricting controllable actions of the plant. In our case the formulation is
exactly the same, but we consider Zielonka automata instead of finite automata, as plants
and controllers. Considering parallel devices, such as Zielonka automata, in the standard
definition of control gives an elegant formulation of the distributed control problem.

Zielonka automata [19, 14] are by now a well-established model of distributed computa-
tion. Such a device is an asynchronous product of finite-state processes synchronizing on
shared actions. Asynchronicity means that processes can progress at different speed. The
synchronization on shared actions allows the synchronizing processes to exchange information,
in particular the controllers can transfer control information with each synchronization. This

© Anca Muscholl and Igor Walukiewicz;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 639–651

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.639
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

640 Distributed Synthesis for Acyclic Architectures

model can encode some common synchronization primitives available in modern multi-core
processors for implementing concurrent data structures, like compare-and-swap.

We show decidability of the control problem for Zielonka automata where the commu-
nication graph is acyclic: a process can communicate (synchronize) with its parent and
its children. Our specifications are conjunctions of ω-regular specifications, one for each
of the component processes. We allow uncontrollable communication actions – the only
restriction is that all communication actions must be binary. Uncontrollable communications
add expressive power to the setting, for instance it is possible to model asymmetric situations
where communication can be refused by one partner, but not by the other one.

Our result extends [7] that showed decidability for a restricted form of local reachability
objectives (blocking final states). We still get the same complexity as in [7]: non-elementary in
general, and EXPTIME for architectures of depth 1. The extension to all ω-regular objectives
allows to express fairness constraints but at the same time introduces important technical
obstacles. Indeed, for our construction to work it is essential that we enrich the framework
by uncontrollable synchronization actions. This makes a separation into controllable and
uncontrollable states impossible. In consequence, we are led to abandon the game metaphor,
to invent new arguments, and to design a new proof structure.

Most research on distributed synthesis and control has been done in the setting proposed
by Pnueli and Rosner [16]. This setting is also based on shared-variable communication,
however the controllers there are not free to pass additional information between processes.
So the latter model leads to partial information games, and decidability of synthesis holds
only for variants of pipelines [10, 11, 4]. While specifications leading to undecidability are
very artificial, no elegant solution to eliminate them exists at present. The synthesis setting is
investigated in [11] for local specifications, meaning that each process has its own, linear-time
specification. More relaxed variants of synthesis have been proposed, where the specification
does not fully describe the communication of the synthesized system. One approach consists
in adding communication in order to combine local knowledge, as proposed for example in [8].
Another approach is to use specifications only for describing external communication, as
done in [6] on strongly connected architectures where processes communicate via signals.

Apart from [7], three related decidability results for synthesis with causal memory are
known. The first one [5] restricts the alphabet of actions: control with reachability condition
is decidable for co-graph alphabets. This restriction excludes client-server architectures,
which are captured by our setting. The second result [12] shows decidability by restricting
the plant: roughly speaking, the restriction says that every process can have only bounded
missing knowledge about the other processes, unless they diverge (see also [15] that shows a
doubly exponential upper bound). The proof of [12] goes beyond the controller synthesis
problem, by coding it into monadic second-order theory of event structures and showing that
this theory is decidable when the criterion on the plant holds. Unfortunately, very simple
plants have a decidable control problem and at the same time an undecidable MSO-theory.
Safety games on Petri nets are considered in [3], where decidability in Exptime is shown in
the case when there is a single environment player. Note that the same complexity is achieved
in our model with client-server architectures and no restriction on the environment. Game
semantics and asynchronous games played on event structures are introduced in [13]. Such
games are investigated in [9] from a game-theoretical viewpoint, showing a Borel determinacy
result under some restrictions.

Overview. In Section 2 we state and motivate our control problem. In Section 3 we give
the main lines of the proof. A complete version of the paper is available at hal-00946554.

A. Muscholl and I. Walukiewicz 641

2 Control for Zielonka automata

In this section we introduce our control problem for Zielonka automata, adapting the
definition of supervisory control [17] to our model.

A Zielonka automaton [19, 14] is a simple distributed finite-state device. Such an
automaton is a parallel composition of several finite automata, called processes, synchronizing
on shared actions. There is no global clock, so between two synchronizations, two processes
can do a different number of actions. Because of this, Zielonka automata are also called
asynchronous automata.

A distributed action alphabet on a finite set P of processes is a pair (Σ, dom), where
Σ is a finite set of actions and dom : Σ → (2P \ ∅) is a location function. The location
dom(a) of action a ∈ Σ comprises all processes that need to synchronize in order to perform
this action. Actions from Σp = {a ∈ Σ | p ∈ dom(a)} are called p-actions. We write
Σlocp = {a | dom(a) = {p}} for the set of local actions of p.

A (deterministic) Zielonka automaton A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 is given by:
for every process p a finite set Sp of (local) states,
the initial state sin ∈

∏
p∈P Sp,

for every action a ∈ Σ a partial transition function δa :
∏
p∈dom(a) Sp

·→
∏
p∈dom(a) Sp on

tuples of states of processes in dom(a).

I Example 1. Boolean multi-threaded programs with shared variables can be modelled as
Zielonka automata. As an example we describe the translation for the compare-and-swap
(CAS) instruction. This instruction has 3 parameters: CAS(x: variable; old, new: int). Its
effect is to return the value of x and at the same time set the value of x to new, but only if
the previous value of x was equal to old. The compare-and-swap operation is a widely used
primitive in implementations of concurrent data structures, and has hardware support in
most contemporary multiprocessor architectures.

Suppose that we have a thread t, and a shared variable x that is accessed by a CAS
operation in t via y := CASx(i, k). So y is a local variable of t. In the Zielonka automaton
we will have one process modelling thread t, and one process for variable x. The states of
t will be valuations of local variables. The states of x will be the values x can take. The
CAS instruction above becomes a synchronization action. We have the following two types
of transitions on this action:

Notice that in state s′, we have y = i, whereas in s′′, we have y = j.

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP , where P ⊆ P. We
also talk about Sp as the set of p-states.

A Zielonka automaton can be seen as a sequential automaton with the state set S =∏
p∈P Sp and transitions s a−→ s′ if (sdom(a), s

′
dom(a)) ∈ δa, and sP\dom(a) = s′P\dom(a). So the

states of this automaton are the tuples of states of the processes of the Zielonka automaton.
For a process p we will talk about the p-component of the state. A run of A is a finite
or infinite sequence of transitions starting in sin. Since the automaton is deterministic, a
run is determined by the sequence of labels of the transitions. We will write run(u) for the
run determined by the sequence u ∈ Σ∞. Observe that run(u) may be undefined since the
transition function of A is partial. We will also talk about the projection of the run on
component p, denoted runp(u), that is the projection on component p of the subsequence of

FSTTCS 2014

642 Distributed Synthesis for Acyclic Architectures

the run containing the transitions involving p. We will assume that every local state of A
occurs in some run. By dom(u) we denote the union of dom(a), for all a ∈ Σ occurring in u.

We will be interested in maximal runs of Zielonka automata. For parallel devices the
notion of a maximal run is not that evident, as one may want to impose some fairness
conditions. We settle here for a minimal sensible fairness requirement. It says that a run
is maximal if processes who have only finitely many actions in the run cannot perform any
additional action.

I Definition 2 (Maximal run). For a word w ∈ Σ∞ such that run(w) is defined, we say that
run(w) is maximal if there is no decomposition w = uv, and no action a ∈ Σ such that
dom(v) ∩ dom(a) = ∅ and run(uav) is defined.

Automata can be equipped with a correctness condition. We prefer to talk about
correctness condition rather than acceptance condition since we will be interested in the set
of runs of an automaton rather than in the set of words it accepts. We will consider local
regular correctness conditions: every process has its own correctness condition Corrp. A run
of A is correct if for every process p, the projection of the run on the transitions of Ap is in
Corrp. Condition Corrp is specified by a set Tp ⊆ Sp of terminal states and an ω-regular set
Ωp ⊆ (Sp ×Σp × Sp)ω. A sequence (s0

p, a0, s
1
p)(s1

p, a1, s
2
p) . . . satisfies Corrp if either: (i) it is

finite and ends with a state from Tp, or (ii) it is infinite and belongs to Ωp. At this stage the
set of terminal states Tp may look unnecessary, but it will simplify our constructions later.

Finally, we will need the notion of synchronized product A × C of two Zielonka auto-
mata. For A = 〈{Sp}p∈P, sin, {δAa }a∈Σ〉 and C = 〈{Cp}p∈P, cin, {δCa }a∈Σ〉 let A × C =
〈{Sp × Cp}p∈P, (sin, cin), {δ×a)a∈Σ}〉 where there is a transition from (sdom(a), cdom(a)) to
(s′dom(a), c

′
dom(a)) in δ×a iff (sdom(a), s

′
dom(a)) ∈ δAa and (cdom(a), c

′
dom(a)) ∈ δCa .

To define the control problem for Zielonka automata we fix a distributed alphabet
〈P, dom : Σ→ (2P \ ∅)〉. We partition Σ into the set of system actions Σsys and environment
actions Σenv. Below we will introduce the notion of controller, and require that it does not
block environment actions. For this reason we speak about controllable/uncontrollable actions
when referring to system/environment actions. We impose three simplifying assumptions:
(1) All actions are at most binary (|dom(a)| ≤ 2 for every a ∈ Σ); (2) every process has some
controllable action; (3) all controllable actions are local. Among the three conditions only
the first one is indeed a restriction of our setting. The other two are not true limitations, in
particular controllable shared actions can be simulated by a local controllable choice, followed
by non-controllable local or shared actions (see full version of the paper)

I Definition 3 (Controller, Correct Controller). A controller is a Zielonka automaton that
cannot block environment (uncontrollable) actions. In other words, from every state every
environment action is possible: for every b ∈ Σenv, δb is a total function. We say that a
controller C is correct for a plant A if all maximal runs of A × C satisfy the correctness
condition of A.

Recall that an action is possible in A × C iff it is possible in both A and C. By the
above definition, environment actions are always possible in C. The major difference between
the controlled system A × C and and A is that the states of A × C carry the additional
information computed by C, and that A×C may have less behaviors, resulting from disallowing
controllable actions by C.

The correctness of C means that all the runs of A that are allowed by C are correct. In
particular, C does not have a correctness condition by itself. Considering only maximal runs
of A× C imposes some minimal fairness conditions: for example it implies that if a process
can do a local action almost always, then it will eventually do some action.

A. Muscholl and I. Walukiewicz 643

I Definition 4 (Control problem). Given a distributed alphabet 〈P, dom : Σ → (2P \ ∅)〉
together with a partition of actions (Σsys,Σenv), and given a Zielonka automaton A over
this alphabet, find a controller C over the same alphabet such that C is correct for A.

The important point in our definition is that the controller has the same distributed
alphabet as the automaton it controls, in other words the controller is not allowed to introduce
additional synchronizations between processes.

I Example 5. We give an example showing how causal memory works and helps to construct
controllers. Consider an automaton A with 3 processes: p, q, r. We would like to control it
so that the only two possible runs of A are the following:

So p and q should synchronize on α when action a happened before b, otherwise q and r
should synchronize on β. Communication actions are uncontrollable, but the transitions of
A are such that there are local controllable actions c and d that enable communication on
α and β respectively. So the controller should block either c or d depending on the order
between a and b. The transitions of A are as follows:

δa(p0, q0) =(p1, q1) δa(p0, q1) =(p1, q2) δb(q0, r0) =(q1, r1) δb(q1, r0) =(q2, r1)
δc(p1) =p2 δα(p2, q2) =(p3, q3) δd(r1) =r2 δβ(q2, r2) =(q3, r3)

These transitions allow the two behaviors depicted above but also two unwanted ones, as say,
when a happens before b and then we see β. Note that the specification of desired behaviors
is a local condition on q. So by encoding some information in states of q this condition can
be expressed by a set of terminal states Tq. We will not do this for readability.

The controller C for A will mimic the structure of A: for every state of A there will be in
C a state with over-line. So, for example, the states of q in C will be q0, . . . , q3. Moreover C
will have two new states p1 and r1. The transitions will be

δa(p0, q0) =(p1, q1) δa(p0, q1) =(p1, q2) δb(q0, r0) =(q1, r1) δb(q1, r0) =(q2, r1)
δc(p1) =p2 δc(p1) =⊥ δd(r1) =r2 δd(r1) =⊥

δα(p2, q2) =(p3, q3) δβ(q2, r2) =(q3, r3)

Observe that c is blocked in p1, and so is d from r1. It is easy to verify that the runs of A×C
are as required, so C is a correct controller for A. (Actually the definition of a controller
forces us to make transitions of C total on uncontrollable actions. We can do it in arbitrary
way as this will not add new behaviors to A× C.)

This example shows several phenomena. The states of C are the states of A coupled with
some additional information. We formalize this later under a notion of covering controller.
We could also see above a case where a communication is decided by one of the parties.
Process p, thanks to a local action, can decide if it wants to communicate via α, but process
q has to accept α always. This shows the flexibility given by uncontrollable communication
actions. Finally, we could see information passing during communication. In C process q
passes to p and r information about its local state (cf. transitions on a and b).

FSTTCS 2014

644 Distributed Synthesis for Acyclic Architectures

Figure 1 Eliminating process r: r is glued with q.

3 Decidability for acyclic architectures

In this section we present the main result of the paper. We show the decidability of the control
problem for Zielonka automata with acyclic architecture. A communication architecture of a
distributed alphabet is a graph where nodes are processes and edges link processes that have
common actions. An acyclic architecture is one whose communication graph is acyclic. For
example, the communication graph of the alphabet from the example on page 643 is a tree
with root q and two successors, p and r.

I Theorem 6. The control problem for Zielonka automata over distributed alphabets with
acyclic architecture is decidable. If a controller exists, then it can be effectively constructed.

The remaining of this section is devoted to the outline of the proof of Theorem 6. This
proof works by induction on the number |P| of processes in the automaton. A Zielonka
automaton over a single process is just a finite automaton, and the control problem is then
just the standard control problem as considered by Ramadge and Wonham but extended to
all ω-regular conditions [1]. If there are several processes that do not communicate, then we
can solve the problem for each process separately.

Otherwise we choose a leaf process r and its parent q and construct a new plant AO over
P \ {r}. We will show that the control problem for A has a solution iff the one for AO does.
Moreover, for every solution for AO we will be able to construct a solution for A.

For the rest of this section let us fix the distributed alphabet 〈P, dom : Σ → (2P \ ∅)〉,
the leaf process r and its parent q, and a Zielonka automaton with a correctness condition
A = 〈{Sp}p∈P, sin, {δa}a∈Σ, {Corrp}p∈P〉.

The first step in proving Theorem 6 is to simplify the problem. First, we can restrict to
controllers of a special form called covering controllers. Next, we show that the component of
A to be eliminated, that is Ar, can be assumed to have a particular property (r-short). After
these preparatory results we will be able to present the reduction of A to AO (Theorem 13).

3.1 Covering controllers and r-short automata
In this subsection we introduce the notions of covering controllers and r-short automata. We
show that in the control problem we can restrict to covering controllers (Lemma 8), and
that we can always transform a plant to an r-short one without affecting controllability
(Theorem 10).

The notion of a covering controller will simplify the presentation because it will allow us
to focus on the runs of the controller instead of a product of the plant and the controller.
We have seen already a covering controller in Example 5.

I Definition 7 (Covering controller). Let C be a Zielonka automaton over the same alphabet
as A; let Cp be the set of states of process p in C. Automaton C is a covering controller
for A if there is a function π : {Cp}p∈P → {Sp}p∈P, mapping each Cp to Sp and satisfying

A. Muscholl and I. Walukiewicz 645

two conditions: (i) if cdom(b)
b−→ c′dom(b) then π(cdom(b))

b−→ π(c′dom(b)); (ii) for every
uncontrollable action a: if a is enabled from π(cdom(a)) then it is also enabled from cdom(a).

I Remark. Strictly speaking, a covering controller C may not be a controller since we do
not require that every uncontrollable action is enabled in every state, but only those actions
that are enabled in A. From C one can get a controller Ĉ by adding self-loops for all missing
uncontrollable transitions.

Notice that thanks to the projection π, a covering controller can inherit the correctness
condition of A. Therefore it is enough to look at the runs of C instead of A× C:

I Lemma 8. There is a correct controller for A if and only if there is a covering controller
C for A such that all the maximal runs of C satisfy the inherited correctness condition.

We will refer to a covering controller with the property that all its maximal runs satisfy
the inherited correctness condition, as correct covering controller.

Now we will focus on making the automaton r-short.

I Definition 9 (r-short). An automaton A is r-short if there is a bound on the number of
actions that r can perform without doing a communication with q.

I Theorem 10. For every automaton A, we can construct an r-short automaton As such
that there is a correct controller for A iff there is one for As.

In the rest of this subsection we sketch the proof of this theorem (details are provided in the
appendix). This theorem bears some resemblance with the fact that every parity game can
be transformed into a finite game: when a loop is closed the winner is decided looking at the
ranks on the loop. In order to use a similar construction we must ensure that there is always
a controller that is in some sense memoryless on the component r (Lemma 12).

Observe that we can make two simplifying assumptions. First, we assume that the
correctness condition on r is a parity condition. That is, it is given by a rank function
Ωr : Sr → N and the set of terminal states Tr. We can assume this since every regular
language of infinite sequences can be recognized by a deterministic parity automaton. The
second simplification is to assume that the automaton A is r-aware with respect to the parity
condition on r. This means that from the state of r one can read the biggest rank that
process r has seen the last communication of r with q. It is easy to transform an automaton
to an r-aware one.

Given A we define an r-short automaton As. All its components will be the same but
for the component r. The states Ss

r of r will be sequences w ∈ S+
r of states of Ar without

repetitions, plus two new states >,⊥. For a local transition s′r
b−→ s′′r in Ar we have in As

r

transitions:

To the right we have displayed communication transitions between q and r. Notice that
w disappears in communication transitions. The parity condition for As is also rather
straightforward: it is the same for the components other than r, and for Ar we have
Ωs(wsr) = Ω(sr), and Ts

r = {>} ∪ {wsr | sr ∈ Tr}.
It is clear that the length of every sequence of local actions of process r in As is bounded

by the number of states of Ar.

FSTTCS 2014

646 Distributed Synthesis for Acyclic Architectures

For the correctness of the reduction we first show how to construct a correct controller C
for A from a correct controller controller Cs for As. The idea is that C simulates Cs but
when the execution of the latter gets to >, then the execution detects a loop, so C can restart
Cs from the prefix of the sequence obtained by removing the loop (cf. the definition of Cs).

For the other direction, given a correct covering controller C for A we show that C is also
a correct controller for As provided that C is r-memoryless as defined below. Then we can
conclude by Lemma 12 below, allowing us to assume that C is memoryless.

Recall that if C is a covering controller for A (cf. Definition 7) then there is a function
π : {Cp}p∈P → {Sp}p∈P, mapping each Cp to Sp and respecting the transition relation: if
cdom(b)

b−→ c′dom(b) then π(cdom(b))
b−→ π(c′dom(b)).

I Definition 11 (r-memoryless controller). A covering controller C for A is r-memoryless
when for every pair of states cr 6= c′r of Cr: if there is a path on local r-actions from cr to c′r
then π(cr) 6= π(c′r).

Intuitively, a controller can be seen as a strategy, and r-memoryless means that it does not
allow the controlled automaton to go twice through the same r-state between two consecutive
communication actions of r and q.

I Lemma 12. Fix an r-aware automaton A with a parity correctness condition for process r.
If there is a correct controller for A then there is also one that is covering and r-memoryless.

The proof of Lemma 12 uses the notion of signatures [18, 2], that is classical in 2-
player parity games, for defining a r-memoryless controller Cm from C. The idea is to use
representative states of Cr, defined in each strongly connected component according to a
given signature and covering function π.

3.2 The reduced automaton AO

Equipped with the notions of covering controller and r-short strategy we can now present the
construction of the reduced automaton AO. We suppose that A = 〈{Sp}p∈PO , sin, {δa}a∈Σ〉
is r-short and we define the reduced automaton AO that results by eliminating process r
(cf. Figure 1). Let PO = P \ {r}. We construct AO = 〈{SO

p }p∈PO , sOin, {δOa }a∈ΣO〉 where the
components are defined below.

All the processes p 6= q of AO will be the same as in A. This means: SO
p = Sp, and

ΣO
p = Σp. Moreover, all transitions δa with dom(a) ∩ {q, r} = ∅ are as in A. Finally, in AO

the correctness condition of p 6= q is the same as in A.
Before defining process q in AO let us introduce the notion of r-local strategy. An r-local

strategy from a state sr ∈ Sr is a partial function f : (Σlocr)∗ → Σsysr mapping sequences from
Σloc
r to actions from Σsys

r , such that if f(v) = a then sr
va−→ in Ar. Observe that since the

automaton A is r-short, the domain of f is finite.
Given an r-local strategy f from sr, a local action a ∈ Σloc

r is allowed by f if f(ε) = a,
or a is uncontrollable. For a allowed by f we denote by f|a the r-local strategy defined by
f|a(v) = f(av); this is a strategy from s′r, where sr

a−→ s′r.
The states of process q in AO are of one of the following types:

〈sq, sr〉 , 〈sq, sr, f〉 , 〈sq, a, sr, f〉 ,

where sq ∈ Sq, sr ∈ Sr, f is a r-local strategy from sr, and a ∈ Σloc
q . The new initial state

for q is 〈(sin)q, (sin)r〉. Recall that that since A is r-short, any r-local strategy in Ar is
necessarily finite, so SO

q is a finite set. Recall also that controllable actions are local.

A. Muscholl and I. Walukiewicz 647

Figure 2 Transitions of AO.

Figure 3 Simulation of Aq and Ar by AO
q .

The transitions of AO
q are presented in Figure 2. Transition 1 chooses an r-local strategy

f . It is followed by transition 2 that declares a controllable action a ∈ Σsysq that is enabled
from sq. Transition 3 executes the chosen action a; we require sq

a−→ s′q in Aq. Transition
4 executes an uncontrollable local action b4 ∈ Σenvq ; provided sq

b4−→ s′′q in Aq. Transition 5

executes a local action b5 ∈ Σlocr , provided that b5 is allowed by f and sr
b5−→ s′r. Transition

6 simulates a synchronization on b6 between q and r; provided (sq, sr)
b6−→ (s′q, s′r) in A.

Finally, transition 7 simulates a synchronization between q and p 6= r. An example of a
simulation of Aq and Ar by AO

q is presented in Figure 3. The numbers below transitions
refer to the corresponding cases from the definition.

To summarize, in ΣO
q we have all actions of Σr and Σq, but they become uncontrollable.

All the new actions of process q in plant AO are controllable:
action ch(f) ∈ Σsys, for every local r-strategy f ,
action ch(a), for every a ∈ Σsysq .

The correctness condition for process q in AO is:
1. The correct infinite runs of q in AO are those that have the projection on transitions of
Aq correct with respect to Corrq, and either: (i) the projection on transitions of Ar is
infinite and correct with respect to Corrr; or (ii) the projection on transitions of Ar is
finite and for f, sr appearing in almost all states of q of the run we have that from sr all
sequences respecting strategy f end in a state from Tr.

2. TO
q contains states 〈sq, sr, f〉 such that sq ∈ Tq, and sr ∈ Tr.

Item 1(ii) in the definition above captures the case where q progresses alone till infinity and
blocks r, even though r could reach a terminal state in a couple of moves. Clearly, item 1
can be expressed as an ω-regular condition. The definition of correctness condition is one
of the principal places where the r-short assumption is used. Without this assumption we

FSTTCS 2014

648 Distributed Synthesis for Acyclic Architectures

would need to cope with the situation where we have an infinite execution of Aq, and at the
same time an infinite execution of Ar that do not communicate with each other. In this case
AO
q would need to fairly simulate both executions in some way.
The reduction is rather delicate since in concurrent systems there are many different

interactions that can happen. For example, we need to schedule actions of process q, using
ch(a) actions, before the actions of process r. The reason is the following. First, we need to
make all r-actions uncontrollable, so that the environment could choose any play respecting
the chosen r-local strategy. Now, if we allowed controllable q-actions to be eligible at the
same time as r-actions, then the control strategy for automaton AO would be to propose
nothing and force the environment to play the r-actions. This would allow the controller of
AO to force the advancement of the simulation of r and get information that is impossible to
obtain by the controller of A.

Together with Theorem 10, the theorem below implies our main Theorem 6.

I Theorem 13. For every r-short Zielonka automaton A and every local, ω-regular correct-
ness condition: there is a correct covering controller for A iff there is a correct covering
controller for AO. The size of AO

q is polynomial in the size of Aq and exponential in the size
of Ar.

3.3 Proof of Theorem 13
Given the space limit we can only give a sketch of one direction of the proof of Theorem 13.
We consider the right-to-left direction. Given a correct controller DO for AO, we show how
to construct a correct controller D for A. By Lemma 8 we can assume that DO is covering.

The components Dp for p 6= q, r are the same as in DO. So it remains to define Dq and
Dr. The states of Dq and Dr are obtained from states of DO

q . We need only certain states of
DO
q , namely those dq whose projection πO(dq) in AO

q has four components, we call them true
states of DO

q :

ts(DO
q) = {dq ∈ DO

q | πO(dq) is of the form (sq, a, sr, f)}.

Figure 4 presents an execution of AO controlled by DO. We can see that d2 is a true state,
and d3 is not.

The set of states of Dq is just ts(DO
q), while the states of Dr are pairs (dq, x) where dq is

a state from ts(DO
q) and x ∈ (Σlocr)∗ is a sequence of local r-actions that is possible from dq

in DO, in symbols dq
x−→. We will argue later that such sequences are uniformly bounded.

The initial state of Dq is the state d1
q reached from the initial state of DO

q by the (unique)
transitions of the form ch(f0), ch(a0). The initial state of Dr is (d1

q, ε). The local transitions
for Dr are (dq, x) b−→ (dq, xb), for every b ∈ Σlocr and dq

xb−→.
Before defining the transitions of Dq let us observe that if dq ∈ DO

q is not in ts(DO
q) then

only one controllable transition is possible from it. Indeed, as DO is a covering controller, if
πO(dq) is of the form (sq, sr) then there can be only an outgoing transition on a letter of
the form ch(f). Similarly, if πO(dq) is of the form (sq, sr, f) then only a ch(a) transition is
possible. Since both ch(f) and ch(a) are controllable, we can assume that in DO

q there is
no state with two outgoing transitions on a letter of this form. For a state dq ∈ DO

q not in
ts(DO

q) we will denote by ts(dq) the unique state of ts(DO
q) reachable from dq by one or two

transitions of the kind ch(f)−→ or ch(a)−→ , depending on the cases discussed above. For example,
going back to Figure 4, we have ts(d3) = d4.

We now describe the q-actions possible in D.

A. Muscholl and I. Walukiewicz 649

Figure 4 Decomposing controller DO
q into Dq and Dr.

Local q-action b ∈ Σlocq : dq
b−→ ts(d′q) if dq

b−→ d′q in DO
q .

Communication b ∈ Σq ∩ Σp between q and p 6= r: (dp, dq)
b−→ (d′p, ts(d′q)) if (dp, dq)

b−→
(d′p, d′q) in DO.
Communication b ∈ Σq ∩ Σr of q and r: (d1

q, (d2
q, x)) b−→ (ts(d′′q), (ts(d′′q), ε)) if d1

q
x−→

d′q
b−→ d′′q in DO

q ; observe that x−→ is a sequence of transitions.
In Figure 4 transitions on b1 and b are examples of transitions of the first and the third
type, respectively. In the last item the transition does not depend on d2

q since, informally,
d1
q has been reached from d2

q by a sequence of actions independent of r. The condition
d1
q

x−→ d′q
b−→ d′′q simulates the order of actions where all local r-actions come after the other

actions of q, then we add a communication between q and r.
The next lemma says that D is a covering controller for A. Since A is assumed to be

r-short, the lemma also gives a bound on the length of sequences in the states of Dr.

I Lemma 14. If DO is a covering controller for AO then D is a covering controller for A.

As D is covering, to prove that D is correct we need to show that all its maximal runs
satisfy the correctness condition. For this we will construct for every run of D a corresponding
run of DO. The following definition and lemma tells us that it is enough to look at the runs
of D of a special form.

I Definition 15 (slow). We define slowr(D) as the set of all sequences labeling runs of D
of the form y0x0a1 · · · akykxkak+1 . . . or y0x0a1 · · · yk−1xk−1akxkyω, where ai ∈ Σq ∩ Σr,
xi ∈ (Σlocr)∗, yi ∈ (Σ \ Σr)∗, and yω ∈ (Σ \ Σr)ω

I Lemma 16. A covering controller D is correct for A iff for all w ∈ slowr(D), run(w)
satisfies the correctness condition inherited from A.

For every sequence w ∈ slowr(D) as in Definition 15 we define the sequence χ(w) ∈ (ΣO)∞,
and show that it is a run of DO. The definition is by induction on the length of w. Let
χ(ε) = ch(f0) ch(a0), where f0 and a0 are determined by the initial q-state of DO.

For w ∈ Σ∗, b ∈ Σ let χ(wb) =


χ(w)b if b 6∈ Σq
χ(w)b ch(a) if b ∈ Σq \ Σr
χ(w)b ch(f) ch(a) if b ∈ Σq ∩ Σr.

where a and f are determined by the state reached by DO on χ(w)b. The next lemma implies
the correctness of the construction, and at the same time confirms that the above definition
makes sense, that is, the needed runs of DO are defined.

FSTTCS 2014

650 Distributed Synthesis for Acyclic Architectures

I Lemma 17. For every sequence w ∈ slowr(D) we have that DO has a run on χ(w). This
run is maximal in DO if run(w) is maximal in D. In consequence, if DO is a correct covering
controller for AO, then D is a correct covering controller for A.

4 Conclusion

We have considered a model obtained by instantiating Zielonka automata into the supervisory
control framework of Ramadge and Wonham [17]. The result is a distributed synthesis
framework that is both expressive and decidable in interesting cases. To substantiate we have
sketched how to encode threaded boolean programs with compare-and-swap instructions
into our model. Our main decidability result shows that the synthesis problem is decidable
for hierarchical architectures and for all local omega-regular specifications. Recall that in
the Pnueli and Rosner setting essentially only pipeline architectures are decidable, with
an additional restriction that only the first and the last process in the pipeline can handle
environment inputs. In our case all processes can interact with the environment.

The synthesis procedure presented here is in k-Exptime for architectures of depth k, in
particular it is Exptime for the case of a one server communicating with clients who do not
communicate between each other. From [7] we know that these bounds are tight.

This paper essentially closes the case of tree architectures introduced in [7]. The long
standing open question is the decidability of the synthesis problem for all architectures [5].

References
1 A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with partial

observation. Theoretical Computer Science, 303(1):7–34, 2003.
2 Julian Bradfield and Colin Stirling. Modal mu-calculi. In P. Blackburn, J. van Benthem,

and F. Wolter, editors, The Handbook of Modal Logic, pages 721–756. Elsevier, 2006.
3 Bernd Finkbeiner and Ernst-Rüdiger Olderog. Petri games: Synthesis of distributed sys-

tems with causal memory. In Proc. of GandALF, EPTCS, pages 217–230, 2014.
4 Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In LICS, pages 321–330,

2005.
5 Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Distributed games with causal memory

are decidable for series-parallel systems. In FSTTCS, volume 3328 of LNCS, pages 275–286,
2004.

6 Paul Gastin and Nathalie Sznajder. Fair synthesis for asynchronous distributed systems.
ACM Transactions on Computational Logic, 2013.

7 Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz. Asynchronous games
over tree architectures. In Proceedings of ICALP’13, 2013.

8 Susanne Graf, Doron Peled, and Sophie Quinton. Achieving distributed control through
model checking. Formal Methods in System Design, 40(2):263–281, 2012.

9 Julian Gutierrez and GlynnWinskel. Borel determinacy of concurrent games. In Proceedings
of CONCUR’13, 2013.

10 O. Kupferman and M.Y. Vardi. Synthesizing distributed systems. In LICS, 2001.
11 P. Madhusudan and P. S. Thiagarajan. Distributed control and synthesis for local specific-

ations. In ICALP’01, volume 2076 of LNCS, pages 396–407. Springer, 2001.
12 P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of connectedly commu-

nicating processes. In FSTTCS, volume 3821 of LNCS, pages 201–212, 2005.
13 Paul-André Melliès. Asynchronous games 2: The true concurrency of innocence. TCS,

358(2-3):200–228, 2006.

A. Muscholl and I. Walukiewicz 651

14 Madhavan Mukund and Milind A. Sohoni. Keeping Track of the Latest Gossip in a Dis-
tributed System. Distributed Computing, 10(3):137–148, 1997.

15 Anca Muscholl and Sven Schewe. Unlimited decidability of distributed synthesis with
limited missing knowledge. In Proceedings of MFCS’13, 2013.

16 A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In 31th
IEEE Symposium Foundations of Computer Science (FOCS 1990), pages 746–757, 1990.

17 P. J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Proceedings
of the IEEE, 77(2):81–98, 1989.

18 Igor Walukiewicz. Pushdown processes: Games and model checking. Information and
Computation, 164(2):234–263, 2001.

19 W. Zielonka. Notes on finite asynchronous automata. RAIRO–Theoretical Informatics and
Applications, 21:99–135, 1987.

FSTTCS 2014

Verification of Dynamic Register Automata∗

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Ahmet Kara2, and
Othmane Rezine1

1 Uppsala University, Sweden
{parosh,mohamed_faouzi.atig,othmane.rezine}@it.uu.se

2 TU Dortmund University, Germany
ahmet.kara@cs.tu-dortmund.de

Abstract
We consider the verification problem for Dynamic Register Automata (Dra). Dra extend clas-
sical register automata by process creation. In this setting, each process is equipped with a finite
set of registers in which the process IDs of other processes can be stored. A process can commu-
nicate with processes whose IDs are stored in its registers and can send them the content of its
registers. The state reachability problem asks whether a Dra reaches a configuration where at
least one process is in an error state. We first show that this problem is in general undecidable.
This result holds even when we restrict the analysis to configurations where the maximal length
of the simple paths in their underlying (un)directed communication graphs are bounded by some
constant. Then we introduce the model of degenerative Dra which allows non-deterministic reset
of the registers. We prove that for every given Dra, its corresponding degenerative one has the
same set of reachable states. While the state reachability of a degenerative Dra remains undecid-
able, we show that the problem becomes decidable with nonprimitive recursive complexity when
we restrict the analysis to strongly bounded configurations, i. e. configurations whose underlying
undirected graphs have bounded simple paths. Finally, we consider the class of strongly safe
Dra, where all the reachable configurations are assumed to be strongly bounded. We show that
for strongly safe Dra, the state reachability problem becomes decidable.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Verification, Reachability problem, Register automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.653

1 Introduction

Register automata are a well-known computational model for languages over infinite alphabets
(e.g. [20, 23, 24]). A register automaton is a finite state automaton equipped with a finite set
of registers which can store data for later comparison. The expressive power and algorithmic
properties of this model are well-studied (see e.g., [6, 23, 24, 28]). In addition, several works
consider the relationship between different classes of register automata and logics for data
words and trees (see e.g., [14, 15, 21, 19]).

Recently, register automata have been extended with dynamic creation of processes [8, 7].
In this setting, the behaviour of each process is described by a register automaton. Each
process has a unique identifier (ID). The registers of each process are used to store the IDs
of other process. The IDs stored in the registers of a process p correspond to the processes

∗ Supported by the Uppsala Programming for Multicore Architectures Research Center (UPMARC) and
the Programming Platform for Future Wireless Sensor Networks Project (PROFUN). The third author
acknowledges the financial support by the German DFG under grant SCHW 678/4-2.

© Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmet Kara, Othmane Rezine;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 653–665

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.653
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

654 Verification of Dynamic Register Automata

known by p. Each process can perform two types of actions: (i) creating a new process and (ii)
exchanging messages and IDs with other processes. The class of extended register automata
can be used as: (1) a model of programs with process creation where the network topology
and the number of involved processes are not known in advance but change dynamically [8],
and (2) an implementation model for Dynamic Message Sequence Charts [8, 7].

In this paper, we consider the verification problem for Dynamic Register Automata (Dra),
where the communication between processes is synchronous (i. e., rendezvous based)1. The
synchronous communication involves two processes: sender and receiver. Besides creating
new processes, each process can send a message from a finite alphabet or an ID from one
of its registers (or its own ID). The receiver process can synchronize over the sent message
or store the incoming ID in its own registers. Thus, the system may create an unbounded
number of processes, and the communication topology can change dynamically.

As argued in [10, 11], the state reachability problem or the coverability problem are
adequate for capturing several interesting properties that arise in communicating systems
(e.g., Ad-Hoc networks). The problem consists in checking whether the system can start
from a given initial configuration and evolve to reach a configuration in which at least one of
the processes is in a given error state. To the best of our knowledge, this is the first work
addressing the control state reachability problem for a class of dynamic register automata.

In this paper, we first show that the state reachability problem is undecidable even in the
case where each process is equipped with only one register. Then, an important task is to
identify subclasses of Dra for which algorithmic verification is possible. Inspired by some
recent works on the verification of Ad-Hoc networks [10, 1], we consider a restricted version
of the verification problem where we restrict the analysis to only bounded configurations, in
which the maximum length of directed simple paths in the induced communication graph is
bounded by a given natural number k. The communication graph represents the connectivity
of the network induced by a Dra. In this graph each process is represented by a node and
there is an edge from a node u to a node v if the process corresponding to u knows the
process corresponding to v. It turns out that the verification problem remains undecidable
for bounded Dra with at least two registers. Moreover, this undecidability holds even if
we restrict the analysis to strongly bounded configurations, in which we require that the
maximum length of simple paths in the undirected communication graph (i. e., regardless of
the direction of the edges) is bounded (unlike the case of Ad-hoc networks [10, 11, 13, 1]).

Then, we introduce the model of degenerative Dra, a Dra in which any register can be
reset in non-deterministic way. Degenerative Dra can be used to model unexpected loss of
communication links in mobile Ad-hoc networks. Given a Dra, we associate a degenerative
counterpart by allowing reset transitions at every state and for every register of the Dra.
We show that the degenerative counterpart of a Dra represents an over-approximation
of the original Dra in terms of reachable states. We prove that the approximation is
exact by showing that the degenerative Dra does not expose more states than its non-
degenerative counterpart. This implies that the reachability problem for degenerative Dra is
also undecidable. Therefore, we consider the subclass of strongly bounded degenerative Dra.
We show that degenerative Dra is a (strict) over-approximation of its non-degenerative
counterpart (in terms of reachable states) when both are restricted to strongly bounded
communication graphs. We also show that the state reachability problem for the class of
strongly bounded degenerative Dra is decidable. The decidability proof is carried out by
defining a symbolic backward reachability analysis based on a non-trivial instantiation of the

1 Observe that in [7, 8], processes of Dra communicate asynchronously via (bounded) FIFO channels.

P.A. Abdulla, M. F. Atig, A. Kara, and O. Rezine 655

framework of well structured transition systems [2, 16]. Furthermore, we show that state
reachability for the class of strongly bounded degenerative Dra is nonprimitive recursive by
a reduction from reachability for lossy counter machines [25]. Hence, the class of strongly
bounded degenerative Dra represents a good candidate for a decidable subclass of Dra.

We point out that bounded Dra with only one register is in fact strongly bounded. Thus,
the state reachability problem for bounded degenerative 1-register-Dra is also decidable.

Finally, we introduce (strongly) safe Dra where we assume that all the reachable
configurations are (strongly) bounded. We show that the state reachability problem for
strongly safe Dra becomes decidable while the undecidability still holds for safe Dra.

Related work. Communicating finite state machines [9] are a well-known computational
model for distributed systems where processes communicate through unbounded channels.
They serve, for instance, as an implementation model for Message Sequence Charts with
finitely many processes [5, 4, 18]. Several works address the verification problem, in particular
the state reachability problem, of different classes of this model [3, 22, 17]. However, in
contrary to our model, in most of these settings a fixed number of processes is considered
which restricts their applicability for dynamic systems.

Communicating finite state machines are also used as a formal model for wireless Ad-
Hoc networks [26, 27, 10, 11, 13, 1]. Every process in an Ad-Hoc network can perform
local, (selective) broadcast and receive actions. While processes in a Dra perform 1-to-1
communications, broadcast actions in Ad-Hoc networks involve multiple processes. By
performing a broadcast action a process sends a message to all its neighbour processes (whose
number is not bounded a priori). An important question in the realm of Ad-Hoc networks is
the state reachability problem, parametrized by the number of involved processes and by the
network topology: is there a number of processes and a network topology such that after a
finite number of transitions one process reaches a special state? Even though [26] and [10]
consider models where the topology of the network can change, the processes cannot perform
process creation, thus, the number of interacting processes is (arbitrary but) fixed.

Broadcast networks of register automata are introduced in [12]. The model is similar to
Dra in the sense that the automata are equipped with a finite set of registers which can
store some data. Besides this fact, the model of [12] does not support process creation and
exchanging process ID does not affect the network topology.

2 Preliminaries

Let N denote the set of natural numbers. Let A and B be two sets. We use |A| to denote
the cardinality of A (|A| = ω if A is infinite). For a partial function g : A ⇀ B and a ∈ A,
we write g (a) = ⊥ if g is undefined on a. We use ⊥A to denote the partial function which is
undefined on all elements of A, i. e. ⊥A (a) = ⊥ for every a ∈ A. Given a (partial) function
f : A ⇀ B, a ∈ A and b ∈ B, we denote by f [a ← b] the function f ′ defined by f ′ (a) = b

and f ′ (a′) = f (a′) for all a′ ∈ A with a′ 6= a.
A transition system T is a triple 〈C,Cinit,−→〉, where C is a set of configurations,

Cinit ⊆ C is an initial set of configurations, and −→⊆ C × C is a transition relation. We
write c1 −→ c2 when 〈c1, c2〉 ∈−→ and −→∗ to denote the reflexive transitive closure of −→.
For every i ∈ N, we use −→i to denote the i-times composition of −→. A configuration
c ∈ C is said reachable in T if there is cinit ∈ Cinit such that cinit −→∗ c.

A directed labeled graph (or simply graph) G is a tuple 〈V,Σv,Σe, λ, E〉 where V is a finite
set of vertices, Σv is a set of vertex labels, Σe is a set of edge labels, λ : V → Σv is the vertex

FSTTCS 2014

656 Verification of Dynamic Register Automata

labeling function, and E ⊆ V × Σe × V is the set of edges. A path in G is a finite sequence
of vertices π = v1v2 . . . vk, k ≥ 1, where, for every i : 1 ≤ i < k, there is an a ∈ Σe such that
〈vi, a, vi+1〉 ∈ E. We say that π is simple if all vertices in π are different, i. e. vi 6= vj for all
i, j : 1 ≤ i < j ≤ k, and we define length (π) := k− 1. We define the diameter of G, denoted
by �(G), to be the largest k such that there is a simple path π in G with length (π) = k.

3 Dynamic Register Automata

A Dynamic Register Automaton Dra consists of a set of processes that exchange messages
and create new processes. Each process is modelled as a finite state automaton equipped
with a finite set of registers. A register may contain the identifier (ID) of another process. A
process can perform a local action that changes its current state. It can also create (or spawn)
a new process, allowing the number of processes to increase over time. Communication is
allowed between two processes given that the sender has the ID of the receiver in one of
its registers. A process can send a message from a finite alphabet, its own ID as well as
the content of one of its registers. Below, we describe the syntax of Dra and introduce the
subclass of degenerative Dra where any register can be reset in a non-deterministic way.
Then, we define the operational semantics of a Dra, and its state reachability problem.

Definition. A Dra D is a tuple 〈Q, q0,M,X, δ〉 where Q is a finite set of control states, q0 ∈
Q is the initial state, M is a finite set of messages, X = {x1, . . . , xn} is a finite set of registers,
and δ is a set of transitions, each of the form 〈q1, action, q2〉 where q1, q2 ∈ Q are control
states and action is of one of the following forms: (i) τ (local action), (ii) x� create(q, y)
where x, y ∈ X and q ∈ Q, creates a new process with a fresh ID in state q, stores the ID of
the new process in register x of the creator process, and stores the ID of the creating process
in register y of the new process, (iii) x! 〈m〉 where x ∈ X,m ∈M , sends message m to the
process whose ID is stored in register x, (iv) x! 〈y〉 where x ∈ X, y ∈ X ∪{self}, sends either
the ID contained in register y or the ID of the process itself (self) to the process whose
ID is stored in x, (v) x? 〈m〉 where x ∈ X,m ∈ M (selective message reception), receives
message m from the process whose ID is stored in register x, (vi) ?? 〈m〉 where m ∈ M
(nonselective message reception), receives message m from some other process, (vii) x? 〈y〉
where x ∈ X, y ∈ X (selective ID reception), receives an ID to be stored in register y from
a process whose ID is stored in x, (viii) ?? 〈y〉 where y ∈ X (nonselective ID reception),
receives an ID to be stored in register y from some other process, and (ix) reset 〈x〉 where
x ∈ X, resets register x so that it becomes undefined.

The Dra D is degenerative if for every state q ∈ Q and register x ∈ X, 〈q, reset 〈x〉 , q〉 ∈
δ. Given a Dra D = 〈Q, q0,M,X, δ〉, we define its degenerative counterpart Dra Deg (D)
by the tuple 〈Q, q0,M,X, δ′〉 with δ′ = δ ∪ {〈q, reset 〈x〉 , q〉 | q ∈ Q, x ∈ X}.

Configuration. We use P to denote the domain of all possible process IDs. Let D =
〈Q, q0,M,X, δ〉 be a Dra. We define a configuration c as the tuple 〈procs, s, r〉, where
procs ⊆ P is a finite set of processes, s : P ⇀ Q maps each process p ∈ procs to its current
state and r : P ⇀ {X ⇀ procs} is a partial function that maps every process p ∈ procs to
its registers contents. For two processes p1, p2 ∈ procs and x ∈ X, r (p1) (x) = p2 means that
register x of p1 contains the ID of p2. If r (p1) (x) is not defined then register x of p1 is empty.
We use q ∈ c to denote that there exists a process p ∈ procs such that s (p) = q. The set of
all possible configurations of D is denoted by C(D). A configuration c = 〈procs, s, r〉 ∈ C(D)
is said to be initial if it contains exactly one process (i. e., procs = {p} for some p ∈ P),

P.A. Abdulla, M. F. Atig, A. Kara, and O. Rezine 657

which is in the initial state (s (p) = q0) and whose registers are empty (r(p) = ⊥X). The set
of initial configurations is denoted by Cinit(D).

Encoding of Configurations. The encoding of a configuration c is a graph enc (c) that
models its register mappings. Every process in the encoding is represented by a vertex labeled
with the state of the process. Furthermore, there is an edge from vertex u to vertex v labeled
with x ∈ X if the process corresponding to u has the ID of the process corresponding to v in
its register x. Formally, the encoding of a configuration c = 〈procs, s, r〉 is defined as the
graph enc (c) := 〈procs, Q,X, s, E = {〈p, x, p′〉| r (p) (x) = p′}〉.

Transition Relation. We define a transition relation −→D on the set C(D) of configurations
of the Dra D. Given two configurations c = 〈procs, s, r〉 , c′ = 〈procs′, s′, r′〉 ∈ C(D), we
have c−→D c′ if one of the following conditions holds:
Local There is a transition 〈q1, τ, q2〉 ∈ δ and a process p ∈ procs such that (i) procs′ =

procs and r′ = r, i. e., the processes and registers are left unchanged, (ii) s (p) = q1, and
(iii) s′ = s[p← q2]. A local transition changes the state of (at most) one process.

Create There is a transition 〈q1, x� create 〈q, y〉 , q2〉 ∈ δ and a process p ∈ procs such
that (i) s (p) = q1, i. e., p is in state q1, (ii) procs′ = procs ∪ {p′} for some process
p′ /∈ procs, i. e., a new process p′ is created, (iii) s′ = s[p← q2][p′ ← q], i. e., process p′ is
spawned in state q, while the new state of process p is q2, and (iv) r′ = r[p← r(p)[x←
p′]][p′ ← ⊥X [y ← p]], i. e., register x of process p is assigned the ID of the new process p′
and register y of process p′ is assigned the ID of process p.

Selective message sending There are two different processes p, p′ ∈ procs and two trans-
itions 〈q1, x! 〈m〉 , q2〉 , 〈q3, y? 〈m〉 , q4〉 ∈ δ such that (i) s (p) = q1 and s (p′) = q3, i. e., p
and p′ are in states q1 and q3, respectively, (ii) r (p) (x) = p′ and r (p′) (y) = p, i. e., the
sender p has the ID of p′ in its register x and the receiver p′ has the ID of p in its register
y, (iii) s′ = s[p ← q2][p′ ← q4], i. e., the states of both processes p and p′ are updated
simultaneously, and (iv) r′ = r, i. e., the registers are unchanged.

Selective ID sending There are two different processes p, p′ ∈ procs and two transitions
〈q1, x! 〈z1〉 , q2〉 , 〈q3, y? 〈z2〉 , q4〉 ∈ δ such that (i) s (p) = q1 and s (p′) = q3, (ii) r (p) (x) =
p′ and r (p′) (y) = p, (iii) s′ = s[p ← q2][p′ ← q4], (iv) either z1 = self or there exist
p′′ ∈ procs such that r (p) (z1) = p′′, i. e., the ID to be sent should be the ID of some
process, and (v) r′ = r[p′ ← r(p′)[z2 ← p]] if z1 = self or r′ = r[p′ ← r(p′)[z2 ← p′′]]
otherwise, i. e., register z2 of p′ is updated with what it receives from p.

Register resetting There is a transition 〈q1, reset 〈x〉 , q2〉 ∈ δ and a process p ∈ procs
such that (i) s (p) = q1 and s′ = s[p ← q2], and (ii) r′ = r[p ← r(p)[x ← ⊥]], i. e.,
register x of process p′ is reset.

The only difference between Nonselective message sending and Nonselective ID
sending and their selective counterparts is that the receiver does not need to know the
sender, i. e., the ID of the sending process does not have to be in the registers of the receiver.

For a Dra D = 〈Q, q0,M,X, δ〉, we use reset−−−−→D ⊆ C(D) × C(D) to denote the set
of transitions induced by the set of Register resetting transitions in δ of the form
〈q, reset 〈x〉 , q〉 with q ∈ Q and x ∈ X.

State Reachability. Let T (D) denote the transition system defined by the triple 〈C(D),
Cinit(D),−→D〉. Let target ∈ Q be a state of D. The state target is said to be reachable
if there exists a reachable configuration that has a process in state target. The state

FSTTCS 2014

658 Verification of Dynamic Register Automata

pA p1
T p2

T p3
T

pB

Figure 1 Transduction chain.

reachability problem consists in checking whether the state target is reachable or not. We
use StateReach(D, target) to denote the state reachability problem for D and target.

It is obvious that any degenerative Dra is an over-approximation of its non-degenerative
counterparts in terms of reachable states. Lemma 1 states that this approximation is exact.

I Lemma 1. Let D be a Dra. Then, D and Deg (D) reach the same set of control states.

4 State Reachability for (Degenerative) Dra

In the following, we show that the state reachability for (degenerative) Dra with at least
one register is undecidable.

I Theorem 2. Given a (degenerative) Dra D = 〈Q, q0,M,X, δ〉 and a state qf ∈ Q,
StateReach(D, qf) is undecidable. This undecidability holds even in the case where |X| = 1.

The proof proceeds by reduction from the Transd problem defined below.

The Transd Problem. A transducer T is a tuple 〈Q, qinit,Σ, δ, F 〉 where Q is a finite set
of states, qinit is the initial state, Σ is a finite alphabet, δ ⊆ Q×Σ×Σ×Q is the transducer
transition relation, and F is the set of accepting states. Every transition t ∈ δ gets as input
some symbol a ∈ Σ and outputs another symbol b ∈ Σ. The transducer transition relation δ
induces on Σ∗ a binary relation Rel, where wRelw′ if w′ is the output of T when accepting
w. Given a word w ∈ Σ∗, let T (w) := {v ∈ Σ∗| wRel v} denote the set of any possible
transduction of w by T . We extend the notion of transduction to a language L ⊆ Σ∗ by
defining T (L) :=

⋃
w∈L T (w). In an iterative way, we define for i ∈ N the ith transduction

of L as T 0 (L) := L and T i+1 (L) := T (T i (L)). Given a finite state automaton A over the
alphabet Σ, we denote by L (A) the regular language accepted by A. An instance of the
problem Transd consists of two finite state automata A and B, and a transducer T , all over
the same alphabet Σ. In Transd it is checked whether there is a natural number i ∈ N such
that T i (L (A)) ∩ L (B) 6= ∅. The problem Transd is known to be undecidable [1].

A Sketched proof of Thm. 2. Given an instance of Transd, i. e. two automata A and B
and a transducer T over the same alphabet, the encoding of Transd into the state reachability
problem of Dra consists of constructing a transduction chain, where the first element of the
chain is a process pA encoding A, the last one is a process pB encoding B and all intermediate
elements are processes pi

T encoding T (Figure 1). The simulation of the transduction works
as follows: The first process pA sends a word w ∈ Σ∗ symbol by symbol to its successor in the
chain. If w is a word accepted by A, pA sends a special acceptance symbol to its successor.
Meanwhile, each intermediate process simulating T sends for every incoming symbol from Σ
a corresponding output symbol to its successor. If it gets the acceptance symbol it checks
whether the so far received word is accepted by T . If it is the case, it transmits the acceptance
symbol to the next process. At the reception of the acceptance symbol, the last process
pB in the chain checks whether the received word is accepted by B. If it is the case, it
moves to the state qf , if not, it moves to an error (deadlock) state. Note that if there are no

P.A. Abdulla, M. F. Atig, A. Kara, and O. Rezine 659

intermediate processes simulating T , process pA sends the symbols directly to pB . It can be
shown by induction that there exists an i ≥ 0 with T i (L (A)) ∩ L (B) 6= ∅ if and only if a
transduction chain of length i+ 2 which reaches qf can be constructed. Note that processes
in the chain do not need more than one register and that a correct transduction chain can
also be constructed by a degenerative Dra.

5 Bounded (Degenerative) Dra

The reduction from Transd to the state reachability for (degenerative) Dra relies on the fact
that the transduction chain can be made as long as desired, allowing for i ∈ N in T i (L (A))
to be as large as needed. One way to break the transducer chain proof would be to bound
the diameter of the configuration encodings. In the following we show that this condition
is still not sufficient. Let us first define a transition system where only configurations
with bounded diameter are allowed. Let k be a natural number, D a Dra and T (D) =
〈C(D), Cinit(D),−→D〉 its corresponding transition system. We say that a configuration
c ∈ C(D) is k-bounded if the diameter of its encoding is bounded by k, i.e �(enc (c)) ≤ k.
Given a set B ⊆ C(D) of configurations, we use (B�k) to denote the set of k-bounded
configurations in B. The restriction of −→D to the set C(D)�k of k-bounded configurations is
denoted by −→�k

D :=−→D ∩((C(D)�k)×(C(D)�k)). We use T �k(D) to denote the resulting
transition system defined by

〈
(C(D)�k), (Cinit(D)�k),−→�k

D

〉
. Given a state target ∈ Q,

the k-bounded state reachability problem consists in checking whether a configuration c with
target ∈ c is reachable in T �k(D). We use BoundedStateReach (D, target, k) to denote
the k-bounded state reachability problem. We prove the following result:

I Theorem 3. Given a natural number k ∈ N, a (degenerative) Dra D = 〈Q, q0,M,X, δ〉
and a state qf ∈ Q, BoundedStateReach (D, qf , k) is undecidable. This undecidability still
holds even if k = 2 and |X| = 2.

The proof can be done by a reduction from the Transd problem. Observe that there is
no straightforward reduction from Thm. 3 to Thm. 2 and vice-versa.

6 Strongly Bounded (Degenerative) Dra

As we have seen, bounding the diameter of the configuration encoding is insufficient to get
decidability of the state reachability problem. Therefore, we consider a new constraint on the
graph encoding of the configurations. The new constraint consists in restricting the set of
configurations such that the diameter of their graph encodings is bounded by some natural
number k, this time regardless of the direction of the edges in the graph. In order to formally
specify the new constraint, let us introduce the class of label-free undirected graphs.

Label-free Undirected Graph. A label-free undirected graph G is a graph whose edges
have no labels and no direction, i. e. G is a tuple 〈V,Σv, λ, E〉 where V is a finite set of
vertices, Σv is a finite set of vertex labels, λ : V → Σv is a vertex labeling function and
E ⊆ {{u, v}| u, v ∈ V } is a set of unlabeled and undirected edges. Notions of simple path and
diameter of a graph are extended in the natural way to label-free undirected graphs. Given
a (directed) graph G = 〈V,Σv,Σe, λ, E〉, we use closure (G) := 〈V,Σv, λ, F 〉 to denote the
undirected graph obtained from G by removing directions and labels from its edges, i. e.
F := {{u, v}| 〈u, a, v〉 ∈ E}.

FSTTCS 2014

660 Verification of Dynamic Register Automata

Strongly Bounded Configurations. Let k be a natural number, D = 〈Q, q0,M,X, δ〉 a
Dra and T (D) = 〈C(D), Cinit(D),−→D〉 the transition system induced by D. Let c be a
configuration in C(D). We say that c is k-strongly bounded if �(closure (enc (c))) ≤ k.
Given B ⊆ C(D), we use (B♦k) to denote the set of k-strongly bounded configurations in
B, i. e. (B♦k) := {c ∈ B| �(closure (enc (c))) ≤ k}. We consider the transition relation
−→♦k

D defined on (C(D)♦k) by −→♦k
D :=−→D ∩((C(D)♦k) × (C(D)♦k)). We define the

transition system T ♦k(D) :=
〈

(C(D)♦k), (Cinit(D)♦k),−→♦k
D

〉
. Given a state target ∈ Q,

the k-strongly bounded state reachability problem consists in checking whether a configuration
c with target ∈ c is reachable in T ♦k(D). We use StrongBoundStateReach (D, target, k)
to denote the k-strongly bounded state reachability problem.

I Theorem 4. Given k ∈ N, a Dra D = 〈Q, q0,M,X, δ〉 and a state target ∈ Q,
StrongBoundStateReach (D, target, k) is undecidable. This undecidability still holds even
if k = 4 and |X| = 2.

The proof of Thm. 4 can be established by a reduction from the reachability problem for
Minsky’s 2-counter machines.

I Theorem 5. Given k ∈ N, a degenerative Dra D = 〈Q, q0,M,X, δ〉 and a state target ∈
Q, StrongBoundStateReach (D, target, k) is decidable and nonprimitive recursive.

The decidability of the strongly bounded state reachability problem for degenerative Dra
is established by a non-trivial instantiation of the framework of well-quasi-ordered systems
[2, 16] (See Section 8). The nonprimitive recursive lower bound is carried out through a
reduction from the reachability problem for Lossy Counter Machines [25].

Furthermore, it is clear that the set of k-strongly bounded reachable states by a Dra
D is a (strict) subset of the set of k-strongly bounded reachable states by its degenerative
Dra counterpart Deg(D). Moreover, the set of k-strongly bounded reachable states by
the degenerative Dra Deg(D) is a subset of the set of reachable states by D. Thus, the
strongly bounded reachability problem for Deg(D) is a good under-approximation of the
state reachability problem for D. This relation2 between the strongly bounded reachability
problems for a Dra D and its corresponding degenerative one Deg(D) is given by the
following observation:
I Observation 1. Let k ∈ N be a natural number, D a Dra, and target a state of D. If
target is reachable in T ♦k(D) then it is reachable in T ♦k(Deg(D)). Furthermore, if target
is reachable in T ♦k(Deg(D)) then there is k′ ≥ k such that target is reachable in T ♦k′(D).

The decidability of bounded degenerative Dra with one register (see Corollary 7) can be
inferred from Theorem 5 and the following lemma:

I Lemma 6. Any k-bounded configuration of a Dra with one register is 2k-strongly bounded.

I Corollary 7. Given a natural number k ∈ N, a degenerative Dra D = 〈Q, q0,M,X, δ〉
with |X| = 1 and a state target ∈ Q, BoundedStateReach (D, target, k) is decidable.

7 (Strongly) Safe Dra

A k-strongly bounded Dra forbids transitions to configurations that are not k-strongly
bounded. This allows to simulate zero tests of the Minsky’s 2-counter machine in the proof

2 Observe that this relation holds also for the (bounded) reachability problem.

P.A. Abdulla, M. F. Atig, A. Kara, and O. Rezine 661

of Thm. 4. Therefore, we introduce k-(strongly) safe Dra, with k ∈ N, which is a Dra
where we assume that all reachable configurations are k-(strongly) bounded. Formally, let D
be a Dra and T (D) its induced transition system. The Dra D is said to be k-(strongly)
safe iff every reachable configuration in T (D) is k-(strongly) bounded. We can state:
I Observation 2. If D is a k-strongly safe Dra then Deg (D) is a k-strongly bounded Dra.

As an immediate consequence of Lemma 1, Observation 2 and Theorem 5, we infer:

I Corollary 8. Given a k-strongly safe Dra D = 〈Q, q0,M,X, δ〉 and a state qf ∈ Q,
StateReach(D, qf) is decidable.

However, the state reachability problem is still undecidable for k-safe (degenerative) Dra.

I Theorem 9. Given a k-safe (degenerative) Dra D = 〈Q, q0,M,X, δ〉 and a state qf ∈ Q,
StateReach(D, qf) is undecidable.

8 Strongly Bounded Degenerative Dra: Proof of Theorem 5

This section is devoted to the decidability proof of Theorem 5 by making use of the framework
of Well-Structured Transition Systems (Wsts) [2, 16].

We briefly recall the framework of Wsts. Let C be a (possibly infinite) set and 4 be a
well-quasi order on C. Recall that a well-quasi order on C is a binary relation over C that is
reflexive and transitive and for every infinite sequence (ai)i≥0 of elements in C there exist
i, j ∈ N such that i < j and ai 4 aj . A set U ⊆ C is called upward closed if for every a ∈ U
and b ∈ C with a 4 b we have b ∈ U . The upward closure of some set U ⊆ C is defined
as U ↑:= {b ∈ C| ∃a ∈ U with a 4 b}. It is known that every upward closed set U can be
characterised by a finite minor set M ⊆ U such that (i) for every a ∈ U there is b ∈M such
that b 4 a, and (ii) if a, b ∈ M and a 4 b then a = b. We use min to denote the function
which for a given upward closed set U returns one minor set of U .

Let T = 〈C,Cinit, 〉 be a transition system and 4 be a well-quasi ordering on C.
For a subset U ⊆ C of configurations we define the set of predecessors of U as Pre (U) :=
{c ∈ C| ∃c1 ∈ U, c c1}. For a configuration c we denote the set min (Pre ({c}↑) ∪ {c}↑)
as minpre (c). T is called well-structured if is monotonic wrt. 4, i. e. given three
configurations c1, c2, c3 ∈ C, if c1 c2 and c1 4 c3 then there exists a fourth configuration
c4 ∈ C such that c3 c4 and c2 4 c4.

Given a configuration ctarget ∈ C, the coverability problem asks whether there is a
configuration c′ < ctarget reachable in T . For the decidability of this problem the following
conditions are sufficient: (i) For every two configurations c1 and c2 it is decidable whether
c1 4 c2, (ii) for every c ∈ C, we can check whether {c}↑ ∩Cinit 6= ∅, and (iii) for every c ∈ C,
the set minpre (c) is finite and computable.

The solution for the coverability problem of Wsts suggested in [2, 16] is based on a
backward analysis approach. It is shown that starting from U0 := {ctarget}, the sequence
(Ui)i≥0 with Ui+1 := min (Pre (Ui)↑ ∪ Ui↑), for i ≥ 0 reaches a fix point and is computable.

In the following, we instantiate the framework of Wsts to show the decidability of the
state reachability problem for strongly bounded degenerative Dra, but first we need to
introduce some notations.

Let k be a natural number, D = 〈Q, q0,M,X, δ〉 a degenerative Dra and target ∈
Q a target state. Let Cinit = (Cinit (D)♦k) and C = (C (D)♦k). We use T ♦k(D) =〈
C,Cinit,−→♦k

D

〉
to denote the corresponding k-strongly bounded transition system of D.

We introduce the reset prefix transition relation := reset−−−−→
∗
D ◦ −→♦k

D . Note that the

FSTTCS 2014

662 Verification of Dynamic Register Automata

reflexive transitive closures of and −→♦k
D are identical. Thus, the state reachability of

target in
〈
C,Cinit,−→♦k

D

〉
is equivalent to its corresponding problem in 〈C,Cinit, 〉.

Next, we will prove the decidability of the latter problem.
We will show that 〈C,Cinit, 〉 is a well-structured transition system. Let ctarget =

〈{p} , s, r〉 be a configuration composed of a single process in state target (s (p) = target)
whose registers are empty (r (p) = ⊥X). We will define the well-quasi ordering on C in
such a way that the upward closure of ctarget consists of all configurations c ∈ C with
target ∈ c. Then, it is clear that the coverability of ctarget in 〈C,Cinit, 〉 is equivalent
to the reachability of target in the same transition system.

In section 8.1, we define the well-quasi ordering 4 (Lemma 11) on C such that for every
c1, c2 ∈ C it is decidable whether c1 4 c2. The monotonicity of with respect to 4 is
shown in section 8.2 (Lemma 12). The second sufficient condition for the decidability of
the coverability problem, namely checking whether the upward closure of a configuration c
contains an initial configuration, is trivial (we check whether c is an initial configuration).
The last sufficient condition is shown by the following lemma:

I Lemma 10. Given a configuration c ∈ C, we can effectively compute minpre (c).

Lemma 10, Lemma 11 and Lemma 12 show that coverability of ctarget is decidable. Hence,
the state reachability problem for strongly bounded degenerative Dra is decidable.

8.1 A well-quasi order on configurations
In this section, we define a well-quasi ordering 4 over the set C of configurations. Let us first
introduce the notion of subgraph embedding. We use vsub to denote the subgraph relation
defined on graphs as follows: 〈V1,Σv,Σe, λ1, E1〉 vsub 〈V2,Σv,Σe, λ2, E2〉 if there exists an
injective mapping t : V1 → V2 that is label and edge preserving, i. e. ∀v, u ∈ V and ∀a ∈ Σe

we have λ1 (v) = λ2 (t (v)) and 〈v, a, u〉 ∈ E1 ⇒ 〈t (v) , a, t (u)〉 ∈ E2. The subgraph relation
over undirected (label-free) graphs are defined in a similar manner. We define the ordering
4 over the set of configurations as follows: Given two configurations c1 = 〈procs1, s1, r1〉
and c2 = 〈procs2, s2, r2〉, c1 4 c2 holds if enc (c1) vsub enc (c2). Note that c1 4 c2 is
equivalent to say that there exists an injective mapping g : procs1 → procs2, such that
(i) for every p ∈ procs, s1 (p) = s2 (g (p)) (ii) for every p1, p2 ∈ procs1 and every x ∈ X,
if r1 (p1) (x) = p2 then r2 (g (p1)) (x) = g (p2). It is easy to see that for two configurations
c1, c2, we can check whether c1 4 c2.

I Lemma 11. The relation 4 is a well-quasi ordering on C.

8.2 Monotonicity
Let c1, c2, c3 ∈ C be three configurations such that c1 4 c3, i. e. the encoding of c1 can be
embedded in the encoding of c3, and c1 c2, i. e. there exist c′1 ∈ C and r ∈ N such
that c1

reset−−−−→
r

D c′1 and c′1 −→♦k
D c2. In order to prove monotonicity wrt. 4, we need

to prove that there exists a fourth configuration c4 ∈ C such that c3 c4 and c2 4 c4.
To that end, we proceed by isolating the sub configuration csub induced by the embedding
of c1 into c3 (see Figure 2). After a certain number r′ (3 in Figure 2) of reset transitions

reset−−−−→D, one can obtain from c3 a configuration c◦3 composed of the disjoint union of the sub
configuration csub and a set of isolated processes, i. e. processes whose registers are empty.
As a consequence, diameters of c◦3 and c1 are equal. Furthermore, since csub is an embedding
of c1 into c◦3, and since �(closure (enc (c◦3))) = �(closure (enc (c1))), c◦3 can perform the

P.A. Abdulla, M. F. Atig, A. Kara, and O. Rezine 663

a

b

c1

4

reset−−−−→D ◦ −→♦k
D

a

b

c

c3

reset−−−−→
3
D

a

b

c

c◦
3

csub ∼ c1

reset−−−−→D ◦ −→♦k
D

e

f

c

c4

e

f

c2
4

Figure 2 Monotonicity and reset transitions.

same transition as c1 did in order to get to c2 without violating the bound k. Thus, after two
consecutive transitions whose composition (reset−−−−→

r′

D ◦
reset−−−−→

r

D ◦ −→♦k
D = reset−−−−→

r′+r

D ◦ −→♦k
D

) is a -transition, c3 can reach a configuration where c2 can be embedded.

I Lemma 12. The transition relation is monotonic w.r.t. 4.

9 Conclusion and Future Directions

We have presented the first work addressing the state reachability problem for Dra. We
have shown that this problem is undecidable and that this undecidability holds even if
we restrict the analysis to the case where transitions are only allowed between (strongly)
bounded configurations (i. e., simple paths of the underlying (undirected) graph are bounded
by some constant), unlike the case of Ad-hoc networks [10, 11, 13, 1]. Our main goal was to
identify subclasses of Dra for which the reachability problem is decidable. To that end, we
have introduced degenerative Dra for which any register can be reset in a non-deterministic
manner. We have shown that the sets of reachable states of a Dra and its degenerative
counterpart are identical. Moreover, we have shown that the reachability problem for
degenerative Dra becomes decidable but nonprimitive recursive when we restrict the analysis
to strongly bounded configurations. Furthermore, we have considered (strongly) safe Dra
where we assume that all reachable configurations are (strongly) bounded. We have shown
that the state reachability problem is decidable for strongly safe Dra.

To the best of our knowledge these are the first results concerning the verification
of dynamic register automata. While the communication in Dra is rendezvous based,
the automata models considered in [8] and [7] use asynchronous communication through
unbounded channels. It is well-known that, even for finitely many processes communicating
through unbounded perfect FIFO channels, most of the interesting verification questions are
undecidable [9]. A possible direction of further research would be to investigate whether
our decidability result carries over to the case of asynchronous communication through
“well-structured” channels (e.g., bounded, lossy, unordered).

Acknowledgements. Authors would like to thank Benedikt Bollig, Thomas Schwentick and
Thomas Zeume for their careful reading of the paper and their helpful comments.

References
1 Parosh Aziz Abdula, Mohamed Faouzi Atig, and Othmane Rezine. Verification of directed

acyclic ad hoc networks. In FMOODS/FORTE, pages 193–208, 2013.

FSTTCS 2014

664 Verification of Dynamic Register Automata

2 P.A. Abdulla, K. Cerans, B. Jonsson, and Y.K. Tsay. General decidability theorems for
infinite-state systems. In LICS’96, pages 313–321. IEEE Computer Society, 1996.

3 Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. Inf.
Comput., 127(2):91–101, 1996.

4 Bharat Adsul, Madhavan Mukund, K. Narayan Kumar, and Vasumathi Narayanan. Causal
closure for MSC languages. In FSTTCS, volume 3821 of LNCS, pages 335–347. Springer,
2005.

5 Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability and verification of
MSC graphs. Theor. Comput. Sci., 331(1):97–114, 2005.

6 Michael Benedikt, Clemens Ley, and Gabriele Puppis. Automata vs. logics on data words.
In CSL, volume 6247 of LNCS, pages 110–124. Springer, 2010.

7 Benedikt Bollig, Aiswarya Cyriac, Loïc Hélouët, Ahmet Kara, and Thomas Schwentick.
Dynamic communicating automata and branching high-level MSCs. In LATA, volume
7810 of LNCS. Springer, 2013.

8 Benedikt Bollig and Loïc Hélouët. Realizability of dynamic MSC languages. In CSR,
volume 6072 of LNCS. Springer, 2010.

9 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

10 G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks.
In CONCUR’10, volume 6269 of LNCS. Springer, 2010.

11 G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the parameterized
verification of ad hoc networks. In FoSSaCS’11, volume 6604 of LNCS, pages 441–455.
Springer, 2011.

12 Giorgio Delzanno, Arnaud Sangnier, and Riccardo Traverso. Parameterized verification of
broadcast networks of register automata. In RP, volume 8169 of LNCS. Springer, 2013.

13 Giorgio Delzanno, Arnaud Sangnier, Riccardo Traverso, and Gianluigi Zavattaro. On the
complexity of parameterized reachability in reconfigurable broadcast networks. In FSTTCS,
volume 18 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

14 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata.
In LICS, pages 17–26. IEEE Computer Society, 2006.

15 D. Figueira. Alternating register automata on finite words and trees. Logical Methods in
Computer Science, 8(1), 2012.

16 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001.

17 Blaise Genest, Dietrich Kuske, and Anca Muscholl. A kleene theorem and model checking
algorithms for existentially bounded communicating automata. Inf. Comput., 204(6):920–
956, 2006.

18 Jesper G. Henriksen, Madhavan Mukund, K. Narayan Kumar, Milind A. Sohoni, and P. S.
Thiagarajan. A theory of regular MSC languages. Inf. Comput., 202(1):1–38, 2005.

19 M. Jurdzinski and R. Lazic. Alternation-free modal mu-calculus for data trees. In LICS,
pages 131–140. IEEE Computer Society, 2007.

20 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

21 Ranko Lazic. Safely freezing LTL. In FSTTCS, volume 4337 of LNCS, pages 381–392.
Springer, 2006.

22 Anca Muscholl and Doron Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In MFCS, volume 1672 of LNCS, pages 81–91. Springer, 1999.

23 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

P.A. Abdulla, M. F. Atig, A. Kara, and O. Rezine 665

24 Hiroshi Sakamoto and Daisuke Ikeda. Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci., 231(2):297–308, 2000.

25 P. Schnoebelen. Revisiting ackermann-hardness for lossy counter machines and reset petri
nets. In MFCS, volume 6281 of LNCS, pages 616–628. Springer, 2010.

26 Anu Singh, C.R. Ramakrishnan, and Scott A. Smolka. Query-based model checking of
ad hoc network protocols. In CONCUR, volume 5710 of LNCS, pages 603–619. Springer,
2009.

27 Anu Singh, C.R. Ramakrishnan, and Scott A. Smolka. A process calculus for mobile ad
hoc networks. Sci. Comput. Program., 75(6):440–469, 2010.

28 Nikos Tzevelekos. Fresh-register automata. In POPL. ACM, 2011.

FSTTCS 2014

	p000-00-frontmatter
	Preface
	Conference Organization

	p001-01-bansal
	Introduction
	The Basic Approach
	Makespan Minimization on Unrelated Machines
	Algorithm

	Degree-bounded Spanning Trees
	Algorithm

	Bin Packing
	Algorithm

	Flow Time Minimization
	Standard LP formulation
	New LP formulation

	A Generalization based on Discrepancy
	Improvement for Bin Packing

	Iterated rounding via the Lovász Local Lemma

	p011-02-cyriac
	Introduction
	Communicating Recursive Programs
	Distributed Behaviours
	Specifications
	Graph theoretic approach to verification
	Split-width

	p031-03-grohe
	p032-blank-page
	p033-04-kupferman
	Introduction
	Preliminaries
	Theoretical Properties of NCAs
	Capacities Removal
	Determinization

	Decision Problems
	The Maximum Utilization Problem
	Maximum Unrestricted Utilization
	Maximum Restricted Utilization

	p045-05-chastain
	p047-06-williams
	Introduction
	What This Survey is NOT

	The Circuits
	The Tools
	Exact Representations
	 Probabilistic Representations
	Symmetric Representation

	The Applications
	All-Pairs Shortest Paths (APSP)
	Orthogonal Vectors (OV)
	Counting Solutions to OV and CNF-SAT

	Conclusion

	p061-07-philip
	Introduction
	Preliminaries
	Editing to f-factors
	Parity f-factors
	Conclusion

	p072-blank-page
	p073-08-basavaraju
	Introduction
	Preliminaries
	Algorithm for Independently 2-Connected k-Set
	Characterization of completely independent spanning trees
	Independent trees and pathwidth
	Proof of Theorem 1

	Lower Bound on Kernelization
	FPT algorithm for Independently s-Connected k-Set and a generalization
	Conclusions

	p085-09-giannapoulou
	Introduction
	Basic Notions
	A polynomial kernel for Tree Deletion Set
	Known Reduction Rules for wTDS
	A structural decomposition
	Results on Linear Equations
	The Main Theorem

	p097-10-dabrowski
	Introduction
	Preliminaries
	Connected Degree Parity Editing
	Connected Degree Balance Editing
	Conclusions

	p109-11-berkholz
	Introduction
	Background
	Parameterized complexity of first-order logic
	Alternative Characterizations
	Parameterized polynomial-space-complete problems
	Conclusion

	p121-12-doyen
	Introduction
	Definitions
	Synchronization in deterministic WAs
	Location-synchronization under lower-bounded safety condition
	Location-synchronization under general safety condition

	Synchronization in TAs
	Synchronization in deterministic TAs
	Synchronization in non-deterministic TAs

	p133-13-filiot
	Introduction
	Weighted Automata
	The k-Valuedness Problem
	The k-Valuedness Problem when k is a Fixed Constant

	Decomposition of k-valued group automata
	The Inclusion and Synthesis Problems for k-Valued WA

	p146-blank-page
	p147-14-filiot
	Introduction
	Preliminaries
	First-order logic for strings
	Aperiodic Finite Automata

	Aperiodic String Transducers
	First-order logic definable Transformations
	Streaming String Transducers
	SSTs: Transition Monoid and Aperiodicity

	From aperiodic 1-bounded SST to FOT
	From FOT to aperiodic 1-bounded SST

	p160-blank-page
	p161-15-almagor
	Introduction
	Preliminaries
	The Sensing Cost of Regular Languages of Finite Words
	The Sensing Cost of -Regular Languages
	Characterizing scost(L) by the residual automaton for L

	Directions for Future Research

	p174-blank-page
	p175-16-keil
	Introduction
	Related Work
	Overview

	Regular Expressions
	Representing Sets of Symbols
	Antimirov's Algorithm for Checking Containment
	Derivatives on Literals
	Positive and Negative Derivatives
	Next Literals

	Solving Inequalities
	Conclusion

	p187-17-bock
	Introduction
	Notation
	Related work

	Odd cycle packing
	Stable set
	A first approximation algorithm
	A PTAS for ocp=o(n/logn)
	Fixed-parameter tractability
	Hardness

	Weighted stable set
	Graphs without odd cycles of small weight are almost bipartite
	A PTAS for ocp=O(lognloglogn)

	p199-18-georgiou
	Introduction
	Our contributions and comparison to previous work
	Our techniques

	Preliminaries
	Problem Definition and a Natural LP Relaxation
	Hierarchies of LP and SDP relaxations

	IG lower bounds for the Sherali-Adams LP system
	IG lower bounds for various SDP hierarchies
	SDPs derived by the SA+ and LS+ systems
	On SDPs derived by the Lasserre system

	Discussion / Open Problems

	p212-blank-page
	p213-19-arora
	Introduction
	Preliminaries
	Algorithm for BDBT-DAGs via Stable Solutions
	Constructing Stable Solutions for Bounded Degree DAGs
	Bounded Tree-width DAGs: Stable to Integrally Open Solutions
	BDBT-DAGs: Constant Factor Approximation Algorithm

	Replica Placement Problem on TBDBT-DAGs
	Obtaining a Pseudo-stable Solution
	Obtaining a Hierarchical Solution
	TBDBT-DAGs: Constant Factor Approximation Algorithm

	p226-blank-page
	p227-20-gupta
	Introduction
	Preliminaries
	Background
	MCM

	Incremental MCM
	MWM
	Incremental MWM

	p240-blank-page
	p241-21-torfah
	Introduction
	Preliminaries
	Counting Complexity Classes
	Counting Word-Models
	Counting Tree-Models
	Discussion

	p253-22-song
	Introduction
	Preliminaries
	Undecidability
	Decidability
	Non-nested existential variable quantifiers
	Existential path quantifiers for VCTL
	Variable quantifications in the beginning

	p266-blank-page
	p267-23-colcombet
	Introduction
	Data -words and Data Automata
	Generalized Data Automata
	Emptiness of Büchi GDA

	-calculus on data -words
	Conclusion and future work

	p279-24-david
	Introduction
	Preliminaries
	NP-hardness
	Descendant-only patterns
	Extending the pattern language
	Conclusions

	p291-25-navarro
	Introduction
	Preliminaries
	Constant-time Access to Pv
	Marking Nodes
	Handling Marked Nodes
	Handling Unmarked Nodes
	Technicalities

	Predecessor Queries on Pv
	Handling Small Values

	Wrapping Up
	Conclusions

	p302-blank-page
	p303-26-grossi
	Introduction
	Preliminaries
	Motif Tries and Pattern Extraction
	Efficient Representation of Motifs
	Motif Tries
	Reporting Maximal Motifs using Motif Tries

	Building Motif Tries
	Implementing Generate(u)
	Nodes of the Motif Trie as Maximal Intervals
	Exploiting the Properties of Maximal Intervals

	p315-27-harpeled
	Introduction
	Problem definition and notation
	Approximate range counting for balls
	Approximate range counting among balls
	Answering a query

	Answering k-ANN queries among balls
	Computing a constant factor approximation to dkq,B
	The result

	Quorum clustering
	Computing an approximate quorum clustering
	Correctness

	Construction of the sublinear space data structure for (k,)-ANN
	Preliminaries
	Construction
	Answering a query
	Correctness
	The result

	Conclusions

	p327-28-gelman
	Introduction
	q-wise independence
	The Thorp shuffle and the butterfly network
	The Benes network

	Definitions and Notation
	The Benes network
	Almost q-set-wise independence

	Benes is q(q-1)2n-almost q-set-wise independent
	The recursive structure of the Benes network
	Proof of main lemma

	p339-29-chistikov
	Introduction
	Related work
	Turing machines
	Pushdown and counter automata
	Visibly pushdown automata
	Main ingredients for upper bounds
	Proof of Theorem 6
	Main ingredients for lower bounds
	Proofs of Theorem 7 and Proposition 8

	Open questions

	p351-30-bouyer
	Introduction
	Definitions
	Tools
	Deterministic deviations
	One-stage games
	k-action matching-pennies games
	Games without equilibrium

	Updating values
	Comparing values
	Testing game
	Counting modules

	Undecidability proof
	Conclusion and future work

	p364-blank-page
	p365-31-hunter
	Introduction
	Preliminaries
	Payoff functions
	Interval games
	Parity games

	Liminf games
	Mean-payoff games
	Discount sum games
	Single, non-singleton intervals
	Multiple intervals
	Singleton intervals

	Total sum games

	p378-blank-page
	p379-32-colcombet
	Introduction
	Definitions
	Tight Bounds on the Memory for Safety Conditions
	Examples and Applications
	Conclusion and Perspectives

	p391-33-demoura
	Introduction
	Common Syntax for Terms
	Common Syntax for MetaTerms
	Metaconfluence
	The Substitution Calculus enjoys MetaConfluence
	The Linear Substitution Calculus enjoys MetaConfluence
	The Structural Lambda Calculus enjoys MetaConfluence

	Conclusion

	p403-34-baldan
	Introduction
	Preliminaries, Notation and Evaluation Functions
	Lifting Functors to Pseudometric Spaces à la Kantorovich
	Wasserstein Pseudometric and Kantorovich-Rubinstein Duality
	Lifting Multifunctors
	Final Coalgebra and Coalgebraic Behavioral Pseudometrics
	Related and Future Work

	p416-blank-page
	p417-35-bertrand
	Introduction
	Diagnosability specification
	Complexity of diagnosability
	Diagnoser construction
	Predictability and prediagnosis
	Conclusion

	p430-blank-page
	p431-36-henzinger
	Introduction
	Preliminaries
	Problem Definition
	Synchronized (Functional) Transducers
	Functional Transducers
	Beyond Synchronized Transducers

	Nondeterministic Transducers
	Related Work
	Conclusion

	p444-blank-page
	p445-37-mandal
	Introduction
	Preliminaries
	Separation Theorem
	Hardness Amplification
	Defining an NP machine
	Turing-complete language
	L is not truth-table complete

	Power of the hypothesis
	Conclusions

	p457-38-hucke
	Introduction
	Strings and Straight-Line Programs
	Trees and Tree Straight-Line Programs
	Constructing a small TSLP for a tree
	Arithmetical Circuits
	Future work

	p469-39-odonnell
	On time travel
	Computation with CTCs
	Prior work

	Formal computational complexity statements
	Our theorem
	Proof techniques
	Outline of the remainder of the paper

	BPPpath, postselection, and restarts
	Remarks on random coins for BPPpath algorithms

	Proof of the main theorem
	Conclusion

	p481-40-klauck
	Introduction
	Background: The Model
	Our Results
	Organization

	Preliminaries
	Definition of the Model
	Communication Complexity, Formulae, Branching Programs

	Garden-Hose Protocols and Communication Complexity
	Lower Bound via Non-deterministic Communication
	GH(f) At Most The Size of a Protocol Tree for f

	Relating Permutation Branching Programs and the Garden-Hose Model
	The Distributed Majority Function
	Composition and Connection to Formula Size
	The Neciporuk Bound with Arbitrary Symmetric Gates

	Time Bounded Garden-Hose Protocols
	A Time-Size Hierarchy

	Randomized Garden-Hose Protocols
	Open Problems

	p493-41-durand
	Introduction
	Preliminaries and Notation
	Lower Bounds: VP-hardness
	Upper Bounds: membership in VP
	Characterizing other complexity classes
	Conclusion

	p505-42-chadha
	Introduction
	Preliminaries
	Leakage in non-probabilistic programs
	Experimental evaluation
	Leakage in probabilistic programs
	Conclusions and future work

	p517-43-biondi
	Introduction
	Background
	Non-terminating Processes with Finite Leakage
	Example: A Non-terminating Program on a Finite Secret

	Leakage Rate of a Markov Chain
	Example: Leaking Mix Node Implementation

	Bounded Time/Leakage Analysis
	Bounded Time
	Bounded Leakage

	Conclusions and Related Work

	p530-blank-page
	p531-44-raskin
	Introduction
	Definitions
	Multiple-Environment MDP
	Almost-Sure Reachability
	Double end-components
	Limit-Sure Reachability
	Quantitative Reachability
	Safety and Parity Objectives

	p544-blank-page
	p545-45-cassez
	Introduction
	Example
	Preliminaries
	Checking Intra-Procedural Partial Correctness
	Inter-Procedural Trace Refinement
	Implementation and Experiments
	Related Work
	Conclusion

	p557-46-southern
	Introduction
	Background
	The Reasoning Logic G
	The Specification Language: HOHH
	Example: Type Uniqueness

	An Adequate Translation of LFto HOHH
	Translational Two-level Logic Approach
	Importing the LFSpecification
	Representing LFHypothetical Judgements
	The Implementation

	Related Work and Conclusion

	p570-blank-page
	p571-47-chen
	Introduction
	Preliminaries
	(Interval) DTMCs
	Information theory

	Entropy of MCs
	Entropy for absorbing MCs
	Entropy rate for general MCs

	Computing entropy in MCs
	Entropy
	Entropy rate
	Approximation problems

	Computing the maximum entropy in IMCs
	Entropy
	Entropy rate
	Threshold problem

	Conclusion

	p584-blank-page
	p585-48-chakraborty
	Introduction
	Preliminaries
	A Reachability Algorithm for High Genus Graphs
	Proof of Theorem 6

	A Reachability Algorithm for H-minor-free Graphs
	Graph Minor Decomposition Theorem
	Constructing Separator for H-minor-free Graphs

	p596-blank-page
	p597-49-dhayal
	Introduction
	Preliminaries
	FewUL Algorithm for Reach in min-poly layered DAGs
	UL Algorithm for Reach in min-poly layered DAGs
	Reach in max-poly layered DAGs
	FewUL Algorithm for Reach in max-poly Layered DAGs
	UL Algorithm for Reach in max-poly Layered DAGs

	p610-blank-page
	p611-50-atig
	Introduction
	Preliminaries
	Shared-memory Concurrent Pushdown Systems
	Pushdown Systems and Counter Systems
	Concurrent Pushdown System with Shared Memory

	The Reachability Problem for SCPS
	Stage-bounded Computations
	Stage bounded reachability for Communicating FSS
	Undecidability of Bounded-Stage Reachability

	Decidability for single pushdown plus counters
	Lower Bounds for the Stage-bounded Reachability Problem
	Conclusion

	p624-blank-page
	p625-51-bollig
	Introduction
	Preliminaries
	Parameterized Communicating Automata
	Context-Bounded PCAs are Complementable
	Monadic Second-Order Logic

	p638-blank-page
	p639-52-muscholl
	Introduction
	Control for Zielonka automata
	Decidability for acyclic architectures
	Covering controllers and r-short automata
	The reduced automaton A
	Proof of Theorem 13

	Conclusion

	p652-blank-page
	p653-53-abdulla
	Introduction
	Preliminaries
	Dynamic Register Automata
	State Reachability for (Degenerative) Dra
	Bounded (Degenerative) Dra
	Strongly Bounded (Degenerative) Dra
	(Strongly) Safe Dra
	Strongly Bounded Degenerative Dra: Proof of Theorem 5
	A well-quasi order on configurations
	Monotonicity

	Conclusion and Future Directions

