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Preface

The 34th International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2014) was held at the India International Centre, New Delhi,
from December 15 to December 17, 2014.

The program consisted of 6 invited talks and 47 contributed papers. This proceedings
volume contains the contributed papers and abstracts of invited talks presented at the
conference. The proceedings of FSTTCS 2014 is published as a volume in the LIPIcs series
under a Creative Commons license, with free online access to all, and with authors retaining
rights over their contributions.

The 47 contributed papers were selected from a total of 162 submissions. We thank the
program committee for its efforts in carefully evaluating and making these selections. We
thank all those who submitted their papers to FSTTCS 2014. We also thank the external
reviewers for sending their informative and timely reviews.

We are particularly grateful to the invited speakers: Nikhil Bansal (TU Eindhoven), Paul
Gastin (LSV, ENS Cachan), Martin Grohe (RWTH Aachen), Orna Kupferman (Hebrew
University), Umesh Vazirani (UC Berkeley) and Ryan Williams (Stanford University), who
readily accepted our invitation to speak at the conference.

There was one pre-conference workshop, New Developments in Exact Algorithms and
Lower Bounds, and two post-conference workshops, INFINITY 2014 and Recent Advances in
Cryptography, all held at IIT Delhi. We thank the organisers of the workshops.

On the administrative side, we thank the organizing committee led by Prof. Ragesh
Jaiswal (IIT Delhi), who put in many months of effort in ensuring excellent conference
arrangements at India International Centre and arrangements for the workshops at the IIT
Delhi campus. We also thank the Easychair team whose software has made it very convenient
to do many conference related tasks. Finally, we thank the Dagstuhl LIPIcs staff for their
coordination in the production of this proceedings, particularly Marc Herbstritt who was
very prompt and helpful in answering our questions.

Venkatesh Raman and S. P. Suresh
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New Developments in Iterated Rounding*

Nikhil Bansal

Eindhoven University of Technology
Eindhoven, The Netherlands
n.bansal@tue.nl

——— Abstract

Iterated rounding is a relatively recent technique in algorithm design, that despite its simplicity
has led to several remarkable new results and also simpler proofs of many previous results. We
will briefly survey some applications of the method, including some recent developments and
giving a high level overview of the ideas.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Algorithms, Approximation, Rounding
Digital Object ldentifier 10.4230/LIPIcs. FSTTCS.2014.1

Category Invited Talk

1 Introduction

A natural and very general approach to designing approximation algorithms for NP-Hard
problems is the following: Write an exact integer programming formulation for the problem,
and then relax the integer constraints to be continuous, giving rise to a convex optimization
problem such as a linear program or a semidefinite program that can be solved efficient
in polynomial time. The goal then is to design a good rounding procedure that converts
this fractional solution back to an integral solution without much loss in the value of the
objective.

In the last few decades various ingenious rounding techniques have been developed, with
several surprising connections to probability, geometry and so on. For an overview of these
methods and approximation algorithms in general, we refer the reader to [10]. In recent years,
a powerful new approach for rounding, referred to as iterated rounding has emerged. Here
the variables are rounded one by one, or in small steps over time, while crucially leveraging
the information gained from previous steps. While this idea is not new by itself, many
interesting and surprising applications have emerged recently. An excellent description of
iterated rounding and its applications can be found in [5].

Here we give a brief introduction to the method. We start with some classic results to
demonstrate its versatility and power, and then discuss some more recent developments and
incarnations based on techniques such as discrepancy and Lovasz Local Lemma.

2 The Basic Approach

Consider a linear programming relaxation of the form

minc’z  s.t. Ar<c¢ and z€[0,1]",

* Supported by NWO grant 639.022.211 and ERC consolidator grant 617951.
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New Developments in Iterated Rounding

with variables x1, ..., z,. Here x denotes the vector (z1,...,2,) and A is some m x n matrix,
and c is a non-negative cost vector in R".

We will refer to the m constraints given by rows of Az < ¢ as the non-trivial constraints,
and the remaining constraints given by x € [0,1]™ as the trivial constraints.

Recall that for any linear program, there is always some optimum solution that lies at
the vertex of the polytope formed by the constraints. Such a solution is referred to as a
basic feasible solution. The key idea behind much of iterated rounding is the following easy
observation.

» Lemma 1. For any linear program of the form above with m < n non-trivial constraints,
there is an optimum solution with at least n — m variables set to 0 or 1.

Proof. Given a solution z, We say that a constraint is tight at « if it is satisfied by equality
by at z. As the polytope in n-dimensional, every vertex x of the polytope is determined
uniquely by some n linear independent constraints that are tight at x.

Consider some basic feasible optimal solution. As there are m non-trivial constraints, at
least n — m of the tight constraints at  must be trivial ones. If a trivial constraint involving
x; is tight, this means that z; =0 or x; = 1. <

The algorithm proceeds as follows:
Start with the initial LP, and compute some basic feasible solution z*.

2. Permanently fix the value of any variable that is set to 0 or 1, and then consider the
residual LP (obtained by drop this fixed variable and updating the right hand of each
constraint accordingly).

3. Find a linearly independent set of tight constraints at z*, and choose one (or more) of
these constraints in some suitable problem specific manner (this is where the ingenuity
lies) and drop it from the residual LP. Recompute a basic feasible solution of this reduced
LP and iterate the process until an integer solution is obtained.

The key observation is that dropping one of the constraints that determines z* allows
the LP to get unstuck at z* and move to some another vertex solution. Note that since
we drop at least one constraint at each iteration, the procedure will eventually terminate.
Moreover, it is easy to verify that objective value of the LP can only go down during the
various iterations of the algorithm (as permanently fixing a variable that is already 0 or 1
does not affect the objective value, and dropping a constraint can only reduce the objective).

We begin with a simple example.

2.1 Makespan Minimization on Unrelated Machines

The unrelated machine setting is the following. There are m machines and n jobs. Each job
j must be processed on some machine, and it has arbitrary machine dependent processing
time p;; on machine i. The goal is to assign jobs to the machines to minimize the makespan
(or the maximum load over all machines). In a classic result, Lenstra, Shmoys and Tardos
[6] gave a 2-approximation for the problem, and also show that no 1.5 — e approximation
exists unless P=NP. It is a major open question in approximation algorithms to improve the
approximation ratio of 2. Here we give a simple iterated rounding based proof of their result,
as described in [5].
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2.1.1 Algorithm

By doing a binary search we can assume that we know the value T of the optimum makespan.

We will write a LP with variables x;; with the intended solution that z;; = 1 if j is assigned
to machine ¢ and 0 otherwise.

We do an initial preprocessing step where we set x;; = 0 if p;; > T (as j can never be
assigned to ¢ in a solution with makespan T'). Let us assume that we are given a feasible
solution to the following LP.

Zpijmij < T Vi e [m] (1)

J
Yowy = 1 Vjieh (2)

Note that while the number of variables can be nm, the number of non-trivial constraints
(1) and (2) is n + m. Also note that we do not impose the constraint z;; < 1 as this is
implied by (2).

The algorithm proceeds via the iterated rounding framework. Recall that all we need to
do is to design a procedure that given a basic feasible solution as input, determines which
constraint to drop in the current round.

Consider some basic feasible solution to the LP in the current round. We fix the variables

that are already O or 1, and consider the residual solution on variables x;; with 0 < z;; < 1.

We say that j appears on 4 if z;; > 0. We will show the following.

» Lemma 2. There exists a machine i such that (i) exactly one job j appears on i, or (ii)
ezactly two jobs j and j' appear on i and satisfy x;; + x;;r > 1.

Given Lemma 2, the dropping rule will be to drop the load constraint (1) corresponding to
this machine 7. Lemma 2 ensures that no matter how the variables are rounded in subsequent
iterations the additional load assigned to machine i can be at most ppmax. Indeed, in case (i)
either job j can be assigned to ¢, which can increase the load by at most (1 — x;;)pi; < pij,
and in case (ii) both j and j’ can be assigned to ¢, and the load can increase by at most
Pij (1 — i) +pijr (1 — ij7) < Pmax(2 — 45 — 24j7) < Pmax-

It remains to show Lemma 2. This is done by a counting argument (which is typical in
most iterated rounding proofs).

Proof. Let p (resp. f) denote the number of variables x;; with 0 < z;; (resp. 0 < z;; < 1).
As the number of non-trivial constraints is at most n +m (and as the trivial constraints are
of the form x;; > 0), there is a basic feasible solution with p < n + m. Note that each job
contributes 1 to p if it is assigned integrally to some machine, and least 2 if it is assigned
fractionally to two or more machines. So we obtain that

n<(p—-f)+(f/2)=p—f/2<(n+m)— f/2. (4)

The first inequality follows as p — f is the number of variables with z;; = 1 and the last
inequality follows as p < n + m. This gives that f < 2m. If f < 2m — 1, then we are already
done as there must exist some machine ¢ with at most one fractional variable appearing on it.

On the other hand, if exactly two fractional variables appear on each machine, then
f = 2m, which implies that equality must hold throughout in (4), and hence p — f = n — m.
This implies that exactly m jobs are split fractionally, and each of them appears on exactly
two machines. Thus, there must be some machine ¢ with two jobs j and j’ with z;; +x;;» > 1,
as claimed. <
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2.2 Degree-bounded Spanning Trees

Our next example is one where on first glance it would seem that iterated rounding should
not work, as the number of non-trivial constraints m is substantially larger than the number
of variables n, and the conditions of Lemma 1 do not seem to apply.

The minimum cost degree bounded spanning tree problem is defined as follows. Given a
graph G = (V| E) with non-negative edge costs ¢, and degree bounds b, on the vertices, find
a minimum cost spanning tree of G satisfying the degree bounds. Even though the minimum
spanning tree problem is efficiently solvable, adding the degree bounds makes the problem
NP-complete. In particular, if b, = 2 for all v, the problem reduces to Hamiltonian Path.

We will show the following result of Singh and Lau [9] which gives essentially the best
possible guarantee.

» Theorem 3. There is an efficient algorithm that finds a spanning tree with degree bounds
violated by at most +1, and with cost at most the cost of optimum spanning tree (that satisfies
the degree bounds ezxactly).

2.2.1 Algorithm

The starting point is the following natural LP relaxation for the problem with variables x.
that are supposed to indicate whether edge e is chosen or not.

min cex, (5>

st > @ < [S]-1  VSCV (6)
ecE[S]

er = n-—1 (7)

Z Te < by Yv ewv (8)
e€d(v)

0<z. < 1 Ve€eE 9)

Here E[S] is the set of edges in the subgraph induced by S C V', and §(v) is the set of
edges incident to v. Recall that the constraints (6), (7) and (9) completely characterize the
spanning tree polytope.

Observe that the number of variables is O(n?) (one for each edge) while the number of
constraints (6) are exponentially many. Still it turns out that the iterated framework can be
applied very effectively.

The crucial observation is that even though exponentially many constraints (6) may be
tight at a given vertex of the polytope, all these tight constraints are spanned by a small
set of at most n — 1 linearly independently constraints. More precisely, the supermodularity
of the function x g[s) implies that the tight constraints given by (6) can be uncrossed, and
hence spanned by constraints corresponding to sets forming a laminar family. Thus the
fractional part of the basic feasible solution is completely determined by these (at most)
n — 1 constraints together with some other tight degree constraints. As the number of degree
constraints can be at most n, essentially the number of relevant constraints (and hence the
number of fractional variables) is at most (n — 1) + n. We remark later in later iterations, a
slightly more careful argument is needed.

A counting argument now allows one to show that there is some vertex v such that
>ees(wyw.>0(1 = Te) < 2. The details are quite simple, and we refer the reader to [5] for
details.
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This implies that if we drop the degree constraint on vertex v, then even if all the variables
are rounded to 1 is subsequent iterations, the degree violation can be at most strictly less
than 2. This specifies the dropping rule for the algorithm. The algorithm keeps iterating
until it has found an integral solution, or until all degree bounds have been dropped in which
case the LP reduces to the spanning tree LP which is integral. Finally, we observe that since
the degrees and integral, a violation of strictly less than 2 implies a violation of at most 1.

2.3 Bin Packing

Our next example gives an application of iterated rounding where we drop a constant fraction
of constraints at each iteration, and the algorithm terminates in a logarithmic number of
rounds.

The classical bin packing problem is the following. Given a collection of items with sizes
S1,---,8y, where each 0 < s; < 1, pack these items feasibly into the fewest number of unit
size bins. The problem is NP-Complete, as the Partition problem implies that it is hard to
distinguish if the optimum packing requires 2 bins or 3 bins. In fact, this is the best known
hardness for the problem, and it is a major open question to determine whether there exists
a polynomial time algorithm achieving an Opt 4+ O(1) or even Opt + 1 guarantee.

In 1981, Karmarkar and Karp [4] gave a remarkable algorithm that achieves a guarantee
of Opt + O(log2 Opt). This result is one of the first applications of iterated rounding.

2.3.1 Algorithm

The starting point is a very strong relaxation known as the configuration LP. Suppose we
have an instance that contains n; items of size s;. Let k denote the number of distinct sizes.
By simple arguments, we can ignore items of size < 1/Opt (as these items are easy to fill
in later). A valid configuration C' is any multiset of sizes in the collection {s1, ..., s;} with
total size at most 1. Let C denote the collection, possibly exponentially large, of all valid
configurations.

Consider the following LP formulation with a variable z¢ for each configuration C € C,
that is supposed to indicate the number of bins packed using configuration C'.

minch s. t. Zai7cx02ni Vi=1,...,k, and z¢c >0 vC e C.
C c

Here a;,c denotes the number of items of size s; in C. Even though the number of
variables is exponential, this LP can be solved to any desired accuracy by considering the
dual (and moreover a basic feasible solution can be computed using standard techniques).
As this LP has only k& < n constraints, at most k configurations C' have non-zero x¢ values.

The crucial observation of [4] was the following.

» Lemma 4. Given a bin packing instance I with total size of items s(I), there is a procedure
to round up the size of each item sizes to obtain another instance I with at most s(I)/2
distinct item sizes, and Opt(I) < Opt(I) + O(logs(I)).

The proof of Lemma 4 is quite simple and we refer the reader to [5] for a proof.

Let us see how this gives the claimed algorithm. Consider an instance with k item sizes.
The algorithm solves the configuration LP to obtain a solution with at most k non-zero
configurations. For each C' with z¢ > 0, pack |x¢] bins with configuration C' and remove
these items. Consider the instance consisting of the remaining unpacked items. As these fit
fractionally in at most k£ configurations, the total size of these items is at most k, and by
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Lemma 4 we can round these to k/2 sizes, while losing at most O(log k) in the objective. We
now iterate the algorithm on this rounded instance.

Observe that at each iteration the number of distinct sizes decreases by at least half,
and thus there are logarithmically many iterations, each adding at most log(Opt) to the
objective. This implies the claimed result.

2.4 Flow Time Minimization

Usually when designing a LP based approximation, one tries to add as many valid constraints
as possible to make the relaxation tighter. However, sometimes it is beneficial to reduce the
number of constraints so that iterated rounding can be used. We next give an example of a
problem for which strong LP relaxations are known but they key is to consider a different
(weaker) formulation with much fewer constraints.

The problem is that of minimizing the total flow time on unrelated machines. Given a
collection on n jobs and m machines, where job j has size p;; on machine ¢ and release time
r;, find a feasible schedule to minimize the total flow time. Here the flow time of a job is the
amount of time it spends in the system; i.e., its completion time minus its arrival time. We
assume that the schedule is non-migratory and preemptive, i.e., a job can only be executed
on a single machine and can be preempted and resumed later without any penalty.

Recently, Bansal and Kulkarni [2] gave the first poly-logarithmic approximation for the
problem based on iterated rounding.

2.4.1 Standard LP formulation

We first describe the widely used standard time indexed LP relaxation for our problem.
There is a variable z;;; for each machine ¢ € [m], each job j € [n] and each unit time slot
t > r;. The z;;; variables indicate the amount to which a job j is processed on machine %
during the time slot ¢. The first set of constraints (10) says that every job must be completely
processed. The second set of constraints (11) says that a machine cannot process more than
one unit of job during any time slot. The objective function is referred to as the fractional
flow time and will be irrelevant to our discussion here.

. t—r; 1
man( “] +2> “Tijt

i,j,t plj
Tijt .
s. t. =L o> 1 vy (10)
Soowge <1 Vit (11)
j:tz’l‘j

2.4.2 New LP formulation

We now describe a new LP relaxation for the problem, where we do not enforce the capacity
constraints (11) for each time slot, but instead only enforce these constraints over carefully
chosen intervals of time.

Let P = max; ; p;;/ min; ; p;; and assume that min, ; p;; = 1. For k =0,1,...,log P, we
say that a job j belongs to class k on machine i if p;; € (2871, 2¥]. Note that the class of a
job depends on the machine.
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There is a variable y;;; (similar to x;; before) that denotes the total units of job j
processed on machine 4 at time ¢. However, unlike the time indexed relaxation, y;;; is allowed
to take values greater than one.

For each class k and each machine ¢, we partition the time horizon [0, T into intervals of
size 4-2F. Fora=1,2,..., let I(i,a,k) = ((4-2¥)(a — 1), (4 - 2¥)a] denote the a-th interval
of class k on machine i. The new relaxation is the following.

)3DIIEDD ()

i t>r; k jE(2k—12k]

o S s (12)
i t>rj p”
Z Z yije < Size(I(i,a,k)) Vi, k,a (13)

Jipiy<2F tel(i,a,k)
Yijt Z 0 VZ,j,t : tZT]

Here, Size(I(i,a,k)) denotes the size of the interval I(i,a, k) which is 4 - 2F (but would
change in later iterations of the LP when we apply iterated rounding). Observe that in
(13) only jobs of class < k contribute to the left hand side of constraints corresponding to
intervals of class k.

The main idea why this LP is useful is the following. For simplicity assume that all jobs
belong to a single class k. Some some basic feasible solution and suppose that h constraints
given by (13) are tight. As there are n constraints 12, at most n + h non-trivial constraints
can be tight and hence at most n + h variables are non-zero. If h constraints (13) are tight,
this also means that the total size of jobs is at least h - (4-2F). As these are class k-jobs, this
means that n > 4h, and hence the number of non-zero variables is at most n +h < 5/4n. So
a constant fraction of the jobs j must be assigned integrally to a single machine. Thus after
logarithmic iterations, this produces a reasonable pseudo-schedule, that can be converted to
a proper schedule without much additional loss. We refer the reader to [2] for details.

3 A Generalization based on Discrepancy

Recently a very powerful generalization of iterated rounding was developed, based on
discrepancy theory. The examples of iterated rounding that we have seen thus far are based
on Lemma 1 which requires that m < n, and to maintain this invariant, in each the algorithm
drops certain constraints in each iteration. Observe that when a constraint a;z < b; is
dropped, we have no control on how much this constraint could be violated in future iterations.
In particular the violation could be as large as |la;||1 (e.g. if all the variables z; are very
close to 0 when the constraint was dropped, and eventually they all get rounded to 1).
Recently, Lovett and Meka [7] gave the following rounding result.

» Theorem 5. Let = € [0,1]" be some fractional solution to a linear system Ax = b, where
A is an m x n matriz. For j =1,...,m, let \; be such that

Zexp(—)\?/lﬁ) < n/16. (14)
J
Then there is an efficient algorithm to find a solution T with the following properties:

(i) at most n/2 variables fractional (that is strictly between 0 and 1),
(ii) |a;& — ajz| < Xj/|lajll2 for each j =1,...,m, where a; denotes the j-th row of A.
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Let us parse what theorem 5 gives us. First observe that if m < n/16, then setting
each \; =0 for j =1,...,m satisfies (14), and gives a solution Z that does not violate any
constraint and has n/2 variables integral.

In this setting Lemma 1 would give a solution with n —m = (15/16)n variables set
integrally and no constraint violated. Thus ignoring constants (which can be modified if
needed by the application at hand, see for example [1]) this can be viewed as an analog of
Lemma 1.

However, theorem 5 also holds when m > n provided the error parameters \; are
chosen to satisfy condition (14). The fact that one has complete flexibility in how to choose
Aj (provided (14) holds) can make this variant extremely powerful. For example suppose
m = 10n. Then, standard iterated does not give anything until m —n = 9n more constraints
are dropped, potentially incurring ||a;||1 error on these dropped constraints . On the other
hand one can set each \; to be O(1) in theorem 5 to obtain error O(||a;||2) for each row j.
The crucial point is that the ¢, norm ||la;||2 of a constraint can be substantially smaller than
its £1 norm ||a;||1 (e.g. v/n vs n), and hence theorem 5 can give much less error. Moreover,
by setting )\;-s non-uniformly one can enforce smaller error on more critical constraints.

3.1 Improvement for Bin Packing

Recently, based on these ideas, Rothvoss [8] improved the long-standing bound of Opt +
O(log?(Opt)) for bin packing that we saw in Section 2.3 to Opt + O(log Opt log log Opt).
The main observation was that if most of the configurations are “well-spread", that is, they
do not consist of only few item types that appear many times, then the ¢ norm of the vector
corresponding to such a configuration (i.e. the vector indicating how many times each item
type appears) is much smaller than its ¢; norm. However, there is no apriori reason why
such configurations should be used by a basic feasible solution to the LP. To get around this
problem, Rothvoss introduces the crucial idea of a creating new items by grouping together
various small items of the same size that appear in a configuration. These ideas together with
the framework of Karmarkar Karp then give the improved bound. The details are somewhat
technical and we refer the reader to [8] for details.

4 lterated rounding via the Lovasz Local Lemma

Our final example illustrates how other powerful tools such as the Lovasz Local Lemma can
fit nicely into the iterative approach for rounding.

The problem we consider is that of minimizing makespan on unrelated machines in the
multi-dimensional setting. There are m machines and n jobs. Each machine has d resources
and each job needs some quantities of these resources. For example, the machines could
correspond to computers and the d = 2 resources could be CPU and memory. In the unrelated
machines setting, the load of job j on machine i is specified by an arbitrary non-negative
number p; ;i for each k € [d]. In typical scenarios d is a fixed small constant, and n and m
are much larger.

As in Section 2.1, we can guess the optimum makespan 7', and write an LP with variables
Zi5. We set x;; = 0 if p;;, > T for some k, and find a feasible solution to the following.

> pigri; < T Vi€ [m]keld] (15)

inj > 1 Vjieln] (16)
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Let us first observe what the natural approaches give. As the LP has n 4+ md constraints,
each machine could potentially have Q(d) jobs fractionally assigned to it in a basic feasible
solution. So applying the approach in Section 2.1 only gives an O(d) approximation.

On the other hand if we do randomized rounding (i. e. independently assign each job j to
machine ¢ with probability z;;), then by a standard balls in bins argument, the makespan
could be as high as O(T log dm/ loglog dm), which has an undesirable dependence on m.

It turns out that one can show the following substantially stronger result.

» Theorem 6 ([3]). There is an O(logd/loglogd) approzimation for the problem.
Before we sketch the idea behind theorem 6, we recall the Lovasz Local Lemma.

» Lemma 7. Let By, Bs,..., By be a collection of (bad) events such that each B; occurs
with probability at most p and is independent of all the other events except for at most d of
them. If epd < 1, then there is a nonzero probability that none of the events occurs.

The idea of the algorithm is to start with an arbitrary solution x, and gradually make
the variables x;; closer to integral in each iteration, without substantially deteriorating the
quality of the solution. In particular, in iteration ¢, the values x;; will be integral multiples
of €7, where ¢, increases exponentially with ¢, until ¢, = Q(loglogd/logd). At this point
that algorithm can arbitrarily assign a job j to any machine i where x;; > 0.

Let ¢ = 1/(logdm). Given an initial solution z, we can assume that each z;; is an
integral multiple of €y by rounding each z;; independently to either ey |x;; /€| or €o[zi;/€0],
with the right probability such that its expectation remains the same. By standard Chernoff
bounds the makespan remains O(T") with high probability, and we can further scale the
solution by an O(1) factor to ensure that ), x;; > 1 for each job j. Let us also assume here
(to avoid some technical details), that each job j is large on every machine ¢ in the sense
that the ¢; norm of its load vector satisfies ), p;jr > 1/d.

Consider round ¢, where we round the values of mfj_l (as previously) at the end of iteration
£ — 1, to multiples of some suitably chosen €, > €,_1. The following observation is crucial.

1

» Lemma 8. Consider round £ and apply the rounding to xfj_ mentioned above to obtain

xfj. Let B; be the event that the load on machine i increases by more than T for some

coordinate k, and let A; denote the event that for a job ), xfj < 1/2. Then each of these
events depends on at most poly(d, es—1) other events.

Proof. Two events B; and B; are dependent if and only if xf]_ '>0and xf,gl > 0 for some

job j. Similarly, two events A; and B; are dependent if and only if some zfj_l > 0. As each
-1
ij
a machine can be at most O(d? - (1/€;—1)). Moreover, for a job j at most O(1/e,) variables
-1
T

x;. ~ is an integral multiple of €,_; and each job is large, the total number of jobs assigned to

can be non-zero. Together this implies the claim. <

Thus by Lemma 7, we can choose ¢, = O(loglog(d/e,—1)/log(d/e¢)) and ensure that
none of the bad event happens. Thus crucial observation is that as we iterate the algorithm,
the dependence on m in €, becomes like log(g) m (i.e. log iterated ¢ times) and eventually
disappears!, while the dependence on d converges to 2(loglogd/logd).

L Strictly speaking, this gives an exp(O(log* m)) guarantee. But a more gradual rounding with a slightly
more careful of parameters gives theorem 6. We refer to [3] for details.
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—— Abstract

There are two schools of thought on reasoning about distributed systems: one following inter-
leaving-based semantics, and one following partial-order/graph-based semantics. This paper
compares these two approaches and argues in favour of the latter. An introductory treatment of
the split-width technique is also provided.
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1 Introduction

Distributed systems form a crucially important but particularly challenging domain. Design-
ing correct distributed systems is demanding, and verifying its correctness is even more so.
The main cause of difficulty here is concurrency and interaction (or communication) between
various distributed components. Hence it is important to provide a framework that makes
easy the design of systems as well as their analysis. In this paper we argue in favour of
(visual) graph-based techniques towards this end.

The behaviour of a distributed system is often understood by means of an interleaving-
based semantics. People are guided by this understanding when designing a system, and also
when formally expressing properties for system verification. But interleavings obfuscate the
interactions between components. This inherent complication of interleaving-based semantics
makes the design and verification vulnerable to many (human) errors. Moreover, expressing
distributed properties on interleavings is non-trivial and sometimes also impossible to achieve.
In contrast, a visual understanding of behaviours of distributed systems would make it less
prone to errors — in the understanding of the semantics, in the statement of properties and in
verification algorithms. Not only does the visual approach help in providing right intuitions,
but, we will demonstrate that, it is also very powerful and efficient.
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What you see is what you understand. A good example of the visual representation of
behaviours is the ITU standard message sequence charts (MSCs) [20] which describe protocols
involving message exchanges. The events executed by a local process are linearly ordered,
see e. g., Figure 3. The transmission of the messages is also depicted. This visual description
reveals not only the interactions between components but also the concurrency and the
causality relations. The causality relation corresponds to the transitive closure of the linear
orders on processes and of the message relation. Events that are not causally ordered are
concurrent.

Another example which illustrates the power of visual representations is nested words
[5] for the behaviours of recursive programs. The binary relation matching push-pop pairs,
which is very fundamental for reasoning about recursive (or pushdown) systems, is explicitly
provided in a nested word.

What you see is what you state. One main advantage of such a visual representation is the
ease and power of specification. The underlying graph structure provides a richer framework
for formal specification. For example, monadic second order logic (MSO) may have causality
relation, concurrency relation, process ordering, message transmissions, push-pop matching
relation etc. as basic predicates. Many of these fundamental relations are very difficult (or
even impossible) to recover if we settle for an interleaving-based understanding. For example,
the monadic second order logic over words cannot express a matching push-pop relation even
when we assume a visible alphabet (one in which letter dictates whether it is a push position
or a pop position). This is because such a relation requires some implicit counting for which
MSO over words is too weak.

What about LTL? Temporal logics and navigation logics have been studied over the
intuitive visual descriptions, for instance over nested words [4, 3], MSCs [8], nested traces [7],
multiply nested words [24], etc. Such logics allow us to express the fundamental relations
(causality, concurrency, message matching, push-pop matching, etc.) as basic modalities.
Thus, properties of distributed systems can be easily and naturally expressed. On the other
hand, if the behaviour of a distributed system is understood in terms of linear sequences of
events, one is tempted to use LTL over words for specifications. But the classical modalities of
LTL are not suited to the distributed setting. For example, the temporal next modality of LTL
over words is nonsensical in the actual distributed behaviour since concurrent/independent
events can be ordered arbitrarily by the operational semantics. So, LTL is sometimes deformed
by removing the next modality [28].

When does a specification over linearizations make sense? In fact, a specification of
distributed systems given over linearisations (by means of MSO or LTL) is meaningful only if
it is satisfied by all or none of the equivalent linearisations of any given distributed behaviour.
We say a distributed specification is closed if it satisfies this inevitable semantic closure
condition. In some particular cases, it is decidable to check whether a given specification,
e.g., in LTL over words, is closed [29, 27]. But this does not provide a convenient specification
language, which would syntactically ensure that all specifications are closed. On the other
hand, logics over graph-based representations naturally eliminate this problem since the
semantics is independent of the linearisations.

Why care beyond reachability? Very often people care only about reachability, and not
beyond it. One of the main reasons is that, in the case of sequential non-recursive systems,
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the model-checking and satisfiability problems reduce to reachability. Most of the decision
procedures proceed by building a machine which accepts the models of the specification.
This is then followed by boolean operations on the machine model and finally performing
an emptiness checking on the resulting machine which is nothing but a reachability test.
However, for distributed systems, such translations from specifications to machine models
do not exist. Closure under boolean operations also does not hold in general. Hence the
model checking and satisfiability problems in the distributed setting cannot be reduced
to reachability. Thus, while it is necessary and important to study the basic reachability
problem, it is not sufficient. We need to devise techniques / verification procedures for
specifications given in logical languages.

But we have techniques and tools available for words. What about graphs? In fact,
graph theory is a very well-studied and mature discipline. We may use the insights and
results from graph theory to our advantage. For example, generic logics on graphs serve
as a good specification formalism. Graph measures such as tree-width (or clique-width or
split-width) could offer good under-approximation parameters towards regaining decidability
of our Turing powerful systems. The generic proof technique via tree interpretations helps
us in obtaining efficient algorithms. We explore these directions in this paper with the help
of split-width.

Split-width? Tree-interpretations? Split-width [16, 15, 2] offers an intuitive visual tech-
nique to decompose our behaviour graphs such as MSCs and nested words. The decomposition
is mainly a divide-and-conquer technique which naturally results in a tree decomposition.
Every behaviour can now be interpreted over its decomposition tree. Properties over the
behaviour naturally transfer into properties over the decomposition tree. This allows us to
use tree-automata techniques to obtain uniform and efficient decision procedures for a range
of problems such as reachability, model checking against logical formalisms etc. Furthermore,
the simple visual mechanism of split-width is as powerful as yardstick graph measures such
as tree-width or clique-width. Hence it captures any class of distributed behaviours with a
decidable MSO theory.

How efficient are the decision preocedures? Since graphs have a richer structure, and
allow richer specifications, the verification problems are more challenging in the case of
graphs as compared to words. However, our decision procedures for visual behaviours
via split-width match the same time complexity as the decision procedures based on the
interleaving semantics. In short, the visual technique solves more for the same price.

What you see in Table 1 is what you get. The rest of this article illustrates this.

2 Communicating Recursive Programs

We aim at analysing complex distributed systems consisting of several multithreaded recursive
programs communicating via channels. In this section, we introduce the abstract model for
such systems and we give its operational semantics resulting in linear behaviours. We also
recall some undecidability results on these systems.

The overall structure of a system is given by its architecture, consisting of a finite set of
processes, and a finite set of data structures. We are mainly interested in stack and queue
data structures, though we also handle bags.
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Table 1 Comparing interleavings and graphs: WYSIWYG.

WYG ) ) .
Understanding Expressiveness Efficiency
WYS (Behaviours) (Specifications) (Complexity of algorithms)
Words ||— interleaved sequence of |- too weak for many nat- |— undecidable in general
events. Interactions are ural specifications — decidable under restric-
obfuscated and very diffi- |- requires semantical clos- tions
cult to recover. ure to be meaningful: |- reductions to sequential
— combinatorial explosion equivalent linear traces word automata
(single distributed beha- should agree on a specific- |- many tools available on
viour results in a huge ation the shelf
number of interleaved — good space complexity
traces)
Graphs ||~ visual description of |- powerful specifications. |- undecidable in general
events trivial to express interac- |— decidable under (more le-
— interactions are visible / | tions nient) restrictions
self-explained — independent of particular |- reductions to tree
— no combinatorial explo- linearisation (i.e., natur- automata  via  tree-
sion ally meaningful) interpretations
— good time complexity

(Stack dD @ueue dg) (Queue dz«D @ag dg

Figure 1 An Architecture. It has four data structures and two processes. Writer and Reader of
the data structures are depicted by the incoming and outgoing arrows respectively.

An architecture. 2 is a tuple (Procs, DS, Writer, Reader) consisting of a finite set Procs of
processes, a finite set DS = Bags W Stacks W Queues of data structures and functions Writer
and Reader which assign to each data structure the process that will write into it and the
process that will read from it respectively. In the special case of communicating recursive
programs, we use stacks for recursion and queues for FIFO message passing. Bags are
useful when no specific order is imposed on the message delivery. Since stacks are used to
model recursion, we assume that Writer(s) = Reader(s) for all s € Stacks. An architecture is
depicted in Figure 1.

FEach process is described as a finite state machine in which transitions may either be
internal, only modifying the local state of the machine, or access a data structure. In the
latter case, it is executing either a write event, adding a value to the data structure, or a
read event, removing a value from the data structure.

Since these data structures permit only destructive reads, they induce a binary matching
relation between write events and read events of a behaviour.
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» Definition 1. A system of concurrent processes with data structures (CPDS) over an archi-
tecture 2 and an alphabet 3 of action names is a tuple S = (Locs, Val, (Trans, ) yeprocs in, Fin)
where Locs is a finite set of locations, Val is a finite set of values that can be stored in the
data structures, £, € Locs is the initial location, Fin C Locs™™ is the set of global final
locations, and Trans,, is the set of transitions of process p. Trans, may have write (resp. read)
transitions on data structure d only if Writer(d) = p (resp. Reader(p) = d). For ¢,¢ € Locs,
a € X, deDS and v € Val, Trans, has

internal transitions of the form ¢ = ¢/,

!
write transitions of the form ¢ 2% ¢ with Writer(d) = p, and
read transitions of the form ¢ 2% ¢/ with Reader(d) = p.

The operational semantics of a CPDS & may be given as an infinite state transition
system TS. The infinite set of states of 7S is Locs” ™ x (Val*)PS. In the following, a state
of TS is a pair (¢,%Z) where £ = (£,)peprocs and Z = (z4)aeps. Such a state is initial if £, = £,
for all p € Procs and zq = ¢ for all d € DS. It is final if £ € Fin and zq = ¢ for all d € DS.
The transitions of the CPDS S induce the transitions of 7S as follows.

(0,7) £ (%) if £, % ¢, in Trans, and ¢, = {, for all ¢ # p,

(¢,%) ad, (0,2 if £, div, ¢, in Trans, for some value v € Val and £, = {, for all

q # p, and 2}, = zqv, and 2, = z, for all ¢ # d,

(t,2) 222 (@ 77y if £, T ¢/ in Trans, for some value v € Val and €, = £, for all

q # p, and z, = z. for all ¢ # d, and z4 = wow and 2/, = uw for some u,w € Val*. If

d € Queues (resp. d € Stacks) we require in addition that u = € (resp. w = ).

A run of TS is a sequence of consecutive transitions, it is accepting if it starts in the
initial state and ends in some final state of 7S. The linear trace of the run is the word
obtained by concatenating the sequence of transition labels. It is a word over the alphabet
I' = (Procs x ¥) U (Procs x ¥ x DS x {!,?}). We denote by Ljin(S) the set of linear traces
accepted by the operational semantics of S.

Keeping the data structure access in the linear traces allows us to recover the matching
relation between write actions and corresponding read actions for stacks or queues (but not
for bags). This requires some counting, hence it is not a regular relation (an MSO definable
relation) on the linear traces.

Undecidability. Since the operational semantics is an infinite state system, we cannot
analyse it directly. The most basic problem, reachability, is already undecidable. This is
in particular the case for a single process with a self queue, or a single process with two
stacks, or two processes with two queues between them (the direction of the queues does
not matter), or two processes having a stack each and linked with a queue (see, e.g., [15]).
Characterizations of decidable topologies have been studied in the case of reliable and lossy
channels [12] or in the case of FIFO channels and bags [13].

Since decidable architectures are much too restrictive, under-approximation techniques
have been developped. Decidability is recovered by putting some restrictions on the possible
behaviours of the system. For instance, a very natural restriction is to put a bound on the
data structure capacities. The operational semantics described above becomes a finite state
transition system. The analysis in this case is restricted to so-called existentially bounded
behaviours [18]. Many other under-approximation classes have been studied, e. g., bounded
context [30], bounded phase [21], bounded scope [23], etc.

15

FSTTCS 2014



16

Reasoning About Distributed Systems: WYSIWYG

Figure 2 A CBM over the architecture given in Figure 1 and alphabet {a, b}.

3 Distributed Behaviours

In this section, we introduce the distributed semantics of CPDSs. We relate the distributed
semantics and the operational semantics by showing that the linear traces arising from the
latter are exactly the linearisations of the graphs defined by the former. We illustrate the
benefits of considering the distributed semantics in the rest of this paper.

As a first example, the graph on Figure 2 provides a visual description of the behaviour of
a CPDS. On such a graph, called concurrent behaviour with matching (CBM), the horizontal
lines describe the linear behaviour of each process of the system, the other edges describe
the matching relations between writes and corresponding reads. The CBM in Figure 2, is
over the architecture of Figure 1. The curved arrows on process p and process ¢ form the
matching relations of stack d; and bag d, respectively. The matching relations induced by
queues are shown by the arrows between the processes. As a comparison, the operational
semantics generates linearisations of this behaviour such as

Liny = (p,a)(p,b,d1,")(p, a,ds,)(p,b,d1,1)(q, a,ds,))(q,b,d2,1)(q,b,dy,!)
(¢ a,ds,1)(q, a,d2,1)(q, b, ds, ?)(q, a,d5,?)(q,b,ds, 7)(g, @, d2,!)
(q,b,ds,")(q,b,d4,?)(q,a,ds,?)(p,a,ds,?)(p,b,d1,?)(p,a,di,!)
(p,a,d2,?)(p,a,d1,?)(p,b,d1,?)(p, b, d2,7)(p, a)

Ling = (p, a)(¢, a, ds,")(p, b, d1,!)(q; b, d2, ") (p, a, d3,') (¢, b, da, 1) (p, b, d1, )
(¢q,a,d4,))(p,b,d1,7)(q,a,d2,")(p,a,ds,?)(q,b,ds,?)(p,a,dy,!)
(q,a,ds,?)(p,a,da,7)(q,b,ds,?)(p,a,dy,?)(q,a,ds,!)

(P, b, d1,7)(q, b, da, ) (p, b, d2, ?) (g, b, ds, ) (p, a) (g, a, da, ?)

from which it is much harder to get an intuition of the interactions going on in this behaviour.
Actually, when we have bags, we cannot uniquely reconstruct a CBM from a linearisation.
Hence, for distributed systems, graphs provide a visual and intuitive description of behaviours
well-suited for human beings.

In the next sections, we discuss further the benefits of describing behaviours as directed
graphs. Here, we define these CBMs. The intuition is easy, we have one linear trace for each
process and in addition binary matching relations relating write events to corresponding
reads. The formal definition has to state additional properties so that the matching relations
comply with the access policies of data structures.

» Definition 2. A concurrent behaviour with matching (CBM) over architecture 2 and
alphabet X is a tuple M = ((w})peprocs, (>%)acps) where w, € X* is the sequence of events
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on process p and >¢ is the binary relation matching write events on data structure d with their
corresponding read events. We let £, = {(p,4) | 1 <14 < |w,|} be the set of events on process
p € Procs and € = | ,cpyocs Ep- For an event e = (p,i) € &, we set pid(e) = p and A(e) be
the ith letter of w,. We write — for the successor relation on processes: (p,i) — (p,i + 1) if
1 < < |wpl.

The matching relations should comply with the architecture: > C Ewriter(d) X EReader(d)
for all d € DS and data structure accesses are disjoint: if e; >% e5 and e3 >% ¢4 are different
edges (d # d' or (e1,e3) # (es,eq)) then they are disjoint (|{eq,ea,e3,e4}| = 4). Finally,
writes should precede reads, so we require the relation < = (— U>)" to be a strict partial
order on the set £ of events, where > = (J,;cps >? is the set of all matching edges. There are
no additional constraints for bags, but for stacks or queues we have to impose in addition

Vd € Stacks, >% conforms to LIFO: if e; % f1, ea >% fo and e; < e < fi then fy < f1,

Vd € Queues, >? conforms to FIFO: if e; >% f1, ea >% fo and e; < ey then fi1 < fo.

We let CBM(2L, ) be the set of CBMs over 2 and .

A run of a CPDS § on a CBM M is simply a labelling p : £ — Locs of events by states
which is compatible with the transition relation. We denote by p~ : £ — Locs the map that
associates with each event the state which labels its predecessor: p~(e) = p(¢) if ¢/ — e and
p~(e) = iy, if e is minimal on its process. Then, the map p is a run if

(T1) for all e>? £, there exists some value v € Val such that p~(e) Ale)div, p(e) in Transyig(c)

_ A(f),d? .
and p~ (f) ——— p(f) in Transyiq(s),
(T2) for all internal events e we have p~ (e) 20, p(e) in Transyig(e)-

A run p is accepting if last” € Fin where last” € Locs' ™ gives the final location of the run for

each process: last) = (i, if £, = () and last) = p(max(&,)) otherwise. We denote by Lcom(S)
the set of CBMs accepted by S.

We explain now the relationship between the distributed semantics and the sequential
operational semantics. Intuitively, the linear traces of the operational semantics are precisely
the linearisations of the CBMs accepted by the distributed semantics. Let us make this
statement more precise. Consider a CBM M and define the labelling v: & — T where
I' = (Procs x ¥) U (Procs x ¥ x DS x {!,?}) by v(e) = (pid(e), A(e)) if e is an internal event,
and if e > f then vy(e) = (pid(e), A(e),d!) and v(f) = (pid(f), A(f),d?). A linearisation of
M is given by a total order Cj, on the set £ of events which is compatible with the causality
relation: < C Cyy,. It defines the word v(ej)y(ez) - --v(en) € I'* if the linear order on £ is
€1 Ciin €2 Ciin -+ - Ciin €n- We denote by Lin(M) C I'* the set of linearisations of M.

» Theorem 3. We have Lin(Lcpm(S)) = Liin(S).

However, there are also subtle differences between these two semantics. As seen above,
it is possible to derive the linear traces from the CBMs, but the converse is not pos-
sible in general. For instance, if the data structure d is a bag, then the linear trace
(p,a1,d")(p,as,d)(p,as,d?)(p, as,d?) is both a linearisation of the CBM M which matches
a1 with ag and the CBM M which matches a; with as. Hence, some specifications involving
the matching relations may not be expressible on the linearisations.

If we only have stacks and queues, then we can unambiguously reconstruct a CBM from
a linear trace w € L};n(S). This is achieved as follows. For each p € Procs, the sequence of
actions executed by process p is the word w, € ¥* obtained as the projection on X of the
subword of w consisting of the letters whose first component is process p. This yields the
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first component (wy)peprocs Of the CBM M associated with w. Notice that there is a natural
bijection between the set of positions of w and the set £ of events of M. To define the
matching relations, consider two events e, f associated with positions i, j of w. Then, e >¢ f
iff the letters of w at positions ¢ and j are w(i) € Procs x ¥ x {d!} and w(j) € Procs x ¥ x {d?}
and

if d € Queues then the number of writes to d before i equals the number of reads from d
before 7,

if d € Stacks then j is the minimal position after i such that between ¢ and j, the number
of writes to d equals the number of reads from d.

Notice that, even in the case of stacks and queues for which the matching relations can
be unambiguously recovered from linear traces, these relations are not MSO definable on
the linear traces. Hence, even with the powerful MSO logic, we cannot specify properties
involving matching relations on linear traces. We will discuss this more precisely in the next
section.

4 Specifications

The simplest specifications consist of local state reachability or global state reachability:
is there a run of & which reaches a given local state ¢ € Locs on some process p € Procs
or a given global state ¢ € Locs™ ™
specification languages, such as first-order logic, monadic second-order logic, temporal logic,
propositional dynamic logic, etc. Here it makes a big difference whether we work with the
sequential operational semantics or the distributed semantics. In the first case, traces are
words and the logics will refer to the linear order Cj,, whereas in the latter case, behaviours
are graphs and the logic will have direct access to the causal ordering < as well as to the
process successor relation — and the matching relations >?. The process successor relation
— can be easily recovered from the linear order Cj,. This is not the case for >¢, hence also
for the causal ordering <, in the logics mentioned above. Actually, recovering a relation >¢
is possible if d is a stack or a queue but it requires some counting as explained above. This
counting is not possible, even in the powerful MSO logic, unless the capacity of the data
structure d is bounded by some fixed value B. In this case, it is possible to express > in
MSO, though the formula is non-trivial and depends on the bound B. Hence, we favour
specification logics on CBMs rather than on linear traces.

The partial order < = (— U >)T that comes with a CBM M = ((w,)peprocs; (>)deps)
describes the causality relation between events. Some specifications rely on this causality
relation. For instance, a distributed system may receive requests on some process p, do some
internal computation involving several other processes, and finally deliver an answer on some
other process ¢. A natural specification is that every request should be answered. Indeed,

. To express more elaborate properties, we need some

the answer to a request should be in its causal future. Such a specification is easy to write
on CBMs where the causal ordering is available. For instance, it corresponds to the first
order formula ¢ = Vz (request(z) = Jy (¢ < y Aresponse(y))) or to the local LTL formula
G(request = Fresponse) (where G means for all events in the causal future and F means
for some event in the causal future). The CBM M depicted in Figure 3 does not satisfy this
specification as Request 2 is not responded. Request 1 has Response 2 in its future, though
not Response 1. Recall that, by Theorem 3, linear traces are linear extensions of CBMs
and events that are concurent in M may be ordered arbitrarily in a linear trace. Therefore,
Lin(M) includes many linearisations in which the responses follow the requests and from
which it is not easy to see whether the specification is satisfied or not.
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Figure 3 A request/response scenario.

As explained above, recovering the causal order < from the total order Ty, is not possible,
even with very expressive specification languages such as MSO over words. As a conclusion, a
simple and natural specification such as the request/response property, cannot be reduced to
a reachability problem on the operational semantics in general. Such a reduction is possible
when the data structures are restricted to bounded stacks and bounded queues (no bags),
but it is non-trivial.

The same argument holds for specifications that involve the matching relation associated
with a stack. For instance, we may specify that after receiving a request, the process calls a
recursive procedure and when this call returns it immediately delivers the response. Again,
matching a call with the corresponding return requires counting which is not a regular
property unless the call depth is bounded.

As another example, a specification may require that when an access to some critical
section is denied, there is a good reason for that, say some concurrent event is accessing the
critical section. Again, concurrency — which is the absence of causal ordering — cannot be
expressed on the linear traces in general.

We introduce below two powerful specification languages on CBMs. First, monadic
second-order logic over CBM(2(, X)) is denoted MSO(2, ). It follows the syntax:

pu=false |a(z) |p(z) |z <y|aply|lzoy|lzeX|[pVe|-p|Ize|IX e

where p € Procs, d € DS and a € . The semantics is as expected. Every sentence ¢ in MSO
defines a language Lepm(p) € CBM(2L, X) consisting of all CBMs that satisfy that sentence. A

language L C CBM(2(, X)) is MSO definable if L. = Lpm () for some sentence ¢ € MSO(2, X).

» Remark. The set CBM(2(,X) is MSO definable in the class of graphs over the signature
associated with (2(,X). More precisely, there is an MSO(2(, 3) sentence ®cpm such that a
graph G = (&, —, (>%)4eps, pid, \) satisfies ®epm iff it is a CBM over (2, X). It is easy to
obtain the formula ®g,, from Definition 2, including the LIFO and FIFO conditions for
stacks and queues.

» Remark. The language Lpm(S) of a CPDS S is definable with an existential MSO sentence
®s. Intuitively, with an existential prefix 3(X), - )peProcs,reTrans, the formula guesses for each
transition 7 € Trans, the set of events from process p € Procs that will execute this transition,
and then checks with a first-order formula that this guess defines an accepting run of S.

» Remark. Notice that CBM-graphs have degree bounded by 3 since any event may take
part in at most one matching relation. Therefore, on CBMs, the logic MSOs in which we
may also quantify over edges (individual variables or set variables) has the same expressive
power as MSO.

19

FSTTCS 2014



20

Reasoning About Distributed Systems: WYSIWYG

We are interested in two decision problems: satisfiability of a specification and model
checking of a system against a specification. Given an architecture 2, an alphabet ¥ and
an MSO sentence ¢ € MSO(2(, ), the satisfiability problem asks whether M = ¢ for some
M € CBM(2,%). For the model checking problem, we are also given a CPDS S and we ask
whether the specification is satisfied for all (or for some) behaviours of the system: M = ¢
for all M € Lcpm(S).

Since reachability (or equivalently emptiness) is undecidable in general for CPDSs, both
satisfiability and model checking are undecidable for any specification language that can
express reachability, in particular MSO. This is trivial for model checking: the specification
false is satisfied iff the language of S is empty, i.e., if the final states are not reachable. For
satisfiability, it follows from the remark above since ®s is satisfiable iff the set of final states
is reachable in S.

» Remark. We have seen above that reachability reduces to model-checking or to satisfiability.
In the case of finite sequential systems, the converse holds since, for any MSO formula ¢, we
can compute an automaton A, which accepts exactly the models of ¢ [11, 17, 32]. Then,
the model-checking problem reduces to the emptiness problem for the intersection of the
system and the negation of the formula. But this approach fails for distributed systems
because it is not possible in general to compute an automaton equivalent to a given formula.
Indeed, we have already seen that the matching relation, hence also the partial order, cannot
be computed by an automaton on the linearisations. Even if we stay in the distributed
semantics, an MSO formula cannot be translated to a CPDS in general. This is because even
the simpler class of message passing automata (i.e., when DS = Queues) is not closed under
complementation [9]. Therefore the model-checking problem for CPDSs and MSO does not
reduce to reachability in general.

Is MSO the ultimate logic? MSO is a very expressive logic for specifications. Its drawback
is that, even when we recover decidability by restricting to some under-approximation class,
the complexity of the decision procedure in non-elementary. This is already the case for
words or trees. To get better complexity, one should use other formalisms such as Temporal
Logics or Propositional Dynamic Logic (PDL). Towards expressing properties of CBMs, the
classical LTL over words has been extended to wvisible behaviours such as nested words [4, 3],
MSCs [8], nested traces [7], multiply nested words [24], etc. These temporal logics have
explicit modalities that allow one to retrieve matching edges or to follow the partial order.
Below, we describe propositional dynamic logic which embeds all these logics and provides
powerful navigational abilities.

In PDL, there are two types of formulas. State formulas (o) describe the properties of
events in a behaviours, hence they have an implicit first-order free variable assigned to the
current event. Atomic propositions such as p or a assert that the current event is on process
p € Procs or is labelled a € ¥. In addition to boolean connectives, we have a path modality
(m)o claiming the existence of a path following 7 from the current node to an event satisfying
o. A path formula 7 has two implicit first-order free variables assigned to the end points of
the path. They are built from basic moves following edges of the graph (in our case — and
%), either forwards or backwards, using rational expressions that may use intersection in
addition to the classical union, concatenation and iteration. In addition, we may check a
state formula o along a path. Formally, the syntax of ICPDL(2, X) is given by

ou=false|pla|oVo|-o|(m)o

mu=test(o) | = | > |7 | r4a| w07 | 7T | T
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where p € Procs, d € DS and a € X. If intersection w N 7 is not allowed, the fragment is PDL
with converse (CPDL)?.

5 Graph theoretic approach to verification

In this section, we show how results from graph theory may help in designing decidable
under-approximation techniques for the verification of CPDSs. The distributed semantics
defines the behaviours as graphs, hence we are interested in checking properties of the set of
graphs Lpm(S) accepted by a CPDS. More precisely, our aim is to solve the model checking
problem: given a system S and a specification ¢ € MSO(2(, X)), does S | ¢, i.e., is the
formula ¢ valid on Lpm(S)?

Let us fix some architecture 2 and the set ¥ of action labels. Decidability of the model-
checking problem is equivalent to decidability of the MSO theory of the set CBM(2(, %) of
CBM-graphs. Indeed, we have seen in Remark 4 that from a CPDS S we can compute a
formula ®g which defines Lepm(S). Therefore, S |= ¢ iff =®s V ¢ is valid on CBM(, X).
Hence, decidability of model-checking reduces to decidability of the MSO theory of CBM(2, X).
For the converse, it suffices to consider a universal CPDS S with Lpm(S) = CBM(2, X).

We have seen in Section 2 that reachability, the most basic model-checking problem, is
undecidable for CPDS, even for very simple architectures such as two processes communicating
via FIFO channels (with no stacks) or a single process with two stacks. Hence, the MSO
theory of CBM(%(, X)) is undecidable in general, which can be seen also directly since CBMs
have unbounded tree-width (or clique-width) in general. Still, it is extremely challenging to
develop correct programs for distributed multi-threaded recursive systems. Hence, techniques
for approximate verification have been extensively developed recently. We will not discuss
over-approximation techniques in the present paper.

An under-approximation technique restricts the problems (reachability, satisfiability or
model-checking) to a decidable subclass C € CBM(2(, X) of behaviours. Often the subclass Cp,
is parametrised with some integer m. We cover more behaviours by increasing the parameter
m. The approximation family (Cp,)m>0 is complete or exzhaustive if CBM(2(, %) = J,,, Cm..
Hence, the aim of under-approximate verification is to define and study meaningful classes
C C CBM(Z, X) with a decidable MSO theory.

Decidability of the MSO theory (or equivalently decidability of the MSO satisfiabiliy
problem) for classes C of graphs has been extensively studied. We recall now some important
results that will be useful for our purpose (see [14, Chapter 1] for a survey). Recall that
CBM-graphs have degree bounded by 3 since any event may take part in at most one matching
relation. Hence, we restrict our attention to results for classes C of bounded degree graphs.
The following fact summarizes some of the main results (see Theorem 4).

An MSO definable class C of bounded degree graphs has a decidable MSO theory iff it
can be interpreted? in the class of binary (labelled) trees.

L 1f backward paths 7~ ! are not allowed the fragment is called PDL with intersection (IPDL). In simple
PDL neither backwards paths nor intersection is allowed.

There are several equivalent ways to define an interpretation of a graph G = (V, E) in a labelled tree
T. We describe the MSO-transductions of Courcelle, but one may, for example, also use the regular
path descriptions of Engelfriet and van Oostrom. An MSO-interpretation is given by a tuple of MSO
formulas. We will give a concrete example in Section 6. Intuitively, not all labelled trees admit a valid
graph interpretation, hence, we use a sentence ®yaiq to select the “good” trees. The vertices of the graph
are some nodes of the tree, and we use a formula Pyerex () to select those nodes of T" which should
be interpreted as vertices of G: V = {u € T | T |= ®Pvertex(u) }. Finally, a formula ®edge(z,y) encodes

2
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In the light of this fact, under-approximation classes are obtained by MSO definitions
together with tree interpretations. Then, verification problems are reduced to problems on
tree automata, yielding efficient algorithms.

Such tree interpretations can be defined specifically for some class C C CBM(2, X).
This is for instance the case for bounded phase behaviours of multi-pushdown automata
[21] where multiply nested words of bounded phase are interpreted in binary trees called
stack-trees. Another example is given by the interpretation of some classes of multiply nested
words in visibly (k-)path trees in order to prove decidability of emptiness and closure under
complement of multi-pushdown automata when restricted to some classes of behaviours that
can be interpreted in these path-trees [25] .

A higher level approach is to prove some combinatorial property on the class C which
ensures the existence of a tree interpretation. For instance, one may show that the class C
has bounded tree-width (and is MSO definable). This is the approach taken in [26], where
decidability of several under-approximation classes is established by proving that they are
MSO definable and have bounded tree-width. For most of the classes considered in [26] the
decidability had been already proved directly. Hence, [26] provides a unifying approach as
well as efficient algorithms based on tree interpretations.

Alternative combinatorial properties may be more convenient, for instance bounded
clique-width, which is equivalent to bounded tree-width on classes of bounded degree graphs.
In [16, 2] another decomposition technique, called split-width, is defined specifically for CBMs
(see Section 6). On classes of CBMs, bounded tree-width, bounded clique-width and bounded
split-width are all equivalent. We believe that, for a class of CBMs, establishing a bound on
split-width is easier than the other measures. Also, we will see in Section 6 that split-width
gives an easy and natural interpretation of CBMs in binary trees. Hence, split-width provides
a convenient, necessary and sufficient condition, to establish decidability of the MSO theory
of an under-approximation class.

The following theorem summarizes some of the relevant results. For more details, the
reader is referred to [14, Chapter 1] and [16, 15].

» Theorem 4. Let C be a class of bounded degree graphs which is MSO definable. TFAE
C has a decidable MSO theory,

C can be interpreted in binary trees,

C has bounded tree-width,

C has bounded cliqgue-width,

C has bounded split-width (if C C CBM(2(,X) is a class of CBMs).

apNdH=

In order to define a good under-approximation class, one may show that it is MSO
definable and that it satisfies one of the conditions of Theorem 4. We will introduce split-
width in the next section and show that it is a convenient tools for CBMs. Proving MSO
definability is often easy. This is the case for many under-approximation classes, like bounded
context, bounded phase, bounded scope, ordered etc. for multi-pushdown systems. Also, for
distributed systems, it is easy to give an MSO definition for universally bounded MSCs, or
the bounded context and well-queuing assumption of [22, 19].

the edge relation of G: T |= Pedge(u, v) iff (u,v) € E. We may also interpret vertex-labelled graphs
by refining Pyertex in a tuple of formulee ®,(z) which selects those vertices/nodes that are labelled a.
Finally, in case of edge-labelled graphs, the formula ®eqge(,y) is refined in a tuple of formule ®4(x,y)
one for each edge-label d.
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6 Split-width

In this section, we introduce split-width. We explain the associated tree-interpretations
and infer the decidability and complexity of a collection of verification problems when
parametrised by split-width. We also discuss how to use split-width in order to obtain similar
results for various under-approximation classes.

With K. Narayan Kumar, we introduced split-width in [16] for multiply nested words.

The technique was later extended to CBMs in [15, 2].

The idea is to decompose a graph in atomic pieces consisting of matching write/read
pairs, see Figure 4. This can be seen as a two-player turn-based game with a fixed budget &k
which will be the width of the decomposition. The existential player (Eve), trying to prove
the existence of a decomposition of width at most k, has to disconnect the CBM graph by
splitting at most k process edges. For instance, the root of Figure 4 is labelled with a CBM
M over the architecture 2 of Figure 1. The graph M cannot be disconnected by splitting
only one or two process edges. So Eve splits three process edges that are shown as dashed
red edges in the split-CBM M’. The universal player (Adam) will now choose one of the
connected components of M’ and the game continues. M’ has two connected components
My and My, providing two choices for Adam.

If My is chosen, Eve splits the two process edges and the resulting graph MY has now
two connected components. Whichever is chosen by Adam is an atomic write/read edge,
which is a winning position for Eve.

Assume now that M is chosen. Note that M has two blocks of events on process ¢ with
one hole between them. The first block consists of a single event labelled b and the second
one consists of three events labelled cdc. A block of events in a split-CBM is a maximal
sequence of events on a single process. For instance, M’ has two blocks on process p and
three blocks on process g. Clearly, the number of holes on some process is the maximum of
zero and the number of blocks minus one on that process. The budget k of Eve is reduced
by the number of holes. For instance, M; has one hole (on process q) hence Eve is only
allowed two (3 — 1) more splits to disconnect M; without exceeding her budget. Her choice
is depicted in M. One connected component of M/ is a matching edge which is winning for
Eve. So Adam should choose M3 lest he lose immediately. Eve splits the remaining process
edge and wins regardless of Adam’s choice.

To summarize, Eve wins a play if it ends in an atomic CBM, i. e., a single internal event or
a matching write/read edge. She loses if she cannot disconnect a non-atomic graph without
introducing more than k split-edges (holes). The split-width of a CBM is the minimum budget
k for which Eve has a winning strategy. A winning strategy for Eve with budget 3 is depicted
in Figure 4 for the CBM M at the root. As explained above, M cannot be disconnected
with only two splits, hence its split-width is exactly 3. We denote by CBpr“t(Ql, Y) the set
of CBMs over 2 and ¥ with split-width bounded by k.

» Example 5. Nested words have split-width at most 2. Nested words [5] are CBMs over an
architecture with a single process and a single stack. The bound on split-width can be seen
easily since a nested word w is (a) either the concatenation of two nested words in which
case Eve splits the edge between the two nested words, (b) or is of the form a@b where
w is a nested word, in which case Eve splits the first and last process edges, (c) or is an
atomic CBM.

» Example 6. Existentially k-bounded CBMs have split-width at most £ + 1. A CBM M
is existentially k-bounded if it admits a linearization such that the number of unmatched
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Figure 4 A split decomposition of width 3.

writes at any point is bounded by k. For instance, the CBM M at the root of Figure 4 is
existentially 3-bounded. Let the linear order witnessing the existential bound be Cj,. The
strategy of Eve is to detach the first £ + 1 events of M with respect to Cj;, by splitting the
corresponding outgoing process edges. The resulting split-CBM M’ must be disconnected.
Indeed, the detached events cannot all be write events, otherwise the bound k is exceeded.
If a read event is detached, then the corresponding write is also detached since it must
come earlier in any linearization. Therefore, the split-CBM M’ contains some connected
components which are atomic CBMs and at most one connected component M; which is
non-atomic. Adam must choose the component Mj to avoid losing the game immediately.
Then, Eve proceeds by splitting some more process edges until k + 1 events are detached in
the Cji, order. As above, the resulting split-CBM must be disconnected and at most one of
its connected component is non-atomic. Eve applies the same strategy as long as there is a
non-atomic connected component.

» Example 7. Multiply nested words with at most m phases have split-width at most 2.
Multiply nested words (MNWs) are CBMs over an architecture with a single process and
several stacks. A phase in a MNW is a factor in which all read events are from the same stack.
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Figure 5 A split term s (left) and a labelled term ¢ (right) corresponding to Figure 4.
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Figure 6 Two CBMs that can be decomposed with the split-term s of Figure 4.

A MNW is m-phase bounded if it is the concatenation of at most m phases [21]. All m-phase
bounded MNWs have split-width at most 2™ [16]. The bounded phase under-approximation
has been extended to distributed systems in [15, 1.

In fact, an upper bound on split-width has been established for many under-approximation
classes. See [16] for many classes of multi-pushdown systems such as bounded scope [23],
ordered [10, 6], etc. For many classes of communicating (multi-pushdown) systems, see
15, 1, 2].

Split-algebra.
which is useful to establish a bound on split-width. A winning strategy of Eve for some CBM
M can be represented with a tree as in Figure 4. Dually, there is also a split-algebra which
constructs CBMs in a bottom-up fashion starting from atomic ones using two operations:
shuffle (opposite of divide) and merge (opposite of split). The terms of the split-algebra over
21 and X follow the syntax:

The split-game introduced above gives the decomposition view (top-down)

st=ala®b|M(s)|slls

with a,b € 3 and d € DS. The split-term s corresponding to Figure 4 is given on the left of
Figure 5 (recall that the architecture is taken from Figure 1).
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Several CBMs may admit a decomposition via the same split-term. For instance, the
split-term s on the left of Figure 5 allows us to decompose both the CBMs M and M" of
Figure 6. The main reason is that a shuffle node does not specify how the blocks of the two
children are shuffled, and a merge node does not specify which holes of the child are mended
into process edges. This ambiguity can be removed with an extra labelling as shown on
tree ¢t on the right of Figure 5 corresponding to the decomposition of Figure 4. At a shuffle
node, the labelling consists of a tuple of words (wp)peprocs, Where w,, € {¢,r}* describes how
the blocks on process p of the children are shuffled. For instance, the shuffle node (n’) of ¢
is labelled (wp,wq) = (ér, frf) which means that the first block of M’ — corresponding to
node (n’) — on process p comes from the left child M; — corresponding to (nq) — and the
second block comes from the right child My — corresponding to (ng). On process g there are
3 blocks, first and third coming from M; and second coming from Ms. The same kind of
labelling is used at >-nodes. Now, for a merge node, the labelling is also a tuple of words
(Wp)peprocs, but now a word w, € {i, m}* tells whether the holes (split edges) of the child are
kept as such (¢ for inherited) or are turned into process edges (m for mended). For instance,
node (ny) — corresponding to M — is labelled (m,im) which means that from its child M} —
corresponding to (n}) — the hole of process p is mended, the first split edge of ¢ is inherited
and the second one is mended. Also, each leaf is labelled with its corresponding process.

Note that, the width of a decomposition can be recovered from the labelled split-term
(but not from the unlabelled split-term). Indeed, the labelling of a merge node directly gives
the number of holes of its child, and the labelling of a shuffle node, or a >-node, gives the
number of blocks from which we can infer the number of holes.

Tree-interpretations. Each CBM that can be decomposed with a split-term s admits an
MSO-interpretation (cf. Footnote 2) in the tree s, which is defined by a tuple of formulas over
binary trees (Pvaiid; (Pa)aes, (Pp)peprocs, (Pa)dens, P ). The interpretation guesses (with
set variables) a labelling to disambiguate the split term as explained above. Not all labelled
split-terms allow an interpretation, so we use a formula ®,,iq to check the validity of the
labelling. Essentially, we have to check that, for each process p, the number of blocks at a
node is compatible with that of the children. For instance, a label w, € {¢,r}* at a shuffle
node assumes |wp|¢ (resp. |wpl,) blocks on process p from the left (resp. right) child. A label
wy € {i,m}* at a merge node assumes |w,| holes on process p from the child. For a > node
with p = Writer(d) and ¢ = Reader(d), we request that the children are leaves labelled p (left)
and ¢ (right), and if p = ¢ then we request w, = ¢r and wy = ¢ for s # p, and if p # ¢ then
we request w, = ¢, wg = r and ws = € for p # s # ¢. In addition, for stack or queue data
structures, the formula ®,,q has to check that the LIFO or FIFO conditions are respected.
To do so, we need to enrich further the labelling. If d € Stacks then we maintain the >¢
relation between blocks of process p = Reader(d) = Writer(d): i >9 j if e > f for some e in
the ith block of process p and some f in the jth block of process p. This information can be
easily computed by a deterministic bottom-up tree automaton. At a shuffle node, we make
sure that the LIFO condition is respected by rejecting shuffles that would result in a >¢
relation between blocks that is not well-nested. Hence we obtain an EMSO formula to check
the LIFO condition for data structure d. We proceed similarly for queues.

We denote by DSTX ., the set of split-terms disambiguated by a valid labelling of width
at most k. Each tree t € DSTX ., encodes a unique CBM of split-width at most k, denoted
cbm(t). Conversely, every M € CBprlit is encoded by some, often many, trees t € DST" ;.

Vertices of cbm(t) are leaves of ¢t hence we let ®yerrex(x) = leaf(z). The vertex labelling in
cbm(t) is the corresponding leaf labelling in ¢. Hence, formulee ®,(z) and ®,(z) state that
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leaf x is labelled a and p in t. The matching relation also admits a trivial interpretation: for
d € DS, ®4(w,y) states that z and y are leaves with a comon father labelled >.

The process relation is slightly harder to recover. This is where the additional labelling
is needed. Intuitively, ®_, (z,y) states that from leaf x it is possible to walk up the tree to
some merge node m, then walk down the tree to leaf y, and that the split edge from z to y
has been mended at node m. It is easy to check this property with a tree automaton and
to deduce the (EMSO) formula ®_, (x,y). More precisely, the deterministic bottom-up tree
automaton keeps in its states the block B, of which z is the right-most event, and the block
B, of which y is the left-most event. It goes to an accepting state only if the hole between
B, and B, is mended into a process edge at some merge node. For instance, the process
edge from leaf (ny4) to leaf (ns) is established at merge node (nq).

Tree-width, clique-width and split-width. On CBMs, split-width is a measure that is very
similar to clique-width or tree-width. It is shown in [16, 15] that for CBMs, a bound on
split-width implies a (linear) bound on clique-width or tree-width and vice versa. More
precisely, if a CBM has split-width & then it has clique-width at most 2(k 4 |Procs|) + 1 and
tree-width at most 2(k + |Procs|) — 1. Conversely, if a CBM has clique-width ¢ or tree-width
t then it has split-width bounded by 2¢ — 3 or 120(¢ + 1).

Verification procedures for bounded split-width. Most verification problems become de-
cidable with reasonable complexity when parametrised by a bound on split-width. Intuitively,
the tree-interpretation provided by split-width allows us to uniformly reduce a collection of
problems on CBMs of bounded split-width to problems on trees, which are then solved with
tree automata techniques.

More precisely, let S be a CPDS over (21, %) and ¢ € MSO(2(, X) be a specification. The
model checking problem restricted to the class CBME .. of CBMs with split-width bounded by

split
k asks whether Lcpm(S) N CBI\/pr“t C Lepm(p). Similarly, the emptiness problem for S (resp.
the satisfiability problem for @) restricted to CBI\/pr“t asks whether Lcpm(S) N CBI\/l_ifp“t =0

(resp. Lepm(p) N CBl\/lfp”t # (). We reduce these problems to the emptiness problem for tree
automata as follows.

First, we can build a tree automaton A~ ., of size 20 12N) which accepts DST" 4. Next,
we can build a tree automaton AL of size |S|O*+Prossl) which accepts a tree t € DSTE 4 if
and only if cbm(t) € Lpm(S). Therefore, the emptiness problem for the CPDS S restricted
to CBI\/l_ifI:,“t reduces to the emptiness problem of the tree automaton A~ ., N Ak.

Now, let ¢ be a sentence in MSO(2(, ). Using the MSO interpretation (®yajid, Puertex,
(Do)aes, (Pp)peprocs, (Pa)deps, P—,) for k-bounded split-width, we can construct a formula ol
from ¢ such that for all trees t € DSTY ., we have t = %" if and only if cbm(t) |= ¢. By [31],
from the MSO formula G* we can construct an equivalent tree automaton .A’:,. Therefore, the

satisfiability problem for the MSO formula ¢ restricted to CBMZ,“t
problem of the tree automaton A, ;4 N A%

Finally, we deduce easily that Lepm(S) N CBME . € Lepm(¢) if and only if ¢ = $* for all

reduces to the emptiness

split
trees t accepted by A ., N A%. Therefore, the model checking problem S | ¢ restricted to
CBpr“t reduces to the emptiness problem for the tree automaton A¥ ., N A% N Aliw.

We have described above uniform decision procedures for an array of verification problems.
We refer to [16, 15, 2] for more details and we summarise the computational complexities of
these procedures in Table 2.
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Table 2 Summary of the complexities for bounded split-width verification.

Complexity

Problem Architecture 2, alphabet X, bound k on split-width

being part of the input being fixed

(k in unary)
CPDS emptiness ExpTiME-Complete PTiME-Complete
CPDS inclusion or universality 2EXPTIME ExpPTIME-Complete
LTL/CPDL satisfiability, model checking ExpTiME-Complete
ICPDL satisfiability or model checking 2ExPTIME -Complete
MSO satisfiability or model checking Non-elementary

Verification procedures for other under-approximation classes. Our approach is generic
in yet another sense. Under-approximation classes which admit a bound on split-width also
may benefit from the uniform decision procedures described above, provided these classes
correspond to regular sets of split-terms.

More precisely, let C,,, be an under-approximation class with C,, C CBI\/pr“t. For instance,
we have seen that existentially m-bounded CBMs have split-width at most k = m +1 (Ex. 6)
and m-bounded phase MNWs have split-width at most k = 2" (Ex. 7). Assume that we can
construct? a tree automaton A(’f,m which accepts a tree t € DSTX ., if and only if cbm(t) € C,,.
Then, the decision procedures can be restricted to the class C,, with a further intersection
with the tree automaton Aém. For instance, the emptiness problem for S restricted to C,,
reduces to the emptiness problem of A¥ ., N Aém N A%. The model checking problem S = ¢
restricted to Cp, reduces to the emptiness problem of A%, N Ag N ALN AR .

Clearly, the bound £ on split-width in terms of m as well as the size of A’f}m will impact
on the complexity of the decision procedures. We give below several examples.

First, nested words have split-width bounded by a constant 2, and the set of nested words
can be recognised by a trivial 1-state CPDS. Hence the complexities of various problems
follow the right-most column of Table 2. Notice that already for this simple case, the
complexities match the corresponding lower bounds for all problems.

Next, suppose a class C,,, admits a bound on split-width k& = poly(m) and Aé is of size*
bounded by 2P°Y(™)  Then the decision procedures for various problems with respect to the
under-approximation class C,, follow the complexities given in Table 2.

This can be extended as follows. Assume the bound k on split-width of the under-
approximation class C,, is n-fold exponential in m and that the size of the tree automaton
Ag is bounded by (n + 1)-fold exponential in m (e.g., if we have a CPDS S, of size
2pPoY(k)) “then the complexities given in Table 2 (left column) will be augmented by a n-fold
exponentiation. For instance, the class C,, of m-bounded phase MNWs has split-width
bounded by 2™ (Ex. 7). Also, it is trivial to get a CPDS S,,, for C,, of size poly(m). Hence,
the size of Agm = ‘A«’%m is 2Po(")  We deduce that the complexities given in Table 2 (left
column) are augmented by one exponentiation for m-bounded phase MNWs.

Thus the verification method via split-width is uniform not only for a wide range of

3 One way to obtain Aém is to provide a CPDS S, which accepts the class Cy,, then the automaton Agm
serves as .Além. Similarly, if there is a formula ¢,, in MSO(2(, X) characterising the under-approximation

then the automaton A% =~ serves as Af .
1 IfCpy is recognised by a CPDS S, of size 2p°'y(k), then the automaton .A’C“m = Algm is of size 2POY(F),
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problems but also for a wide range of classes. The complexities stated in Table 2 match the
lower-bounds for many known under-approximation classes, thus asserting the optimality of
the uniform decision procedures. For details we refer to [15, Section 4.4].

Word-like. A split-decomposition is said to be word-like if for every binary node in the
decomposition tree, one of its subtrees has depth bounded by a constant. In this case,
we could employ word automata instead of tree automata. All behaviours of some under-
approximation classes, like existentially m-bounded, admit a word-like split decomposition.
For many problems, the complexity upper bounds fall to the maximal space-complexity
classes contained in the time-complexity classes. For example, emptiness checking of a CPDS
parametrised by (word-like) split-width & can be done in PSPACE instead of EXPTIME, and
if k is fixed, in NLOGSPACE instead of PTIME.
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—— Abstract

Colour refinement is a simple algorithm that partitions the vertices of a graph according their

“iterated degree sequence.” It has very efficient implementations, running in quasilinear time,
and a surprisingly wide range of applications. The algorithm has been designed in the context of
graph isomorphism testing, and it is used an important subroutine in almost all practical graph
isomorphism tools. Somewhat surprisingly, other applications in machine learning, probabilistic
inference, and linear programming have surfaced recently.

In the first part of my talk, I will introduce the basic algorithm as well as higher dimensional
extensions known as the k-dimensional Weisfeiler-Lehman algorithm. I will also discuss an un-
expected connection between colour refinement and a natural linear programming approach to
graph isomorphism testing. In the second part of my talk, I will discuss various applications of
colour refinement.
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—— Abstract

We study capacitated automata (CAs), where transitions correspond to resources and may have
bounded capacities. Each transition in a CA is associated with a (possibly infinite) bound on
the number of times it may be traversed. We study CAs from two points of view. The first
is that of traditional automata theory, where we view CAs as recognizers of formal languages
and examine their expressive power, succinctness, and determinization. The second is that of
resource-allocation theory, where we view CAs as a rich description of a flow network and study
their utilization.
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1 Introduction

Finite state automata are used in the modeling and design of finite-state systems and their
behaviors, with applications in engineering, databases, linguistics, biology, and many more.
The traditional definition of an automaton does not refer to its transitions as consumable
resources. Indeed, a run of an automaton is a sequence of successive transitions, and there
is no bound whatsoever on the number of times that a transition may be traversed. In
practice, the use of a transition may correspond to the use of some resource. For example, it
may be associated with the usage of some energy-consuming machine, application of some
material, or consumption of bandwidth. We study capacitated automata (CAs). In this
model, transitions correspond to resources and may have bounded capacities. Formally, each
transition is associated with a (possibly infinite) integral bound on the number of times
it may be traversed. A word w is accepted by a nondeterministic capacitated automaton
(NCA) A if A has an accepting run on w; one that reaches an accepting state and respects
the bounds on the transitions.

We examine CAs from two points of view. The first, more related to traditional automata
theory, views CAs as recognizers of formal languages. The interesting questions that arise
in this view are similar to classical questions about automata: their expressive power,
succinctness, determinization, decision problems, etc. The second view, more related to
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5v icensed under Creative Commons License CC-BY
34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S.P. Suresh; pp. 33-44

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34

Properties and Utilization of Capacitated Automata

traditional resource-allocation theory, views CAs as labeled flow networks. The interesting
questions then have to do with optimal utilization of the system modeled by the CA.

Let us start with the first view. In terms of expressive power, we show that capacities
can be removed. Thus, NCAs are not more expressive than nondeterministic finite automata
(NFAs), and can recognize exactly all regular languages. The main questions that arise, then,
refer to the succinctness of the capacitated model with respect to the standard one, as well
as the blow-up involved in their determinization. Consider, for example, the language L,, ,,
over the alphabet ¥, = {1,...,n} that contains exactly all words in which each letter in X,
appears at most m times. It is not hard to see that a traditional, possibly nondeterministic,
automaton for L, ,, needs at least m” states. On the other hand, a deterministic capacitated
automaton (DCA) for L,, consists of a single state with n self-loops, each labeled by a different
letter from ¥, and has capacity m. Hence, both NCAs and DCAs may be exponentially
more succinct than NFAs. The nondeterministic model, however, is much stronger, and
determinization involves a blow-up that is not only exponential in the state space but also
linear in the product of the capacities. Note that the latter is at least exponential in the
number of transitions. This is surprising, as we do allow the obtained DCA to have capacities.
As we show, there are languages, in particular strongly liveness languages [1], for which the
power of capacities is significant in the nondeterministic model but is not realized in the
deterministic one.

We then turn to solve decision problems about CAs. Two classical problems are the
nonemptiness (does A accept at least one word?) and the membership (does A accept a
given word w?) problem. In the traditional model, the problems are essentially the same:
checking whether A accepts w can be reduced to checking the emptiness of the product of
A with w. Accordingly, both problems can be reduced to reachability. In the capacitated
model, taking the product of a word with an automaton may require tracing the history of
traversals, and indeed we prove that while the nonemptiness problem is not more difficult
than in the traditional model, membership becomes NP-complete for NCAs. Moreover, if we
augment the nonemptiness problem to consider words from a given language (that is, given
a CA A and a regular language L, decide whether A4 accepts some word from L), it becomes
NP-complete already for DCAs, even when L is given by a DFA.

We continue to the second view, where CAs model labeled flow networks. In order to
motivate this view, let us first demonstrate the different ways in which we consider CAs in
the two views. Consider the containment problem for CAs, asking whether a given set S of
words is contained in the language of a CA 4. We can think of two variants of the problem.
In the first, which corresponds to our first view, we ask whether A accepts w for each word
w € S. In the second, which corresponds to our second view, we ask whether A mutually
accepts all words in S. That is, whether A has enough capacity to process all the words in S
mutually. It is not surprising that a CA may contain S in the first view but not in the second.
Consider for example the NCA A described in Figure 1. Let S = {ab, abc, ac, abb, abcb}.
Clearly, all the words in S are accepted by A, thus A contains S in the first view. On the
other hand, there is no way for A to mutually accept all the words in S. Indeed, it is not
hard to see that A can make only a single use of the edge (g1, ¢, g2) even though its capacity
is 2, whereas S contains three words with the letter ¢. Note that A can mutually accept the
set S’ = {ab, ac, abb, abeb}, but one has to carefully resolve nondeterminism in order to do it.
For example, once A processes abb via ¢1, it can no longer process both ac and abeb. Thus,
in the second view, the challenge is to find ways to mutually accept in a given NCA as many
words as possible, as we formally define below.

A natural problem that arises when reasoning about systems that consist of resources
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2 (2

Figure 1 An NCA that contains S = {ab, abc, ac, abb, abcb} in the traditional view but does not
contain S mutually.

with limited capacities is to utilize these resources in the best way. In our model, the
mazx-utilization problem is defined as follows. Given a CA A, return a multiset W of words,
such that A mutually accepts all the words in W, and |W| is maximal. The max-utilization
problem can be viewed as a generalization of the max-flow problem in networks [11]. In the
max-flow problem, the network is utilized by units of flow, each routed from the source to
the target. The CA model enables a rich description of the feasible routes. The labels along
a path correspond to a sequence of applications of resources. In particular, paths from an
initial state to a final state correspond to feasible such sequences, and the goal is to mutually
process as many of them as possible.

Sometimes, not all the sequences feasible in the NCA are desirable. Accordingly, we also
consider the mazx restricted-utilization problem, where the input to the problem also includes
a language specifying the desirable sequences. Then, the words in the multiset W must
belong to this language. For example, the language may restrict the length of the sequences,
preventing long sequences from consuming the system (see [17] for an analogous restriction
in flow networks), it may restrict the number of different resources applied in a sequence, it
may require an application of specific resources, it may require a specific event to trigger
another specific event, and so on. Thus, while in traditional flow problems the specification
of desired routes is given by means of a source and a target, the max restricted utilization
problem enables specifications that are much richer than reachability. A similar lifting of
reachability was studied in [3], where network formation games were extended to automata
formation games. We study the complexity of the max utilization problems and show that
while the unrestricted variant can be solved in polynomial time by a simple reduction to a
network maximum-flow problem, even simple restrictions on the desirable routes make the
problem hard to approximate. Essentially, this follows from the fact that the basic idea of
an augmenting path in a network cannot be adopted to NCAs. Indeed, in NCAs every path
corresponds to a sequence of applications of recourses, and the augmenting path need not
correspond to a desired such sequence.

Related Work

Many extensions of automata in which transitions are augmented by numerical values
have been studied. Most notable are probabilistic automata [19], where the values form a
distribution on the successor state, and weighted automata [10], where weights are used in
order to model costs, rewards, certainty, and many more. The semantics of these models
is multi-valued: each traversal of a transition updates some accumulated value, and the
language of the automaton maps words into some domain. In particular, the B and S
automata of [8] count traversals on transitions. Our semantics, on the other hand, maintains
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the Boolean nature of regular languages, and only augments the way in which acceptance is
defined.

More related to our work are extensions of automata that stay in the Boolean domain, in
particular ones whose semantics involves counting. Parikh automata were introduced and
studied by Klaedtke and Ruefl in [16]. Their semantics involves counting of the number
of occurrences of each letter in ¥ in the word. Essentially, a Parikh automaton is a pair
(A,C), where A is an NFA over ¥, and C' C IN* is a set of “allowed occurrences”. A word
w is accepted by (A, C) if both A accepts w and the Parakh’s commutative image of w,
which maps each letter in ¥ to its number of occurrences in w, is in C. It is easy to see
that the expressive power of Parikh automata goes beyond regular language. For example,
Parikh automata can recognize the language {a’b’ : i > 1} by defining A to recognize a*b*
and defining C' to contain all pairs (i,4), for ¢ > 1. In fact, by [15], Parikh automata are as
expressive as reversal-bounded counter machines [13].

Several variants of Parikh automata have seen studied. In particular, [7] studied con-
strained automata, a variant that counts traversals of transitions and requires the vector of
counters to belong to C', now a semilinear set of allowed vectors. NCAs can be viewed as
a special case of constrained automata in which C is downwards closed. This significantly
restricts the expressive power of constrained automata, and indeed the types of questions we
consider are different than these studied for Parikh automata and their variants.

Additional strictly more expressive models include multiple counters automata [9], where
transitions can be taken only if guards referring to traversals so far are satisfied, and queue-
content decision diagrams, which are used to represent queue content of FIFO-channel
systems [5, 6]. Finally, a model with the same name — finite capacity automata is used in
[18] in order to model the control of an automated manufacturing system. This model is
different from our CAs and is more related to Petri nets.

The above works take the first view on automata, namely study them as recognizers of
languages. As for the second view, a lot of research has been done on optimal utilization of
limited resources. In particular, as discussed above, max-utilization of a CA corresponds to a
maximum flow in a network [11]. By restricting the domain from which accepted words can
be chosen, we get an intractable problem. This resemble the intractability of some variants
of the max-flow problem, such as k-bounded flow [4], or max-flow with bounded-length
paths [17].

2 Preliminaries

A nondeterministic finite automaton (NFA, for short) is a tuple A = (X, Q, Qo, A, F'), where
Y is a finite alphabet, Q) is a finite set of states, Q¢ C @ is a set of initial states, A C QXX X Q
is a transition relation, and F' C Q@ is a set of final states. Given a word w = o7 - 02 - - - 0y,
a run of A on w is a sequence r of successive transitions in A that reads w and starts in
a transition from the set of initial states. Thus, r = (g0, 01, ¢1), {(q1,02,92), ..., {qi—1, 00, q1),
for o € Qp. The run is accepting if q; € F'. We sometimes refer to the transitions function
§:Q x X — @ induced by A, thus ¢’ € §(q,0) iff A(g,0,q"). The NFA A accepts the word
w iff it has an accepting run on it. Otherwise, A rejects w. The language of A, denoted
L(A) is the set of words that A accepts. If |Qo| =1 and for all ¢ € @ and o € X there is at
most one ¢’ € Q with A(q,0,q’), then A is deterministic. Note that a deterministic finite
automaton (DFA) has at most one run on each word.

A nondeterministic capacitated automaton (NCA, for short) is an NFA in which each
transition has a capacity, bounding the number of times it may be traversed. A transition
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may not be bounded, in which case its capacity is co. Let IN>® = INU{oo} and Nt = IN'\ {0}.
Formally, an NCA is a pair (A, ¢), where A is an NFA and ¢ : A — IN™ is a capacity function
that maps each transition in A to its capacity. A run of (A4, ¢) is a run of A in which the
number of occurrences of each transition e € A is at most ¢(e). When A is deterministic,
then so is (A,c). For a CA A and a set of words S, we say that A mutually accepts S if
there are |S| accepting runs, one for each word in S, such that for each transition e € A, the
total number of occurrences of e in all these runs is at most c(e).

For a capacity function ¢ : A — IN*°, let ¢; be the set of capacity functions obtained by
closing ¢ downwards. Formally, a function ¢ : A — IN*° is in ¢ if for all transitions e € A
with c¢(e) = oo, we have ¢/(e) = oo, and for all transitions e € A with ¢(e) € IN, we have
0 < c(e) < c(e). It is easy to see that the size of ¢, denoted |c|, is TL,.c(e)emnv+ (c(e) 4 1).
Thus, |c¢;| is exponential in the number of transitions with bounded capacities.

3 Theoretical Properties of NCAs

In this section we study the expressive power and succinctness of NCAs with respect to
NFAs, as well as their determinization.

3.1 Capacities Removal

» Theorem 1. NCAs accept regular languages: Every NCA (A, c) has an equivalent NFA
A'. The size of A’ is linear in the size of A and |cy|.

Proof. Given an NCA (A,¢) with A = (3,Q,Qo, A, F), we define an equivalent NFA
A =(2,Q,Qp, A, F') as follows.
Q = Q xcp and Q) = Qo x {c;}. That is, each state in A" maintains both the
corresponding state in A and the capacities that are left to be consumed.
For ¢,¢' € Q, d,d" € ¢, and o € 3, we have that A'((g,d),0, (¢, d)) iff A(q,0,¢),
d({q,0,q")) > 0,d'(e) = d(e) for all e # (q,0,q"), and d’'({(g,0,¢")) = d({g,0,¢’)) — 1. That
is, d’ is updated to take the traversal of (g, c,¢’) into an account by reducing its capacity
by 1.
F'=F x Cyl-

Note that the construction preserves determinism, thus if A4 is a DCA, the obtained A’ is
a DFA. It is not hard to prove that each run r of A corresponds to a run of A’, obtained by
pairing each state in r by the capacity function that reflects the updates to ¢ according to
the transitions traversed so far. Dually, each run ' of A’ corresponds to a run of A, obtained
by projecting 7’ on the Q-elements of its states. By the definition of A’, the obtained run
respects the bounds on the transitions.

We prove that the blow-up in |¢| cannot be avoided. We prove it already for single-
state DCAs. Given two parameters n,m € IN, consider the DCA (A, ., Cn,m), where
Anm = {1,...,n}, {¢},{¢}, A{q}) is such that each letter i € {1,...,n} contributes to A
the transition (g, %, ¢). That is, A, ,, consists of a single state with one self-loop transition
for each of the n letters. The capacity of all transitions is m. Thus, ¢, m({g,%,q)) = m for
all i € {1,...,n}. It is easy to see that the language L,, ,, of (A, m,Cn.m) is the set of all
words in which each of the letters {1,...,n} appears at most m times, and that every NFA
that recognizes L,, ,, needs at least n™ states. |

Theorem 1 implies that, like regular languages, NCAs and DCAs are closed under union,
intersection, and complementation, and that NCAs can be determinized. The question is
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Figure 2 An NCA for L}, ,,.

the blow-up involved in the corresponding constructions, in particular whether they need to
involve removal of capacities.

3.2 Determinization

In this section we study the succinctness of NCAs with respect to DCAs. We show that
NCAs are exponentially more succinct not only in the number of states but also in the
number of transitions. More precisely, determination may involve a blow-up linear in c;.
This is surprising, as we do allow the obtained deterministic automaton to be capacitated.
We first prove that there are languages for which capacities are not useful in the deterministic
setting. A language L C ¥* is strongly liveness if L = ¥* - L [1]. Thus, in terms of temporal
logic, strongly liveness languages correspond to properties if the form “eventually ¢” for
some behavior .

» Lemma 2. A DCA for a strongly liveness language L is not smaller than a DFA for L.

Proof. Consider a DCA (A, ¢) that recognizes L. We say that a word w € ¥* consumes
(A, c) if, after reading w, a run of A can proceed only along transitions with infinite capacity
(or cannot proceed at all). It is easy to see that there exists at least one word w that consumes
(A, c). Let g be the state that A reaches by reading w. Since L = ¥* - L, we have that
w- L C L. Hence, since A is deterministic, the language of the DFA A’ obtained from A by
making ¢ its initial state and by removing all transitions that do not have infinite capacity is
L. The size of A’ is at most the size of A, and we are done. <

» Theorem 3. Determinization of NCAs involves a blow-up exponential in Q and linear
mcy.

Proof. The exponential blow-up with respect to @ follows from the known exponential
blow-up in determinization of NFAs [20]. In order to prove the blow-up in ¢, we describe a
family L;ym, for n,m > 1 of strongly liveness languages such that L;,m is over the alphabet
¥, ={0,...,n}, it can be recognized by a two-state NCA with n transitions with capacity
m. By Lemma 2, the size of a DCA for L}, ,, is equal to the size of a DFA for it, which is at

least m™.

Let L, ., be the language of all words w over {1, ...,n} such that each letter in {1,...,n}
appears in w at most m times (the same language as in the proof of Theorem 1). We define
Ly =25 -0 Ly m, Clearly, L, . is a strongly liveness language, and it can be recognized

by the two-state NCA described in Figure 2. <
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4 Decision Problems

In this section we study the following decision problems for NCAs and DCAs. Below we also
state their known complexity in the traditional setting (see, for example [12]).
The nonemptiness problem: given an automaton .4, decides whether L(A) # (). For both
NFA and DFA, the nonemptiness problem is NLOGSPACE-complete.
The membership problem: given an automaton 4 and a finite word w, decide whether
w € L(A). For NFA and DFA, the membership problem is NLOGSPACE-complete and
LOGSPACE-complete, respectively.
The relative nonemptiness problem: given an automaton A and a language L, decide
whether A accepts at least one word from L. The relative nonemptiness problem for an
NFA or a DFA A and a language L given by an NFA or a DFA is NLOGSPACE-complete.

» Theorem 4. The nonemptiness problem for NCAs and DCAs is NLOGSPACE-complete.

Proof. An NCA is nonempty iff there is a simple path from some initial state to some
accepting state. Since the path is simple, capacities do not play a role (beyond exclusion of
transitions with capacity 0). Thus, nonemptiness can be reduced to reachability, implying
membership in NLOGSPACE. The lower bound follows from NLOGSPACE hardness for
DFA emptiness. |

» Theorem 5. The membership problem can be solved in linear time for DCAs and is
NP-complete for NCAs.

Proof. We start with the upper bounds. Given a DCA (A, ¢) and a word w, we can trace

the single run of (A, ¢) on w and check that it ends in an accepting state and respects c.

When (A, ¢) is an NCA, a witness to the membership of w in (A4, ¢) is an accepting run of
(A, c) on w. As above, it can be checked in linear time.

For NCAs, we prove hardness in NP already for the case |X| = 1. We describe a
reduction from the problem of deciding whether a given directed graph has a Hamiltonian
cycle — one that visits all vertices of the graph exactly once. Given a graph G = (V| E),
we construct the NCA (A4, c) as follows (see an example in Figure 3. The graph G is
on the left, the NCA A is in the middle). Let v; be some vertex in V. Then, A =
({o},V x {in,out}, {{v1,out)}, A, {{v1,0ut)}) is such that each vertex v € V contributes to
A the transition ({v,in), o, (v,out)) with capacity 1, and each edge (u,v) in E contributes
to A the transition ({u,out), o, (v,in)), again with capacity 1. It is not hard to see that G
has a Hamiltonian cycle iff (A, c) accepts the word o?/Vl. Indeed, having capacity 1 on the
transitions that correspond to vertices in V' guarantees that each vertex is visited at most
once, thus a word of length 2|V | must close a cycle and visits exactly all vertices in G. <

» Theorem 6. The relative nonemptiness problem for NCAs and DCAs relative to languages
given by NCAs, DCAs, NFAs, or DFAs is NP-complete.

Proof. Consider a capacitated automaton (A4, ¢) and an automaton U such that we want to
check the nonemptiness of A with respect to L(U). Note that we have eight cases to consider,

reflecting whether A is an NCA or a DCA and whether U/ is an NCA, DCA, NFA, or DFA.

We prove that all eight cases are NP-complete.

We start with membership in NP for the most general case, where both (A, c) and
U= (A, ) are NCAs. A witness to the relative nonemptiness is a word w and accepting
runs of (A, ¢) and (A’,¢) on it. The word w does not traverse cycles in the product of A
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Figure 3 Two reductions from the Hamiltonian cycle problem.

and A’. Tt is thus of polynomial length in the product, which is of size |A| - |.A’|. Checking
that the runs respect ¢ and ¢’ can also be done in polynomial time.

We prove hardness in NP for the most restricted case, where (A, c) is a DCA and U
is a DFA. We describe a reduction from the problem of deciding whether a given directed
graph has a Hamiltonian cycle (see an example in Figure 3. The graph G is on the left,
the NCA A is on the right). Given G = (V,E) with V. = {v1,...,v,}, we construct
A =(V,V x {in,out}, {(v1,out) }, A, {(v1,out)}), where vy is an arbitrary vertex in V. Each
vertex v € V' contributes to A the transition ({v,in), v, (v, out)) with capacity 1, and each
edge (u,v) in F contributes to A the transition ((u,out),v, (v,in)) with capacity 1. It is easy
to see that A is indeed a DCA and that G has a Hamiltonian cycle iff A accepts a word in
the language [(v1-v1)+ - -+ (vy - v,)]", which can be recognized by a DFA with O(n?) states.
In the example, the Hamiltonian cycle ABDC A corresponds to the word BBDDCCAA. <«

5 The Maximum Utilization Problem

A natural problem that arises when reasoning about systems that consist of resources with
limited capacities is to utilize these resources in the best way. In our model, the maximum
utilization problem is defined as follows. Given a CA (A, ¢), return a multiset W of words,
such that (A, c) has enough capacity to mutually accept all the words in W, and |W| is
maximal. We refer to W as an optimal utilization mutiset for (A, c).

As discussed in Section 1, the max-utilization problem can be viewed as a generalization of
the max-flow problem in a network. The CA model enables a rich description of the feasible
routes. Sometimes, not all the sequences allowed by the CA are desirable. Accordingly,
we also consider the max restricted utilization problem, where the input to the problem
also includes a language L, specifying the desirable sequences. Then, the words in the
optimal utilization multiset must belong to L. In Section 5.1, we show that the unrestricted
max-utilization problem can be solved in polynomial time by a reduction to the classical
network-flow problem [11]. In section 5.2 we study the restricted case and show that adding
restrictions makes the problem much more complex.

5.1 Maximum Unrestricted Utilization

We present an optimal algorithm for the max-utilization problem. The algorithm is based on
a reduction to a max-flow problem in a network. Recall that a max-flow problem is defined
over a flow-network given by a directed graph G = (V, E), two vertices s,t € V designated as
the source and the target vertices, and a capacity function ¢ that maps each edge e € F to a
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positive integral capacity c(e). For a vertex v, let in(v) and out(v) denote the set of edges
into and out of v, respectively. A legal flow is a function f : E — IR such that for every
edge e € E, it holds that 0 < f(e) < ¢(e), and for every vertex v € V' \ {s, ¢}, it holds that
Decin(e) F(€) = X ecour(w) f(€)- A max-flow is a legal flow that maximizes the flow leaving

the source, given by > ¢ i(s) F(€) = Xecin(s) f€)-

» Theorem 7. The maz-utilization problem for NCAs and DCAs can be solved in polynomial
time.

Proof. Let (A, c) be an NCA, with A = (3,Q,Qo, A, F). If A has a path from Qg to F all
whose transitions have infinite capacity (in particular, if Qo N F' # (), then, as the optimal
utilization multiset is not restricted, so is the max-flow, and we return as a witness the
(possibly empty) word along the above accepting run.

Otherwise, the optimal utilization multiset must be finite and we proceed as follows. Given
(A, c), we construct a flow-network G = (Q U {s,t}, E), where every transition (p,c,q) € A
induces an edge (p, ¢) in E with capacity ¢({p, o, q)). The set E includes also the set of edges
{s} x Qo and F x {t}, all with an unbounded capacity. It is easy to see that a max-flow in G
corresponds to a maximal multiset of words that can be mutually processed by (A, c). The

optimal utilization multiset W can be obtained by tracking the (s, ¢)-paths in the max-flow.

Note that since there are no restriction on the words in W, the alphabet in (A, ¢) plays no
role. |

5.2 Maximum Restricted Utilization

In the max restricted-utilization problem, we are given, in addition to a CA (A, ¢), also a
regular language L. The optimal utilization multi set W then has to contain only words
from L. We refer to L as the restricting language.

We present a polynomial-time optimal algorithm for the max restricted-utilization problem
for the case the restricting language consists of words of length at most 2. This is indeed a
very limited class of languages. Yet, it is tight, as we provide an APX-hardness proof already
for the case that (A, ¢) is a DCA with ¢ = 1 and the restricting language consists of words of
length 3.

» Theorem 8. When all the words in the restricting language are of length at most 2, the
mazx restricted-utilization problem can be solved in polynomial time.

Proof. Let (A, c) be an NCA and L a restricting language all of whose words are of length
at most 2. First, if e € L({A4, ¢)) N L, then the optimal utilization multiset is infinite, and we
are done. Hence, we assume that all words in L are of length 1 or 2. We present an optimal
algorithm that is based on reducing the problem to a mazimum b-matching problem. An
instance of b-matching consists of an undirected graph G = (V, E) and a budget function
b:V — IN. A b-matching is an assignment of a non-negative integer weight z. to every edge
e € F, such that for every vertex v € V, the sum of weights on edges incident with v is at
most b(v). The maximum b-matching problem is to find a matching of maximum profit; that
is, max ), x.. The graph G need not be simple. That is, self-loops and parallel edges are
allowed. By [2], the maximum b-matching problem can be solved in time polynomial in |V|
and |E|.

Let A= (3,Q,Q0,A, F), and let W1(L) and W2(L) denote the words of length 1 and
2 in L, respectively. For every o € Wi(L), let A, C A be the set of transitions that form
an accepting run on o in (A, ¢). Formally, e € A, iff e = (g0, 0, p) for g0 € Qo, p € F, and
c(e) > 1. For every w = 01-09 € Wa(L), let Ay, € A x A be the set of pairs of transitions that
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a,3

Figure 4 An NCA and the b-matching instance constructed for L = {a, aa, ab, ac, ba, be, cc}.

form an accepting run on w in A. Formally, {e1,e2) € A, iff €1 = (q1,01,p1), €2 = (g2, 02, p2)
for ¢ € Qo, p1 = q2, p2 € F, ¢(e1) > 1, and c(ez) > 1. If e = e, then we also require
¢(e1) > 2. Note that if w & L(A), then E,, is empty. Also, if w has several accepting runs in
A, then |E,| > 1. It is possible to compute the above sets in time O(|Q|?).

We construct an undirected graph G = (A U {wvg}, E), where F consists of edges of two

types, defined as follows.

1. {e;,vp) € E iff there exists a word o € W1(L) such that e; € A,.

2. (ej,ej) € E iff there exists a word w € Wa(L) such that (e;, e;) € A.

Every edge of type (e;,vg) corresponds to a l-letter word. Every edge of type (e;,e;)
corresponds to at least one 2-letter word. Since (Qy may include several initial states, it is
possible that both (e;,e;) and (e, e;) form accepting runs in (A, c). It is also possible to
have a self-loop in G if A includes a self-loop from the initial state.

An example of the reduction is given in Figure 4. The CA (A4, ¢) is on the left and the
b-matching instance constructed for L = {a, aa, ab, ac, ba, be, cc} is on the right. Note that
each of the words a, aa, and ab has two possible accepting runs in (A, ¢). Thus, each of these
words induces two edges in G. Words that belong to L\ L({A,c)), like ba and cc, as well as
words that belong to L({A,c)) \ L, like b or bb, do not induce an edge in G.

To complete the definition of the b-matching instance, we set the vertex budgets as follows.
For every e; € A, we set b(e;) = ¢;. For vg, we set b(vg) = oo.

Consider a feasible b-matching in G. By the construction of G, every edge in E corresponds
to a word in L({A,c)) N L. The budget constraints on the vertices correspond to the edge-
capacities. Thus, every set of words from L that can be mutually accepted by (A, c)
corresponds to a feasible b-matching in G and vice-versa. In particular, a maximum b-
matching corresponds to an optimal utilization multiset that is contained in L. |

Next, we show that the above is the most positive result we can achieve for the max
restricted-utilization problem. That is, when L may include three-letter words, the max-
utilization problem becomes APX-hard. That is, there exists a constant ¢ such that it is
NP-hard to find an approximation algorithm with approximation ratio better than c.

» Theorem 9. The max restricted-utilization problem is APX-hard. This is valid already
when the restricting language consists only of words of length 3 and a unit capacity DCA.

Proof. We show an approximation-preserving reduction from the maximum 3-bounded 3-
dimensional matching problem (3DM-3). The input to the 3DM-3 problem is a set of triplets
T C X XY x Z, where |X| = |Y]| =|Z| = n. The number of occurrences of every element of
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XUYUZ in T is at most 3. The number of triplets is |T'| > n. The desired output is a
3-dimensional matching in T' of maximal cardinality; i.e., a subset T/ C T, such that every
element in X UY U Z appears at most once in 7", and |7”| is maximal. Kann showed in [14]
that 3DM-3 is APX-hard.

Given an instance of 3DM-3, we construct a DCA (A4, ¢), with A = (3,Q, Qo, A, F), as
follows. First, ¥ = X UY UZ,Q = {qo0,q1,92,q3},Q0 = {90}, F = {q3}. The transition
relation A consists of 3n transitions all having capacity 1. There are n parallel transitions
(go, i, q1) for all 1 <14 < n, n parallel transitions (g1, y;, g2) for all 1 < j < n, and n parallel
transitions (gz, 2k, ¢3) for all 1 < k < n. The capacity of all transitions is 1.

To complete the reduction, we define the restricting language L = {x;-y; -2k : (s, y;, 2k) €
T}. Note that the reduction is polynomial. Also, since the 3DM instance is 3-bounded, we
have that |L| = O(n).

Let W C L be a set of words that can be mutually accepted by A. The unit capacities
imply that every element in X UY U Z appears in at most one word in W. Thus, every
matching in T corresponds to a possible utilization multiset W. In particular, a maximum
matching corresponds to an optimal utilization multiset for (A, ¢), contained in L. |

» Remark. In the weighted maz (possibly restricted) utilization problem, there is a profit
function p : ¥* — IR that associates profit with each word. The profit function can be given,
for example, by a weighted automaton. The optimal utilization set is now a set W C X* that
can be mutually accepted by (A, c) and for which ) ., p(w) is maximal. In the restricted
variant, we require W C L.

Clearly, the lower bounds we prove apply also to the weighted version. As we now show,
the polynomial upper bound for the case of a restricting language that consists only of
words of length at most 2 can be extended to the weighted setting. For that, we also need
a weighted version of the b-matching problem. There, every edge e € F is associated with
a profit p(e), and the maximum b-matching problem is to find a matching that maximizes
> .p(e)x.. The algorithm in [2] applies also to the weighted variant.

Now, in the algorithm described in the proof of Theorem 8, we define the profits as
follows. For every edge e € E, we set p(e) to be the profit p(w) of the corresponding word.
If e corresponds to two words, wy, wa, then set p(w) = max{p(wi, p(ws)}. <
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—— Abstract

Even the most seasoned students of evolution, starting with Darwin himself [1], have occasionally
expressed amazement at the fact that the mechanism of natural selection has produced the whole
of Life as we see it around us. From a computational perspective, it is natural to marvel at
evolution’s solution to the problems of robotics, vision and theorem proving! What, then, is the
complexity of evolution, viewed as an algorithm? One answer to this question is 10'2, roughly
the number of sequential steps or generations from the earliest single celled creatures to today’s
Homo Sapiens. To put this into perspective, the processor of a modern cell phone can perform
10'2 steps in less than an hour. Another answer is 103°, the degree of parallelism, roughly the
maximum number of organisms living on the Earth at any time. Perhaps the answer should be
the product of the two numbers, roughly 1042, to reflect the total work done by evolution, viewed
as a parallel algorithm.

Here we argue, interpreting our recently published paper [2], that none of the above answers
is really correct. Viewing evolution as an algorithm poses an additional challenge: recombination.
Even if evolution succeeds in producing a particularly good solution (a highly fit individual), its
offspring would only inherit half its genes, and therefore appear unlikely to be a good solution.
This is the core of the problem of explaining the role of sex in evolution, known as the “queen of
problems in evolutionary biology” [3].

The starting point of [2] is the diffusion-equation-based approach of theoretical population
geneticists [4], who analyze the changing allele frequencies (over the generations) in the gene
pool, consisting of the aggregate of the genetic variants (or “alleles”) over all genes (or “loci”)
and over all individuals in a species. Taking this viewpoint to its logical conclusion, rather than
acting on individuals or species or genes, evolution acts on this gene pool, or genetic soup, by
making it more “potent”; in the sense that it increases the expected fitness of genotype drawn
randomly from this soup. Moreover, for much genetic variation [5], this soup may be assumed
to be in the regime of weak selection, a regime where the probability of occurrence of a certain
genotype involving various alleles at different loci is simply the product of the probabilities of
each of its alleles. In this regime, we show in [2] that evolution in the regime of weak selection
can be formulated as a game, where the recombining loci are the players, the alleles in those
loci are possible moves or actions of each player, and the expected payoff of each player-locus is
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precisely the organism’s expected fitness across the genotypes that are present in the population.
Moreover, the dynamics specified by the diffusion equations of theoretical population geneticists
is closely approximated by the dynamics of multiplicative weight updates (MWUA) [6].

The algorithmic connection to MWUA brings with it new insights for evolutionary biology,
specifically, into the question of how genetic diversity is maintained in the presence of natural
selection. For this it is useful to consider a dual view of MWUA [7], which expresses “what each
gene is optimizing” as it plays the game. Remarkably this turns out to be a particular convex
combination of the entropy of its distribution over alleles and cumulative expected fitness. This
sheds new light on the maintenance of diversity in evolution.

All of this suggests that the complexity of evolution should indeed be viewed as 10'2, but
for a subtle reason. It is the number of steps of multiplicative weight updates carried out on
allele frequencies in the genetic soup. A closer examination of this reveals further that the
accurate tracking of allele frequencies over the generations requires the simulation of a quadratic
dynamical system (two parents for each offspring). Moreover the simulation of even simple
quadratic dynamical systems is known to be PSPACE-hard [8]. This suggests that the tracking
of allele frequencies might require large population sizes for each species, putting into perspective
the number 103°. Finally, it is worth noting that in this view there is a primacy to recombination
or sex, which serve to provide robustness to the mechanism of evolution, as well as the framework
within which MWUA operates.
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—— Abstract

In circuit complexity, the polynomial method is a general approach to proving circuit lower bounds
in restricted settings. One shows that functions computed by sufficiently restricted circuits are
“correlated” in some way with a low-complexity polynomial, where complexity may be meas-
ured by the degree of the polynomial or the number of monomials. Then, results limiting the
capabilities of low-complexity polynomials are extended to the restricted circuits.

Old theorems proved by this method have recently found interesting applications to the design
of algorithms for basic problems in the theory of computing. This paper surveys some of these
applications, and gives a few new ones.
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1 Introduction

The polynomial method was developed for proving impossibility results on the capabilities of
“low-complexity” circuits. (The usual measures of “low-complexity” for circuits are either
low size, or low depth, or both.) The idea of the polynomial method, at a high level, is
to show that functions computable by low-complexity circuits can be also be computed
(approximately or exactly) by a “low-complexity” polynomial over some algebraic structure.
Typically, the complexity of a polynomial is measured by its degree, but the complexity
could also be the number of monomials. The survey by Beigel [8] contains many references
to papers in which low-complexity circuits are represented via low-complexity polynomials,
resulting in lower bounds against those circuits.

While the method was initially conceived to show the limitations of computational devices,
the intermediate theorems proved via the method turn out to also be rather useful in the
design of algorithms for certain problems — positive results about computational devices. Over
the last few years, we have found some unexpected applications of the polynomial method
to developing more efficient algorithms for several fundamental computational problems.
Sometimes it is natural to see how the polynomial method might help; in other cases, it is
not at all obvious, and some ingenuity is required. An intuitive outline of the approach is:
1. Find a “hard part” of one’s computational problem that can be modeled by low-complexity

circuits.
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2. Apply the polynomial method to convert the low-complexity circuits into an algebraic,
polynomial form.

3. Use other algebraic algorithms to efficiently manipulate or evaluate these polynomials,
thereby solving the original “hard part” more efficiently.

This article outlines several instances of this approach. Some of the algorithms in this paper

are new to the literature; they are included to illustrate the versatility of the polynomial

method in algorithm design. Many proofs of the known results are omitted from this article;

however, some results stated here are new, and we shall describe their proofs in detail.

1.1 What This Survey is NOT

We make no claims to be the “first” to apply the polynomial method in positive algorithmic
ways. There are many theorems in mathematics and theoretical computer science regarding
the modeling of efficient functions with polynomials; discussing all of them is neither wise nor
possible in this space. Nevertheless, it’s important to note that there are more interesting
theorems related to the polynomial method, in the hopes that future work will make use of
them. To give three examples from different angles:

1. Many theorems from approximation theory (which is effectively the study of point-
wise approximating functions via “simple” expressions, such as polynomials over the
reals) have seen applications in areas such as communication complexity and quantum
computing [31, 7, 1]. We haven’t yet personally found algorithmic applications of these
polynomials for our problems of interest, but that is probably our own failing, and not
that of the polynomials.

2. Another example is the collection of lemmas in the literature informally known as the
Schwartz-Zippel-DeMillo-Lipton Lemma [35, 50, 16] concerning the (low) number of
zeroes in low-degree polynomials that are not identically zero. These lemmas are already
a staple of randomized algorithms [30].

3. The polynomial method has found a large number of applications in computational learning
theory, such as in algorithms for learning DNFs and low-depth circuits (e.g., [26, 27, 24, 19])
and learning functions with a small number of relevant variables (a.k.a. juntas) [29].

2  The Circuits

We assume the reader is familiar with the usual notion of Boolean circuits as directed acyclic
graphs, where n input gates are represented by 2n source nodes (the n input bits and their
negations), the output gate is represented by a single sink node, and each node (or “gate”)
is labeled with a boolean function. We shall consider two well-studied restrictions of this
general notion. Let d,m € N.
An AC circuit of depth d is such that the longest path from any source to sink is at most
d, and each gate computes either the OR (of its inputs) or the AND (of its inputs).
An ACC circuit of depth d and modulus m is such that the longest path from any source
to sink is at most d, and each gate computes one of OR, AND, or MODm, where
MODm(y1,...,y:) = 1 if and only if Y, y; is divisible by m.

More background can be found in the textbooks [5, 42].

3 The Tools

In this survey, we shall focus on just a few polynomial constructions from the literature
which have recently been helpful. Again, we have made no attempt to be comprehensive.
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Three notions of representation by polynomials will be considered in this article: exact
representations, probabilistic representations over finite fields and the integers,

In the following, let f : {0,1}" — {0,1} be a Boolean function with 0 representing
false and 1 representing true, and let R be a ring containing 0 and 1. We shall always be
evaluating polynomials over the values 0, 1, or —1. Since 2% € {x, —z} for all a € N* and
all x € {0,1, —1}, it suffices for us to consider multilinear polynomials, of the form

p(x1,...,xy) = Z cs HI“

SCln]  i€S

where cg € R for all S. The degree of p is therefore the maximum cardinality of a subset S
such that cg # 0, and the sparsity of a polynomial is the number of S such that cg # 0.

3.1 Exact Representations

» Definition 1. An n-variate polynomial p(x1,...,x,) over R exactly represents f if for all
(at,...,an) € {0,1}"™ p(ay,...,an) = f(ar,...,an).

When R is a field, every Boolean function f has a unique exact representation as a
(multilinear) polynomial p. To give two simple examples, the function AND : {0,1}? — {0, 1}
is exactly represented by the polynomial p(x1,x3) = 172, and OR : {0,1}2 — {0,1} is
represented by p(x1,22) = 21 + T2 — 122, over any field.

Exact representations are often implicitly used in algorithms, but their influence can
be somewhat hidden. For example, the inclusion-exclusion principle from combinatorics
can be applied to solve several hard problems more efficiently, e.g., counting the number of
Hamiltonian Paths in n-node graphs in 2" - n°™) time and n®™) space [23]. This principle is
a consequence of the fact that the OR function on n variables can be exactly represented as:

n

OR(x1,...,zn) =1 [JA—zi)= > (D) ]

i=1 SC[nl,|S|>0 i€s

In many situations, it is preferable to think of the Boolean function f with domain {—1,1}
and codomain {—1, 1} instead, where —1 corresponds to true and 1 corresponds to false.
Then, a monomial x5 - - - z,, represents the PARITY of n bits rather than the AND of n
bits. Studying Boolean functions via this representation is often called the Fourier analysis
of Boolean functions and is a world unto itself; we recommend O’Donnell’s comprehensive
textbook on the subject [32].

3.2  Probabilistic Representations

The next representation we consider is a “randomized” notion of polynomial, which is
surprisingly powerful.

» Definition 2. Let D be a finite distribution of polynomials on n variables over R. The
distribution D is a probabilistic polynomial over R representing f with error § if for all
(a1,...,a,) € {0,1}", Prpopplas,...,an) = flai,...,an)] >1—90.

The degree of D is the maximum degree over all polynomials in D.

One may also define a probabilistic polynomial as a single polynomial with n “input”
variables and r “random” variables over a finite domain. Then, the distribution D in the
above definition is obtained by assigning the r variables to uniform random values. However,
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it’s not hard to see that, for every finite distribution D of s polynomials of maximum degree
d and maximum sparsity m, one can recover a single probabilistic polynomial of degree d (in
the input variables) with only O(log s) random variables and sparsity O(m - s), by simple
interpolation (see also Tarui [40]).

Another important fact is that, (essentially) without loss of generality, the distribution
D contains only O(n) polynomials. Given any D for a function f and a parameter & > 0,
uniformly sample t = O(n/e?) polynomials py,...,p; ~ D, and form the distribution D’ over
{p1,...,p:} (as a multiset). By a standard Chernoff bound and union bound argument, the
distribution D’ is also a probabilistic polynomial for f, with essentially the same error (to
within +e).

Probabilistic polynomials were first utilized by Razborov [33] and Smolensky [36] in their
proofs that the MAJORITY function and MOD3 functions cannot be computed efficiently
with ACC circuits of constant depth and modulus 2, respectively. In particular, they showed
that every low-depth circuit with modulus 2 has a low-degree probabilistic representation
over the field Fy. Here, we cite a strengthened version by Kopparty and Srinivasan:

» Theorem 3 ([36, 25]). For every ACC circuit C of depth d, size s, modulus 2, and n inputs,
and € > 0, there is a probabilistic polynomial Dc over Fy representing C with error €, and

degree at most (4logs)?~1 - (log1/e), such that a polynomial p can be sampled from D¢ in
nO(logs)dfl(logl/s) time.

The basic idea of the proof is to randomly replace each gate in the circuit with very
low-degree polynomials over Fa, such that their composition leads to a low-degree polynomial
for the entire circuit C. (The proof of Theorem 3 gives a clever way of composing these
polynomials so as to keep the degree low, as a function of €.) How do we construct these
very low-degree polynomials? Gates which are MOD2 functions are simply additions over Fs.
A gate g which is a NOT of a gate h can be written as g = 1 + h over Fy. Gates which are
ANDs can be expressed with NOTs and ORs by DeMorgan’s law. Finally, gates which are
ORs can be simulated probabilistically by multiplying a few sums of random subsets of the
inputs, modulo 2. For example, if the OR of x1,...,z, is 1, then

n

Pr
71,00 €{0,1}

rix; = 1 mod 21 = 1
i=1 2
On the other hand, if xy = --- = x,, = 0, then no random sum of the x;’s will evaluate to 1.
In this way, a MOD2 can simulate an OR; multiplying several copies of such a probabilistic
polynomial (carefully) will allow us to reduce the probability of error.

The above ideas can be extended to any finite field; however, the degrees of the probabilistic
polynomials obtained may increase as a function of the field characteristic. (In particular,
sums of variables will need to be raised to their (p — 1)th powers, to keep the output Boolean.)
It is natural to then ask how probabilistic polynomials over Z fare in computing AC circuits.

Beigel, Reingold, and Spielman [9] addressed this question, finding an O(log? n)-degree
probabilistic polynomial for OR. The following improvement is due to Aspnes, Beigel, Furst,
and Rudich [6]:

» Theorem 4. For all € > 0, there is a probabilistic polynomial over Z for the OR of n
variables with error €, and degree O(logn -log1/e). Furthermore, for every AC circuit C

of depth d and size s, there is a probabilistic polynomial for C with error € having degree
O(log® s - log® s /).

Let us sketch the proof. To compute the OR of x1,...,z,, choose progressively smaller
random subsets So, ..., Siogn+1 C {1,...,n}, where Sy = [n], and S; is a uniform random
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subset of S;_1. The key claim is that, if the OR of x1,...,x, is 1, then with probability at
least 1/3, some S; contains exactly one j such that z; = 1. In that case, the polynomial

logn+1
p(x1, ..., xy) = H I—Zajj
i=0 j€S;

correctly computes the negation of OR (so, 1 — p computes OR). To reduce the error to
arbitrarily small e, one can take O(log1/¢) products of independent copies of p.

To get probabilistic polynomials for AC circuits of depth d and size s with error ¢, apply
this randomized construction of p (and an analogous construction for AND) independently
to every gate in the AC circuit, with error parameter set to €/s. Then, a union bound over
all s gates guarantees the result.

3.3 Symmetric Representation

Finally, we consider a polynomial representation of functions which may look somewhat
unusual: we try to represent functions by low-complexity polynomials h whose outputs are
“filtered” through another function g which gives {0, 1} output.

» Definition 5. Let h(z1,...,z,) be a polynomial over R, construed as a function h :
{0,1}" — R. Let g : Im(h) — {0,1} be arbitrary. We say that (g, h) is a symmetric
representation of f if for all (a1,...,a,) € {0,1}", g(h(a1,...,an)) = f(a1,...,an).

Why do we call this a “symmetric” representation? Suppose R = Z. If all coefficients of h
are in {0,1} and h has s monomials, we have Im(h) C {0,1,..., s}, and the “filter function”
g may then be viewed as a function on s variables which only depends on the number of
inputs which are true. That is, we may think of g as a symmetric Boolean function. To put
it another way, in this situation we can represent g o h as a depth-two Boolean circuit with
s + 1 gates, where the output gate computes a symmetric function and the layer of gates
nearest the inputs compute ANDs. (The function h counts up the number of ANDs which
output true, and the function g determines the output of the symmetric function.)

Symmetric representations are not as unusual as one might think. The class of polynomial
threshold functions refer to a particular type of symmetric representation, where the symmetric
function is a threshold function (checking whether the sum of all inputs exceeds a fixed value
T). Polynomial threshold functions have been studied for a rather long time, especially in
the context of neural networks (]28]).

We will use a particularly strong result on symmetric representations of functions com-
putable with ACC circuits, first proved by Beigel and Tarui, building on work of Yao:

» Theorem 6 (Yao [49], Beigel and Tarui [10]). There is a function o : N x N — N such that
every Boolean function computable by an ACC circuit with size s, depth d, and modulus m
has a symmetric representation (g, h) with deg(h) < (log s)*(&™)

That is, every constant-depth and constant-modulus circuit can be symmetrically repres-
ented with a polynomial of degree that is polylogarithmic in the circuit size. It is widely
believed that this sort of representation should severely restrict the kinds of functions com-
putable with constant depth and modulus. It is believed that the MAJORITY of n bits
cannot be computed with polynomial-size ACC circuits of any constant depth or constant
modulus.
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4 The Applications

Now we discuss how these tools have been recently applied in algorithm design.

4.1 All-Pairs Shortest Paths (APSP)

We first study the dense case of the All-Pairs Shortest Paths problem (APSP) on general
weighted graphs.

» Definition 7 (ALL-PAIRS SHORTEST PATHS (APSP)). In APSP, the input is a weighted
adjacency matrix, and the goal is to output a data structure S encoding all shortest paths
between any pair of nodes: when a pair of nodes (s,t) are fed to S, it must reply with the
shortest distance from s to t in O(1) time, and an actual shortest path from s to ¢ in O(¢)
time, where £ is the number of edges on the path.

The O(n3) time algorithms for APSP on n-node graphs [17, 43] are in the canon of
undergraduate computer science. But these algorithms could be suboptimal, as the input
graph can be encoded in ©(n? - logm) bits, where m € N upper bounds the edge weights.
Indeed, in the real RAM model of computation (where additions and comparisons on “real-
valued” registers are allowed, and arbitrary bit operations on “word registers” of O(logn)
bits), Fredman [18] showed in 1975 that APSP is solvable in o(n3) time.

Since then, many papers on the dense case of APSP have been published, steadily
decreasing the running time of O(n?) [37, 38, 51, 20, 39, 21, 13, 14]. All of them obtained
only O(n?®/log®n) time algorithms for constants ¢ < 2. A major open problem is whether
APSP is solvable in truly subcubic time, i.e., O(n3~¢) time for some fixed ¢ > 0. A
recently developed hardness theory for APSP shows that such an algorithm would have many
consequences [34, 41, 3, 2].

Recently, the author gave new algorithms for APSP that run faster than O(n?/log®n)
time, for every constant ¢ [45]. In fact, the randomized version runs in n3/ 22(v1o81) time and
the deterministic version runs in n?/2%((log ")) time for some § > 0; these are asymptotically
much better bounds. The algorithms crucially rely on the tools of the previous section: the
problem of efficiently computing APSP is reduced to efficiently computing a particular circuit
evaluation problem, and it is shown how to evaluate such circuits more efficiently than the
obvious approach.

Let us jump directly to the kind of circuit that arises from the proof. Implicit in the
APSP paper [45] is the following theorem, which we isolate for the reader’s convenience. For
d,n € N, define the Boolean function OR-AND-COMP on 2d? log n inputs as follows:

d
/\a”<b,]

where the a; j,b; ; are construed as log n-bit numbers and [A < B] is true if and only if
A< B.

Ol%—AI\ID-COI\/IP(aLl7 ai1,2,---,0ad,d, b171, b1)2, .. bd d

||<g

» Theorem 8 (Implicit in [45]). Let A, B be two sets of n vectors, where each vector is
of length d® and each vector component has logn bits. Suppose the function OR-AND-
COMP(ay, ... ,aqg,by,... bg) is computable in O(n?) time, for alln? pairs (a1, ..., aqz) € A
and (by, ..., bg2) € B simultaneously. Then APSP is solvable in O(n®/d) time.

Why is this theorem true? Here’s a little intuition. APSP involves comparing the sums
of weights on different paths, and determining which sums of weights are minimal among a
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collection of sums. The OR-AND-COMP circuit is effectively finding a minimum sum among

a particular set of paths of length two. The ability to compute this minimum sum for all n?

pairs of vectors roughly corresponds to computing APSP in a tripartite graph with n nodes

in the first part, d nodes in a middle part, and n nodes in the third part, with first and third
part disconnected. Of course this is extremely handwavy, and the reader should consult the
paper for more details.

As the circuit OR-AND-COMP has 2d? logn inputs, such an evaluation would naively
take O(n?d?logn) time. Presumably, it is easier to get an O(n?) time algorithm when d is
small. The APSP paper [45] shows that for d = 9ev1os where ¢ > 0 is some constant, the
O(n2) time evaluation required by Theorem 8 is actually possible. Here’s a high-level outline
of the algorithm.

1. First, computing [a < b] for (logn)-bit strings a and b can be done with constant-depth
O((log n)?)-size circuits over AND and OR; that is, OR-AND-COMP is computable with
AC circuits of constant depth and polynomial size. So the first idea is to apply Razborov
and Smolensky (Theorem 3) (or Beigel-Tarui, Theorem 6) to the AC circuit for OR-AND-
COMP, reducing this circuit to a probabilistic polynomial (or a symmetric representation,
respectively). Given that this AC circuit has size O(d? log? n) on O(d? log n) variables, we
find that OR-AND-COMP has a probabilistic polynomial over Fy with 2rcly(logdloglogn)
monomials and < 1/n3 error, and there is a symmetric representation of OR-AND-COMP
with a similar monomial upper bound.

2. Second, given two sets A, B of n vectors as in the theorem statement, we show how to
efficiently evaluate polynomials with at most n'' monomials on all pairs of vectors (one
from A and one from B). This step uses a special rectangular matrix multiplication
algorithm of Coppersmith [15], and runs in O(n?) time.

3. Thirdly, we combine 1 and 2. We use part 1 to generate a polynomial representation
for OR-AND-COMP with m = 2relv(egdloglogn) pyonomials. Choose d = 20108 ”)5, SO
that § > 0 is small enough to make m < n''. Now we can apply part 2 and compute
this OR-AND-COMP (with some probability of error) in O(n?) time. If our polynomials
are probabilistic, each evaluation may have some errors. However, if we take O(logn)
independent constructions and evaluations of these probabilistic polynomials for OR-
AND-COMP, the MAJORITY values of these O(logn) evaluations will yield the correct
values for OR-AND-COMP on all n? pairs of points, with high probability. Finally,
applying Theorem 8, we thereby compute APSP in n3/2¢((og ") time.

With a few pages of technical work, the § > 0 in the algorithm can be tuned down to
1/2 in the randomized case. The big question is whether we can set 6 = 1, and yield a
truly-subcubic APSP algorithm. This looks difficult, and not just because it is a thorny
circuit evaluation problem.

If we try to use Theorem 8 to get truly-subcubic APSP, we would need a fast algorithm for
evaluating OR-AND-COMP with d > n? for some § < 1. However, such an algorithm would
also resolve another major open problem: we’d be able to solve CNF-SAT in 2°™ time for
some § < 1, contradicting the so-called Strong Exponential Time Hypothesis (SETH) [22, 12].
In the following section, we shall explain why.

4.2 Orthogonal Vectors (OV)

We consider a slightly simpler function than the one needed for solving APSP. Define
dq d2
OPL—Al\ID—Ol:{le7d2 (.131,1, T1,25- 5Ly ,das Y1,15Y1,25 - - - aydl,dz) = \/ /\ (iEi,j vV yi,j)~

i=1j=1
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That is, OR-AND-OR2, 4, takes 2d;dy bits of input. Note that we can easily simulate
OR-AND-OR2, 4 with a call to OR-AND-COMP: (z; ; Vy; ;) = 1 if and only if [-z; j < v, ;]
Therefore, evaluating OR-AND-OR2, 4 is only easier than evaluating OR-AND-COMP.
However, quick evaluation of OR-AND-OR2 would yield faster algorithms for other problems
than just APSP. Here is the canonical example of such a problem:

» Definition 9 (ORTHOGONAL VECTORS (OV)). In OV, the input is a set S C {0,1}¢, and
the goal is to output whether there are vectors a,b € S such that (a,b) = 0.

That is, we wish to know if S contains an orthogonal pair of vectors. There are two
obvious algorithms: one takes O(|S|2d) time, and one takes O(2¢]S|) time. So the interesting
case is when we have “high dimensionality”, and d > logn. It is an open question whether
O(|S)?~22°(4)) time is possible for some fixed € > 0. By adding two more dimensions to the
vectors, the following version of OV is equivalent to the above:

» Definition 10 (ORTHOGONAL VECTORS’ (OV')). In OV”, the input is two sets A, B C
{0,1}4, and the goal is to output whether there are vectors a € A, b € B such that (a,b) = 0.

OV captures the difficulty of several problems. Consider the partial match problem from
string searching:

» Definition 11 (BATCH PARTIAL MATCH (BPM)). In BPM, the input is a database
D C {0,1}%, and queries Q C {0,1,%}?, where |D| = |Q|. The goal is to output, for every
q € @, whether or not there is an & € D such that for all ¢ = 1,...,d, ¢[i] # * implies
qli) = «[i].

That is, we wish to know which queries have a “partial match” in the given database.
Recent work with Abboud and Yu [4] proved that BPM is sub-quadratic equivalent to OV:
roughly speaking, an |S|2~¢ f(d) time algorithm for OV implies an |Q|?>~? f(d) time algorithm
for the BPM, and the converse also holds.

Another string problem related to OV is a generalization of the longest common substring
problem to handle wildcard symbols:

» Definition 12 (LONGEST COMMON SUBSTRING WITH DON’T CARES (LCS*)). In LCS*
the input is two strings S, T € X" of length n, and the goal is to output the length of the
longest string that appears in both S and T" as a contiguous substring.

In the same paper with Abboud and Yu, it is proven that LCS* has a faster-than-quadratic
time algorithm, given that OV has one. The importance of solving OV in sub-quadratic
time is further reinforced by the following connection with exponential-time algorithms for
satisfiability.

» Conjecture 4.1 (STRONG EXPONENTIAL TIME HYPOTHESIS (SETH) [22, 12]). For every
0 < 1, there is a k > 3 such that satisfiability of k-CNF formulas on n variables requires
more than 2°" time.

» Theorem 13 ([44, 48]). Suppose there is an € > 0 such that for all ¢ > 1, OV can be
solved in O(|S|?~¢) time on instances with clog|S| dimensions. Then SETH is false.

Proof. We prove the contrapositive. Calabro, Impagliazzo, and Paturi [11] show that refuting
SETH is equivalent to giving a § < 1 such that, for all ¢ > 1, CNF-SAT on instances with n
variables and cn clauses can be solved in O(2°") time.

We reduce this variant of CNF-SAT to OV. Given a formula F' on n variables and
cn clauses C1, ..., Cey,, divide the variables into two sets V; and V5 with at most n/2 + 1
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variables each. Enumerate all O(2"/2) partial assignments to the variables in V; and all
partial assignments to the variables in V5. For each such partial assignment A, define a
vector v4 with en + 2 dimensions as follows. For i = 1,...,cn, set v4[i] = 0 iff the clause C;
is satisfied by A. Then, set vg[cn + 1] = 1 iff the partial assignment A is on the variables of
set V1, and set vyfen + 2] = 1 iff A is from set Vo. Put all v4’s in the OV instance S.

Suppose F is satisfiable; let A be a satisfying assignment. For i = 1,2, let the partial
assignment A; be the assignment A restricted to variables from V;. By construction, v, [en+
1] -va,len+ 1] = wva, [en + 2] - va,[en + 2] = 0, and for every clause Cj, at least one of Ay or
As satisfies C;, so va, [i] - va,[i] = 0. Tt follows that (va,,va,) = 0. Similarly, (va,va) =0
implies that A and A’ come from different sets and jointly satisfy F.

Finally, if OV is in O(|S|?>~¢) time for clog |S| dimensional vectors, then we can determine
satisfiability of F' in O(2"(1=5/2)) time. <

Now we can formally illustrate the importance of evaluating OR-AND-OR2 efficiently:

» Theorem 14 (Implicit in [4]). Let A, B be two sets of n bit vectors, where each vector
has t = dy - dg bits. Suppose OR-AND-OR2y, 4,(a1,...,a4,b1,...,b;) is computable in O(n?)
time, for all n? pairs (ai,...,a;) € A and (by,...,b;) € B simultaneously. Then OV with n
vectors in dy dimensions can be solved in O(n?/dy) time.

Proof. For convenience, we work with OV’ (Definition 10) in which we get two sets of vectors
A, B and wish to find a € A and b € B that are orthogonal.

Partition both A and B into v/d;-size subsets A1, ..., Ao(n/\/ﬁ) and By, ..., By, var)
respectively. The idea is that with a single OR-AND-OR2, 4, computation on 2d;ds bits,
we can check whether the sub-instance (A;, B;) contains an orthogonal pair of vectors, for
alli,j=1,...,y/d;.

The function OR-AND-OR2, 4, takes the OR over d; pairs of vectors of the complement
of the Boolean inner product of ds-dimensional vectors. That is, the AND-OR2 parts of the
function output 1 if the two relevant do-dimensional vectors are orthogonal, and 0 otherwise.
By arranging the v/dy vectors of A; into one djda-dimensional vector, and doing the same for
Bj, we can check whether the V/di-size set A; and the v/ds-size set B; contain an orthogonal
pair with one call to OR-AND-OR2g4, 4,. There are several ways to do this. For example, if
the vectors of A; are ay,...,a g and the vectors of B; are by, ..., b ;, then we may define
the (dyds)-dimensional vectors

VA, = (al,...,al, az,...,ag, -*-- ,a\/a,...,a\/a),
vB; ‘= (bl,bg,...,bm, bl,bg,...,bm7 ,bl,bg,...,bm)7
where the ‘..." in the v4, denote v/d; repetitions of the same vector. Then,

OR-AND-OR2q4, 4,(va,,vB;) =0 <= there is no orthogonal pair in (A;, B;).
. /I __ {—

Constructing the sets of vectors A" = {vy,, ... ,UAO(H/\/@} and B’ = {vp,,... ,UBOM/\/E)},

we conclude that computing OR-AND-OR2, 4, on all pairs of vectors in A" and B’ will

determine whether A, B has an orthogonal vector. By assumption, this computation can be

done in O((n//d1)?) < O(n?/dy) time, which finishes the proof. <

» Corollary 15. If there is an € > 0 such that for all ¢ > 1 the hypothesis of Theorem 14 is
true with dy > n® and dy > clogn, then SETH is false.

Proof. Follows from combining Theorem 13 and Theorem 14. |
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The above relations between OV and other problems show that finding orthogonal pairs
of vectors is of importance. Recently, fast evaluation algorithms for OR-AND-OR2 have
been developed, tailored to run faster than what’s known for OR-AND-COMP (used to solve
APSP in the previous section):

» Theorem 16 (Implicit in Abboud, Williams, Yu [4]). The function OR-AND-OR2; 4 can be
evaluated on two sets of n vectors in O(n?) time, provided that

2
s2. d+1 < no1,
3logs

The algorithm of Theorem 16 is obtained by converting OR-AND-OR2 into a probabilistic
polynomial over Fy (via Theorem 3) and carefully counting the monomials that arise in the
construction of the polynomial. In particular, each AND is converted into a 3log s-degree
probabilistic polynomial with error less than 1/s%, and the topmost OR. on s variables
is converted into a product of two random MOD2s. After O(logn) evaluations of these
probabilistic polynomials for OR-AND-OR2, we settle on the correct values for OR-AND-OR2
on all n? pairs of points. The fast O(nz) time evaluation is again done using Coppersmith’s
fast rectangular matrix multiplication [15].

The inequality of Theorem 16 holds for s < n/108(d/10gn) where ¢ > 0 is sufficiently
small. From this and the above theorems, we derive:

» Corollary 17.
OV on n vectors in d dimensions is in n time.
BPM on n strings of length d each is in n?>~1/C0og(d/logn)) time.
LCS* on two strings of length n is in nQ/QQ(\/@) time.
CNF-SAT on n variables and m clauses is solvable in 2"

2—1/0(log(d/logn))

1-1/0(log(m/n)) time.

For the first three problems, these running times significantly improve upon prior work.
The running time stated for CNF-SAT is not new, but it does match (up to constant factors
in the big-O) the best known CNF-SAT algorithms, which is fairly surprising given the
generality of this approach.

4.3 Counting Solutions to OV and CNF-SAT

Applying probabilistic polynomials over Z instead of Fo, we can count the number of solutions
to an OV instance or a CNF formula. Let us remark that these results have not appeared in
print before; while they are not significant extensions of the previous section, they should
still give the reader a sense of what else is possible.

Define the function SUM-AND-OR2g4, 4, : {0,1}%'92 — N as:

dy ds
SUM-AND-OR2q, 4, (1,1, 21,2, - - - s Tdy do> Y1,1, Y1,25 - - -, Yy ,ds) = Z /\ (Tij V Yij)

i=1 j=1
That is, this function outputs the total sum (over the integers) of the true AND-OR2s.

» Theorem 18. There is a probabilistic polynomial for SUM-AND-OR24, 4, over Z with
error at most 1/3 and at most (d1)0008* &2) monomials.

Proof. Think of the SUM-AND-OR2g4, 4, as a circuit. Replace each of the di ANDs of
fan-in dy in this circuit with a probabilistic polynomial over Z with error set to ¢ = 1/(3dy).
By Theorem 4, these polynomials have degree O(logds - log dy), and therefore they have at
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most, (dg)o(l"g d>-logdi) monomials, assuming the output of each OR2 gate is a variable in the
polynomial. Now, each OR2 can be represented exactly as a sum of three monomials in the
original variables, which means we obtain a polynomial with at most (?)dg)o(log dlogdr) <
(d1)©0°g” d2) monomials in the original variables. Since each AND had error at most 1/(3dy),

their total sum is correct with probability at least 2/3, by the union bound. |

Now, provided that d; and ds satisfy

(d1)0(10g2 do) < nO.l,
the number of monomials is low, and we can apply the same strategy used in Theorem 14 to
solve OV. Since we are taking a SUM instead of an OR, we can now compute the number
of all orthogonal pairs in a set of da-vectors of size O(v/d;), in O(n?) time. The above
inequality is certainly achieved when d; < n'/ O(log® d2) Following the proof of Theorem 14
and computing the number of orthogonal pairs for all O(n?/d;) pairs of sets, we obtain:

» Theorem 19. The number of orthogonal pairs among n vectors in d dimensions is comput-

able in n2—1/0(0g® d)

time, with high probability. Consequently, one can count the number of
matches in the database on a set of n BPM queries of length d in the same running time, and

we can count the number of satisfying assignments to a CNF on n variables and m clauses
in 2n(1=1/0(10g” m)) time.

For counting OV pairs, the above running time is still much faster than O(n?/poly(logn))
when d = poly(logn). Indeed, it follows that counting the satisfying assignments of a CNF

logn

with n variables and n clauses can be done in 27— 7/poly(logn) time,

5 Conclusion

We have seen several ways in which polynomial tools originally developed in circuit complexity
have recently led to many new algorithms. We have not discussed all recent applications
of the polynomial method: we’ve mostly ignored the (more obvious) application of the
polynomial method for circuit lower bounds to solving circuit satisfiability. For example,
the polynomial method tools discussed here also can be used to give faster algorithms for
satisfiability of ACC circuits [47], as well as 0-1 linear programming [46] and satisfiability of
symmetric Boolean CSPs [4].

We cannot help but point out a discrepancy between the usage of polynomials in circuit
complexity and our algorithmic applications thus far. The majority of circuit lower bound
results using polynomials focus on minimizing the degree of the polynomial representing
the low-complexity function. However, for our applications, the number of monomials, or
the sparsity, is the most important measure for our algorithmic applications. Certainly, a
degree-d polynomial in n variables has n®(® monomials, but this may be an undesirable
representation for super-constant d. This survey shows that finding sparse polynomial
representations for low-complexity functions like OR-AND-OR2 would entail significant
algorithmic consequences.

Acknowledgements. I am grateful to Venkatesh Raman for suggesting the topic of this
article, and his subsequent patience with me while I was finishing it.
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—— Abstract
Given a graph G and a function f : V(G) — [|[V(G)|], an f-factor is a subgraph H of G such
that degg(v) = f(v) for every vertex v € V(G); we say that H is a connected f-factor if, in
addition, the subgraph H is connected. Tutte (1954) showed that one can check whether a given
graph has a specified f-factor in polynomial time. However, detecting a connected f-factor is
NP-complete, even when f is a constant function — a foremost example is the problem of checking
whether a graph has a Hamiltonian cycle; here f is a function which maps every vertex to 2. The
current best algorithm for this latter problem is due to Bjorklund (FOCS 2010), and runs in
randomized O*(1.657") time (The O*() notation hides polynomial factors). This was the first
superpolynomial improvement, in nearly fifty years, over the previous best algorithm of Bellman,
Held and Karp (1962) which checks for a Hamiltonian cycle in deterministic O(2"n?) time.

In this paper we present the first vertex-exponential algorithms for the more general problem
of finding a connected f-factor. Our first result is a randomized algorithm which, given a graph
G on n vertices and a function f : V(G) — [n], checks whether G has a connected f-factor in
O*(2™) time. We then extend our result to the case when f is a mapping from V(G) to {0, 1} and
the degree of every vertex v in the subgraph H is required to be f(v)(mod 2). This generalizes
the problem of checking whether a graph has an Fulerian subgraph; this is a connected subgraph
whose degrees are all even (f(v) = 0). Furthermore, we show that the min-cost editing and
edge-weighted versions of these problems can be solved in randomized O*(2™) time as long as the
costs/weights are bounded polynomially in n.
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binatorics, G.2.2 Graph Theory
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Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.61

1 Introduction

The problem of testing whether an input graph has a Hamiltonian cycle — a simple cycle which
passes through all vertices of the graph — is one of Karp’s original list of 21 NP-complete
problems [13], and is one of the most fundamental and well-studied problems in computational
complexity. The current best algorithm for this problem is due to Bjérklund (FOCS 2010),
and runs in randomized O*(1.657") time(The O*() notation hides polynomial factors.) [2].
This was the first superpolynomial improvement in nearly fifty years, over the previous best
algorithm of Bellman [1], and Held and Karp [12] which checks for a Hamiltonian cycle in
deterministic O(2"n?) time.

Another fundamental graph problem is that of deciding whether a given graph contains
a regular subgraph. This problem was first stated by Garey and Johnson [9] who asked if
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testing the presence of a 3-regular subgraph in a given graph is NP-complete. This was shown
to be NP-complete in a proof atrributed to Chvatal [9]. However, testing if a graph has a
spanning r-regular subgraph is known to be polynomial time solvable by an application of
Tutte’s f-factor theorem [20], although testing for a connected spanning r-regular subgraph
clearly generalizes Hamiltonicity.

Given a graph G and a function f : V(G) — [|[V(G)]], an f-factor of G is a subgraph
H of G such that degy(v) = f(v) for every vertex v € V(G); we say that H is a connected
f-factor if, in addition, the subgraph H is connected. Tutte [20] showed that one can check
whether a given graph has a specified f-factor in polynomial time. Lovasz [14, 15] extended
this result to general f-factors, where the function f maps each vertex to a list of numbers.
Lovasz and Cournéjols [4] gave a complete characterization of the complexity of the general
f-factor problem.

In this paper we study the problem of finding connected f-factors in a given graph. Our
main motivation in investigating this problem is the fact that it generalizes the problem of
testing for a Hamiltonian cycle in a graph, and also the more general problem of testing for
regular connected spanning subgraphs.

Our results and techniques. Although the existence of a connected f-factor in a graph
withm m edges can trivially be tested in time O*(2™), it was not known whether it is possible
to solve this problem in time which is single-exponential in the number of vertices (a vertex-
exponential algorithm) of the graph. In this paper we present the first vertex-exponential
algorithms to find a connected f-factor in a given graph. In fact, we give a vertex-exponential
algorithm for the editing version of this problem, which is much more general than the
problem of simply finding a connected f-factor. More formally, in this problem, which we
call MIN-CoST EDGE EDITING TO f-FACTOR (MIN-CosT EFF), the input consists of a
graph G, a function f : V(G) — [n], a cost function ¢ on the edges and non-edges of G, and a
target cost ¢*. The objective is to check if there is a sequence of non-edge additions and edge
deletions with a total cost at most ¢* such that the resulting graph is a connected f-factor.
This problem generalizes the problem of finding a connected f-factor in a graph, even with
the additional restriction that the edge costs are bounded polynomially in the size of V(G).

Our main result is a randomized algorithm which, given an instance (G, f, ¢, ¢*) of MIN-
Cost EFF where ¢({v,w}) is bounded by a polynomial in |V(G)| for every v,w € E(G),
solves it in time O*(2").

» Theorem 1. There is a randomized algorithm that, given an instance (G,c,c*) of MIN-
CosT EDGE EDITING TO f-FACTOR with the cost function ¢ being bounded by a polynomial
in |V(G)|, runs in time O*(2IV( ) and either returns a solution or correctly (with high
probability) concludes that one does not exist.

We then extend this result to a “parity version” CONNECTED PARITY f-FACTOR of the
problem where, given a graph G and a function f where where f is a mapping from V(G) to
{0, 1}, the objective is to check if G has a connected spanning subgraph H where the degree
of every vertex v in the subgraph H is f(v) (mod 2).

» Theorem 2. There is a randomized algorithm that, given an instance (G, f) of CONNECTED
PARITY f-FACTOR where |V (G)| =n, runs in time O*(2"™) and either returns a solution or
correctly (with high probability) concludes that one does not exist.

This generalizes the problem of checking whether a graph has an Fulerian subgraph; this
is a connected subgraph whose degrees are all even (f(v) = 0). As our third major result
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we show that the edge-weighted versions of finding connected (parity) f-factors can also be
solved in randomized O*(2™) time as long as the weights are bounded polynomially in n.

The main technical ingredients in our solutions for each of these problems have the same
flavour: For each problem, we transform the input graph into an auxiliary graph in such a
way that the connected solutions which we seek correspond, in a certain sense, to the set of
perfect matchings of the auxiliary graph. Our algorithms rely on the notion of Tutte matrices
of graphs and related algebraic techniques — introduced by Lovasz [16] and recently used
in [2, 6, 21, 11] — to phrase our problems in terms of looking for “non-zero” monomials of
certain polynomials. To solve these latter problems we test whether the polynomials are
identically zero over certain fields. The randomization in our algorithm arises from this final
step of polynomial identity testing.

Related work. Moser and Thilikos [18] and Mathieson and Szeider [17] initiated the study of
the parameterized complexity of editing a given graph to obtain a graph that satisfies certain
specified degree constraints. Mathieson and Szeider in particular described an auxiliary graph
where perfect matchings captured the editing solutions in the same flavor of Tutte’s auxiliary
graph capturing f-factors via perfect matchings. More recently Golovach has studied the
parameterized complexity of editing to connected graphs under degree constraints [10]. Cai
and Yang [3], Cygan et al. [5] and Fomin and Golovach [8] have all studied the parameterized
complexity of deleting edges to obtain subgraphs with parity constraints on the degrees.

Organization of the rest of the paper. In Section 2 we describe our notation and some
preliminary results. In Section 3 we take up the edge-editing version of our problem, MIN-
CosT EDGE EDITING TO f-FACTOR, and prove Theorem 1. In Section 4 we take up the parity
version CONNECTED PARITY f-FACTOR and prove Theorem 2. We conclude in Section 5.

2 Preliminaries

We follow the graph notation and terminology of Diestel [7]. For a positive integer n we
use [n] to denote the set {1,2,...,n}. We use A;; to denote the element in the i'" row
and ;' column of a matrix A. A subgraph H of a graph G is a spanning subgraph of G if
V(G) = V(H). We use degg(v) to denote the degree of a vertex v in graph G and Ng(v)
to denote the neighbourhood of v in G; we omit the subscript when there is no scope for
ambiguity. For a subset S C V(G) of the vertex set of a graph G we use G[S] to denote the
subgraph induced by the set S and G — S to denote the subgraph G[V(G) \ S]. For a subset
S of vertices, we denote by E(G)[S,V(G) \ S] the edges of G with an end point each in S
and V(G)\ S. If F is a set of edges in a graph G, then we use V(F') to denote the set of all
vertices which form end-points of the edges in F'. A matching in a graph G is any set M of
edges in G such that no two edges of M have an end-point in common, and a matching M
of G is a perfect matching if V(M) = V(G). Let w : E(G) — Z be function which assigns
integer weights to the edges of a graph GG. The weight of a subgraph H of G is then the sum
D cenm) w(e)-

When we refer to expanded forms of succinct representations (such as summations and
determinants) of polynomials, we use the term naive expansion (or summation) to denote
that expanded form of the polynomial which is obtained by merely writing out the operations
indicated by the succinct representation. We use the term simplified expansion to denote the
expanded form of the polynomial which results after we apply all possible simplifications
(such as cancellations) to a naive expansion. We call a monomial m which has a non-zero

63

FSTTCS 2014



64

Vertex Exponential Algorithms for Connected f-Factors

coefficient in a simplified expansion of a polynomial P, a surviving monomial of P in the
simplified expansion.

» Definition 3. (Tutte matrix) The Tutte matriz of a graph G with n vertices is an n x n
skew-symmetric matrix T over the set {z;;|1 < i < j < [V(G)|} of indeterminates whose
(i,7)" element is defined to be

Zij if {1,7} € E(G) and i < j
T(i,j) =« —x; if{i,j} € E(G)andi>j
0 otherwise

We use T(G) to denote the Tutte matrix of graph G. We say that the variable z;; is the
label of edge {i,75} € E(G).

The following basic facts about the Tutte matrix 7(G) of a graph G are well-known.
When evaluated over any field of characteristic two, the determinant and the permanent of
the matrix 7(G) (indeed, of any matrix) coincide:

n
det T(G) = perm(T(@)) = Y [[ T(G)(i,0(4)), (1)
o€S, i=1
where S, is the set of all permutations of [n]. Moreover, there is a one-to-one correspond-
ence between the set of all perfect matchings of the graph G and the surviving monomials in
the above expression for det 7 (G) when its simplified expansion is computed over any field
of characteristic two:

» Proposition 1. [16] If M = {(i1, j1), (i2, j2),-- ., (ie, Je)} is a perfect matching of a graph
G, then the product H(ik,jk)EM Tiyj, Oppears as a surviving monomial in the sum on the
right-hand side of Equation 1 when this sum is expanded and simplified over any field
of characteristic two. Conversely, each surviving monomial in a simplified expansion of
this sum over a field of characteristic two is of the form H(ik,jk)elw Tiyj. Where M =
{(i1,41), (i2,42), ..., (ie, jo)} is a perfect matching of G. In particular, det T (G) is identically
zero when expanded and simplified over a field of characteristic two if and only if graph G
does not have a perfect matching.

» Lemma 4. (Schwartz-Zippel)[19, 22] Let P(xy,...,%,) be a multivariate polynomial of
degree at most d over a field F such that P is not identically zero. Furthermore, letry,... Ty
be chosen uniformly at random from F. Then, Prob[P(rq,...,r,) = 0] < %.

We also require the following well-known interpolation lemma.

» Lemma 5. Let P(z) be a univariate polynomial of degree r over a field of size at least
r+ 1. Then, given r + 1 evaluations of P(x), the polynomial can be determined in time
polynomial in .

3 Editing to f-factors

The problem we study in this section is EDGE EDITING TO f-FACTOR. The formal definition
of this problem is as follows.

EDGE EDITING TO f-FACTOR

Input: Graph G = (V, E), function f: V — N, k.

Question: Can G be converted to a connected f-factor with at most k£ edge deletions
and additions?
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A set of k edge additions and deletions is referred to as a k-editing. For a given graph G,
if G— 51+ S5 is an f-factor where Sy is a set of edges of G and S5 is a set of non-edges, then
we refer to (51, S2) as an f-editing of G to an f-factor, where £ = |S; USs|. It is easy to show
that EDITING TO CONNECTED f-FACTOR where f = 2 is a generalization of Hamiltonicity
(see for example [10]).

We begin with the following observation which relates local editing of subgraphs of G to
f-factors on the one hand and the global editing of G to an f-factor on the other. We then
subsequently define an auxiliary graph where perfect matchings capture editings to f-factors
(see [17]).

» Observation 1. Let G be a graph, let f : V — N, and let S C V(G). Suppose the subgraphs
G[S] and G — S have £y and ly-editing to f-factors (S, Fy) and (V(G)\ 5), F2) respectively
and let l5 be the number of edges in the set E(G)[S,V(G)\ S]. Then, the union of the two
editings along with the deletion of the edges in E(G)[S,V(G)\ S] is an (€1 + €2 + £3)-editing
to the disconnected f-factor (V(G), Fy W Fy). Similarly, let (S1,S2) be an editing of G to
an f-factor H = (V(G), F) and C be the union of some connected components of H. Let
Si=51N (V(QC)) and S = Sa N (V(QC)). Then, (S7,5%) is an editing to the f-factor C' of the
induced subgraph G[V (C)].

» Definition 6 (Editing f-Blowup). Let G be a graph and let f : V(G) — N be such that

f(v) < deg(v) for each v € V(G). Let H be a graph and w be a weight function on the edges

of H defined as follows

1. For each vertex v of G, we add a vertex set A(v) of size f(v) to H.

2. For each edge e = {v,w} of G we add to H vertices v, and w, and edges (u, v.) for every
u € A(v) and (we,u) for every u € A(w). We assign weight 0 to all these edges. Finally,
we add the edge (ve, w.) and set w(ve, w.) = 2.

3. For each non-edge € = {v,w} of G we add to H vertices vz and we and edges (u, ve) for

every u € A(v) and (we, u) for every u € A(w). We assign weight 1 to each of these edges.

Finally, we add the edge (ve, we) and set w(ve, wg) = 0.
This completes the construction. The graph H along with the weight function w: E(H) —
{0,1,2} is called the editing f-blowup of graph G. We use £;(G) to denote the editing
f-blowup of G. We omit the subscript when there is no scope for ambiguity.

» Definition 7 (Induced Editing f-blowup). For a subset S C V(G), we define the editing
f-blowup of G induced by S as follows. Let the editing f-blowup of G be (H,w). Begin
with the graph H and for every edge e = (v,w) € E(G) such that v € S and w ¢ S, delete
the vertices v, and we. Similarly, for every non-edge € = (v,w) ¢ E(G) such that v € S and
w ¢ S, delete the vertices vz and wz. Let the graph H' be the union of those connected

components of the resulting graph which contain the vertex sets A(v) for vertices v € S.

Then, the pair (H', w) is called the editing f-blowup of G induced by the set S and is denoted
by £;(G)[S].

The construction of the editing f-blowup of G can be informally described as taking
the complete graph on V(G), making f(v) “equivalent copies” of every vertex v € V(G),
replacing every edge and non-edge of G by a path of length 3, and assigning weight 2 to
the “middle” edge of the paths corresponding to an edge of G, assigning weight 1 to the

“end” edges of the path corresponding to a non-edge of G and weight 0 to all other edges.

Similarly, the construction of the editing f-blowup of G induced by a subset S C V(G) can
be described analogously starting with the graph G[S].

We now prove a lemma (see also [17]) which gives an equivalence between editings to
f-factors and perfect matchings in the editing f-blowup.
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» Lemma 8. A graph G has an {-editing to an f-factor with £ < k if and only if the editing
f-blowup of G, (H,w), has a perfect matching of weight at most 2k.

Proof. Let (S, S,) be an editing to an f-factor (V(G), F) of G such that |S, U S,| < k,
Where F = (E(G ) \ Sz) US,. We now define the following matching M in H. For every
pair (v,w) € (2) \ F, if e = (v,w) € E(G) then we add the edge (ve,we) to M and if
e = (v,w) ¢ E(G) then we add the edge (vs,ws) to M. For every edge (v,w) € F, if
e = (v,w) € E(G) then we add the edges (u,ve) and (v', we) to M where u and v’ are two
vertices in A(v) and A(w) respectively such that they are as yet unsaturated by M. Similarly,
for every edge (v,w) € F, if e = (v,w) ¢ E(G) then we add the edges (u,vs) and (u', wz)
to M where u and v’ are two vertices in A(v) and A(w) respectively such that they are as
yet unsaturated by M. Since |A(v)| = f(v) for every v € V(G), M indeed saturates the
sets A(v) for every v € V(G) and therefore is a perfect matching. We now consider the
weight of M. Clearly, E(G) \ F' = S, and the weight contributed to M by the edges of H
corresponding these edges is 2|.S,,|. Similarly, the weight contributed to M by the edges of H
corresponding to those in Sy = F'\ E(G) is 2|Sy|. Therefore, w(M) < 2k. This completes
the proof of the forward direction.

Conversely, suppose that H has a perfect matching M of weight at most 2k. Let S, = {e =
(v,w)|(v,w) € E(G) A (ve,we) € M} and Sy = {e = (v,w)|(v,w) ¢ E(G) A (ve,we) ¢ M}.
Observe that for every e = (v, w) € S, there is a vertex u € A(v) and v’ € A(w) such that
(u,vg),(u',wg) € M. This is because the vertex vz (wg) has exactly one neighbor disjoint
from A(v) (respectively A(w)) and by assumption, (vs,wz) ¢ M. Since each edge of the
form (u,vz) (where u € A(v)) has weight 1 and occurs in M along with an edge (u/, wz)
of weight 1 (with € = (v, w)), we conclude that 2|S, U S,| = w(M) < 2k. We now claim
that (V(G), F) is an f-factor, where F' = (E(G) \ Sz) U Sy. Let M4 be all those edges of M
incident on (J, ey () A(v). Starting from H, we define a subgraph H' of G as follows. For
each v € V(G), we identify all vertices A(v) in H. We then contract every edge in My. It is
easy to see that the resulting graph is indeed an f-factor of G. Furthermore, by definition,
the edges in M4 are precisely those corresponding to the edges in F'. This completes the
proof of the lemma. |

Having established the relation between perfect matchings in the f-blowup and editings
to f-factors, we now recall the definition of a “weighted” Tutte matrix (see for example [11])
which allows us to handle edge weights as this will be crucially required to encode the size of
the editings.

» Definition 9. (Weighted Tutte matrix) The Weighted Tutte matriz of a graph G with n
vertices and a weight function w : E(G) — Z is an n x n skew-symmetric matrix T over the
set {z;;]1 < i< j <|V(G)|}U{z} of indeterminates whose (i, )" element is defined to be

2203 if (i,§) € E(G) and i < j
T(i,j) =14 —x;2°0) if (i,j) € E(G) and i > j
0 otherwise

We use T,(G) to denote the Weighted Tutte matrix of graph G.
The following proposition is analogous to Proposition 1 and the proof is identical.

» Proposition 2. If M = {(i1,71), (i2, J2),- .., (ie, je)} is a perfect matching of a graph G
with a weight function w on its edges, then the product ([T, ;. )enr Tinin) - 2Pt MW (isdk)
appears as a surviving monomial in the sum on the right-hand side of Equation 1 when
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applied to T.(G) (instead of T(G)) and the sum is expanded and simplified over any field of
characteristic two. Conversely, each surviving monomial in a simplified expansion of this
sum over a field of characteristic two is of the form (I, i em Tinin) - 2P em Wik .gk)
where M = {(i1, j1), (i2, Ja2), .- -, (i¢, je)} is a perfect matching of G. In particular, det T,(G)
is identically zero when expanded and simplified over a field of characteristic two if and only
if graph G does not have a perfect matching.

» Definition 10. With every set S C V(G), we associate a specific monomial mg which is
defined to be the product taken over all e = (v, w) € E(G)[S, V(G)\ 5] of the terms x;;2z%(7)
where {i,j} = {ve,w.} and over all € = (v,w) € E(G)[S,V(G) \ S] of the terms z;;2* ()
where {4, j} = {vs, ws}, where the terms v, we, vz, ws are as in Definition 6 of the editing
f-blowup £(G) of G. If S = V(G), then we set mg = 1.

In the spirit of [6], we now fix an arbitrary vertex v* of G and define a polynomial P(z, z)
over the indeterminates from the weighted Tutte matrix 7,(£(G)) of the f-blowup of G, as
follows:

Pz,z)= Y, (detTAEG)S]) - (det T(E(G)V(G)\ S])) - ms, (2)

SCV(G) ; v*eS

where if a graph H has no vertices or edges then we set det T(H) = 1. In the sequel we use
F to denote an arbitrary field of characteristic two. Observe that P(Z, z) can be rewritten as
ZLO Qi(7) - 2* where 7 is an upper bound on the degree of z in any term of the polynomial
P(z,2). We refer to the polynomial Q;(z) as the coefficient of z* in P(%,z). Furthermore,
every monomial m in the naive expansion of Q;(Z) is also referred to as a coefficient of z°.

» Definition 11. We say that an editing (S, S2) of G to an f-factor (V(G), F) contributes
a monomial x;,;, ... ®;_j, to the naive expansion of the right-hand side of Equation 2 if and
only if the following conditions hold.
For every e = (v,w) € FN E(G) (€ = (v,w) € F\ E(Q)), there is a u € A(v), v’ € A(w)
and 1 < p,q¢ < r such that {u,ve} = {ip,jp} and {v',w.} = {iy, 44} (respectively
{u, ve} = {ip, jp} and {u', we} = {ig, jo})-
For every e = (v,w) € E(G) \ F' (e = (v,w) ¢ E(G)NF), there is a 1 < p <r such that
{ve, we} = {ip, jp} (respectively {ve, we} = {ip, jp})-
For every 1 < p,q¢ < r, if {u,ve} = {ip,5p} and {v,we} = {ig,j,} for some e €
F N E(G)(respectively {u,ve} = {ip, jp} and {v', ws} = {iq, jq} for some e € F\ E(G)),
then e (respectively €) is in F.
For every 1 < p < r, if {ip, jp,} = {ve, we} for some e € E(G) ({ip,jp} = {ve, we} for
some € ¢ FE(G)), then e (respectively €) is not in F.
For every S C V(G) containing v*, such that S is a union of the vertex sets of (some)
connected components of (V(G), F), there is a pair of monomials m; and mg such that my
is a surviving monomial in the simplified expansion of det 7 (E(G)[S]), ms is a surviving
monomial in the simplified expansion of det T(E(G)[V(G) \ S]), and mq - mg - mg =
Tiygy - Lingy Zzzzlw(ik’jk).
Having set up the required notation, we now state the main lemma which allows us to
show that monomials contributed by “undesirable editings” do not survive in the simplified
expansion of the right hand side of Equation 2.

» Lemma 12. Let G be a graph and (S1,S2) be an £-editing of G to an f-factor (V(G), F).
Then,
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1. All monomials contributed by (S1,S2) are coefficients of 2% in the naive expansion of the
right-hand side of Equation 2.

2. If (V(G), F) is a disconnected f-factor of G then every monomial contributed by (S7,.52)
occurs an even number of times in the polynomial Q2¢(T) in the naive expansion of the
right-hand side of Equation 2.

3. If (V(G), F) is a connected f-factor of G, then every monomial contributed by (S1,.52)
occurs exactly once in the polynomial Q2¢(Z) in the naive expansion of the right-hand side
of Equation 2.

As a consequence of the above lemma, we prove the following.

» Lemma 13. The coefficient of z** in the naive expansion of P(z,z) is not identically zero
over F if and only if G has an (-editing to a connected f-factor.

Proof. Observe that as a consequence of Proposition 2 combined with the proof of Lemma
8, we have that each surviving monomial in the naive expansion of the right-hand side of
Equation 2 is contributed by some editing to an f-factor of the graph G.

By this observation, every monomial which is a coefficient of z?¢ is contributed by an
f-editing to an f-factor and by Lemma 12, we have that every monomial contributed by this
editing occurs an even number of times if and only if the resulting f-factor is disconnected.
This completes the proof of the lemma. <

We now prove the main result of this section by giving an algorithm for editing to
connected f-factors.

» Theorem 14. There is a randomized algorithm that, given an instance (G, k) of EDITING
TO f-FACTOR, runs in time O*(2IV() and either returns a solution or correctly (with high
probability) concludes that one does not exist.

Proof. Observe that the total degree of the polynomial P(z,z) is bounded by n? + 2(2) +
2(2‘) < 3n?, where the sum of the first two terms is an upper bound on the number of vertices
in the editing f-blowup which gives a bound on the degree of a monomial in P(Z, z) due to
Z and the third term is a bound on the degree of a monomial due to z. We select values for
the variables in Z uniformly at random from a field F of characteristic 2 and size at least
3n¢ for some fixed d > 5. Having fixed this instantiation of the variables in z, we select
r=2(3) + 1 values for z from the field F and evaluate the polynomial P(z, z) for each of
these r instantiations and return YES if and only if for some ¢ < 2k, the coefficient of z¢ is
non-zero in the univariate polynomial R(z) obtained by evaluating P(Z, z) at the randomly
selected points for Z. The r evaluations of the polynomial can be done in time O*(2") by
determinant computation and testing for a z* with non-zero coefficient in R(z) can be done
in polynomial time by interpolation (Lemma 5). This proves the stated bound on the running
time of the algorithm. Therefore, it only remains to prove the correctness of the algorithm.

Suppose that (S1,S2) is a p-editing to a connected f-factor for some p < k. Then, by
Lemma 13, we have that the coefficient of 2?7, Q2,(%), is not identically zero over F. By
the Schwartz-Zippel Lemma, we have that since (2, (Z) is not identically zero, then with
probability at least 1 — # the evaluation of QQ2,(Z) at the randomly chosen points results in
a non-zero value, implying that the coefficient of 2% is non-zero in the polynomial R(z). By
the union bound, the probability that the coefficient of z¢ is “erroneously” zero in R(z) for
every 1 < ¢ < 2k is at most i—ﬁ < % Therefore, if G has a p-editing to a connected f-factor
with p < k, then with probability at least 1 — %, we will detect the presence of such an
editing. This completes the proof of the theorem. <
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Finally, we note that if we are also given costs on the edges of the graph that are bounded
polynomially in n, then we can also solve the version of the problem where costs are placed on
the editing operations, in the same asymptotic running time with the only change appearing
in the choice of the field from which z is instantiated at random. More precisely, we have
the following theorem.

» Theorem 1. There is a randomized algorithm that, given an instance (G,c,c*) of MIN-
CosT EDGE EDITING TO f-FACTOR with the cost function ¢ being bounded by a polynomial
in V(Q), runs in time O*(2IV(ON) and either returns a solution or correctly (with high
probability) concludes that one does not erist.

The problem of finding a connected f-factor in a given graph is special case of MIN-COST
EDGE EDITING TO f-FACTOR and hence we have the following corollary.

» Corollary 15. There is a randomized algorithm that, given an instance (G, f) of CON-
NECTED f-FACTOR where |V (G)| = n, runs in time O*(2") and either returns a solution or
correctly (with high probability) concludes that one does not exist.

4 Parity f-factors

In this section we extend our approach to handle the parity version. Most of the proof is
identical to the arguments in the previous section, and so we focus on defining the new kind of
f-blowup which we need, and a description of the corresponding matching characterization.

» Definition 16. Given a graph G and a function f : V(G) — {0,1}, a parity f-factor
of graph G is a spanning subgraph H of G in which every vertex v has degree exactly
f() (mod 2). A connected parity f-factor of G is such a connected subgraph H of G.

» Definition 17 (Parity f-Blowup). Let G be a graph and let f: V(G) — {0,1}. Let H be

a graph defined as follows

1. For each vertex v of G, we add a vertex set A(v) which has size deg(v) if deg(v) =
f(v) (mod 2) and size deg(v) — 1 otherwise.

2. For each edge e = {v,w} of G we add vertices v. and w, and edges (u,v.) for every
u € A(v) and (we, u) for every u € A(w). Finally, we add the edge (ve, we).

3. For each v such that f(v) =0, we choose an arbitrary pair of vertices a, and a, in A(v)
and make a clique on the rest of the vertices of A(v). For each v such that f(v) =1, we
choose an arbitrary vertex a, in A(v) and make a clique on the rest of the vertices of
A(v).

This completes the construction. The graph H is called the parity f-blowup of graph G. We

use P¢(G) to denote the parity f-blowup of G . We omit the subscript when there is no

scope for ambiguity.

» Definition 18 (Induced Parity f-blowup). For a subset S C V(G), we define the parity
f-blowup of G induced by S as follows. Let the parity f-blowup of G be H. Begin with
the graph H and for every edge e = (v,w) € F(G) such that v € S and w ¢ S, delete the
vertices v, and w,. Let the union of connected components of the resulting graph containing
the vertices of the set S be the graph H’. Then, the graph H’ is called the parity f-blowup
of G induced by the set S and is denoted by Pr(G)[S].

» Lemma 19. A graph G has a parity f-factor if and only if the parity f-blowup of G has a
perfect matching.
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Proof. Suppose that G has a parity f-factor (V(G), F). We now define a matching M in
the parity f-blowup of G as follows. For every e € E(G) \ F, we add the edge (ve, w.) to
M. For every edge (v,w) € F, we add the edges (u,v.) and (v, w.) to M where v and v’
are two vertices in A(v) and A(w) respectively such that they are as yet unsaturated by M.
However, if either of a, or a] is unsaturated at this point, we chose to saturate one of these
and similarly for a,, and a,.

Since |A(v)] = f(v) (mod 2) and |A(v)| > deg(v) —1 for every v € V(G), we conclude that
M saturates B(v) vertices from the set A(v) for every v € V(G), where B(v) = f(v) (mod 2).
Furthermore, since (V(G), F) is a parity f-factor, {a,,a,} C B(v) for every v. The only
unsaturated vertices in H at this point are the vertices in A(v) \ B(v) for every v € V(QG).
However, since B(v) = f(v) (mod 2), we have that B(v) = |A(v)| (mod 2), implying that
|A(v) \ B(v)| =0 (mod 2). Since {a,,al,} C B(v) for every v, the subgraph H[A(v) \ B(v)]
is an even-sized clique and therefore we pick an arbitrary perfect matching in this clique and
add it to M to get a perfect matching.

Conversely, suppose that M is a perfect matching of H. We define the set F' as follows.
For every e = (v,w) € E(G) such that (ve,w.) ¢ M, we add the edge (v, w) to F. It can be
argued along similar lines as before that (V(G), F') is indeed a parity f-factor of G. This
completes the proof of the lemma. |

Given the above definition of f-blowups and the structural lemma “equating” parity
f-factors to perfect matchings in the f-blowup, the proof of the following theorem is identical
to the proof of Theorem 14.

» Theorem 2. There is a randomized algorithm that, given an instance (G, f) of CONNECTED
PARITY f-FACTOR where |V (G)| = n, runs in time O*(2"™) and either returns a solution or
correctly (with high probability) concludes that one does not exist.

» Corollary 20. There is a randomized algorithm that, given a graph G, |V(G)| = n, runs
in time O*(2"™) and either returns a connected Eulerian subgraph of G with the maximum
(or minimum) number of edges, or correctly (with high probability) concludes that one does
not exist.

5 Conclusion

In this paper we studied certain generalizations of the well-studied NP-hard problems
Hamiltonicity and Max/Min-Eulerian Subgraph. We gave O*(2™) time randomized algorithms
for the problems of finding connected f-factors in a graph, minimum editing to obtain a
connected f-factor and finding a connected parity f-factor. The most natural direction
forward in this line of research would be towards obtaining a deterministic vertex exponential
algorithm as well as algorithms that handle super-polynomial weights.
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—— Abstract

We study the paramereteized complexity of the following connectivity problem. For a vertex
subset U of a graph G, trees T1,...,Ts of G are completely independent spanning trees of U if
each of them contains U, and for every two distinct vertices u,v € U, the paths from u to v in
Ti,...,Ts are pairwise vertex disjoint except for end-vertices u and v. Then for a given s > 2
and a parameter k, the task is to decide if a given n-vertex graph G contains a set U of size at
least k such that there are s completely independent spanning trees of U. The problem is known
to be NP-complete already for s = 2. We prove the following results:

For s = 2 the problem is solvable in time 20*)p01)

For s = 2 the problem does not admit a polynomial kernel unless NP C coNP /poly.

For arbitrary s, we show that the problem is solvable in time f(s, k)no(l) for some function

f of s and k only.
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binatorics, G.2.2 Graph Theory

Keywords and phrases Parameterized complexity, FPT-algorithms, completely independent
spanning trees
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1 Introduction

Two spanning trees T7 and T3 of a graph G are independent if they are rooted in the same
vertex r and for every vertex v # r of G, the two (v,r)-paths, one in 77 and one in Tb,
are internally disjoint, i.e. having no edge and no internal vertex in common. Independent
spanning trees have applications to fault-tolerant protocols in distributed processor networks
[3, 11]. In 2001, Hasunuma in [7, 8] introduced the notion of completely independent spanning
trees, an interesting variant of the classical notion of connectivity. Formally, spanning trees

Ti1,...,Ts of a graph G are completely independent if for every two distinct vertices u,v €
V(@G), the (u,v)-paths in T1,..., T, are pairwise vertex disjoint except for end-vertices u
and v.

The problem of deciding whether a graph G has two completely independent spanning
trees is NP-complete [8]. Since not every graph has even two completely independent span-
ning trees, the following optimization version of the problem is meaningful. For a given
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s > 2, can one find a maximum set of vertices spanned by s completely independent trees?
More precisely, for a set of vertices U of a graph G, we say that a subgraph T of G is
a spanning tree of U if T is an inclusion-minimal tree in G containing all vertices of U.
Spanning trees 17, ...,Ts of U are completely independent if for any two distinct vertices
u,v € U, the (u,v)-paths in T1,...,Ts, are pairwise vertex disjoint except for end-vertices
uw and v. Then the task is to find a set of vertices U of maximum size (we call the vertices
of U terminals) such that there are s completely independent spanning trees of U.
In this paper, we initiate the study of the following parameterized problem.

INDEPENDENTLY s-CONNECTED k-SET
Instance: A graph G and positive integers s > 2 and k.

Parameter 1:  s.
Parameter 2: k.
Question: Does G contain a set of terminals U of size at least k such that there are s

completely independent spanning trees of U?

Previous results. Hasunama [8] has shown that it is NP-complete to decide whether a
graph G has two completely independent spanning trees. He also obtained a number of
results about existence of completely independent spanning trees for some special graph
classes. Other, mostly combinatorial, studies of the problem were carried out by Hasunuma
and Morisaka [9] and Péterfalvi [12].

Our contribution. Our main result is stated in the following theorem.

» Theorem 1. INDEPENDENTLY 2-CONNECTED k-SET can be solved in time 2°F)n®) for
n-vertex graphs.

We prove the theorem by applying a WIN/WIN approach. We start with a combinatorial
result, which is interesting on its own. In Section 3 we show that every 2-connected graph
of pathwidth at least k, contains as a minor a graph H, which is a tree on k vertices
plus one vertex adjacent to all other vertices. We also give a polynomial time algorithm
which either provide us H, or a path decomposition of width k — 1. As it is sufficient to
solve INDEPENDENTLY 2-CONNECTED k-SET for the blocks of the input graph, we either
obtain two completely independent spanning trees for k terminals, or construct a path
decomposition of width at most k — 1. The next step is an algorithm given in Section 5 that
solves INDEPENDENTLY 2-CONNECTED k-SET in time single exponential in the treewidth of
the input graph. This step is based on the recent techniques of computing representative sets
of graphic matroids [4]. Combining together both cases, we obtain the proof of Theorem 1.

Let us remark, that the NP-hardness reduction in [8] from Not-All-Equal-3SAT reduces
to a graph of size linear in the number of variables and clauses of the formula. Thus, unless
the Exponential Time Hypothesis of Impagliazzo, Paturi, and Zane [10] fails, there is no
20(k)n©(M) algorithm for INDEPENDENTLY 2-CONNECTED k-SET and thus our upper bound
is asymptotically tight up to ETH.

We complement our algorithm with a complexity result on kernelization for INDEPEND-
ENTLY 2-CONNECTED k-SET, namely that the problem does not admit a polynomial kernel
unless NP C coNP /poly.

We also show that INDEPENDENTLY s-CONNECTED k-SET is FPT when parameterized
by s + k. It is not hard to reduce INDEPENDENTLY s-CONNECTED k-SET to the problem
of finding a topological minor of constant size in a graph. Then the result follows from a
deep Theorem of Grohe, Kawarabayashi, Marx and Wollan [6] on the parameterized testing
of topological minors.
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2 Preliminaries

Graphs. We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V(G) and the edge set is denoted by E(G). For a set of
vertices S C V(G), G[S] denotes the subgraph of G induced by S, and by G — S we denote
the graph obtained from G by the removal of all the vertices of S, i.e., the subgraph of G
induced by V(G) \ S. For a single element set {v}, we write G — v instead of G — {v}. For
a vertex v, we denote by Ng(v) its (open) neighborhood in G, that is, the set of vertices
which are adjacent to v. The degree of a vertex v is denoted by dg(v) = |Ng(v)|, and A(G)
is the maximum degree of G. A vertex v is a cut-vertex of G if G — v has more connected
components than G. A connected graph with at least two vertices is 2-connected if it does
not contain a cut-vertex. A maximal 2-connected subgraph of G is called a 2-connected
component or block of G. Let T be a tree. For a vertex v € V(T'), we say that v is a leaf if
dr(v) =1or dp(v) =0 (if |V(T)| = 1), and we say that v is an internal vertex otherwise.

Minors. The edge contraction of e = uv removes u and v from G, and replaces them by a
new vertex adjacent to precisely those vertices to which u or v were adjacent. If u is a vertex
of degree two such that its neighbors x,y are not adjacent, then the verter dissolution of u
removes u and adds a new edge xy. A graph H is a minor of G if H can be obtained from
a subgraph of G by a sequence of vertex deletions, edge deletions and edge contractions.
Alternatively, we can define minors as follows. For two non-empty vertex disjoint subsets
X1,Xy C V(G), X1 and X5 are adjacent if there is uv € E(G) such that v € X; and
v € Xo. An H-witness structure W is a collection of |V (H)| non-empty vertex disjoint
subsets W(z) C V(G), one for each z € V(H), called H-witness sets, such that each W (x)
induces a connected subgraph of G, and for all z,y € V(H) with  # y, if  and y are
adjacent in H, then W(x) and W (y) are adjacent in G. It is straightforward to see that
H is a minor of G if and only if G has an H-witness structure. A graph H is a topological
minor of G if H can be obtained from a subgraph of G by a sequence of vertex deletions,
edge deletions and vertex dissolution. Notice that if H is a topological minor of G, then by
subdividing edges of H we can obtain a graph that is isomorphic to a subgraph of G.

Treewidth and pathwidth. A tree decomposition of a graph G is a pair (X,T) where T is
atree and X = {X; | i € V(T)} is a collection of subsets (called bags) of V(G) such that:
L Uievr) Xi =VI(G),

2. for each edge zy € E(G), z,y € X; for some ¢ € V(T), and

3. for each x € V(@), the set {i | x € X;} induces a connected subtree of T'.

The width of a tree decomposition ({X; | i € V(T)},T) is max;ev(r) {|Xs| — 1}. The
treewidth of a graph G (denoted as tw((G)) is the minimum width over all tree decompositions
of G.

If T is restricted to be a path, then (X,T) is said to be a path decomposition. Re-
spectively, the pathwidth of a graph G (denoted as pw(G)) is the minimum width over all
path decompositions of G. Whenever we consider a path decomposition (X, P), we assume
that the bags are enumerated in the path order with respect to P. In other words, a path
decomposition of G is a sequence of bags (X1,...,X,).

3 Algorithm for Independently 2-Connected k-Set

In this section we design an algorithm for INDEPENDENTLY 2-CONNECTED k-SET. We start
by a simple characterization of completely independent spanning trees that we use in our
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arguments. This is followed by a a structural result that shows that if the pathwidth of
the input graph is large then the given instance is a YES instance. We use this to design a
algorithm mentioned in Theorem 1.

3.1 Characterization of completely independent spanning trees

Hasunuma proved in [7] that if T3,...,T;s are spanning trees of a graph G, then T1,..., T
are completely independent if and only if 77,...,Ts are edge-disjoint and for any vertex
v € V(G), there is at most one spanning tree T; such that dr,(v) > 1. We need a similar
claim for completely independent spanning trees of a set of terminals.

» Lemma 2. Let G be a graph, and let U C V(G) with |U| = k. Let also T1,...,Ts be
spanning trees of U. Then Ty, ..., Ts are completely independent spanning trees of U if and
only if

1. Ty,..., T, are edge disjoint,

2. foralli,je{l,...,s},i#j, ifveV(T;) NV (T}), thenv e U,

3. for each v € U, there is at most one i € {1,...,s} such that dr,(v) > 1.

Proof. We assume that k, s > 2, as the claim is trivial otherwise. We first show the forward
direction. Suppose that T1,...,Ts are completely independent spanning trees of U.

We show that for any 4,5 € {1,...,s}, ¢ # j, T; and T have no common vertex that is an
internal vertex of both the trees. To obtain a contradiction, assume that v € V(T;) NV (Tj)
is an internal vertex of both T; and 7). The vertex u is a cut-vertex of T;. Because T; is
an inclusion-minimal tree that contains U, there are two terminals z,y € U that are in two
distinct components T and T} of T; — u respectively. The tree T} has the unique (z,y)-path
P and u ¢ V(P). Since u is an internal vertex of T}, T; —u has at least two components, and
P lies completely in one component ij of Tj — w. By minimality, there is z € U such that z
is in another component of T; — u. Notice that z ¢ V(T7) or z ¢ V(T}"). Assume without
loss of generality that z ¢ V(I7). Because x € V(P) and z are in distinct components of
T; — u, u is an internal vertex of the (z, z)-path in T);. Because z ¢ V(T}) and z € V(T}), u
is an internal vertex of the (x, z)-path in T; as well, but it contradicts the assumption that
T1,...,Ts are completely independent spanning trees of U.

The proved claim immediately implies (3). To show (1), assume that two distinct trees
T;,T; have a common edge uv. Because neither u nor v can be an internal vertex of the both
trees, we can assume without loss of generality that u is a leaf of T; and v is a leaf of Tj.
Because T;, T} are inclusion-minimal trees that contains U, any leaf of T; or T} is a terminal,
and u,v € U. Then we have that the (u,v)-paths in T; and T, have a common edge; a
contradiction. To prove (2), it is sufficient to observe that if v € V(T;) N V(T}) and v ¢ U,
then by minimality of 73,7}, v is an internal vertex of both these trees, a contradiction.

Assume now that 77, ..., T are spanning trees of U that satisfy (1)—(3). Consider any
distinct u,v € U and 4, j € {1,...,s}. Let P;, P; be the (u, v)-paths in T; and T} respectively.
By (1), P; and P; are edge disjoint. If P; and P; have a common vertex « # u,v, then by
(2), € U, and then dr, (z), dr,(x) > 2 contradicting (3). Hence, P; and P; are internally
vertex disjoint. |

Clearly, if G is a disconnected subgraph, then G has a set of terminals U of size at least
k such that there are s completely independent spanning trees of U if and only if there is
such a set of terminals in one of the components of G, i.e., we can consider only connected
graphs. Lemma 2 implies that we can restrict ourself by 2-connected graphs. To see it, it
is sufficient to observe that if a set of terminals U has two vertices that does not belong to
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the same block, then there is a cut-vertex of G that is an internal vertex of any spanning
tree of U contradicting Lemma 2.

» Lemma 3. Let G be a connected graph. For positive integers s and k, G has a set of
terminals U of size at least k such that there are s completely independent spanning trees of
U in G if and only if there is a block H of G with the same property.

3.2 Independent trees and pathwidth

In this section we show that if a 2-connected graph G has pathwidth at least k, then G
has a set of terminals U of size at least k such that there are two completely independent
spanning trees of U. We need some additional notations. Let G be a graph. For Z C V(G),
att(Z) is the set of all v € Z with a neighbor in V(G) \ Z, and «(Z) = |att(Z)].

» Theorem 4. Let G be a 2-connected graph with n vertices and m edges. Let also k be
a positive integer. If pw(G) > k, then G has a minor H with the property that there is a
vertex w € V(H) such that dg(w) > k and H —w is a tree. Moreover, there is an algorithm
that in time O(nm) either produces a witness structure of such a minor H, or constructs a
path decomposition of G of width at most k — 1.

Proof. Suppose that Z is a non-empty proper subset of V(G) that satisfies the following
conditions:
(i) 1<a(2) <k,
(ii) there are vertex disjoint connected subgraph Cy,...,Cy of G[Z] where t = a(Z) — 1
such that
for each i € {0, ...,t}, V(C;) Natt(Z) # 0,
G has an edge with one end-vertex in Cy and another in C; for all ¢ € {1,...,t},
and
V(Cy)U...UV(C;) are in the same component of G — V(Cp).
(iii) G[Z] has a path decomposition (X7, ..., X, ) of width at most k& — 1 such that att(Z) C
X,
Notice that att(Z) C V(Cp)U...UV(C}) and each C; has the unique vertex in att(2).

We prove the following claim.

» Claim A. Fither o(Z) =k and G has a minor H with the property that there is a vertex
w € V(H) such that dg(w) >k and H —w is a tree, or |[V(G)\ Z| =1 and pw(G) < k-1,
or there is Z' such that Z C Z' C V(G) and Z' satisfies (i)—(ii).

Proof of Claim A. Suppose that a(Z) = k =t + 1. Consider u € att(Z) NV (Cy). There
is a neighbor v of u in V(G) \ Z. Let Cy11 be the subgraph of G with the unique vertex
v. The graph G is 2-connected. Then G — u is connected, and G has a path that joins v
with at least one of C, ..., C; that avoids Cy. Because V(Cy)U. ..UV (Cy) are in the same
component of G—V(Cy), we have that V(Cy)U...UV(Ciy1) also are in the same component
of G —V(Cy). Now we construct the minor H of G as follows. We contract the edges of Cy
and denote the obtained vertex w. Then we contract the edges of the subgraphs C1,...,Ck
and denote the obtained vertices by u1, ..., u; respectively. Let G’ be the obtained graph.
The vertices uq,...,u, are in the same component of G’ — w. Hence, G’ — w has a tree
T that contains uy,...,u;. We remove the vertices of V(G’') \ (V(T) U {w}). Finally, we
remove all the edges of the obtained graph except the edges of T and the edges that join w
and T. Because uq,...,u; € V(T) are adjacent to w, we have a required minor.
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Let now a(Z) < k and let |V(G) \ Z| = 1. By (iii), G[Z] has a path decomposition
(X1,...,X,) of width at most k—1 such that att(Z) C X,.. Let X, 11 = att(Z2)U(V(G)\ Z).
It is straightforward to see that (Xi,...,X,41) is a path decomposition of G of width at
most k — 1.

From now we assume that a(Z) < k and |V(G) \ Z| > 1. We show that the set Z
can be extended by one vertex in such a way that the obtained set satisfies (i)—(iii). Let
u € att(Z)NV (Cp) and let v be an arbitrary neighbor of w in V(G)\ Z. We set Z/ = ZU{v}
and let X, 11 = att(Z) U {v}.

Because V(G) \ Z' # () and G is connected, «(Z’) > 1. Clearly, a(Z') < a(Z) + 1 < k.
Hence, (i) holds.

It is straightforward to verify that (Xi,..., X,41) is a path decomposition of G[Z'] and
att(Z') C att(Z) U {v} C X,41. The width of this decomposition is max{w,t + 1} where
w is the width of (X1,...,X,). Recall that w < k—1and t+1 = a(Z) < k. It means that
(iii) is fulfilled.

It remains to show (ii). Let C;11 be the subgraph of G with the unique vertex v. Clearly,
att(Z') CV(Cy)U...UV(Ciy1) and G has an edge with one end-vertex in Cy and another
in C; for all i € {1,...,t+1}. Since G is 2-connected, G — u is connected, and G has a path
that joins v with at least one of Cy,...,C; that avoids Cy. Because V(C1) U ... UV (Cy)
are in the same component of G — V(Cy), we have that V(Cy) U ... U V(Ciy1) also are
in the same component of G — V(Cp). Notice that it can happen that not all C; have
vertices in att(Z’). Let {C],...,C}} = {Ci|V(C;) Nnatt(Z') # 0,1 < i < t+ 1}. Because
V(C1)U...UV(Ciy1) are in the same component of G — V(Cy), V(C{) U ...UV(C},) are
in the same component of G — V(Cp) too. Observe that since [V (C;) Natt(Z)| = 1 for
i €{0,1,...,t}, we have |[V(C!)Nnatt(Z')] =1 for i € {1,...,¢'}, |[V(Cy) Natt(Z’)| < 1,
and att(Z’) CV(Cp)UV(CY)...UV(C}). We consider two cases.

Case 1. The vertex u has at least two neighbors in V(G) \ Z. Then Cy has the unique
vertex u in att(Z’), and we have that a(Z’) =t 4+ 1 and (ii) holds for Cy,C1,...,C}.

Case 2. The vertex v is the unique neighbor of u in V(G) \ Z. Observe that since G is 2-
connected, ¢ > 2 in this case. Consider the graph G’ obtained from G by contracting edges
of C1,...,C}, and denote by x1, ..., zy the vertices obtained from these graphs respectively.
We have that x4, ...,z are in the same component of G’ —V (Cj). We construct a spanning
tree T for {z1,...,zy} in G' — V(Cy). Because t' > 2, T has at least two leaves. Without
loss of generality we assume that x; is a leaf of T. Then zo,...,z+ and, consequently,
V(C%),...,V(C}) are in the same component of G' —(V (Cy)U{z1}) and G—(V(Cy)UV(C1))
respectively. We construct C{) by taking Cy U C7 and adding an edge that joins Cy and Cj.
Then att(Z') C V(Cy) UV (Cy)...UV(C}) and G has an edge with one end-vertex in C}
and another in CY for all ¢ € {2,...,#'}. Also V(C%)U...UV(C},) are in the same component
of G — V(C}). Because V(C1) Natt(Z') # 0, |V(C{) Natt(Z’)] = 1. Then a(Z') = ' and
(ii) is fulfilled for C§, C%, ..., C}.. <

Observe that a non-empty proper subset Z of V(G) that satisfies (i)—(iii) always exists,
because for any vertex z € V(G), Z = {z} satisfies (i)—(iii). Suppose that pw(G) > k, and
let Z C V(G) be an inclusion-maximal non-empty proper subset of V(G) that satisfies (i)—
(iii). Then by Claim A, G has a minor H with the property that there is a vertex w € V(H)
such that dg(w) > k and H — w is a tree.

To complete the proof, it remains to observe that the proof of Claim A can be transformed
to an algorithm that either constructs H, or produces a tree decomposition of G of width at
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most k— 1, or increases Z by adding one vertex. In the last case the algorithm also modifies
the subgraphs Cy, ..., C; and adds a new bag to the path decomposition. Initially we choose
an arbitrary vertex z and set Z = {z}, t = 0 and Cy has the unique vertex z. Since each
iteration can be done in time O(m) and we have at most n iterations, we conclude that the
algorithm runs in time O(nm). <

This combinatorial result is tight in the following sense. If G = K, then pw(G) = k—1,
and G has a minor H with the property that there is a vertex w € V(H) such that dgy (w) > k
and H—w is a tree. But clearly G has no minors with a vertex of degree at least k. Theorem 4
gives us the following corollary.

» Corollary 5. Let G be a 2-connected graph with n vertices and m edges. Let also k be a
positive integer. If pw(G) > k, then G has a set of terminals U of size at least k such that
there are 2 completely independent spanning trees of U. Moreover, there is an algorithm
that in time O(nm) either produces U and completely independent spanning trees Ty, To of
U, or constructs a path decomposition of G of width at most k — 1.

We conclude this section by the observation that the bounds obtained in Corollary 5 is
almost tight. If G = K}, with k > 4, we have pw(G) = k — 1, and there are two completely
independent spanning trees of V(G) where |[V(G)| = k + 1 and the number of terminals
cannot be increased.

3.3 Proof of Theorem 1

In this section we give a proof of Theorem 1 by combining Lemma 3 and Corollary 5.
However, we also need the following lemma which gives an algorithm for INDEPENDENTLY
2-CONNECTED k-SET on graphs of bounded treewidth.

» Lemma 6. Let G be an n-vertex graph given together with its tree decomposition of width
tw. Then INDEPENDENTLY 2-CONNECTED k-SET on G can be solved in time 2°W)nO1),

A naive algorithm for INDEPENDENTLY 2-CONNECTED k-SET would run in time
tw@tW) O To obtain the desired running time, we use the idea of representative families
introduced in [4] in our dynamic programming algorithm. By Lemma 2, we know that for
INDEPENDENTLY 2-CONNECTED k-SET we need to find two edge disjoint trees (Fi, F») sat-
isfying certain properties. Thus, if we take the intersection of the solution to some subgraph
of the input graph we get two forests (F], F3). Let G be the input graph and H be an
induced subgraph of G such that |0(H)| < ¢t where d(H) = N(V(G)\ V(H)). We call H,
a t-boundaried graph. At every node of the tree decomposition one can associate a t + 1
boundaried graph H of G. For H, we keep a family of partial solutions P that satisfies
a following property. Given a solution (Lj, L) to INDEPENDENTLY 2-CONNECTED k-SET,
there is a partial solution (Q1, @2) € P such that (Q1 U LT, Q2 UL}) is also a solution. Here,
LT =L\ E(H) and L} = Ly \ E(H). We use the ideas of matroids and representative
families in order to bound the size of P. One views each of the partial solution, (Q1,Q2),
as a pair of forests in a graphic matroid of a clique on the vertex set 9(H). Thus these
forests correspond to a pair of independent sets in graphic matroid. Furthermore, for every
solution (Lq,L2) to INDEPENDENTLY 2-CONNECTED k-SET, we view (L}, L}) as another
pair of independent sets in graphic matroid of a clique on the vertex set 9(H). Now one
observes that (@1 U L}, Q2 U L%) forms a pair of spanning tree of some induced subgraph
of the clique. Once we have identified partial solutions as pairs of independent sets in a
matroid one can show that the size of P is upper bounded by 2°®). We finally give the
proof of our main result.

79

FSTTCS 2014



80

Connecting Vertices by Independent Trees

Proof of Theorem 1. Let (G, k) be an input to INDEPENDENTLY 2-CONNECTED k-SET.
Also assume that G has n vertices and m edges. We first compute all the blocks of G, say
By, ..., By, in O(m + n) time. Now, by Lemma 3 we know that G is a YEs-instance if and
only if there exists an ¢ € {1,...,¢} such that (B;, k) is a YES-instance. Now on each B;, we
first apply Corollary 5 and in O(nm) time either produce a terminal set U and completely
independent spanning trees 17,75 of U, or construct a path decomposition of B; of width
at most £ — 1. In the former case we return U and completely independent spanning trees
Ty, Ty of U. In the later case we apply Lemma 6 and check whether (G, k) is a YEs-instance
to INDEPENDENTLY 2-CONNECTED k-SET. This completes the proof. |

4 Lower Bound on Kernelization

We proved that INDEPENDENTLY 2-CONNECTED k-SET is FPT. Hence, it is natural to
ask whether this problem has a polynomial kernel. A parameterized problem II is said
to admit a kernel of size f: N — N if every instance (x, k) can be reduced in polynomial
time to an equivalent instance with both size and parameter value bounded by f (k). When
f(k) = ECM then we say that IT admits a polynomial kernel. The study of kernelization has
recently been one of the main areas of research in parameterized complexity, yielding many
important new contributions to the theory. The development of a framework for ruling out
polynomial kernels under certain complexity-theoretic assumptions [1, 2, 5] has added a new
dimension to the field and strengthened its connections to classical complexity.

Using the results by Bodlaender et al. [1], we show that it is unlikely even if we restrict
ourself to 2-connected graph. We first give a few definitions required for our proof. A
composition algorithm for a parameterized problem II is an algorithm that receives as an
input a sequence of instances (I1,k),...,(It,k) of II where each I; is an input and k is
a parameter, and in time polynomial in Zle |I;] + k produces an instance (I',k’) of II
such that i) (I’, k') is a YES-instance of II if and only if (I;, k) is a YES-instance for some
1€ {l,...,t}, and ii) & is polynomial in k. If IT has a composition algorithm, then it is said
that IT is compositional. Bodlaender et al. [1] proved the following theorem.

» Theorem 7 ([1]). If II is a compositional parameterized problem such that the unpara-
meterized version of 11 is NP-complete, then II has no polynomial kernel unless NP C
coNP /poly.

It is easy to see that INDEPENDENTLY 2-CONNECTED k-SET is compositional for general
(or connected) graphs. But by Lemma 3, it is sufficient to consider the problem for 2-
connected graphs. Hence, we prove the following theorem.

» Theorem 8. INDEPENDENTLY 2-CONNECTED k-SET has no polynomial kernel even for
2-connected graphs unless NP C coNP /poly.

Proof. As the unparameterized version of INDEPENDENTLY 2-CONNECTED k-SET is NP-
complete for 2-connected graphs by the results of Hasunuma in [8], it is sufficient to show
that INDEPENDENTLY 2-CONNECTED k-SET is compositional for 2-connected graphs.

Let (G1,k),...,(Gt, k) be a sequence of instances of INDEPENDENTLY 2-CONNECTED
k-SET where G1,...,G; are 2-connected, and we assume without loss of generality that
k > 3. Let also n; = |[V(G;)| > 3 for i € {1,...,t}, and denote by v,... v}, the vertices of
G, for i € {1,...,t}. We construct G’ as follows (see Fig. 1).

For each h € {1,...,t} and for each ordezed) pair (i,j) of distinct i,j € {1,...,npn},

i,j

construct a copy Gg’j ) of Gy; denote by z;"" and y}(Lw ) the vertices v!* and ol of the

copy Gg’j ) of G, respectively.
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x(l1,2> ygl,z) x<l1,3> ygl,g) :ch”"’"rl) Z/Em‘mfl)

el (el s

Figure 1 The construction of G'.

For each h € {1,...,t}, construct edges y}(L i) ;T ) for distinct ordered pairs (¢,7), (r, s)

suchthateitheri—rands—]—i—lorr—z—i—landj—nh,5:1.

For each h € {1,...,t}, construct edges y n’“n”*l)x&rzl); we assume here that xgj) =

x(ll’z).

We let k' = 2k. Notice that for all inj) and y, ij) G’ has the unique edges that join
-3) | We call these edges by x;, (13) and y(i : -edges
respectively. Observe also that for all h, h’ and (4, 7), (r, s), the graph G’ has a (y,(lZ J) (T/ g))—
path that contains y( “9) and xhr,’s)—edges.

It is straightforward to see that G’ is 2-connected. We show that (G', k') is a YES-
instance of INDEPENDENTLY 2-CONNECTED k’-SET if and only if (G, k) is a YES-instance
for some h € {1,...,t}.

Suppose that there is h € {1,...,t} such that G} has a set of terminals U of size at least
k such that there are two completely independent spanning trees F, T of U. Because k>3,
F and T have internal vertices. We choose such vertices denoted by v/ are v rebpectlvely
By Lemma 2, i # j. Denote by F (i:9) T(” and Fy (3:%) T(] ") the copies of F,T in Gh 3 and
G( " respectively. Let P be a (yh ) (j Z)) path in G’ that contalnb y( and a:éj’i)—edges,
and let @ be a (y,; G, 1) ( )) path in G’ that contalns y(J’ and ach .9) -edges. Let T” be the
tree obtained by takmg the union of T lgw ), Thj ) and P, and let F’ be the tree obtained by

taking the union of F}Ei’j)7 F}Ej,z‘)

these vertices with the vertices outside G

and ). It remains to observe that F’, T’ are completely
independent spanning trees of U’ where U’ is the union of the copies of U in Gg’j ) and
ng,i). Since |U’| = 2|U| > 2k, we have that G a set of terminals U’ of size at least k' such
that there are two completely independent spanning trees F’, T’ of U’.

Suppose now that G a set of terminals U’ of size at least k' such that there are two
completely independent spanning trees F’, T’ of U’.

We claim that there are at most two Ggf’j ) that contain vertices of U’. To obtain a

contradiction, assume that three distinct G(“’J 2 Gﬁbf’”) Ggf; J3) have vertices of U’. Then

by the construction of G’, there is s € {1,2, 3} such that F’ contains the x(“’js and y," (ia:de)

’L:.;Jb
;

edges. Because F’, T’ are edge disjoint by Lemma 2, T” cannot contain any vertex of G:
a contradiction. We consider two cases.

Case 1. The set U’ contains vertices of the unique Gg’j ) I F ,T" do not include the ac( 2
and y,(j’j)—edges, then F’, T’ are subtrees of Gg’j). By taking the copies of F’,T" in G, we
have that G}, has a set of terminals of size at least &’ > k such that there are two completely
independent bpanmng trees of the set. Suppose that one of the trees, say F’, contains at least
one of the x( and y(z’j -edges. Because F” is a minimal spanning tree of U’, F' contains
both the ng’J), ygz 4) -edges. Then F’ has the unique (yg ) S’J))—path P with these edges,
and the internal vertices of P have degree two in F”. Then the forest obtained from F’
by the deletion of the edges and the inner vertices of P has two components F; and F5.
Because V(F')NU = (V(F1)NU)U(V(F>)NU) and U; = (V(F)NU),Us = (V(F>) NU)
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are disjoint, we can assume without loss of generality that |U;| > k. Let F be the unique
minimal spanning subtree of U7 in F;. Because F’ contains the x%” ) and y}(l” )—edges, T is
a subgraph of Gg’j ) by Lemma 2. Let T be be the unique minimal spanning subtree of Uy
in T'. We have that Ggli’j ) has the set of terminals U, of size at least k such that there are
two completely independent spanning trees F,T of U;. By taking the copies of F,T in Gy,
we obtain that GG, has a set of terminals of size at least k£ such that there are two completely

independent spanning trees of the set.

Case 2. The set U’ contains vertices of two distinct Gg’j), GEZ:’S). Let U; = V(G;:’j)) nu’
and Uy = V(Gg’s)) NU’. Because Uy, U, is a partition of U’, we can assume without loss of
generality that |U;| > k. Notice that F', T’ contain the x;li’j)7y£i’j),xg’s),y;(;’s)—edges, and
the ;vg” ), y}(;’s)—edges (the y,(l” ), x%’s)—edges respectively) are in the same tree. We assume
that F” contains the xﬁf’j),y}(ﬁ’s)—edges and 7" has the y}(f’j),xgllr,’s)—edges. Then F’ has the
unique (acgli’j)7 y}(f,’s))—path @ and and T” has the unique (y}(:’j), x;f/s))-path R, and the internal
vertices of @ and R have degree two in F’ and T’ respectively. Then the forest obtained
from I’ by the deletion of the edges and the inner vertices of () has exactly two components
Fy, F5, and it can be assumed that F} is a subgraph of Gg’j) and F5 is a subgraph of G;LT,’S).
Notice that Uy C V(F}), and let F be the unique spanning tree of U in F;. By the same
arguments, the forest obtained from 7" by the deletion of the edges and the inner vertices of
R has exactly two components 77,75, and it can be assumed that T is a subgraph of Ggf’j )
and T5 is a subgraph of G;:,’S). Again, U; C V(F}), and we consider the unique spanning
tree T of Uy in T7. We have that Gg’j ) has the set of terminals U; of size at least k such
that there are two completely independent spanning trees F,T of U;. By taking the copies
of F, T in GG, we obtain that GG, has a set of terminals of size at least k such that there are
two completely independent spanning trees of the set.

In the both cases we have that there is h € {1,...,t} such that (G, k) is a YES-instance
of INDEPENDENTLY 2-CONNECTED k-SET, and it competes the proof. <

5 FPT algorithm for Independently s-Connected k-Set and a
generalization

In this section we design an algorithm for INDEPENDENTLY s-CONNECTED k-SET. In fact,
what we show is that this problem is is FPT when parameterized by k + s. We show that
this problem can be reduced to checking existence of the bounded number of topological
minors of bounded size. As the checking of existence of topological minors can be done in
FPT-time by the recent results of Grohe et al. [6], we obtain the following theorem.

» Theorem 9. INDEPENDENTLY s-CONNECTED k-SET is FPT when parameterized by s+ k.

Proof. If K = 1 or s = 1, then INDEPENDENTLY s-CONNECTED k-SET is trivial. If k =
2, then the problem can be solved in polynomial time by checking the existence of two
vertices that can be joined by at least s internally vertex disjoint paths. Also if s = 2, then
INDEPENDENTLY s-CONNECTED k-SET is FPT when parameterized by k& by Theorem 1.
Hence, we can assume that s, k > 3.

We prove the following two claims.

» Claim B. If H is a topological minor of G such that (H,s,k) is a YES-instance of IN-
DEPENDENTLY s-CONNECTED k-SET, then (G, s, k) is a YES-instance of INDEPENDENTLY
5-CONNECTED k-SET.



M. Basavaraju, F.V. Fomin, P. A. Golovach, and S. Saurabh

Proof of Claim B. Suppose that (H,s,k) is a YES-instance of INDEPENDENTLY s-
CONNECTED k-SET for a topological minor H of G. Then there is a set of terminals
U C V(H) of size at least k and there are s completely independent spanning trees 71, ..., Ts
of U in H. Since H is a topological minor of G, G has a subgraph H’ such that H' can be
obtained from H by a sequence of edge subdivisions. Let T7,...,T" be the trees obtained
from T1,...,Ts by applying these edge subdivisions to the edges of these trees. Denote by
U’ the set of vertices of G that correspond to the vertices of U in H’. It remains to observe
that Ty,...,T. are completely independent spanning trees of U’ in G by Lemma 2, i.e.,
(G, s, k) is a YES-instance of INDEPENDENTLY $-CONNECTED k-SET. <

» Claim C. If (G, s,k) is a YES-instance of INDEPENDENTLY $-CONNECTED k-SET, then
G has a topological minor H with at most sk + k — 2s wvertices such that (H,s, k) is a
YES-instance of INDEPENDENTLY s-CONNECTED k-SET.

Proof of Claim C. Suppose that (G,s,k) is a YES-instance of INDEPENDENTLY s-
CONNECTED k-SET. Then there is a set of terminals U C V(G) of size exactly k and
there are s completely independent spanning trees T1,...,7Ts of U in G. Let H be a sub-
graph of G that is the union of T3, ..., Ts. Denote by H' the graph obtained from H by the
recursive dissolutions of degree two vertices that have non-adjacent neighbors. Clearly, H' is
a topological minor of G. Notice that because s > 3, the vertices of U are not dissolved, and
we can dissolve only internal vertices of T1, ..., Ts. Let 1], ..., T} be the trees obtained from
T1,...,Ts respectively by these dissolutions. Then T7,...,T. are completely independent
spanning trees of U in H' by Lemma 2, i.e., (H', s, k) is a YES-instance of INDEPENDENTLY
5-CONNECTED k-SET.

To obtain the bound on the number of vertices of H’, we show that for each T}, all
non-terminal internal vertices of degree two of T; are dissolved. To obtain a contradiction,
assume that at some step, we could not dissolve a vertex u of degree two. It can happen only
if u has the neighbors x and y that are adjacent. Because T; is a tree and the terminals are
not dissolved, « and y are joined in some other tree Tj, i.e., z,y € V(T;) NV (T}). Moreover,
z and y are joined in Tj;,T; by the unique (x,y)-paths P;, P; respectively such that the
internal vertices of P;, P; have degree two in Tj, T} respectively. By Lemma 2, z,y € U.
Because k > 3, each of z,y is an internal vertex of one of the trees T1,...,Ts by Lemma 2.
Since s > 3, either = or y is an internal vertex of at least two trees; a contradiction.

Thus, each 7] has no non-terminal vertices of degree one or two. Therefore, because
|U| = k, T/ has at most k — 2 internal vertices. Then the total number of internal vertices of
T],..., T} is at most s(k—2), and the total number of vertices of H' is at most s(k—2)+k. <

Now we can solve INDEPENDENTLY s-CONNECTED k-SET as follows. We consider all
20(s*k?) graphs H with at most sk + k — 2s vertices. For each H, we solve INDEPENDENTLY
s-CONNECTED k-SET using, e.g., brute force. If we obtain a YES-answer, then we check
whether H is a topological minor of G by the algorithm of Grohe et al. [6]. If H is a
topological minor of G, then (G, s, k) is a YES-instance of INDEPENDENTLY s-CONNECTED
k-SET by Claim B. If we have a NO-answer for all H, then INDEPENDENTLY s-CONNECTED
k-SET for (G, s, k) has a No-answer by Claim C. <

A similar result can be obtained for the variant of the problem where a set of terminals
is fixed. Formally, INDEPENDENT TREES FOR A SET OF TERMINALS ask for a graph G,
positive integer s and a set U, whether there are s completely independent spanning trees of
U in G. Using the same arguments as in the proof of Theorem 9, we can show the following.
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» Theorem 10. INDEPENDENT TREES FOR A SET OF TERMINALS is FPT when paramet-
erized by s+ |U].

6

Conclusions

In this paper we initiated parameterized complexity of a natural connectivity problem and

designed several FPT algorithms for it. We conclude with several open questions.
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—— Abstract

In the TREE DELETION SET problem the input is a graph G together with an integer k. The
objective is to determine whether there exists a set S of at most k vertices such that G\ S is a
tree. The problem is NP-complete and even NP-hard to approximate within any factor of OPT¢
for any constant c¢. In this paper we give an O(k®) size kernel for the TREE DELETION SET
problem. An appealing feature of our kernelization algorithm is a new reduction rule, based on
system of linear equations, that we use to handle the instances on which TREE DELETION SET
is hard to approximate.
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1 Introduction

In the TREE DELETION SET problem we are given as input an undirected graph G and
integer k, and the task is to determine whether there exists a set S C V(QG) of size at most k
such that G'\ S is a tree, that is, a connected acyclic graph. This problem was first mentioned
by Yannakakis [25] and is related to the classical FEEDBACK VERTEX SET problem. Here
input is a graph G and integer k£ and the goal is to decide whether there exists a set .S on at
most k vertices such that G\ S is acyclic. The only difference between the two problems is
that in TREE DELETION SET G\ S is required to be connected, while in FEEDBACK VERTEX
SET it is not. Both problems are known to be NP-complete [10, 25].
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Despite the apparent similarity between the two problems their computational complexities
differ quite dramatically. FEEDBACK VERTEX SET admits a factor 2-approximation algorithm,
while TREE DELETION SET is known to not admit any approximation algorithm with ratio
O(n'=¢€) for any € > 0, unless P = NP [1, 25]. With respect to parameterized algorithms, the
two problems exhibit more similar behavior. Indeed, some of the techniques that yield fixed
parameter tractable algorithms for FEEDBACK VERTEX SET [4, 5] can be adapted to also
work for TREE DELETION SET [21].

It is also interesting to compare the behavior of the two problems with respect to
polynomial time preprocessing procedures. Specifically, we consider the two problems in
the realm of kernelization. We say that a parameterized graph problem admits a kernel of
size f(k) if there exists a polynomial time algorithm, called a kernelization algorithm, that
given as input an instance (G, k) to the problem outputs an equivalent instance (G’, k') with
E < f(k) and |V(G")| + |E(G")| < f(k). If the function f is a polynomial, we say that the
problem admits a polynomial kernel. We refer to the surveys [11, 18] for an introduction to
kernelization. For the FEEDBACK VERTEX SET problem, Burrage et al. [3] gave a kernel of
size O(k'1). Subsequently, Bodlaender [2] gave an improved kernel of size O(k?) and finally
Thomassé [22] gave a kernel of size O(k?). On the other hand the existence of a polynomial
kernel for TREE DELETION SET was open until this work. It seems difficult to directly adapt
any of the known kernelization algorithms for FEEDBACK VERTEX SET to TREE DELETION
SET. Indeed, Raman et al. [21] conjectured that TREE DELETION SET does not admit a
polynomial kernel.

The main reason to conjecture that TREE DELETION SET does not admit a polynomial
kernel stems from an apparent relation between kernelization and approximation algorithms
(cf. [19, page 15]). Most problems that admit a polynomial kernel, also have approximation
algorithms with approximation ratio polynomial in OPT (cf. [14, page 2]). Here OPT is the
value of the optimum solution to the input instance. In fact many kernelization algorithms
are already approximation algorithms with approximation ratio polynomial in OPT.

This relation between approximation and kernelization led to a conjecture [20, 8] that
VERTEX COVER does not admit a kernel with (2 — €)k vertices for € > 0, as this probably
would yield a factor (2 — €) approximation for the problem thus violating the Unique Games
Conjecture [13].

It is easy to show that an approximation algorithm for TREE DELETION SET with ratio
OPT®® would yield an approximation algorithm for the problem with ratio O(n!~¢) thereby
proving P = NP. In particular, suppose TREE DELETION SET had an OPT€ algorithm for
some constant c. Since the algorithm will never output a set of size more than n, the
approximation ratio of the algorithm is upper bounded by min(OPT*, 55+) < n'~#7. This
rules out approximation algorithms for TREE DELETION SET with ratio OPTO(U, and makes
it very tempting to conjecture that TREE DELETION SET does not admit a polynomial
kernel.

In this paper we show that TREE DELETION SET admits a kernel of size O(k°). To
the best of our knowledge this is among the few examples of problems that do admit a
polynomial kernel, but do not admit any approximation algorithm with ratio OPT®®M under
plausible complexity assumptions. The only other example we are aware of is a special case
of the CSP studied by Kratsch and Wahlstrom [15].

Our Methods. The starting point of our kernel are known reduction rules for FEEDBACK
VERTEX SET adapted to our setting. We also adapt the strategy to model some “pendant
parts” of the graph by weight on vertices during the kernelization process to simplify the
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structure of the graph. By applying these graph theoretical reduction rules we can show that
there is a polynomial time algorithm that given an instance (G, k) of TREE DELETION SET
outputs an equivalent instance (G', k') and a partition of V(G’) into sets B, T, and I such
that

1. |B| = O?),

2. |T] = O(kY),

3. I is an independent set, and

4. for every v € I, Ng/(v) C B, and Ng/(v) is a double clique.

Here a “double clique” means that for every pair z, y of vertices in Ng/(v), there are two
edges between them. Thus we will allow G’ to be a multigraph, and consider a double edge
between two vertices as a cycle. In order to obtain a polynomial kernel for TREE DELETION
SET it is sufficient to reduce the set I to size polynomial in k.

For every vertex v € I and tree deletion set S we know that |Ng:(v) \ S| < 1, since
otherwise G’ \ S would contain a double edge. Further, if v ¢ S then v has to be connected
to the rest of G'\ S and hence |N¢s (v) \ S| = 1, implying that v is a leaf in G"\ S. Therefore
G’ \ (SUI) must be a tree. We can now reformulate the problem as follows.

For each vertex u in G’ \ I we have a variable x,, which is set to 0 if w € S and z,, =1
if u ¢ S. For each vertex v € I we have a linear equation ZuGN(ﬂ) z,, = 1. The task is to
determine whether it is possible to set the variables to 0 or 1 such that (a) the subgraph of
G’ induced by the vertices with variables set to 1 is a tree and (b) the number of variables
set to 0 plus the number of unsatisfied linear equations is at most k.

At this point it looks difficult to reduce I by graph theoretic means, as performing

operations on these vertices correspond to making changes in a system of linear equations.

In order to reduce I we prove that there exists an algorithm that given a set S of linear
equations on n variables and an integer k in time O(|S|n*~'k) outputs a set S’ C S of at
most (n 4+ 1)(k + 1) linear equations such that any assignment of the variables that violates
at most k linear equations of S’ satisfies all the linear equations of S\ &’. To reduce I we
simply apply this result and keep only the vertices of I that correspond to linear equations
in &’. We believe that our reduction rule for linear equations will find more applications in
the future and, while not as involved, adds a little to the toolbox of algebraic reduction rules
for kernelization (see, for example, [7, 6, 17, 16, 23]).

Due to space constraints, the proofs of lemmata marked with x are deferred to the full
version of the paper.

2 Basic Notions

For every positive integer n we denote by [n] the set {1,2,...,n}, N denotes the set of
positive integers, and R denotes the real numbers.

For a graph G = (V, E), we use V(@) to denote its vertex set V and E(G) to denote
its edge set E. If S C V(G) we denote by G \ S the graph obtained from G after removing
the vertices of S. In the case where S = {u}, we abuse notation and write G \ u instead of
G\ {u}. For S C V(QG), the neighborhood of S in G, Ng(S), is the set {u € V(G)\ S| v €
S :{u,v} € E(G)}. Again, in the case where S = {v} we abuse notation and write Ng(v)
instead of Ng({v}). The degree of vertex v denoted deg(v) is the number of edges incident
to it, loops being counted twice. A graph is connected if there is a path between any pair
of its vertices. A connected component in a graph G is a set of vertices H such that G[H]
is connected and H is maximal with this property. We use C(G) to denote the set of the
connected components of G. Given a graph G and a set S C G, we say that S is a feedback
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vertez set of G if the graph G \ S does not contain any cycles. In the case where G \ S is
connected we call S tree deletion set of G. Moreover, given a set S C V(G), we say that S is
a double clique of G if every pair of vertices in S is joined by a double edge.

Given two vectors x and y we denote by dg(z,y) the Hamming distance of x and y, that
is, dg(x,y) is equal to the number of positions where the vectors differ. For every k € N we
denote by 0F the k-component vector (0,0,...,0). When k is implied from the context we
abuse notation and denote 0* as 0.

For a rooted tree T and vertex set M in V(T') the least common ancestor-closure (LCA-
closure) LCA-closure(M) is obtained by the following process. Initially, set M’ = M. Then,
as long as there are vertices z and y in M’ whose least common ancestor w is not in M’,
add w to M’. Finally, output M’ as the LCA-closure of M.

» Lemma 1 (Fomin et al. [9]). Let T be a tree, M C V(T), and M' = LCA-closure(M).
Then, |M'| < 2|M| and for every connected component C of T\ M', |[Nr(C)| < 2.

3 A polynomial kernel for Tree Deletion Set

In this section we prove a polynomial size kernel for a weighted variant of the TREE DELETION
SET problem. More precisely the problem we will study is following.

WEIGHTED TREE DELETION SET (WTDS)
Instance: A graph G, a function w : V(G) — N, and a non-negative integer k.
Parameter: k.

Question:  Does there exist a set S C V(G) such that ) _cw(v) < k and
G\ S is a tree?

3.1 Known Reduction Rules for wTDS

In this subsection we state some already known reduction rules for wT'DS that are going to
be needed during our proofs.

» Reduction Rule 1 (Raman et al. [21]). If the input graph is disconnected, then delete all
vertices in connected components of weight less than (3, <\ w(v)) — k and decrease k by the
weight of the deleted vertices.

» Observation 2 (Raman et al. [21]). If (3, w(v)) > 2k, then after the ezhaustive
application of Reduction Rule 1 the graph has at most one connected component.

» Reduction Rule 2 (Raman et al. [21]). If v is of degree 1 and u is its only neighbor, then
delete v and increase the weight of u by the weight of v.

» Reduction Rule 3 (Raman et al. [21]). If vo,v1,...,v;, vi41 @8 a path in the input graph,
such that 1 > 3 and deg(v;) =2 for every i € [l], then replace the vertices v1,...,v by two
vertices uy and ug with edges {vo, u1}, {u1,u2}, and {us, vi41} and with w(uy) = min{w(v;) |

i€ [l]} and w(ug) = (Zézl w(vl)> —w(uy).

Given a vertex x of G, an x-flower of order k is a set of k cycles pairwise intersecting
exactly in z. If G has an z-flower of order k + 1, then x should be in every tree deletion
set of weight at most k as otherwise we would need at least k + 1 vertices to hit all cycles
passing through z. Thus the following reduction rule is safe.
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» Reduction Rule 4. Let (G, w, k) be an instance of WIDS. If G has an x-flower of order
at least k + 1, then remove x and decrease the parameter k by the weight of x. The resulting

instance is (G\ {z}, wlv o)\ (=}, F — w(x)).

The following theorem allows us to apply Reduction Rule 4 exhaustively in polynomial
time. A version of the theorem appears also in [2], but the version given in [22] is significantly
more powerful.

» Theorem 3 (Thomassé [22]). Let G be a multigraph and = be a vertex of G without a self
loop. Then in polynomial time we can find an x-flower of order k+ 1 or, if such an x-flower
does not exist, a set of vertices Z C V(G) \ {x} of size at most 2k intersecting every cycle
containing x.

» Reduction Rule 5. Let (G,w,k) be an instance of WTDS. If v is a vertex such that
w(v) > k+1, then let w(v) =k + 1.

An instance (G, w, k) of wT'DS is called semi-reduced if none of the Reduction Rules 1-5
can be applied. By Observation 2 such an instance is either connected or the total weight of
all vertices is at most 2k and hence we have a kernel. Therefore, for the rest of the paper we
assume that the instance is connected.

» Lemma 4 (x). If (G,w, k) is an instance of WI'DS reduced with respect to Reduction
Rule 5, then there is an equivalent instance (G',k) of TREE DELETION SET such that
V(G < (B+DIV(G)] and |E(G)] < |E(G)| + V(G-

» Theorem 5 (Bafna et al. [1]). There is an O(min{|E(G)|log|V(GQ)|,|V(G)|?}) time al-
gorithm that given a graph G that admits a feedback vertex set of size at most k outputs a
feedback vertex set of G of size at most 2k.

3.2 A structural decomposition

In this subsection we decompose an instance (G, w, k) of wWT'DS to an equivalent instance
(G",w', k") where V(G') is partitioned into three sets B, T, and I, such that the size of B
and T is polynomial in k£ and [ is an independent set. In particular we obtain the following
result.

» Lemma 6. There is a polynomial time algorithm that given a semi-reduced instance
(G,w, k) of WTDS either correctly decides that (G,w, k) is a no-instance or outputs an
equivalent instance (G',w', k") and a partition of V(G') into sets B, T, and I such that

(i) 1B| < 8k2+ 2k,

(ii) T induces a forest and |T| < 240k* + 272k + 65k% — 19k — 7,

(iii) I is an independent set, and

(iv) for every v € I, Ng/(v) C B, |Ng/(v)| < 2k + 1, and Ng/(v) is a double clique.

For an example of the structure of the graph G’ obtained from Lemma 6, see Figure 1.
We split the proof of this lemma into several auxiliary lemmata. We start by identifying
the set B.

» Lemma 7. There is a polynomial time algorithm that given a semi-reduced instance
(G,w, k) of WTDS either correctly decides that (G, w, k) is a no-instance or finds two sets F
and @ such that, denoting B=F U @, the following holds.

(i) F is a feedback vertex set of G.

(i) Each connected component of G\ B has at most 2 neighbors in Q.
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Figure 1 The vertex set of the graph G’ is partitioned into a set B, a set T' where every connected
component H of T is a tree, and a set I. The set I induces an independent set and for every vertex

v € I, Ng/(v) C B and Ng(v) induces a double clique.

(iii) For every connected component H € C(G\ B) and every vertezy € B, [Na(y)NH| <1,
that is, every vertex y of F' and every vertex y of Q have at most one neighbor in every

connected component H of G\ B.
(iv) |B| < 8k? + 2k.

Proof. First notice that every tree deletion set of G of weight at most k is also a feedback
vertex set of G of size at most k in the underlying non-weighted graph. Thus, by applying
Theorem 5 we may find in polynomial time a feedback vertex set F' of G. If |F| > 2k, then
output NO. Otherwise, |F| < 2k.

As the instance (G, w, k) is semi-reduced, Reduction Rule 4 is not applicable, and G does
not contain an z-flower of order k + 1 for any x € F. Therefore, from Theorem 3, we get that
for every x € F we can find in polynomial time a set Q* C V(G) \ {z} intersecting every
cycle that goes through x in G and such that [Q*] < 2k. Let Q = J, . Q".

Let C(G\ F) = {H1, Hs,..., H;} and note that, as F' is a feedback vertex set of G, each
G[H,] is a tree. From now on, without loss of generality we will assume that each G[H;],
i € [l], is rooted at some vertex v; € H;.

Let Q; = H;NQ, i € [I]. In other words, Q; denotes the set of vertices of H; that are
also vertices of @, i € [I]. Let also @Z = LCA-closure(Q;), that is, let @Z denote the least
common ancestor-closure of the set @; in the tree G[H;]. Finally, let @ = Uie[l] @Z and note
that QN F = 0.

Let us now prove that F' and @ have the claimed properties. First of all, F' is a feedback
vertex set by construction, proving (i). Second, since for each z in F' we have |Q*| < 2k, we
have |Q| < 4k2, and from Lemma 1 we get that | Q] = | Uien Qil = el Qi) <2 > Qi) <
2/Q| < 8k2. Together with |F| < 2k this proves (iv). Third, from the construction of Q and

from Lemma 1 we get the property (ii).

Let us now prove (iii). Let y € B and H € C(G \ B) and assume to the contrary that
|Na(y) N H| > 2. Then, as G[H] is connected, the graph G[H U {y}] contains a cycle that
goes through y. If y € F, we get a contradiction to the facts that G[H U {y}] is a subgraph



A. C. Giannopoulou, D. Lokshtanov, S. Saurabh, and O. Suchy 91

of G\ QY and the set QY intersects every cycle that goes through y. If y € @, we get a
contradiction, since G[H U {y}] is a subgraph of G \ F (recall that Q N F =) and G\ F is
acyclic. |

The next lemma shows that if B is as in the previous lemma, then the size of connected
components in the rest of the graph is bounded.

» Lemma 8 (x). If (G,w,k) and B are as in Lemma 7 and H is a connected component
of G\ B, then |H| < 12k + 7.

Let x,y be two vertices of B. We say that the pair {x,y} is in P<F*1 if there are at most
k + 1 connected components H of G\ B with {z,y} C Ng(H) and that {z,y} is in P=++2
otherwise. Now we add to G a double edge between every pair in PZ*+2 to obtain the
graph G. The next lemma shows that the resulting instance is equivalent to the original one.

» Lemma 9. The instance (@,w,k‘), where G is as defined above, is equivalent to (G, w, k).

Proof. Let {z,y} € P=**2. Notice that each connected component H of G\ B with
{z,y} C Ng(H) provides a separate path between x and y. Observe then that if neither =
nor y belong to a tree deletion set D of G we need at least k + 1 vertices to hit all
the cycles, since otherwise there are at least two components Hy, Hy € C(G \ B) with
{z,y} C (Ng(H1) N Ng(Hsz)) and (H; U Hy) N D = @ and thus the graph induced by
Hy U H;U{y,y'} contains a cycle. This implies that (G, w, k) is a yes-instance if and only if
at least one of the vertices z and y is contained in every tree deletion set of G' of weight k. <«

The following lemma shows that there are only few connected components of G\ B having
a neighborhood that is not a double clique in G.

» Lemma 10. If (G, w,k) and B are as in Lemma 7 and G as defined above, then there is
a set Cp C C(G \ B) such that

(i) [Cr| <20k% +11k% — k — 1,

(i) for every H in C(G\B)\Cr, we have Ng(H) is a double clique in G and |No(H)NQ)| < 1.

Proof. For z,y € B we denote S(z,y) = {H € C(G\ B) | {z,y} C Ng(H)}. Let us set
Cr = U{syyep<i+r S(@,y). Let us now assume that there is H in C(G \ B) \ Cr, and two
vertices x and y in Ng(H) that are not joined by a double edge. By construction of the
graph @, this implies that {z,y} € P<F+1. But this implies that H is in Cr, a contradiction.
Furthermore, for every z,y € @ we have |S(z,y)| <1 as otherwise we would have a cycle in
G\ F and F is a feedback vertex set. Hence Cr satisfies (ii). It remains to prove (i).

Let us first mention that it is easy to see that Cp is of polynomial size. Indeed, we have
ICr| = Uz yyepzrn S(@,9)] < |BI?(k + 1) = O(K®). For the purpose of the more precise
size bound let us distinguish three subsets of Crp:

s S(x,y)
QQ  _
7 U{Ly}ga/\{z,y}epglwd S(xa y)

e = QQ
T - (UzEF/\yea/\{w,y}EP<k+1 S(':C’ y)) \ T

Obviously, Cr C (TFF U TR? U TFR). Hence, to bound the size of Cr it is enough to
bound the sizes of THF, TP and TF?. Note that for every {z,y} € P<F*1 we have
S(z,y)| < k+ 1. Tt follows that |T7F| < (TN (k+1) < () (k +1) = 2k* + k> — k.

U{%y}EF/\{w,y}e’PS’“*'l
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Next we claim that [T@Q| < |Q| — 1 < 8k% — 1. For every z,y € Q we have |S(z,y)| < 1
as otherwise we would have a cycle in G\ F and F is a feedback vertex set. Let Ag be the
graph with vertex set @ where two vertices in @ are connected by an edge if and only if
they are the neighbors of a component H € T9% in @ Hence, the number of edges of Ag
equals |[79%|. We now work towards showing that Ag is a forest. Indeed, assume to the
contrary that there exists a cycle in Ag. Then it is easy to see that we may find a cycle in
the graph H induced by the components in 7®% which correspond to the edges of the cycle
in Ag and their neighborhood in @ Recall that @ N F = and therefore H is a subgraph
of G\ F. This contradicts the fact that F' is a feedback vertex set of G. Hence, Ag is a
forest and the claim follows.

For the upper bound on TF?, for every x € F we partition the set @ into two sets R=!
and RZ2 in the following way.

RS' = {y e Q| thereis at most 1 component H € 7% such that {z,y} C Ng(H)}
RZ? {y € Q| {z,y} € PF! and there exist at least two distinct components

Hy, Hy € TP such that {z,y} € Ng(H;) N Ne(Ha)}.

Observe that |[TF9| <Y . (|RSY + |[RZ2|(k + 1)) and for every € F, it trivially holds
that |RS!| < Q] < 8k2.

Moreover, we claim that for every x € F, |RZ%| < k. Indeed, assume to the contrary that
|RZ2| > k + 1 for some & € F. Then there exist k + 1 vertices y; € Q, i € [k + 1], such that
for every i there exist two connected components Hi and Hj in TF9 C C(G\ B) \ T9% such
that {x,y} C Ng(H{) N Ng(H}). This implies that the graph induced by the vertex x, the
vertices y;, i € [k + 1], and the components Hi and H&, i € [k + 1], contains an z-flower of
order k + 1 (notice that, as none of the graphs belong to 79®, they are pairwise disjoint).
This is a contradiction to the fact that G is semi-reduced. Therefore, for every x € F we
have |RZ2| < k.

Alltogether, we have [TFQ| <> . (8k% + k(k + 1)) < 18k + 2k* and [Cp| < [TFF| +
|TOR|+|TFQ| < (2k3 4+ k2 —k)+ (8k% — 1)+ (183 +2k?) = 20,3 +11k% —k—1 proving (i). <«

Let us denote 7' = (Jy ¢, H. Note that by the properties of Cr we have C(G\ (BUT)) =
C(G\ B) \ Cr. Further, by Lemma 8 we have |T'| < |Cr|(12k + 7) and, hence, by Lemma 10,
IT| < (203 + 11k2 — k — 1)(12k + 7) = 240k* + 272k3 + 65k2 — 19k — 7.

We now prove that the components of C(G \ B) that are not in Cr behave as single
vertices with respect to tree deletion sets.

» Lemma 11 (x). If there exists a tree deletion set S ofé of weight at most k then there
exists a tree deletion set S of G of weight at most k such that for every H € C(G \ (BUT)),
either HC S or HNS = 0.

Now, let G’ be the graph obtained from G after contracting every connected component H
of G\ (BUT) into a single vertex vy and setting w'(vgy) = > ven w(v) and w'(v) = w(v)
for every v € (BUT). We also define I to be the set V(G’) \ (BUT). We now prove that
such a contraction does not affect the instance.

» Lemma 12 (x). If é, G', and w' are as defined above, then the instances (@,w,k) and
(G',w', k) are equivalent.

Lemma 6 now follows directly from Lemmata 7-12.
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» Remark. While it might be tempting to say that among a pair of vertices in PZF+2
solution must remove exactly one, this is not the case. Though, clearly, some of the common
neighbors of the pair remain untouched, they might be connected to the rest of the graph
through other vertices of B. Hence it might be the case that both vertices of the pair are
removed.

3.3 Results on Linear Equations

» Lemma 13. Let F be a field. For every matriz M € F™*™ and positive integer k, there
exists a submatriz M’ € Fm™ xn of M, where m’ < n(k+ 1), such that for every x € F™ with
dyg (M’ - 2T ,0m") < k, dg(M - 2T,0™) = dg (M’ - 2T,0™"). Furthermore, the matriz M’
can be computed in time O(m - n®~1k), where w is the matriz multiplication exponent
(w < 2.373 [24]), assuming that the field operations take a constant time.

Proof. In order to identify M’ we identify jo + 1 < k 4+ 1 (non-empty) submatrices
By, Bi,...,Bj, of M, each having at most n rows, in the following way: First, let By
be a minimal submatrix of M whose rows span all the rows of M, that is, let By be a base
of the vector space generated by the rows of M, and let also My be the submatrix obtained
from M after removing the rows of By. We identify the rest of the matrices inductively as
follows: For every i € [k], if M;_ is not the empty matrix we let B; be a minimal submatrix
of M;_1 whose rows span all the rows of M;_; and finally we let M; be the matrix occurring
from M;_, after removing the rows of B;.

We now define the submatrix M’ of M. Let jo < k be the greatest integer for which M;,_;
is not the empty matrix. Let M’ be the matrix consisting of the union of the rows of the
(non-empty) matrices By and By, i € [jo]. As the rank of the matrices M, M;, i € [jo], is
upper bounded by n, the matrices By, B;, i € [jo], have at most n rows each, and therefore M’
has at most n(jo +1) < n(k + 1) rows. Observe that if jo < k then the union of the rows
of the non-empty matrices By, B;, i € [jo], contains all the rows of M and thus we may
assume that M’ = M and the lemma trivially holds. Hence, it remains to prove the lemma
for the case where jo = k, and therefore M’ consists of the union of the matrices By, B;,
i € [k]. As it always holds that dg (M - 27,0) > dy (M’ - 27, 0) it is enough to prove that
for every x € F" for which dg (M’ - 27,0) < k, dg(M - 27,0) < dy(M’-2T,0). Thus, it
is enough to prove that for every row r of the matrix M" obtained from M after removing
the rows of M, it holds that dg(r - 27,0) = 0. Towards this goal let z € F" be a vector
such that dg (M’ - z7,0) < k. From the Pigeonhole Principle there exists an iy such that
dg (B, - x7,0) = 0, that is, if ry, 79, . .. sT|B,, | aTe the rows of B;, then r; -z =0, for every
J € [|Biol]- Recall however that the row r of M" is spanned by the rows ri,72,...,75, |
of B;,. Therefore, there exist A; € F, j € [|B,,|], such that r = ZjEHBiOH Ajr;. It follows
that r - 27 = ZjE“BiOH Aj(rj - 2T) = 0 and therefore dy (r - #7,0) = 0. This implies that
dy(M-27,0) <dg(M'- 2T, 0). Finally, for a rectangular matrix of size d x r, d < r, Ibarra
et al. [12] give an algorithm that computes a maximal independent set of rows (a row basis)
in O(d“~'r) time. By running this algorithm %k + 1 times we can find the matrix M’ in
O(mn*~1k) time and this completes the proof of the lemma. <

» Lemma 14. LetF be a field. There exists an algorithm that given a set S of linear equations
over F on n variables and an integer k outputs a set S’ C S of at most (n + 1)(k + 1) linear
equations over F such that any assignment of the variables that violates at most k linear
equations of S’ satisfies all the linear equations of S\ S’. Moreover, the running time of the
algorithm is O(|S|n“~1k), assuming that the field operations take a constant time.
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Proof. Let xi,%2,...,%, denote the n variables and «;; denote the coefficient of z; in
the i-th linear equation of S, i € [|S]], j € [n]. Let also a;(,41) denote the constant term
of the i-th linear equation of S. In other words, the i-th equation of S is denoted as
Q171 + QT2 + - -+ ATy + Qyng1) = 0. Finally, let M be the matrix where the j-element
of the i-th row is aj, i € [|S]], j € [n+1]. From Lemma 13, it follows that for every positive
integer k there exists a submatrix M’ of M with at most (n+1)(k+1) rows and n+1 columns
such that for every x € F"*! for which di (M’ - 27,0) <k, dy(M -27,0) =dg (M’ - 2T, 0)
and M’ can be computed in time O(|S|n“~1k). Let S’ be the set of linear equations that
correspond to the rows of M’. Let then z; = §;, §; € I, i € [n], be an assignment that does
not satisfy at most k of the equations of §’. This implies that dg (M’ - 2z,0) < k, where
2= (B1,B2,...,Pn,1)T. Again, from Lemma 13, we get that dg (M - 2,0) = dg (M’ - z,0).
Thus, the above assignment satisfies all the linear equations of S\ &'. <

3.4 The Main Theorem

In this subsection by combining the structural decomposition of Subsection 3.2 and Lemma 14
from Subsection 3.3 we obtain a kernel for wTDS of size O(k?).

» Theorem 15. WTDS admits a kernel of size O(k*) and O(k*logk) bits.

Proof. Let (G, w, k) be an instance of wTDS. Without loss of generality we may assume that
it is semi-reduced, G is connected, and that, from Lemma 6, V(G) can be partitioned into
three sets B, T, and [ satisfying the conditions of Lemma 6. Note that, as G is connected,
every vertex of I has at least one neighbor in B. We construct an instance (G',w’, k) of
wTDS in the following way. Let p be a prime number such that |B| < p < 2|B|. Such a prime
number exists by a Bertrand’s postulate (proved by Chebyshev in 1850). Let F = GF(p),
that is, the Galois field of order p. It takes at most O(|B|?) = O(k*) time to find p and the
multiplicative inverses in F.

Let I = {v; | ¢ € [|I|]} and B = {u; | j € [|B|]}. We assign an F-variable z; to u;, j € [|B|],
and a linear equation I; over F to v;, i € [[I]], where ; is the equation ), 5 aijz; —1 =0
and a;; = 1 if u; € Ng(v;) and 0 otherwise. Let £ = {l; | i € [|I|]} and £’ be the subset of £
obtained from Lemma 14. Let also I' = {v, € I |1, € L'} and G’ = G[BUT U I']. Finally,
let w' = w|purur. We now prove that (G',w’, k) is equivalent to (G, w, k).

We first prove that if (G, w, k) is a yes-instance then so is (G',w’, k). Let S be a tree
deletion set of G of weight at most k. Then G\ S is a tree and, as for every vertex v € I'\ S,
N¢(v) is a double clique, v has degree exactly 1 in G\ S. Therefore, the graph obtained from
G\ S after removing (I \ I') is still a tree. This implies that S\ (I \ I’) is a tree deletion set
of G’ of weight at most k and (G',w’, k) is a yes-instance.

Let now (G’,w’, k) be a yes-instance and S be a tree deletion set of G’ of weight at
most k. We claim that there exist at most k vertices in I’ whose neighborhood lies entirely
in S. Indeed, assume to the contrary that there exist at least k + 1 vertices of I’ whose
neighborhood lies entirely in S. Let J be the set of those vertices. Notice that for every
vertex v € I, if Ng/(v) C S, then either v € S or I’ \ {v} C S. Notice that if J C S, then S
has weight at least k + 1, a contradiction. Therefore, there exists a vertex u € J that is
not contained in S. Then I\ {u} C S. Moreover, recall that u has at least one neighbor z
in B and from the hypothesis z is contained in S. Therefore (I’ \ {u}) U {z} C S. As
|[I'| > |J] =k + 1, it follows that [I’ \ {u}| > k. Furthermore, recall that BN I’ = (). Thus,
|S| > k+1, a contradiction to the fact that S has weight at most k. Therefore, there exist at
most k vertices of I’ whose neighborhood is contained entirely in S. For every j € [|B]], let
x; =, where 3; = 0if u; € S and 1 otherwise. Then there exist at most % linear equations
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in £’ which are not satisfied by the above assignment. However, from the choice of £’ all
the linear equations in £\ £’ are satisfied and therefore, for every vertex w in I\ I’ we have
|INg(u)\ S| =1 (mod p). Since p > |B| this implies that u has exactly one neighbor in G\ S.
Thus G\ S is a tree and hence, S is a tree deletion set of G as well.

Notice that V(G’) = BUT U I’, where |I'| < 8k® + 10k? + 3k + 1 (Lemma 14) and
therefore |V (G')| = O(k*). Tt is also easy to see that |E(G’)| = O(k*). Indeed, notice first
that as the set I’ is an independent set there are no edges between its vertices. Moreover,
from Lemma 6 there are no edges between the vertices of the set I’ and the set T. Observe
that, from the construction of I and subsequently of I’, Lemma 6 implies that every vertex
of I’ has at most 2k + 2 neighbors in B. As |I’| < 8k® + 10k? + 3k + 1 there exist O(k?)
edges between the vertices of I’ and the vertices of B. Notice that from (2) of Lemma 6, T
induces a forest and thus there exist at most O(k*) edges between its vertices. Moreover,
from (1) of Lemma 6, again there exist O(k*) edges between the vertices of B. It remains to
show that there exist O(k*) edges with one endpoint in B and one endpoint in 7. Recall
first that every connected component has at most 2 neighbors in @ Therefore, there exist
at most 2k + 2 edges between every connected component of Cr and B. Moreover, from
Lemma 10 we obtain that Cr contains O(k?®) connected components. Therefore, there exist
O(k*) edges with one endpoint in B and one endpoint in 7. Thus, WTDS has a kernel of
O(k*) vertices and edges. Finally, from Reduction Rule 5, the weight of every vertex is upper
bounded by k + 1 and thus, it can be encoded using log(k + 1) bits resulting to a kernel of
wTDS with O(k*logk) bits. <

From Lemma 4 we immediately get the following corollary.

» Corollary 16. TREE DELETION SET has a kernel with O(k®) vertices and edges.
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—— Abstract

We investigate the problem of modifying a graph into a connected graph in which the degree
of each vertex satisfies a prescribed parity constraint. Let ea, ed and vd denote the operations
edge addition, edge deletion and vertex deletion respectively. For any S C {ea, ed,vd}, we define
CONNECTED DEGREE PARITY EDITING(S) (CDPE(S)) to be the problem that takes as input a
graph G, an integer k and a function §: V(G) — {0, 1}, and asks whether G can be modified into
a connected graph H with dy(v) = §(v) (mod 2) for each v € V(H), using at most k operations
from S. We prove that

it § = {ea} or S = {ea, ed}, then CDPE(S) can be solved in polynomial time;

if {vd} C S C {ea, ed,vd}, then CDPE(S) is NP-complete and W[1]-hard when parameterized

by k, even if 6 = 0.

Together with known results by Cai and Yang and by Cygan, Marx, Pilipczuk, Pilipczuk and
Schlotter, our results completely classify the classical and parameterized complexity of the
CDPE(S) problem for all S C {ea,ed,vd}. We obtain the same classification for a natural
variant of the CDPE(S) problem on directed graphs, where the target is a weakly connected
digraph in which the difference between the in- and out-degree of every vertex equals a prescribed
value.

As an important implication of our results, we obtain polynomial-time algorithms for EU-
LERIAN EDITING problem and its directed variant. To the best of our knowledge, the only other
natural non-trivial graph class H for which the H-EDITING problem is known to be polynomial-
time solvable is the class of split graphs.
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1 Introduction

Graph modification problems play a central role in algorithmic graph theory, partly due to
the fact that they naturally arise in numerous practical applications. A graph modification
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into a graph belonging to a prescribed graph class H, using at most k operations of a
certain type. The most common operations that are considered in this context are edge
additions (H-COMPLETION), edge deletions (H-EDGE DELETION), vertex deletions (-
VERTEX DELETION), and a combination of edge additions and edge deletions (H-EDITING).
The intensive study of graph modification problems has produced a plethora of classical and
parameterized complexity results (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 19, 20]).

An undirected graph is Eulerian if it is connected and every vertex has even degree,
while a directed graph is Eulerian if it is strongly connected! and balanced, i.e. the in-
degree of every vertex equals its out-degree. KEulerian graphs form a well-known graph
class both within algorithmic and structural graph theory. Several groups of authors have
investigated the problem of deciding whether a given graph can be made Eulerian using a
small number of operations. Boesch et al. [1] presented a polynomial-time algorithm for
EULERIAN COMPLETION, and Cai and Yang [4] showed that the problems EULERIAN VERTEX
DELETION and EULERIAN EDGE DELETION are NP-complete [4]. When parameterized by k,
it is known that EULERIAN VERTEX DELETION is W[1]-hard [4], while EULERIAN EDGE
DELETION is fixed-parameter tractable [7]. Cygan et al. [7] showed that the classical and
parameterized complexity results for EULERIAN VERTEX DELETION and EULERIAN EDGE
DELETION also hold for the directed variants of these problems.

Our Contribution. We generalize, extend and complement known results on graph modi-
fication problems dealing with Eulerian graphs and digraphs. The main contribution of
this paper consists of two non-trivial polynomial-time algorithms: one for solving the Eu-
LERIAN EDITING problem, and one for solving the directed variant of this problem. Given
the aforementioned NP-completeness result for EULERIAN EDGE DELETION and the fact
that H-EDITING is NP-complete for almost all natural graph classes #H [2, 20], we find it
particularly interesting that EULERIAN EDITING turns out to be polynomial-time solvable.
To the best of our knowledge, the only other natural non-trivial graph class H for which
‘H-EDITING is known to be polynomial-time solvable is the class of split graphs [13].

In fact, our polynomial-time algorithms are implications of two more general results. In
order to formally state these results, we need to introduce some terminology. Let ea, ed
and vd denote the operations edge addition, edge deletion and vertex deletion, respectively.
For any set S C {ea,ed,vd} and non-negative integer k, we say that a graph G can be
(S, k)-modified into a graph H if H can be obtained from G by using at most k operations
from S. We define the following problem for every S C {ea, ed, vd}:

CDPE(S): CONNECTED DEGREE PARITY EDITING(S)
Instance: A graph G, an integer k and a function §: V(G) — {0,1}.
Question: Can G be (S, k)-modified into a connected graph H with
du(v) = 6(v) (mod 2) for each v € V(H)?

Inspired by the work of Cygan et al. [7] on directed Eulerian graphs, we also study a
natural directed variant of the CDBE(S) problem. Denoting the in- and out-degree of a
vertex v in a digraph G by dg(v) and d,(v), respectively, we define the following problem
for every S C {ea,ed,vd}:

L Replacing “strongly connected” by “weakly connected” yields an equivalent definition of Eulerian
digraphs, as it is well-known that a balanced digraph is strongly connected if and only it is weakly
connected (see e.g. [7]).
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Table 1 A summary of the results for CDPE(S) and CDBE(S). All results are new except
those for which a reference is given. The number of allowed operations k is the parameter in the
parameterized results, and if a parameterized result is stated, then the corresponding problem is
NP-complete.

S CDPE(S) CDBE(S)
ea,ed P P

ea P P

ed FPT [7] FPT [7]

vd W(1]-hard [4] W(1]-hard [7]
ea, vd WI[1]-hard WI[1]-hard
ed,vd W([1]-hard WI[1]-hard
ea,ed,vd WI[1]-hard WI[1]-hard

CDBE(S): CONNECTED DEGREE BALANCE EDITING(S)
Instance: A digraph G, an integer k and a function 6: V(G) — Z.
Question:  Can G be (S, k)-modified into a weakly connected digraph H with
d};(v) — dg(v) = &(v) for each v € V(H)?

In Section 3, we prove that CDPE(S) can be solved in polynomial time when S = {ea}
and when S = {ea,ed}. The first of these two results extends the aforementioned polynomial-
time result by Boesch et al. [1] on EULERIAN COMPLETION and the second yields the first
polynomial-time algorithm for EULERIAN EDITING, as these problems are equivalent to
CDPE({ea}) and CDPE({ea, ed}), respectively, when we set § = 0. The complexity of the
problem drastically changes when vertex deletion is allowed: we prove that for every subset
S C {ea,ed,vd} with vd € S, the CDPE(S) problem is NP-complete and W[1]-hard with
parameter k, even when 6 = 0. This complements results by Cai and Yang [4] stating that
CDPE(S) is NP-complete and W[1]-hard with parameter k£ when S = {vd} and 6 =0 or
§ = 1. Our results, together with the aforementioned results due to Cygan et al. [7]? and
Cai and Yang [4], yield a complete classification of both the classical and the parameterized
complexity of CDPE(S) for all S C {ea, ed,vd}; see the middle column of Table 1.

In Section 4, we use different and more involved arguments to classify the classical and
parameterized complexity of the CDBE(S) problem for all S C {ea,ed, vd}. Interestingly,
the classification we obtain for CDBE(S) turns out to be identical to the one we obtained
for CDPE(S). In particular, our proof of the fact that CDBE(S) is polynomial-time
solvable when S = {ea} and S = {ea,ed} implies that the directed variants of EULERIAN
COMPLETION and EULERIAN EDITING are not significantly harder than their undirected
counterparts. All results on CDBE(S) are summarized in the right column of Table 1.

We would like to emphasize that there are no obvious hardness reductions between
the different problem variants. The parameter k in the problem definitions represents the
budget for all operations in total; adding a new operation to S may completely change the
problem, as there is no way of forbidding its use. Hence, our polynomial-time algorithms for
CDPE({ea,ed}) and CDBE({ea,ed}) do not generalize the polynomial-time algorithms for
CDPE({ea}) and CDBE({ea}), and as such require significantly different arguments. In

2 The FPT-results by Cygan et al. [7] only cover CDPE({ed}) and CDBE({ed}) when & = 0, but it can
easily be seen that their results carry over to CDPE({ed}) and CDBE({ed}) for any function .
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particular, our main result, stating that EULERIAN EDITING is polynomial-time solvable, is
not a generalization of the fact that EULERIAN COMPLETION is polynomial-time solvable and
stands in no relation to the FPT-result by Cygan et al. [7] for EULERIAN EDGE DELETION.

We end this section by mentioning two similar graph modification frameworks in the
literature that formed a direct motivation for the framework defined in this paper. Mathieson
and Szeider [17] considered the DEGREE CONSTRAINT EDITING(S) problem, which is that
of testing whether a graph G can be k-modified into a graph H in which the degree of every
vertex belongs to some list associated with that vertex. They classified the parameterized
complexity of this problem for all S C {ea,ed,vd}. Golovach [11] performed a similar study
where the resulting graph must in addition be connected.

2 Preliminaries

We consider finite graphs G = (V| E) that may be undirected or directed; in the latter
case we will always call them digraphs. All our undirected graphs will be without loops or
multiple edges; in particular, this is the case for both the input and the output graph in
every undirected problem we consider. Similarly, for every directed problem that we consider,
we do not allow the input or output digraph to contain multiple arcs. In our proofs we will
also make use of directed multigraphs, which are digraphs that are permitted to have multiple
arcs.

We denote an edge between two vertices v and v in a graph by uv. We denote an arc
between two vertices u and v by (u,v), where u is the tail of (u,v) and v is the head. The
disjoint union of two graphs G; and G5 is denoted G'1 +G2. The complete graph on n vertices
is denoted K, and the complete bipartite graph with classes of size s and ¢ is denoted K ;.

Let G = (V, E) be a graph or a digraph. Throughout the paper we assume that n = |V|
and m = |E|. For U C V, we let G[U] be the graph (digraph) with vertex set U and an edge
(arc) between two vertices u and v if and only if this is the case in G; we say that G[U] is
induced by U. We write G —U = G[V \U]. For E' C E, we let G(E’) be the graph (digraph)
with edge (arc) set E’ whose vertex set consists of the end-vertices of the edges in E’; we say
that G(E’) is edge-induced by E’. Let S be a set of (ordered) pairs of vertices of G. We let
G — S be the graph (digraph) obtained by deleting all edges (arcs) of SN E from G, and we
let G + S be the graph (digraph) obtained by adding all edges (arcs) of S\ F to G. We may
write G —e or G+ e if S = {e}.

Let G = (V, E) be a graph. A component of G is a maximal connected subgraph of G.
The complement of G is the graph G = (V, E) with vertex set V and an edge between two
distinct vertices u and v if and only if wv ¢ E. A matching M in G is a set of edges, in
which no edge has a common end-vertex with some other edge. For a vertex v € V, we
let Ng(v) = {u | wv € E} denote its (open) neighbourhood. The degree of v is denoted
dg(v) = |Ng(v)|. The graph G is even if all its vertices have even degree, and it is Eulerian
if it is even and connected. We say that a set D C F is an edge cut in G if G is connected
but G — D is not. An edge cut of size 1 is called a bridge in G.

Let G = (V, E) be a digraph. If (u,v) is an arc, then (v,u) is the reverse of this arc. For
asubset F' C E, we let F = {(u,v)|(v,u) € F} denote the set of arcs whose reverse is in F.
The underlying graph of G is the undirected graph with vertex set V where two vertices
u,v € V are adjacent if and only if (u,v) or (v,u) is an arc in G. We say that G is (weakly)
connected if its underlying graph is connected. A component of G is a connected component
of its underlying graph. An arc a € F is a bridge in G if it is a bridge in the underlying
graph of G. A vertex u is an in-neighbour or out-neighbour of a vertex v if (u,v) € E or
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(v,u) € E, respectively. Let N (v) = {u | (u,v) € E} and NZ (v) = {u | (v,u) € E}, where
we call di(v) = |Ng (v)| and df,(v) = |NZ (v)| the in-degree and out-degree of v, respectively.
A vertex v € V is balanced if dj(v) = dg(v). Recall that G is Bulerian if it is connected and
balanced, that is, the out-degree of every vertex is equal to its in-degree.

Let G = (V,E) be a graph and let T C V. A subset J C E is a T-join if the set of
odd-degree vertices in G(J) is precisely T. If G is connected and |T| is even then G has at
least one T-join. In Section 3 we need to find a minimum T-join, that is, one of minimum
size. We use the following result of Edmonds and Johnson [9] to do so.

» Lemma 1 ([9]). Let G = (V, E) be a graph, and let T C V. Then a minimum T-join (if
one exists) can be found in O(n?) time.

Lemma 1 was used by Cygan et al. [7] to solve H-EDGE DELETION in polynomial time
when H is the class of even graphs. It would immediately yield a polynomial-time algorithm
for CDPE({ed}) if we dropped the connectivity condition.

We need a variant of Lemma 1 for digraphs in Section 4. Let G = (V, E) be a directed
multigraph and let f : T — Z be a function for some T' C V. A multiset £ C E with
T C V(G(E')) is a directed f-join in G if the following two conditions hold: dg(E,)(v) -
dg(gry(v) = f(v) for every v € T and dg(E,)(v) — dg gy (v) =0 for every v € V(G(E')) \ T.
A directed f-join is minimum if it has minimum size. The next lemma was used by Cygan
et al. [7] to solve H-EDGE DELETION in polynomial time when H is the class of balanced
digraphs; it would also yield a polynomial-time algorithm for CDBE({ed}) if we dropped
the connectivity condition.

» Lemma 2 ([7]). Let G = (V,E) be a directed multigraph and f : T — 7Z be a func-
tion for some T C V. A minimum directed f-join F (if one exists) can be found in
O(nmlognloglogm) time. Moreover, F' consists of mutually arc-disjoint directed paths from
vertices w with f(u) > 0 to vertices v with f(v) < 0.

3 Connected Degree Parity Editing

We will show that CDPE(S) is polynomial-time solvable if S = {ea} or S = {ea,ed} and
that it is NP-complete and W[1]-hard with parameter k if vd € S.

First, let {ea} C S C {ea,ed}. Let (G, d, k) be an instance of CDPE(S) with G = (V, E).
Let A be a set of edges not in G, and let D be a set of edges in G, with D = ) if S = {ea}.
We say that (A, D) is a solution for (G,d,k) if its size |A| + |D| < k, the congruence
dp(u) = 6(u) (mod 2) holds for every vertex u and the graph H = G + A — D is connected;
if H is not connected then (A, D) is a semi-solution for (G,d,k). If S = {ea} we may denote
the solution by A rather than (A, D) (since D = (). We consider the optimization version
for CDPE(S). The input is a pair (G, ), and we aim to find the minimum % such that
(G, 4, k) has a solution (if one exists). We call such a solution optimal and denote its size by
opts(G, ). We say that a (semi)-solution for (G, 9, k) is also a (semi)-solution for (G, ). If
(G, 0, k) has no solution for any value of k, then (G, ) is a no-instance of CDPE(S) and
opts(G,0) = 0.

Let T = {v €V | dg(v) # §(v) (mod 2)}. Define Gg = K,, if S = {ea,ed} and Gg = G
if S = {ea}. Note that if S = {ea} then Gg contains no edges of G, so in this case any T-join

in Gg can only contain edges in E(G). The following key lemma is an easy observation.

» Lemma 3. Let {ea} C S C {ea, ed}. Let (G,9) be an instance of CDPE(S) and A C E(G),
D C E(G). Then (A, D) is a semi-solution of CDPE(S) if and only if AUD is a T-join
m Gs.
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We extend the result of Boesch et al. [1] for 6 = 0 to arbitrary §. Our proof is based
around similar ideas but we also had to do some further analysis. The main difference in the
two proofs is the following. If § = 0 then none of the added edges in a solution will be a
bridge in the modified graph (as the number of vertices of odd degree in a graph is always
even). However this is no longer true for arbitrary ¢ and extra arguments are needed. We
omit the proof of our result.

» Theorem 4. Let S = {ea}. Then CDPE(S) can be solved in O(n3) time.

We are now ready to present the main result of this section. Recall that proving this
result requires significantly different arguments than the ones used in the proof of Theorem 4.
Let S = {ea,ed} and let (G, d) be an instance of CDPE(S). If F is a T-join in Gg = K,
let D=FNE(G)and A= F\ D. Then by Lemma 3, (A, D) is a semi-solution. Note that
if F'is a minimum 7-join in Gg then it is a matching in which every vertex of T is incident
to precisely one edge of F, so |F| = 1|T|. We will show how this allows us to calculate
opts(G,d) directly from the structure of G, without having to find a T-join. We will also
show that there are only trivial no-instances for this problem.

» Theorem 5. Let S = {ea,ed}. Then CDPE(S) can be solved in O(n + m) time and an
optimal solution (if one exists) can be found in O(n3) time.

Proof. Let S = {ea,ed} and let (G, d) be an instance of CDPE(S). By Lemma 3, we may
assume that |T| is even, otherwise (G, d) is a no-instance. If G = Ky and T = V(G), or
G =K;+ K; and T =0, then (G, ) is a no-instance. If G = Ky and T = ) then, trivially,
opts(G,6) = 0, and if G = K; + Ky and T = V(G) then opts(G,d) = 1. To avoid these
trivial instances, we therefore assume that GG contains at least three vertices. Under these
assumptions we will show that opts(G, ) is always finite and give exact formulas for the
value of opts(G,d). Let p be the number of components of G that do not contain any vertex
of T and let ¢ be the number of components of G that contain at least one vertex of T. We
prove the following series of statements:

opts(G,0) =0ifp=1,¢=0,

opts(G,0) = max{3,p} if p > 2,¢=0,

opts(G,8) = 3|T|+1if p=0,q9 =1, G[T] = K1, for some r > 1, and each edge of G[T]

is a bridge of G,

opts(G, ) = max{p+q—1,p+ 3|T|} in all other cases.

Note that if p = 1,¢ = 0, then the first statement applies and the trivial solution (4, D) =
(@,0) is optimal. We now consider the remaining three cases separately.

Case 1: p>2 and ¢ =0.

Then T' = ), so by Lemma 3 for any semi-solution (4, D), every vertex in Gs(A U D) must
have even degree in Gg(A U D). In other words, every vertex of G must be incident to an
even number of edges in AU D. Since p > 2, the graph G is disconnected, so any solution
(A, D) is non-empty. This means that Gs(A U D) must contain a cycle, so opts(G, ) > 3 if
a solution exits. Suppose p = 2. As G has at least three vertices, it contains a component
containing an edge zy. Let z be a vertex in its other component. We set A = {zz,yz}
and D = {zy} to obtain a solution for (G, ). Since |A| + |D| = 3, this solution is optimal.
Suppose p > 3. Since G+ A — D must be connected for any solution (A, D), every component
in G must contain at least one vertex incident to an edge of A. By Lemma 3, this vertex
must be incident to an even number of edges of AU D, meaning that it must be incident to
at least two such edges. Therefore opts(G,d) > p. Indeed, if we choose vertices vq, ..., vp,
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one from each component of G, then setting A = {vyv2, V203, ..., Vp_10p,Vpv1} and D =0
gives a solution of size p, which is therefore optimal. This concludes Case 1.

Case 2: p=0,q9 =1, G[T| = K1, for somer > 1 and each edge of G[T| is a bridge of G.

Then G is connected. Let vy be the central vertex of the star and let vq,...,v, be the
leaves. By Lemma 3, in any semi-solution (A, D), every vertex of 7' must be incident to
an odd number of edges in AU D, so opts(G,8) > 1|T|. Suppose (A, D) is a semi-solution
of size |A| 4+ |D| = 1|T|. Then AU D must be a matching with each edge joining a pair
of vertices of T'. However, then vgv; € AU D for some i. Since vov; € E(G), we must
have vov; € D. However, since vgu; is a bridge of G, vy and v; must then be in different

components of G+ A — D, so G+ A — D is not connected and (A, D) is not a solution.

Therefore opts(G,8) > $|T| + 1.

Next we show how to find a solution of size |T'| 4 1. Since |T) is even, r must be odd.

First suppose that r = 1. Since G is connected and vovy is a bridge, G\ {vov1} has exactly
two components. Since G contains at least three vertices, one of these components contains

another vertex x. Without loss of generality assume zvg € E(G), in which case zv, ¢ E(G).

Then setting A = {zv;} and D = {zv,} gives a solution of size |A|+|D| = 2 = 1|T|+1, so this
solution is optimal. Now suppose r > 3. Let A = {v1v2,vov3} U {v2i02i41 | 2 < i < %(r -1)}
and D = {vgva}. Then (A, D) is a semi-solution and since vy, ..., v, are all in the same
component of G+A—D, we find that (A4, D) is a solution. Since |A|+|D| = 2+1(r—1)—1+1 =
1|T| + 1, this solution is optimal. This concludes Case 2.

Case 3: ¢ > 1 and Case 2 does not hold.

Then T # 0. Let G1,...,G, be the components of G without vertices of T and let G’ =
G-V(G1)U---UV(G,). Note that G’ = G if p = 0 and that G’ is not the empty graph, as
g > 0. Choose v; € V(G;) for i € {1,...,p}.

We first show that opts(G,d) > max{p+q—1,p+ %|T|} Since G has p + ¢ components,
any solution (A, D) must contain at least p + ¢ — 1 edges in A to ensure that G+ A — D is
connected, so opts(G,d) > p+q— 1. If (A, D) is a solution then every component G; must
contain a vertex incident to some edge in A. By Lemma 3, this vertex must be incident to an

even number of edges of AU D, meaning that it must be incident to at least two such edges.

By Lemma 3, every vertex of T" must be incident to some edge in AU D. Therefore AU D
must contain at least p + 3|7 edges, so opts(G,8) > p+ %[
We now show how to find a solution of size max{p+q —1,p+ 3|T'|}. We start by finding

a maximum matching M in G[T]. Let U be the set of vertices in T that are not incident to
any edge in M. We divide the argument into two cases, depending on the size of U.

Case 3a: U = 0.

In this case, by Lemma 3, setting A = M and D = ) gives a semi-solution. Now suppose
that uv,u’v’ € M, such that v is not a bridge in G + M and the vertices u and v’ are in
different components of G + M. Let M’ = M \ {uwv,v'v'} U {v/v,uv’}. Then M’ is also a
maximum matching in G[T]. However, G + M’ has one component less than G + M. Indeed,
since uv is not a bridge in G + M, the vertices u,u’, v, v’ must all be in the same component
of G+ M’. Therefore, if such edges uv,u'v' € M exist, we replace M by M’. We do this
exhaustively until no further such pairs of edges exist. At this point either every edge in M

is a bridge in G + M or every edge in M is in the same component of G + M. We consider
these possibilities separately.

First suppose that every edge in M is a bridge in G + M. Choose uv € M and let
Q1,-..,Qk be the components of G + M, with u,v € V(Q1). Note that since every edge
in M is a bridge, ¥k = p+ q — |M|. Now let x; € V(Q;) for i € {2,...,k}. Let D =0
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andlet A=Mifk=1and A =M\ {uv} U{uxs, zox3,...,25_12, v} otherwise. Now
every vertex in G + A — D has the same degree parity as in G + M, so (4, D) is a semi-
solution by Lemma 3. The graph G + A — D is connected, so (4, D) is a solution. As
|A|+|D|=|M|-14+p+q—|M|+0=p+q—1, we find that (4, D) is an optimal solution.

Now suppose that every edge in M is in the same component of G + M. Note that
Gh,...,G)p are the remaining components of G + M. Choose uv € M. Let D = ) and let
A=Mifp=0and A= M\ {w} U {uvr,vive,...,vp_10p, vpv} otherwise. Then every
vertex in G + A — D has the same parity as in G+ M and G + A — D is connected, so by
Lemma 3 (A, D) is a solution. Since |A| + |D| = %|T| —1+p+1=p+ %|T|7 this solution is
optimal. This concludes Case 3a.

Case 3b: U # 0.
Note that z = |U| must be even since |T| is even. Every pair of vertices in U must be
non-adjacent in G, as otherwise M would not be maximum. Therefore G[U] is a clique. Let
U={u,...,us}.

We claim that Q@ = G’ + M is connected. Clearly every vertex of the clique U must be in
the same component of @ = G’ + M. Suppose for contradiction that @ is a component of Q
that does not contain U. Then 1 must contain some edge wywy € M. However, in this case
M’ = M\ {wywy} U {ujw:, usws} is a larger matching in G[T] than M, which contradicts
the maximality of M. Therefore @) is connected.

Let M’ = {ujuz, ugug, ..., u—qu,}. If z > 4 then since U is a clique, G'+ M — M’ is con-
nected. If p=0set A=Mand D= M'. If p > 0set A =MU{ujv1,v1v2,...,Up_1Vp, UpUsz}
and D = M’ \ {ujus}. Then G+ A — D is connected, so (4, D) is a solution by Lemma 3.
This solution has size |A| 4+ |D| =p + %\T|, so it is optimal.

Now suppose that z < 3. Then z = 2. If p > 0, let A = MU{uqv1,v102,...,Vp_10p, VpUa}
and D = (). Then G+ A — D is connected, so (A, D) is a solution by Lemma 3. This solution
has size |A| + |[D| = p+ |T, so it is optimal. Assume that p =0, so G + M contains only
one component. If ujus is not a bridge in G+ M, let A = M and D = {ujus}. Then G+ M
is connected, so (A4, D) is a solution. This solution has size |[A| + |D| = p + $|T), so it is
optimal.

Now assume that ujus is a bridge in Q = G+ M. Let @1 and Q)2 denote the components
of @ — {ujus} with uy € V(Q1) and us € V(Q2). Note that ujus is also a bridge in G. We
claim that the edges of M are either all in @7 or all in @)2. Suppose for contradiction that
y121 € BE(Q1) N M and yo20 € E(Q2) N M. Then M’ = M\ {y121, Y222} U {u1y2, usyi, 2122}
would be a larger matching in G[T'] than M, contradicting the maximality of M. Without
loss of generality, we may therefore assume that all edges of M are in Q.

Let M = {z1y1,...,2ryr}, where r = %|T| —1. We claim that u; must be adjacent in G to
all vertices of T'\ {u1 }. Suppose for contradiction that u; is non-adjacent in G to some vertex
of T'\ {u1}. Since ujuz € E(G), this vertex would have to be incident to some edge in M.
Without loss of generality, assume uyzq ¢ E(G). Then M’ = M\ {x1y1} U {ui2z1, w2y }
would be a larger matching in G[T] than M, contradicting the maximality of M. Therefore u;

is adjacent in G to every vertex of T'\ {u;}. In particular, since p = 0, it follows that ¢ =1
and G is connected.

Suppose that every edge between uy and T'\ {u;} is a bridge in G. Then no two vertices
of T\ {u1} can be adjacent, and G[T] = K;,. However, then Case 2 applies, which we
assumed was not the case. Without loss of generality, we may therefore assume that uqxq
is not a bridge in G. Let A = M \ {z1y1} U{y1u2} and D = {uyz1}. Then G+ A — D is
connected, so (A, D) is a solution. Since |A| +|D|=3|T|—1—-1+1+1=p~+ 3T, this
solution is optimal. This concludes Case 3b and therefore also concludes Case 3.
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It is clear that optg(G, ) can be computed in O(n+m) time. We also observe that the above
proof is constructive, that is, we not only solve the decision variant of CDPE(ea, ed) but

we can also find an optimal solution. To do so, we must find a maximum matching in G[T].

This takes O(n°/?) time [18]. However, the bottleneck is in Case 3a, where we are glueing
components by replacing two matching edges by two other matching edges, which takes
O(n?) time. As the total number of times we may need to do this is O(n), this procedure
may take O(n3) time in total. Hence, we can obtain an optimal solution in O(n3) time. <«

The proof of the next result has been omitted.

» Theorem 6. Let {vd} C S C {vd, ed,ea}. Then CDPE(S) is NP-complete and W[I]-hard
when parameterized by k, even if § = 0.

4 Connected Degree Balance Editing

We will show that CDBE(SS) is polynomial-time solvable if {ea} C S C {ea,ed} and that it
is NP-complete and W([1]-hard with parameter k if vd € S.

Let {ea} C S C {ea,ed}. Let (G, d, k) be an instance of CDBE(S) with G = (V, E). Let A
be a set of arcs not in G, and let D be a set of arcs in G, with D = () if S = {ea}. We say that
(A, D) is a solution for (G, d,k) if its size |A| + |D| < k, the equation dj; (u) — dp(u) = 6(u)
holds for every vertex uw and the graph H = G+ A — D is connected; if H is not connected
then (A, D) is a semi-solution for (G, d, k). Just as in Section 3 we consider the optimization
version for CDBE(S) and we use the same terminology.

Let (G,0) be an instance of (the optimization version) of CDBE(S) where G = (V, E).

Let T = T{q,s) be the set of vertices v such that d(v) — dg(v) # 6(v). Define a function
fas) T = Zby f(v) = fs ) =68v)—di(v) + dg(v) for every v € T.

We construct a directed multigraph Gg with vertex set V' and arc set determined as follows.

If {ea} C S C {ea,ed}, for each pair of distinct vertices v and v in G, if (u,v) ¢ F, add the
arc (u,v) to Gg (these arcs are precisely those that can be added to G). If S = {ea, ed}, for
each pair of distinct vertices u and v, if (u,v) € F, add the arc (v,u) to Gg (these arcs are
precisely those whose reverse can be deleted from G). Note that adding a (missing) arc has
the same effect on the degree balance of the vertices in a digraph as deleting the reverse of
the arc (if it exists). Also observe that Gg becomes a directed multigraph rather than a
digraph only if S = {ea,ed} and there are distinct vertices « and v such that (u,v) € E and
(v,u) ¢ E applies. Moreover, Gg contains at most two copies of any arc, and if there are two
copies of (u,v) then (v,u) is not in Gg.

Let F be a minimum directed f-join in Gg (if one exists). Note that F' may contains two
copies of the same arc if Gg is a directed multigraph. Also note that for any pair of vertices
u, v, either (u,v) ¢ F or (v,u) ¢ F, otherwise F/ = F\ {(u,v), (v,u)} would be a smaller
f-join in Gg, contradicting the minimality of F'. We define two sets Ap and Dy which, as

we will show, correspond to a semi-solution (Ap, Dp) of (G,d). Initially set Ap = Dp = ().

Consider the arcs in F. If F' contains (u,v) exactly once then add (u,v) to Ap if (u,v) ¢ E
and add (v,u) to Dp if (u,v) € E (in this case (v,u) € F holds). If F' contains two copies
of (u,v) then add (u,v) to Ap and (v,u) to Dp; note that by definition of F' and Gg, in
this case S = {ea,ed}, (u,v) ¢ E and (v,u) € E. Observe that the sets Ap and Dp are not
multisets.

If X and Y are sets, then X WY is the multiset that consists of one copy of each element

that occurs in exactly one of X and Y and two copies of each element that occurs in both.

The next lemma provides the starting point for our algorithm. Its proof has been omitted.
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» Lemma 7. Let {ea} C S C {ea,ed}. Let (G,0) be an instance of CDBE(S) where

G = (V,E). The following holds:

(i) If F is a minimum directed f-join in Gg, then (Ap, DF) is a semi-solution for (G,0)
of size |F|.

(i) If (A, D) is a semi-solution for (G,5), then AW D is a directed f-join in G of size
|A] + |D|.

Let (G,6) be an instance of CDBE(S). Let p = p(c 5 be the number of components
of G that contain no vertex of T Let ¢ = ¢(¢,5) be the number of components of GG that
contain at least one vertex of T'. Let t = t(g 5 = > ,cr |f(u)]

We now state the following lemma. Its proof (based on Lemmas 2 and 7) has been
omitted.

» Lemma 8. Let {ea} C S C {ea,ed}. Let (G,9d) be an instance of CDBE(S) with ¢ > 1.
If F is a (given) minimum directed f-join in Gg, then (G,d) has a solution that has size at
most max{|F|,p+q—1,p+ %t}, which can be found in O(nm) time.

The next result is our first main result of this section. We prove it by showing that the
upper bound in Lemma 8 is also a lower bound for (almost) any instance of CDBE(S) with
{ea} C S C {ea,ed} that has a semi-solution.

» Theorem 9. For {ea} C S C {ea,ed}, CDBE(S) can be solved in time
O(n®lognloglogn).

Proof. Let {ea} C S C {ea,ed}, and let (G,0) be an instance of CDBE(S). We first use
Lemma 2 to check whether Gg has a directed f-join. Because Gs has at most 2n? arcs, this
takes O(n3lognloglogn) time. If Gs has no directed f-join then (G,d) has no semi-solution
by Lemma 7, and thus no solution either. Assume that Gs has a directed f-join, and let F be
a minimum directed f-join that can be found in time O(n®lognloglogn) by Lemma 2. As
before, p denotes the number of components of G that do not contain any vertex of T', while ¢
is the number of components of G that contain at least one vertex of T', and t = ) [f(u)|.

We will prove the following series of statements:

opts(G,0)=0if p<1,¢=0,

opts(G,0) =pifp>2,q=0,

opts(G, ) = max(|F|,p+q—1,p+ it) if ¢ > 0.

If p<1land g =0then A= D = () is an optimal solution. If p > 2 and ¢ = 0,
to ensure connectivity and preserve degree balance, for every component of G there must
be at least one arc whose head is in this component and at least one arc whose tail is
in this component, thus any solution must contain at least p arcs. Let Gi,...,G, be
the components of G and arbitrarily choose vertices v; € V(G;) for i € {1,...,p}. Let
A = {(v1,v2), (v2,03), ..., (Vp—1,0p), (Up,v1)} and D = (. Then (A, D) is a solution which
has size p and is therefore optimal.

Suppose ¢ > 1. By Lemma 8 we find a solution (4, D) for (G, §) of size at most max{|F]|,
p+q—1,p+ 5t} in O(nm) time. Hence, the total running time is O(n®lognloglogn), and
it remains to show that any solution has size at least max(|F|,p+ ¢ —1,p + 3t).

Let (A, D) be an arbitrary solution. Then (A, D) is also semi-solution. Every semi-solution
has size at least |F'| by Lemma 7 2. Therefore (A, D) has size at least |F.

Since there are p + g components in GG, we must add at least p + ¢ — 1 arcs to ensure
G + A — D is connected. Therefore (A, D) has size at least p 4+ ¢ — 1.

Finally, for every vertex u with f(u) > 0 (resp. f(u) < 0) we find that (A, D) must be
such that at least |f(u)| arcs are either in A and have u as a tail (resp. head) or else are
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in D and have u as a head (resp. tail). For every component containing only vertices v with
f(v) =0, there must be at least one arc in A whose head is in this component and at least
one arc in A whose tail is in this component (to ensure connectivity and to ensure that the
degree balance is not changed for any vertex in this component). Therefore we have that
(A, D) has size at least p + 1¢. This completes the proof of Theorem 9. <

The proof of our second main result of this section has been omitted.

» Theorem 10. Let {vd} C S C {vd, ed, ea}. Then CDBE(S) is NP-complete and W[1]-hard
when parameterized by k, even if § = 0.

5 Conclusions

By extending previous work [1, 4, 7] we completely classified both the classical and para-
meterized complexity of CDPE(S) and CDBE(S), as summarized in Table 1. Our work
followed the framework used [11, 17] for (CONNECTED) DEGREE CONSTRAINT EDITING(S).
Our study was motivated by Eulerian graphs. As such, the variants DPE(S) and DBE(S)
of CDPE(S) and CDBE(S), respectively, in which the graph H is no longer required to be
connected, were beyond the scope of this paper. It follows from results of Cai and Yang [4]
and Cygan [7], respectively, that for S = {vd}, DPE(S) and DBE(S) are NP-complete
and, when parameterized by k, W[1]-hard, whereas they are polynomial-time solvable for
S = {ed} as a result of Lemmas 1 and 2, respectively. The problems DPE(S) and DBE(S)
are also polynomial-time solvable if {ea} C S C {ea, ed}; this is in fact proven by combining
Lemmas 1 and 3 for the undirected case, and Lemmas 2 and 7 for the directed case. We
expect the remaining (hardness) results of Table 1 to carry over as well.
Let ¢ be an integer. Here is a natural generalization of CDPE(S).

¢-CDME(S): CONNECTED DEGREE MODULO-{-EDITING(S)
Instance: A graph G, integer k and a function ¢: V(G) — {0,...,¢ — 1}.
Question: Can G be (S, k)-modified into a connected graph H with
dr(v) = 6(v) (mod ¢) for each v € V(H)?

Note that 2-CDME(S) is CDPE(S). The following theorem shows that the complexity of
3-CDME(S) may differ from 2-CDME(S).

» Theorem 11. 3-CDME({ea, ed}) is NP-complete even if 6 = 2.

Proof. Reduce from the HAMILTONICITY problem, which is NP-complete for connected cubic
graphs [10]. Let G be a connected cubic graph. Let 6(v) = 2 for every v € V(G), and take
k =|E(G)|—|V(G)|. Then G has a Hamiltonian cycle if and only if G can be (S, k)-modified
into a connected graph H with dg(v) =2 (mod 3) for all v € V(H). <

It is natural to ask whether 3-CDME({ea, ed}) is fixed-parameter tractable with parameter k.

Finally, another direction for future research is to investigate how the complexity of
CDPE(S) and CDBE(S) changes if we permit other graph operations, such as edge con-
traction, to be in the set S.
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—— Abstract

We study the complexity of model checking formulas in first-order logic parameterized by the
number of distinct variables in the formula. This problem, which is not known to be fixed-

parameter tractable, resisted to be properly classified in the context of parameterized complexity.
We show that it is complete for a newly-defined complexity class that we propose as an analog
of the classical class PSPACE in parameterized complexity. We support this intuition by the
following findings: First, the proposed class admits a definition in terms of alternating Turing
machines in a similar way as PSPACE can be defined in terms of polynomial-time alternating
machines. Second, we show that parameterized versions of other PSPACE-complete problems,
like winning certain pebble games and finding restricted resolution refutations, are complete for
this class.
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1 Introduction

The main goal of computational complexity theory is to distinguish between tractable and
intractable problems. In classical complexity theory tractable problems are those that can
be solved in polynomial time, whereas intractable problems require exponential time (most
notably NP-complete problems, but also problems complete for higher levels of the polynomial
hierarchy, PSPACE, and EXPTIME). In parameterized complexity theory, tractable problems
are in FPT and can be solved in time f(k) - nPW | whereas intractable problems require a
running time of nf(*),

Beside distinguishing between just tractable and intractable problems, looking at different
levels of intractability for NP-hard problems (by comparing them with respect to polynomial-
time reductions) led to understanding the importance of the polynomial hierarchy as well
as polynomial-space, and exponential-time computations. Already during the incubation
of parameterized complexity theory different levels of parameterized intractability were
observed based on comparing problems with respect to fixed-parameter tractable reduction
(fpt-reductions). This turned into a flourishing research area where classes that were initially
defined in an adhoc way by considering yet unclassified problems and their closures under
fpt-reductions turned out to be definable using descriptive characterizations in terms of
first-order logic.
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Paper’s Issue. The class XP of parameterized problems that can be solved in time nf*) is
the analog of EXPTIME in parameterized complexity as both classes contain all problems
of intractable running time. Indeed, it turned out that parameterizations of EXPTIME-
complete problems tend to be complete for XP [2, 3, 4]. Several classes are proposed as
parameterized analogs of PSPACE. This includes the classes AW[SAT| and AW/[«], which
both admit alternative characterizations in terms of model checking first-order formulas, as
well as AW[P], which can be defined based on deterministic Turing machines that access a
certificate containing blocks of existential (nondeterministic) bits and blocks of universal
(nondeterministic) bits. For all of these PSPACE-analogs the alternation used to solve
problems is bounded by a function in terms of the parameter. On the one side, the classes
defined in this way helped to classify parameterized versions of PSPACE-complete problems
where the parameter is used to bound the use of alternation. On the other side, problems
that result from more general parameterizations of PSPACE-complete problems resisted to be
classified using these classes. A prominent example is the problem of evaluating first-order
formulas. It is PSPACE-complete [18] in the classical setting, and known to be in XP when
parameterized by the number of distinct variables in the formula, but not known to be hard
for this class. The importance of the fixed variable fragments of first-order logic stems from
the fact that k-variable formulas can be evaluated in time n©*)
the variables one has access to an unlimited number of quantifier alternations, which makes
this fragment much more expressive than fragments with bound quantifier depth. A similar
observation can be made for determining the winner in a classical acyclic pebble game and
finding linear depth resolution refutations of bounded width; their unparameterized versions
are shown to be complete for PSPACE in [14] and [3], respectively, but they are not complete
for known parameterized analogs of PSPACE as they require unbounded alternation.

. In addition, by reusing

Paper’s Contributions. We properly classify the parameterized complexity of these problems
by presenting the following contributions during the course of the present paper: (1) We
consider the closure under fpt-reductions of model checking first-order formulas parameterized
by the number of distinct variables in the formula and sort this class into the hierarchy of
known levels of parameterized intractability. (2) We prove that the newly defined class SXP,
which stands for shallow XP, has a natural characterization in terms of alternating Turing
machines (with unbounded alternation) in a similar way as PSPACE can be characterized in
terms of alternating polynomial time. For this result, we apply techniques from descriptive
complexity theory [13] to simulate the behavior of alternating machines using first-order
formulas. (3) We show that other PSPACE-complete problems are complete for this class
under fpt-reductions when parameterized in a natural and very general way. We first
simulate the model checking game for k-variable logic within the acyclic k + 2-pebble game
of Kasai, Adachi and Iwata, which was introduced to simulate PSPACE machines, to show
that the pebble game is complete for our new class when parameterized by the number of
pebbles. Afterwards, we use a known reduction from the acyclic pebble game to regular
resolution of bounded width to show that finding resolution refutations of linear depth
and width k is another PSPACE-complete problem that fits in our parameterized analog of
PSPACE when parameterized by the width. Interestingly, the pebble game and bounded
width resolution have more general versions that are EXPTIME-complete, classically, and
XP-complete, parameterized.

Paper’s Organization. The next section defines concepts and terminology related to param-
eterized complexity and first-order logic. The subsequent Sections 3, 4, 5 present, respectively,
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the definition of our newly proposed parameterized analog of PSPACE, a machine characteri-
zation for the class, and complete problems.

2 Background

The present section provides background from parameterized complexity and first-order logic
as well as establishes notation related to parameterized versions of model checking first-order
formulas. The used definitions and notations closely follow the book of Flum and Grohe [12];
see also this book for standard results in parameterized complexity mentioned below.

Parameterized complexity. A parameterized problem is a pair (P, k) consisting of a (classi-
cal) problem P C {0,1}* and a parameterization k: {0,1}* — {1}* that is polynomial-time
computable; we commonly denote it by p-x-P. Given an instance x € {0,1}*, we use the
shorthands n := ||, its size, and k := |k(z)], its parameter. We denote by FPT the class of
parameterized problems (P, k) that are solvable by a deterministic Turing machine (DTM)
whose runtime is at most f(k) - n®™) for a computable function f: N — N; (parameterized)
problems in FPT are fixed-parameter tractable. The class XP is defined like FPT, but using
time bounds nf(*). The deterministic time hierarchy theorem implies that FPT is a proper
subclass of XP.

An fpt-reduction from a parameterized problem (P,k) to a parameterized problem (P’,x’)
is a mapping 7: {0,1}* — {0,1}* that is computable by a DTM in time f(k)-n°® for a
computable function f: N — N such that for every € {0,1}*, we have (1) z € P if, and
only if, r(z) € P, and (2) |&'(r(z))| < |g(k(z))| for some reduction-dependent function
g: {1}* — {1}*. Given a parameterized problem (P’ '), the closure of (P', k') under fpt-
reductions, denoted by [(P’, x')]'*, is the class of all problems (P, x) with an fpt-reduction
from (P, k) to (P’, k'). Later we study problems that are complete for XP or other complexity
classes of parameterized problems between FPT and XP. In all of these cases, completeness
is defined with respect to fpt-reductions.

First-order logic. We start to define the syntax and semantics of first-order logic: A
vocabulary T is a nonempty and finite set of relation symbols R; with arities arity(R;) € N. A
structure A over T consists of a finite set A, its universe, and a relation R;“ C Aarity(Ri) for
every relation symbol R; of 7. Based on (element) variables x;, i € N, first-order formulas
(Fo-formulas) over a vocabulary 7 are (1) atomic formulas z; = z; and (21,...,2,) € R;,
and (2) composed formulas —p, ¢ A and ¢ V 1, which are based on connectives, and Jz; ¢
and Vz; ¢, which are based on quantifiers. Given a structure A and a formula ¢ over the
same vocabulary 7, A satisfies ¢ if the usual model relation A = ¢ holds. Two formulas ¢
and 1 are equivalent if they are satisfied by exactly the same structures.

In order to define parameterized problems and complexity classes that are based on
first-order formulas, we define classes of formulas and parameters of formulas: First of all, we
only consider FO-formulas in negation normal form, whose —-connectives are immediately in
front of atomic formulas. This does not restrict the set of FO-formulas in the sense that every
FO-formula can be turned into an equivalent formula in negation normal form by recursively
applying the rules of De Morgan. We denote this set of formulas by FO. The quantifier
alternation depth of a formula ¢, denoted by qad(yp), is the number of alternations from 3-
to V-quantifiers on any root-to-leaf path in ¢’s syntax tree plus 1; and plus 2 if the first
quantifier is V. For every ¢t € N, the class of formulas ¢ € FO with qad(p) =t is ALT;. A
formula ¢ is in prenex normal form if ¢ = Q11 ... Qpxe 1 where the Q); are quantifiers and
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1) does not contain quantifiers. The class of all these formulas is PRENEX and, for every
t € N, we set ¥; := PRENEX N ALT;. Let ¢ € FO. We denote the number of distinct variables
of ¢ by var(yp). The size of ¢, denoted by size(y), is the total number of symbols used to
write down ¢.

Model checking formulas. In order to consider vocabularies, structures, and formulas as
part of instances to computational problems, we encode them using binary strings in a
standard way as done in [12]. We write enc(7) for the binary string encoding of a vocabulary
7; enc(A) and enc(p) are used for the encoding of a structure A and a formula ¢, respectively.
Given a class of first-order formulas C C FO, we denote by MC(C') the model checking problem
for formulas from C: A positive instance of MC(C') consists of an encoded vocabulary enc(r)
as well as an encoded structure enc(A) and an encoded formula enc(p) with (1) ¢ € C, (2)
A and ¢ are both over 7, and (3) A = ¢. We consider parameterized versions of model
checking problems with respect to several classes of formulas in the following section, and
their closure under fpt-reductions.

3 Parameterized complexity of first-order logic

Previous studies (mainly subsumed by the book [12]) observed that the parameterized
complexity of model checking first-order formulas with respect to several classes of formulas
and parameterizations is not only interesting from the perspective of solving the problem,
but as a central concept to study parameterized intractability, itself. That means, model
checking formulas in FO-logic is commonly used to define levels of parameterized intractability,
which make up a candidate hierarchy of complexity classes between the, provably distinct,
classes FPT and XP.

A first family of classes are defined as analogs of NP in the parameterized setting: This
spans the W-hierarchy, with its frequently used first level W[1] := [p-size-mc(x;)]®t [7, 9,
11], as well as W[SAT] := [p-var-Mc(%)]'P* [7, 16] and the class W[P], whose definition
equals the one of FPT except that the used deterministic Turing machines have access
to a nondeterministic certificate of f(k) - logn nondeterministic bits [7, 6]. These classes
are considered to be analogs of NP in the parameterized world since it is possible to
nondeterministically guess candidate solutions to, say, graph problems of a parameter-
bounded size, and verify the guessed solution. The computational power we have for the
verifying step depends on the particular class. Since we consider FPT as the lowest level, of
tractable problems, the classes are defined by taking the closure of these problems under
fpt-reductions.

In a similar fashion, parameterized analogs of the polynomial-time hierarchy (PH) are
defined based on formulas with constant alternations with the most prominent suggestion
being the A-hierarchy with levels A[t] := [p-size-mc(3;)]®? for ¢ € N [10, 11].

A third kind of classes are designed to be analogs of PSPACE in the parameterized
setting: In this case, not only existential, but also universal, nondeterminism is permitted;
still nondeterminism is bounded in terms of the parameter. The most powerful of these
classes is AW[P], which is defined as W[P], but this time the acceptance behavior of the
DTM depends on a length-(f(k) - logn) certificate containing both existential and universal
nondeterministic bits where the number of alternations is bounded by f(k). Classes that are
defined via a less powerful solution verification phase are AW[SAT] := [p-var-MC(PRENEX )Pt
and AW[x] := [p-size-MC(PRENEX)]'P. All of the mentioned PSPACE-analogs are originally
defined in terms of Boolean circuits and propositional logic [1]; the definitions based on
machines and model checking first-order formulas are taken from [12, Chapter §].
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While the parameterized approaches towards mirroring the behavior of PSPACE have
proven to be useful to classify a large number of problems, some problems remained unclassified
and, hence, not well understood. These are parameterized problems whose solutions are
based on existential and universally nondeterministic guesses, but where it seems not possible
to bound the nondeterministic guesses in terms of the parameter. Thus, the parameter seems
to play a different role for these problems. A prominent example of such a problem is model
checking first-order formulas that only use a fixed (parameter-bounded) number of distinct
variables. As the variables can be reused, the quantifier alternation does not depend on
the parameter. This observation leads us to defining the following parameterized analog of
PSPACE with unbounded alternations. In Section 4 we realize that the defined complexity
class has a characterization in terms of alternating Turing machines that is similar to XP,
but using shallow parallel computations; hence, we choose the name SXP with S standing for
“shallow”.

» Definition 1. SXP := [p-var-Mc(F0)]P*

The class SXP is contained in XP and contains AW[P]. Figure 1 shows the relations
between these and other classes from parameterized complexity mentioned above.

» Fact 2. SXP C XP
» Lemma 3. AW[P] C SXP

Proof Sketch. Let (P, k) € AW[P] via a DTM M running in time f(k)-n¢ for some computable
function f and constant ¢, and using nondeterministic certificates of length f(k) - logn of
existential and universal bits; with f(k) alternations. The first phase of our fpt-reduction
to p-var-MC(FO) reduces the problem of simulating the computation of M on length-n and
parameter-k instances to the circuit evaluation problem as described in [15] for the classical
class P. The second step replaces the task of evaluating the circuit by model checking a
constant-variable first-order formula that defines the evaluation problem for circuits (the
same approach is commonly used to show that model checking first-order formulas with
just 2 variables is complete for P). To also take the alternating certificate into account,
which is given to the DTM, our formula is enriched by existential quantifiers, which guess
existential bits, and universal quantifiers, which guess universal bits; this construction uses a
single quantifier to handle a length-(logn) substring of the certificate by first applying the
“k - logn”-trick (see [12, Corollary 3.13] for details) to the circuit. Both the circuit and the
formula can be constructed using an fpt-reduction. The number of variables used by the
formula is bounded by a function in the original parameter. |

4  Alternative Characterizations

The classes that are defined via model checking first-order formulas in the previous section
are all defined by first taking a prototypical model checking problem for first-order formulas
of a restricted syntax along with a parameter, which is the formulas size or number of distinct
variables. Then the closures of these problems under fpt-reductions are considered, which
captures certain kinds of parameterized intractable problems. The prototypical problems are
chosen in order to mirror the behavior of a classical class in the parameterized setting. In
this section we present an alternative characterization of SXP in terms of alternating Turing
machines. It shows how the behavior of the class SXP (of parameterized problems) parallels
the behavior of the class PSPACE (of classical problems).
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XP

SXP

= [p-var-Mc(ro)]fPt

T

AW[P]

[

[p-var-MC(PRENEX )]t

K — AW[SAT]
WIP] T
T [p-var-Mc ()]t [p-size-MC(PRENEX)] Pt
/ T = [p-size-Mc(r0)] Pt
[p-var-Mc(x,)]Pt - AW+

[p-size-MC ()] Pt

= W[SAT
[ \]IJ = [p-size-MC(ALTy )] Pt analogs of PSPACE
p-size- 1
= [p-size-Mc(aLTy )]t analogs of PH
= W[1] = A[1]
T analogs
FPT of NP

Figure 1 We have the following inclusions of parameterized complexity classes for every ¢t € N;
where C —C D indicates C C D for classes C and D. While FPT is commonly considered to be
the analog of P in parameterized complexity and XP is an analog of EXPTIME, there are several
suggestion to reflect the behavior of the classical classes NP, the levels of PH, and PSPACE. Our
suggestion for a parameterized version of PSPACE is based on parameterizing first-order model
checking via the number of distinct variables in formulas.

An alternating Turing machine (ATM) M consists of a set of states ) that is partitioned
into a set of existential states Q3 and a set of universal states Qvy. Its (nondeterministic)
transitions are encoded by a relation A C Q x ¥* x Q x ¥* x {LEFT,RIGHT}* where
(¢,015-- 0%, 00, ..., 0k, d1,...,dg) € A means that if M is in state ¢ and reads the
symbol o; on tape i, for i € {1,...,k}, then it can write the symbol o} on tape i, for
i €{1,...,k}, and moves its heads as defined by the d;. We consider only machines M that
halt on every computation path. The acceptance behavior of an ATM is defined recursively
(without using accepting and rejecting states explicitly) as follows: A wuniversal configuration
accepts if every immediate successor configuration accepts, an existential configuration accepts
if there exists an immediate successor configuration that accepts. M accepts an input if the
starting configuration accepts.

From the proof of the well known characterization from Chandra et al. [5] of polynomial
deterministic time in terms of alternating logarithmic space, we get the following alternative
definition of XP. This parallels the definition of EXPTIME in terms of ATMs using polynomial
space.
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» Fact 4. XP is the class of parameterized problems (P, k) that are accepted by ATMs using
space at most f(k) - logn.

While for EXPTIME problems we do not hope to lower the run-time substantially by
using alternation, alternation speeds-up the solution of problems in PSPACE since it equals
the class of problems accepted by ATMs in polynomial time [5]. The following lemma states
that our proposed parameterized version of PSPACE has a similar behavior. Its problems can
be solved by ATMs using f(k) - logn space, but only running in f(k) - n®®) time. The proof
of the lemma is based on a refined view on the PSPACE-completeness of model checking
first-order formulas [17, 18] as well as ideas from descriptive complexity theory [13].

» Theorem 5. SXP is the class of parameterized problems (P, k) that are accepted by ATMs
using space at most f(k) -logn and running in time at most f(k)-n°™).

Proof. We start to show how problems in SXP, which are fpt-reducible to p-var-MC(F0), can
be solved by (f(k) - logn)-space- and f(k) - n©M)-time-bounded ATms. Classical results from
Chandra et al. [5] imply that FPT is the class of parameterized problems (P, ) accepted by
ATMs using space at most f(k)+O(logn). A similar fact holds for (f(k)-n®™))-time-bounded
DTMs that compute reductions; in this case we consider the problem of deciding whether
a certain position in the output of the DTM contains a certain symbol. If the reduction is
computed in time f(k) - n®®), then this problem can be decided by an ATM using space
f(k) + O(logn). To finish the proof of the above claim, we (1) consider an ATM that model
checks first-order formulas in space at most f(k) - logn and time at most f(k) - n®1) with
respect to the number of distinct variables as the parameter, and (2) modify it to run the
above machine for the reduction whenever it wants to access an input symbol.

For the other direction, let (P, k) be solvable by an ATM M using time f(x) - n¢ and
space f(k)-logn for a computable function f: N — N and constant ¢ on length-n inputs.
In order to describe the reduction’s construction we consider an input z € ¥*. We assume,
without loss of generality, that M alternates between existential and universal states in
each transition. That means, if we consider the start configuration as having time stamp 0,
configurations with an even time stamp are always existential and configurations with an
odd time stamp are always universal. Recall that a configuration C of M on input x consists
of the current state, the head positions on the input tape and on the working tape, and the
content of the working tape. Commonly a configuration is encoded as a (binary) string of
length at most cpr + f(k) - logn where c¢ps is a constant depending on M.

We present an fpt-reduction from (P, k) to p-var-MC(FO). A first attempt for the reduction
is to construct the (acyclic) configuration graph Gpr(x) = (VERT,EDG) that contains all
possible configurations of M as vertices and (directed) edges representing transitions between
them. Moreover, the initial configuration is colored using a unary predicate I, and the
existential and universal configurations are colored using unary predicates EXIST and UNIV,
respectively. Then we state a formula ¢, that defines the acceptance behavior of ATMs,
which is an alternating reachability query, that run in time at most f(x) - n® based on
the graph. While we only need a constant number of variables for the formula, the graph
considered in this reduction is too large to be constructible using an fpt-reduction since we
consider all possible 2¢¥ +f(s)1ogn configurations.

To get an fpt-reduction, we trade number of variables of the formula for the size of the
constructed structure: Instead of constructing the graph explicitly, we modify the formula
pnr to a formula @y, that not only defines the acceptance behavior of M, but also implicitly
the configuration graph. How to modify the formula as well as how to construct a structure
for this approach is described below.
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Instead of constructing a configuration graph, the second version of our reduction produces
a logical structure A with universe U := {1,..., f(k)-n°}. The only relation on these elements
is the bit predicate BIT = {(4, j) | position ¢ in bit-string enc(j) is 1}.

The formula ), uses variables to store pointers to whole configurations. In order to
avoid this, we encode configurations of M using substrings for a configuration’s state, head
position, and working tape content. To encode a configuration with the help of a formula’s
element variables, we replace each element variable = in ¢ by a group of variables consisting
of a single variable Zsate to contain the index of the state (assuming that the input size is
large enough), a variable iy head to encode the head position on the input tape, a variable
Zwork-head t0 €ncode the head position on the work tape, and f(x) variables Zcontent.i tO
encode the content of the ith length-logn block on the working tape. Finally, we replace
the predicate symbols that are used to access the edges and vertex colorings of the graph
by subformulas that define these predicates based on the predicate BIT. The details of this
well-known approach from descriptive complexity are described in the book of Immerman [13].

Both the formula ¢/, and the used structure can be constructed in time f(k)-n®®),
and the number of variables used in ¢, is bounded in terms of the machine M and the
parameter of the input instance k. |

Based on translating the alternating Turing machines from Lemma 5 into circuits, it
is possible to get a characterization of SXP in terms of families of Boolean circuits that
are uniform (the building blocks of the circuits can be recognized, for example, by using
a parameterized version of the classical class ALOGTIME where the parameter is given in
an appropriate way to the uniformity machine). These circuits have size n/ (%) and depth
fk)- n®M) . Thus, their shape also supports our intuition that SXP is the right analog of
PSPACE in the parameterized setting.

5 Parameterized polynomial-space-complete problems

Kasai, Adachi and Iwata [14] introduced a simple pebble game to provide a combinatorial
characterization of different complexity classes by playing several variants of that game. An
instance of the pebble game consists of a set of nodes X, a set of start positions S C X for
k = |S| pebbles, a goal node v € X and a set R C X3 of rules which are triples of pairwise
distinct nodes. There are two players in the game, which alternately move a pebble on the
game board according to some rule (u,v,w) € R: if there are pebbles on v and v but not on
w, then the corresponding player can move the pebble from u to w. One player wins the game
if he puts a pebble on the goal node or reaches a position where the other player is unable to
move. The game board is acyclic if the underlying dag with vertex set X and arcs (u,w),
(v,w) for all (u,v,w) € R is acyclic. In the acyclic pebble game the game board is required
to be acyclic. It turns out that determining the winner in the pebble game is complete for
EXPTIME and determining the winner in the acyclic variant is PSPACE-complete [14]. If
one fixes the number of pebbles k, it is possible to determine the winner (in both variants) in

time n@®*)

. This can easily be verified as the game can be simulated by an alternating Turing
machine that uses O(klogn) space to store the current position of the pebbles. Adachi, Iwata
and Kasai [2] proved a corresponding lower bound in the non-acyclic case. They simulated
single-tape Turing machines of running time O(n*) within the (2k 4 1)-pebble game and
used the time hierarchy theorem to obtain a lower bound of n2*). As remarked by Downey
and Fellows [8] it follows that, parameterized by the number of pebbles, this problem is

XP-complete. Thus, the pebble game supports the intuition that natural parameterizations of
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EXPTIME-complete problems tend to be XP-complete. We show that the PSPACE-complete
acyclic variant is complete for SXP under the same parameterization.

» Theorem 6. Playing the pebble game on acyclic boards parameterized by the number of
pebbles is complete for SXP under fpt-reductions.

Proof. As the acyclic k-pebble game ends after a linear number of rounds, it can be simulated
by an alternating Turing machine in space O(klogn) and time O(n). Hence, this problem
is in SXP. For the other direction we reduce from p-var-MC(F0). Let ¢ be a k-variable
first-order formula and A4 be a structure with universe [n]. First, by allowing negation
everywhere in the formula, we eliminate conjunction and universal quantification. We reduce
the model checking problem to the acyclic (k + 2)-pebble game such that A | ¢ if, and
only if, Player 1 wins the pebble game. We introduce a special node __ to be used as middle
vertex in the rules (u, __,w). At the beginning of the game there is a pebble on this node,
which cannot be moved during the game. The acyclic game board resembles the structure
of the formula. We use k pebbles to store the current assignment of the k£ variables and an
additional pebble to control which subformula is evaluated. For every subformula 3 of ¢ we
introduce a control node X[¢] and in addition nodes X[¢), z, v], for all variables = € var(y)
and elements v € [n], to store assignments of the variables. These nodes serve as the basic
data structure on the game board. We define the rules and additional nodes by induction on
the structure of the formula to satisfy the following invariant.

For every subformula ¢(x1,...,2t), Player 1 wins from the pebble position (X[¢],
X[, x1,01], .., X[Y, 2, v5]) ff A E[vr, ..., 0]

As the pebble game is symmetric with respect to the players it follows that if the current
pebble position is (X[¢], X[, x1,v1], ..., X[, z, vg]) and it is Player 2’s turn, then Player 1
wins iff A & vy, ..., vx]. Initially, the k value pebbles are on the nodes X|[p,x1,v], ...,
X|[p, x,v] for an arbitrary element v and the control pebble is on X[¢]. Thus, by the
invariant above, Player 1 wins iff A = ¢.

Atoms: For the base case let v = R(x;,,...,2;.) be an atom. We introduce addi-
tional nodes Y[y, a1,...,a,;] and Y, [, 2;,,a1,...,a,] for every tuple (ai,...,a,) € RA,
every variable z;,, j € [r] and p € {1,2}. There are rules (X[¢], _,Y[¢,a1,...,a,]) that
enable Player 1 to choose a tuple (ay,...,a,) from the relation R4 that is consistent
with the assignment specified by the pebbles on the nodes X[i,z;,v;]. To check this
consistency both players are forced to use the following set of rules in the predefined or-
der. First Player 2 moves the pebble from Y[y, ay,...,a,] to Yi[¢),z;,,a1,. .., a,] using
(Y, a1,...,a.), _,Yi[,zi;,a1,...,a.]). Then it is Player 1’s turn and both players al-
ternately move the pebble using the rules (Yi[¢),z;;,a1,...,a.], X[Y, 2, a;], Ya[, 2, ,,
ai,...,a.]) and (Ya[Y, 2, a1,... 0], Yi[, 24, 01,...,a,]) for j = 1,...,r — 1. Fi-
nally, there is a rule (Y[¢, z;,,a1,...,a],__,7) that allows Player 1 to pebble the goal. By
definition, this sequence of rules can be applied (and thus Player 1 wins the game as the
goal node 7 is pebbled) if A = v[v1,...,v;]. On the other hand, if A [~ v[vs, ..., v, then
Player 1 gets stuck and Player 2 wins.

Disjunction: If ¢ = 11 V 12, then we have to ensure that from the pebble position
(X[, X[, z1,v1], ..., X[, xk, vg]) Player 1 can move to either (X[¢1], X [¢1, 21, v1], - -+,
X1, xk, vg]) or (X [1a2], X[th2, z1,v1], - .., X [th2, 2k, vg]). To make this decision, we introduce
nodes X,[¢;], for p,j € {1,2}, and rules (X[¢], ,Xi[¢,]) and (Xi[¢,], , Xa[t;]) for
j € {1,2}. Thus, Player 1 can choose an j and move to X;[¢;]. Afterwards, Player 2 is
forced to move to Xs[t;]. It remains to copy the current assignment to the subformula, that

117

FSTTCS 2014



118

Parameterized Complexity of Fixed-Variable Logics

is, the players have to move the pebbles from X ¢, z,v] to X [¢;, x,v]. We use nodes X [¢;, 1]
for i € [k + 1] to control this process. The first rule is (X»[¢;], , X[¢;,1]). For all v € [n]
and ¢ < k there are rules (X [1, x;,v], X[¢;, 1], X[¢;, z;,v]) for copying the value of z; and
(X[v;,1], X[, v,2;), X[1j,7 + 1]) to move the control pebble. Both players must cooperate
and use these rules successively to move the pebbles from X[, z,v] to X[t);, z,v]. At the
end of this process the pebble position is (X[, k + 1], X1, z1,v1]), ..., X[, xk, vi]) and
it is Player 2’s turn. He is forced to use the final rule (X[, k + 1], , X[t);]). This finishes
the description of the V-case.

Negation: Let 1 = —1)’. We simulate negation by changing the role of both players. That
is, from the configuration (X[¢], X[¢, 1, v1], ..., X [¢, 2k, vk]) where it is Player 1’s turn we
want to force both players to reach the configuration (X[¢'], X[¢, z1,v1], ..., X[¢', 2k, vk])
where it is Player 2’s turn. Changing is role of the players is rather easy as we just have to
introduce a dummy rule (X[¢], _, X[¢)]) to force one move of the control pebble. Afterwards
the players have to move the assignment pebbles from X[¢, x,v] to X[¢), z,v]. This copy
process can be done in the same deterministic way as described in the V-case.

Ezistential quantification: Let ¢ = 3x;1’. To model the existential quantifier we have

to ensure that from a pebble position (X[¢], X[¢, z1,v1],..., X[¥,z;,v,]), ..., X[, Tk, vk])
Player 1 can choose an element w € [n] and reach the new position (X[¢'], X[¢', z1,v1],
oo X[ xg,w]), ..., X[, xk, vk]). Copying the values of z; for ¢ # j (moving the peb-

bles from X[¢,z;,v;] to X[¢', 2;,v;]) can be done in the same way as in the previous
cases. Hence, we end up with a configuration where it is Player 1’s turn and the peb-
bles are on XY/, z;,v;] (i # j), X[, z;,v;], and the control pebble is on an additional
node Xo[¢y]. To change the value of x; we use the following construction. Let X;[¢] and
X2[¢] be two additional nodes. There is a rule (Xo[¢], , X1[¢)]) and for every v € [n]
we add the following three rules: (X[, z;,v], X1[¢], X2[¢]), (X1[¢], Xo[¥], X[¢', 2;,v]),
(Xo[], X[, z;,v], X[¢']). First, Player 1 moves the pebble from Xo[¢)] to X1[¢)]. After-
wards, Player 2 is forced to move the pebble from X (¢, z;,v;] to X2[¢)]. Now Player 1 can
choose some w € [n] and move the pebble from X;[¢] to X[¢/, z;, w]. The last move is done
by Player 2, who is forced to move the pebble from Xs[¢)] to X[¢']. <

Another example that shifts the correspondence between EXPTIME and PSPACE in the
classical world to XP and SXP in the parameterized setting is resolution. Resolution is a
well-known and intensively studied proof system to detect the unsatisfiability of a given
formula in conjunctive normal form. Starting with the clauses from the CNF formula one
iteratively derives new clauses using only one simple rule: The resolution rule for a variable X
takes two clauses yU{X}, §U{—X} and resolves yU{. The given CNF formula is unsatisfiable
if, and only if, the empty clause can be derived. The width of a refutation is the maximal
number of literals in every clause of the derivation. A resolution derivation can naturally
be viewed as a directed acyclic graph (dag) where the nodes are labeled with clauses and
arcs pointing from the resolvent to its parents. The depth of a refutation is the length of the
longest path in the corresponding dag. If on every path in this derivation dag no variable has
been used twice by the resolution rule, then the derivation is reqular. Note that the depth of
every regular resolution refutation is at most linear in the number of variables, thus linear
depth resolution generalizes regular resolution.

A resolution refutation of width k can be found be an alternating O(k logn)-space Turing
machine as follows: In each step, the machine stores one clause (using klogn bits) and tries
to justify that this clause can be derived. Starting from the empty clause, the machine
existentially guesses its parents and then universally chooses a parent to justify that it can
be derived. The machine accepts the input, if the current clause is from the CNF formula
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Table 1 To compare the correspondence between tractable and intractable in classical and
parameterized complexity we denote by poly and exp polynomial and exponential growth, and by fpt
and zp growth of the form f(k) - n®® and n/® | respectively.

EXPTIME Alternating PSPACE machines of ezp running time.

V;‘:ltcirnatmg PSPACE Alternating PSPACE machines of poly running time.

urin

machignes XP Alternating SPACE( f(k) log n) machines of zp running time.
SXP Alternating SPACE(f (k) logn) machines of fpt running time.

EXPTIME Pebble game.
PSPACE Acyclic pebble game.
Pebble games
XP Pebble game, parameter: the number of pebbles.

SXP Acyclic pebble game, parameter: the number of pebbles.

EXPTIME Bounded width resolution.
PSPACE Bounded width linear depth resolution.
XP Bounded width resolution, parameter: the width.

Resolution

SXP Bounded width linear depth resolution, parameter: the width.

and rejects after (2n)* steps (which upper bounds the depth of width-k refutations). If
we additionally require the depth to be linear, the alternating machine is able to find a
refutation of width k in linear time. It follows that finding resolution refutations of width
k is in EXPTIME, if k is part of the input, and in XP, if k is the parameter. Furthermore,
finding linear depth refutations of width k is in PSPACE, if k is part of the input, and in
SXP, if k is the parameter. By reducing the pebble game to bounded width resolution [3] it

was shown that the corresponding problems are complete for EXPTIME, XP and PSPACE.

We now show that the same reduction, stated in Fact 7, can be used to show that finding
linear depth resolution refutations of bounded width is SXP-complete.

» Fact 7 ([3]). There is an fpt-reduction that takes an instance of the k-pebble game and
produces a 3-CNF formula T' such that Player 1 wins the k-pebble game iff T' has a resolution
refutation of width k + 1. If in addition the game board is acyclic, then T' has a regular
resolution refutation of width k + 1.

» Lemma 8. Finding linear depth resolution refutations of width k is complete for SXP.

Proof. We already have observed that this problem is contained in SXP. Note that the
reduction stated in Fact 7 reduces the parametrized acyclic pebble game to parameterized
linear depth resolution, as every regular refutation has always linear depth. By Theorem 6 it
follows that finding linear depth refutations is complete for SXP when parameterized by the
width. |

6 Conclusion

We placed the model checking problem for fixed variable first-order logic within the hierarchy
of intractable problems in parameterized complexity. As a consequence we exhibited a new
parameterized complexity class, SXP, that corresponds to PSPACE in the same way as XP
corresponds to EXPTIME. To support this intuition we gave characterizations in terms
of alternating Turing machines, pebble games, and resolution refutations. The results are
summarized in Table 1.
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—— Abstract

The problem of synchronizing automata is concerned with the existence of a word that sends all
states of the automaton to one and the same state. This problem has classically been studied for
complete deterministic finite automata, with the existence problem being NLOGSPACE-complete.

In this paper we consider synchronizing-word problems for weighted and timed automata.
We consider the synchronization problem in several variants and combinations of these, includ-
ing deterministic and non-deterministic timed and weighted automata, synchronization to unique

location with possibly different clock valuations or accumulated weights, as well as synchroniza-
tion with a safety condition forbidding the automaton to visit states outside a safety-set during
synchronization (e.g. energy constraints). For deterministic weighted automata, the synchroniz-
ation problem is proven PSPACE-complete under energy constraints, and in 3-EXPSPACE under
general safety constraints. For timed automata the synchronization problems are shown to be
PSPACE-complete in the deterministic case, and undecidable in the non-deterministic case.
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1 Introduction

The notion of synchronizing automata is concerned with the following natural problem: how
can we regain control over a device if we do not know its current state? Since losing the
control over a device may happen due to missing the observation on the outputs produced
by the system, static strategies, which are finite sequences (or words) of input letters are
considered while synchronizing systems. As an example think of remote systems connected to
a wireless controller that emits the command via wireless waves but expects the observations
via physical connectors (it might be excessively expensive to mount wireless senders on the
remote systems), and consider that the physical connection to the controller is lost because
of some technical failure. The wireless controller can therefore not observe the current states
of distributed subsystems. In this setting, emitting a synchronizing word as the command
leaves the remote system (as a whole) in one particular state, no matter which state each
distributed subsystem started at; thus the controller can regain control. For synchronizing
automata, there are also applications e.g. in planning, control of discrete event systems,
bio-computing, and robotics [2, 8, 4].

* This work was partially supported by the Belgian Fonds National de la Recherche Scientifique (FNRS),
by FPT7 projects Cassting (601148) and ERC EQuallIS (308087).

© Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey, and Mahsa Shirmohammadi;
37 licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).

Editors: Venkatesh Raman and S.P. Suresh; pp. 121-132

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.121
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

122

Synchronizing Words for Weighted and Timed Automata

a,b:0

a,d:07c:—1OC€2 @ a:1l,¢,d:0

Figure 1 A complete deterministic WA with location-synchronizing word a'® -b- (c- b)? - d under
non-negative safety condition.

Synchronizing automata have classically been studied in the setting of complete determin-
istic finite-state automata, with polynomial bounds on the length of the shortest synchronizing
word [3] and the existence problem being NLOGSPACE-complete. In this paper, we consider
synchronization in systems whose behavior depends on quantitative constraints. We study
two classes of such systems, weighted automata (WAs) and timed automata (TAs), and
introduce variants of synchronization to include the quantitative aspects as well as some
safety condition while synchronizing. The main challenge is that we are now facing automata
with infinite state-spaces and infinite branching (e.g. delays in a TA).

For WAs, states are composed of locations and quantitative weights. As weights are
merely accumulated in this setting, it is impossible to synchronize to a single state. Instead
we search for a location-synchronizing word, i.e., a word after which all states will agree on
the location. In addition, we add a safety condition insisting that during synchronization the
accumulated weight (energy) is safe, e.g. a non-negative safety condition that requires the
system to never run out of power while synchronizing. Considering the safety condition is
what distinguishes our setting from the one presented in [6]; moreover, in that work WAs are
restricted to have only non-negative weights on transitions. Figure 1 illustrates a WA with
four locations and four letters. We have to synchronize infinitely many states (¢;, e) where ¢;
is one of the four locations and e € R is the accumulated energy. The only way to location-
synchronize a state (¢3,e) with states involving other locations is to input b. However, if b is
provided initially, this will drop the energy level by —10 violating the non-negative safety
condition for (¢3,0). Fortunately, the letter a recharges the energy level at /3 and has no
negative effect at other locations. After reading a'%b, all states are synchronized in ¢y and £,
with energy at least 0. Next, a d-input can location-synchronize states involving ¢y and /1,
but it drops the energy level at ¢; by —2. Again, we try to find a word that recharges
the energy at ¢1. Supplying c - b twice makes a d-transition safe to be taken to location-
synchronize safe states involving £y and ¢;. So, the word a'®-b-(c-b)?-d location-synchronizes
the automaton with non-negative safety condition.

For TAs, synchronizing the classical region abstraction is not sound. Figure 2 displays
a l-letter TA with four locations. We have infinitely many states to synchronize using the
letter a and quantitative delays d(¢) (¢ € R>g). We propose an algorithm which first reduces
the (uncountably) infinite set of configurations into a finite set (with at most the number of
locations in the TA), and then pairwise synchronizes the obtained finite set of states. The
word d(3)-a-a is a finitely synchronizing word that synchronizes the infinite set of states into
a finite set: whatever the initial state, inputting the word d(3) - a - a the TA ends up in one of
the states (4o, 0), (¢1,0) or (¢3,0). Moreover, since ¢3 cannot be escaped, any synchronizing
word in this automaton lead to a state involving ¢3. It then suffices to play a-d(1)-a-a-a
to end up in (¢3,0), whatever the initial state. A possible synchronizing word for this TA is
then d(3) - a® - d(1) - a®, which always leads to the state (¢3,0).
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r<l, a r<2 a

r>2,a, z:=0 z<1lVzr>2 a

Figure 2 A complete deterministic 1-letter TA with synchronizing word d(3) - a® - d(1) - a®.

In this paper we consider the synchronization problem for TAs and WAs in several
variants: including deterministic and non-deterministic TAs and WAs, synchronization to
unique location with possibly different clock valuations or accumulated weights, as well as
synchronization with a safety condition forbidding the automaton to visit states outside
a safety-set during synchronization (e.g. energy constraints). Our results can be seen in
Table 1. For TAs the synchronization problems are shown to be PSPACE-complete in the
deterministic case, and undecidable in the non-deterministic case. For deterministic WAs,
the synchronization problem is proven PSPACE-complete under energy constraints, and in
3-EXPSPACE under general safety constraints.

The detailed proofs of these results can be found in a full version of this paper [5].

2 Definitions

A labeled transition system over a (possibly infinite) alphabet T' is a pair (Q, R) where
Q is a set of states and R C Q x I' x Q is a transition relation. The labeled transition
systems we consider have state space Q = L x X consisting of a finite set L of locations
and a possibly infinite set X of quantitative values. Given a state ¢ = (¢, z), let loc(q) = ¢
be the location of ¢, and for a € T, let post(q,a) = {¢' | (¢,a,¢') € R}. For P C Q,
let loc(P) = {loc(q) | ¢ € P} and post(P,a) = ,cp post(q;a). For nonempty words
w € I'", define inductively post(g, aw) = post(post(q, a), w). A run (or path) in a labeled
transition system (@, R) over I' is a finite sequence ¢oq; - - ¢, such that there exists a
word agay - - ap—1 € T'* for which (g;,a;,¢i+1) € R for all 0 < i < n.

Synchronizing words

A word w € T'F is synchronizing in the labeled transition system (Q, R) if post(Q,w) is a
singleton, and it is location-synchronizing if loc(post(@,w)) is a singleton. Given U C @,
a word w is synchronizing (resp., location-synchronizing) in (Q, R) with safety condition U
if post(U, w) is a singleton (resp., loc(post(U,w)) is a singleton) and post(U,v) C U for all
prefixes v of w. Thus a synchronizing word can be read from every state and bring the
system to a single state, and a location-synchronizing word brings the system to a single
location, possibly with different quantitative values. The safety condition U requires that
the states in @ \ U are never visited while reading the word. In this paper, we specify the
safety condition U by a function Safe: L — X, then U = {(¢,z) € Q | € Safe({)}. We
say that a system is (location-)synchronizing if it has a (location-)synchronizing word. The
(location-)synchronizing problem (under a safety condition) asks, given a system (and a
safety condition), whether the system is (location-)synchronizing.

A finite state automaton is a special kind of labeled transition systems where the alphabet
and the state space are finite. Synchronizing words of finite-state automata have already
been extensively studied. The synchronizing problem in a finite-state automaton A is easily
reduced to a reachability problem in the power-set automaton of A. This provides a PSPACE
algorithm for this problem, and the problem is proved PSPACE-complete [7]. When A is
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Table 1 Summary of obtained results.

Timed Automata (TAs) Weighted Automata (WAs)

=
5 2 Synchronization PSPACE-complete Trivial (always false)
g Z73
fé § Loc.-synchronization PSPACE-complete NLOGSPACE-complete
ﬂ% = .5 Synchronization ? PSPACE-complete
o S
a ;;3% E L nchronization ? 3-EXPSPACE
3 o¢-syncitonizatio ' energy cond.: PSPACE-c.
=
2 8 Synchronization Undecidable Trivial (always false)
i 22
g
‘g § Loc.-synchronization Undecidable PSPACE-complete
-
Q
+ =}
3 22 Synchronization Undecidable PSPACE-complete
Z N § Loc.-synchronization Undecidable ?

deterministic and complete, that means |post(q,a)| = 1 for all states ¢ and letters a, a better
algorithm is obtained by iteratively synchronizing pairs of states [3, 8]: the existence of a
synchronizing word in A4 is indeed equivalent to the existence of synchronizing words for
each pair of states of A, which is reduced to polynomially-many reachability problems in the
product of two copies of A. The problem can then be proven NLOGSPACE-complete.

We consider labeled transition systems induced by WAs and TAs. We are interested in
(location-)synchronizing problem (with or without safety condition) in the labeled transition
systems induced by TAs and WAs, defined below.

Weighted automata (WAs)

A weighted automaton (WA) over a finite alphabet ¥ is a tuple A = (L, E) consisting of a
finite set L of locations, and a set £ C L x ¥ X Z X L of edges. When F is clear from the
context, we denote by £ *Z ¢/ the edge (¢, a, z,¢') € E, which represents a transition on
letter a from location ¢ to ¢’ with weight z. We view the weights as the resource (or energy)
consumption of the system. The semantics of a WA A = (L, E) is the labeled transition
system [A] = (Q, R) on the alphabet ' = ¥ where Q C L x Z and ((¢,e),a,(¢',¢')) € R if
(L,a,e’ —e, ') € E. In a state (¢, e), we call e the energy level. The WA A is deterministic if
for all edges (¢, a, z1,01), (¢,b,22,02) € E, if a = b, then 21 = z9 and ¢, = lo; it is complete if
for all £ € L and all a € 3, there exists an edge (¢,a,z,¢') € E.

Let Z be the set of intervals with integer or infinite endpoints. For WAs, we consider
safety conditions of the form Safe: L — Z, and we denote an interval [y, z] by y < e < z, an
interval [z,400) by e > z, etc. where e is an energy variable.

Timed automata (TAs)

Let C = {z1,...,2|c|} be a finite set of clocks. A (clock) valuation is a mapping v: C' = R
that assigns to each clock a non-negative real number. We denote by O¢ (or 0 when the set
of clocks is clear from the context) the valuation that assigns 0 to every clock.

A guard g = (I, ..., I)c|) over C'is a tuple of |C| intervals I; € Z. A valuation v satisfies g,
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denoted v |= g, if v(z;) € I; for all 1 <4 < |C|. For t € R>(, we denote by v+t the valuation
defined by (v+t)(x) = v(x)+1t for all x € C, and for a set r C C of clocks, we denote by v[r]
the valuation such that v[r](z) = 0 for all 2 € r, and v[r](x) = v(x) otherwise.

A timed automaton (TA) over a finite alphabet 3 is a tuple (L, C, E) consisting of a finite
set L of locations, a finite set C' of clocks, and a set E C L x Z!¢l x 3 x 2¢ x L of edges.
When E is clear from the context, we denote by ¢ £25 ¢/ the edge (£, g,a,r, ') € E, which
represents a transition on letter a from location ¢ to ¢/ with guard g and set r of clocks to
reset. The semantics of a TA A = (L,C, E) is the labeled transition system [A] = (Q, R)
over the alphabet I' = R>¢ U X (assuming ¥ NR>g = @) where Q = L x (C' = R>¢), and
((4,v),7,(¢,v)) € Rif

either v € R>¢, and { = ¢ and v/ = v +;

or v € ¥, and there is an edge (¢, g,7,7,¢') € E such that v = g and v = v[r].

The TA A is deterministic if for all states (¢,v) € Q, for all edges (¢, g1,a,71,¥¢1) and
(€,92,b,m9,05) in E, if a =b, and v = g1 and v = g, then r; = 9 and €1 = fa; it is complete
if for all (¢,v) € Q and all a € X, there exists an edge (¢, g,a,r,¢') € E such that v = g.

3 Synchronization in deterministic WAs

In this section, we prove that location-synchronizing problem for deterministic WAs is
decidable. In the absence of safety conditions, two states involving the same location but
different initial energy can never be synchronized (synchronizing problem is trivial); however
in that setting, location-synchronization is equivalent to synchronization of deterministic
finite-state automata (i.e. weights play no role). In the presence of safety conditions,
synchronization is also most-often impossible, for the same reason as above. The only
exception is when safety condition is punctual (at most one safe energy level for each
location), in which case the problem becomes equivalent to synchronizing partial (not-
complete) finite-state automata, which is PSPACE-complete [7]. We thus focus on location-
synchronization with safety conditions. We fix a complete deterministic WA A = (L, E') over
the alphabet ¥, where the maximum absolute value appearing as weight in transitions is Z.

3.1 Location-synchronization under lower-bounded safety condition

In this subsection we assume that all the locations have safety conditions of the form e > n,
with n € Z. This is equivalent to having only safety conditions of the form e > 0: it suffices
to add —n to the weight of all incoming transitions and to add +n to the weight of outgoing
transitions. In the sequel, we consider safety conditions of the form e > 0, which we call
non-negative safety conditions or energy condition.

» Theorem 1. The existence of a location-synchronizing word in A under non-negative
safety condition Safe is PSPACE-complete.

Proof. Runs starting from two states with same location but two different energy levels
ey > e1, always go through the states involving the same locations and the energy levels
preserving the difference e; — e1. Therefore, to decide whether A is location-synchronizing
under non-negative safety condition, it suffices to check if there is a word that synchronizes
all locations with the initial energy 0, into a single location. We show that deciding whether
such word w exists is in PSPACE by providing an upper bound for the length of w.

Below, we assume that A has a location-synchronizing word. For all subsets S C L
with cardinality m > 2, there is a word that synchronizes S into some strictly smaller
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set. To characterize the properties of such words, we consider the weighted digraph G,,
induced by the product between m copies of A, where all vertices in {(¢,...,¢) | £ € L},
which are vertices with m identical locations, are replaced with a new vertex synch. All
ingoing transitions to some location in {(¢,...,£) | £ € L} are redirected to synch. There is
only a self-loop transition in synch. An edge with weight (z1,...,2,,) is non-negative (resp.,
zero-effect) if z; > 0 for all dimensions 1 < ¢ < m (resp., z; = 0); and it is negative otherwise.
A non-negative edge is positive if z; is positive for some dimension i. There is a one-to-one
correspondence between a path zgxi---x, in G,, and a group of m runs p'...p™ in A
such that all runs p’ are in shape of p’ = £} - - - £f, where x; = (E}, o) forall 0 < j <.
A path is safe if all corresponding m runs p* starting from ¢ with energy level 0, always
keep a non-negative energy level while going through all the locations £} - - - ¢!, along the run.

The following lemma is a key to compute an upper bound for the length of location-
synchronizing words. Roughly speaking, it states that for all subsets S of locations, either
there is a short word w that synchronizes S into a strictly smaller set, or there exists a family
of words wq - (wy)? (i € N) such that inputting the word wy - (w)* accumulates energy i for
the run starting in some location ¢ € S, while having non-negative effects along the runs
starting from the other locations in S. Consider the WA depicted in Fig. 1. Since in the
digraph Gs, there is no safe path from (¢g, f2) to synch, there is a family of words (b - ¢)*
such that each iteration of b - ¢ increase the energy level in /5 by 1.

» Lemma 2. For all 1 < m < |L|, for all vertices x of the digraph G, there is either a
safe simple path from x to synch, or a simple cycle where all edges are non-negative and at
least one is positive, which is reachable from x via a safe path.

The next lemma states that A has a location-synchronizing word if it has a short one,
2
of length at most Z!*l x |L|3'HL| . Since this value can be stored in polynomial space,
an (N)PSPACE algorithm can decide whether the given WA is location-synchronizing,.

» Lemma 3. For the synchronizing WA A, there exists a short location-synchronizing word.

To show PSPACE-hardness, we use a reduction from synchronizing word problem for
deterministic finite automata with partially defined transition function that is PSPACE-
complete [7]. From a partial finite state automaton A, we construct a WA A’. All defined
transitions of A are augmented with the weight 0 in A’. To complete A’, all non-defined
transitions are added but with weight —1. Since the safety condition is non-negative in all
locations, none of the transitions with weight —1 are allowed to be used along synchronization
in A’. So, A has a synchronizing word if, and only if, A’ has a location-synchronizing one. <

We generalize the synchronizing word problem to location-synchronization from a subset,
where the aim is to synchronize a given subset of locations. This variant is used to decide
location-synchronization under general safety condition. Given a subset S C L of locations,
we prove Lemma 4 using reductions from and to coverability in vector-addition systems.

» Lemma 4. Deciding the existence of a location-synchronizing word from S in A under
lower-bounded safety condition Safe is decidable in 2-EXPSPACE, and it is EXPSPACE-hard.

3.2 Location-synchronization under general safety condition

We now discuss location-synchronization under the general safety condition where the energy
constraint for each location can be a bounded interval, lower or upper-bounded, or trivial
(always true). We proceed in two steps: first, we prove that the PSPACE-completeness
results in case of energy safety condition is preserved in location-synchronization under safety
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Figure 3 To location-synchronize the automaton, taking the back-edge ¢3 b9, {5 is avoidable.

condition with only lower-bounded or trivial constraints. Second, we extend our techniques
to establish results for general safety conditions. To obtain results for the general case, we
use the variant of location-synchronization from a subset, that is discussed in all cases too.

Location-synchronization under lower-bounded or trivial safety conditions

Let the safety condition Safe assign to each location of L either an interval of the form [n, +00)
or true, and let us partition L into two classes L, . and L., accordingly. A back-edge is a
transition that goes from a location in L., to a location in L, .. Consider the WA drawn in
Fig. 3 with four locations and two letters. The safety condition is non-negative in ¢y and ¢,
and is trivial in ¢; and f¢5: L, = {€o, 02} and L., = {¢1,¢3}. Thus, the transition ¢; L0, ly
is a back-edge. The word abb is a location-synchronizing word that takes the back-edge
121 b0, ¢ in ¢; (with non-negative energy levels). In this example, there exists an alternative
word aab that takes no back-edges and still location-synchronizes the automaton. We prove,
by Lemma 5, that such words always exist implying that taking back-edge transitions while
synchronizing is avoidable in deterministic WAs.

» Lemma 5. There is a location-synchronizing word in A under lower-bounded or trivial
safety condition Safe if, and only if, there is one in the automaton obtained from A by
removing all back-edge transitions.

Lemma 5 does not hold when synchronizing from a subset S of the locations. Indeed,
consider the one-letter automaton of Fig. 4: the locations £y and ¢ have non-negative safety
condition, while the location ¢; has trivial safety condition. Obviously, it is possible to
location-synchronize from the set S = {{y, ¢2}, and this would not be possible without taking
the back-edge 1 = 5. The result also fails for non-deterministic WAs. Consider the WA
depicted in Fig. 5, where L., = {1,2} and L., = {3,4}. We claim that the back-edge
3 2L 9 is needed to location-synchronize. Initially, only letter a is available, because b
corresponds to a back-edge from 3 to 2 and would violate the safety condition there, while
the c-transition from 2 to 1 violates the condition in the location 1. After this step, inputting
more a’s is possible, but would not modify the set of states that have been reached, and in
particular would not help synchronizing. inputting c¢ is still not an option (the same reason
as previously), so that only b is interesting, resulting in a back-edge. It remains to ensure
that there is indeed a way of synchronizing into the location 4, which is inputting ¢ twice.

In the absence of back-edges and with non-empty L., location-synchronization can be
achieved in two steps: first location-synchronize all the states of L., to some location in L,

using Theorem 1; then location-synchronize the states in L., where the weights play no role.

» Lemma 6. The existence of a location-synchronizing word in A under lower-bounded or
trivial safety condition Safe is PSPACE-complete.

The proof of Lemma 6 carries on for synchronizing from a subset of locations, except
using Lemma 4 instead of Theorem 1, and requiring that the automaton has no back-edge.
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Figure 4 Unavoid-
able back-edges to syn- Figure 5 Unavoidable back-edges to synchronize non-deterministic
chronize from a subset. =~ WA.

» Lemma 7. Assume that A has no back-edge, and pick a set S of locations such that
L. CS. The existence of a location-synchronizing word in A from S under lower-bounded
or trivial safety condition Safe is decidable in 2-EXPSPACE, and it is EXPSPACE-hard.

Location-synchronization under general safety conditions

Let us relax the constraints on the safety condition Safe: some locations may have bounded
intervals to indicate the safe range of energy. The set L of locations is partitioned into L., L.,
and L., where locations in L., have safety conditions such as e € [ny,ns] where ny,ns € Z.
In this setting, transitions from locations in L., or L., to locations in L., are considered
as back-edge too. Since taking back-edge transitions while synchronizing from a subset S
of locations is not avoidable, we can use bounded safety conditions to establish a reduction
from halting problem in Minsky machines to provide the following undecidability result.

» Lemma 8. The existence of a location-synchronizing word from a set S of locations in A
under general safety condition Safe is undecidable.

In the absence of back-edges, we get rid of bounded safety conditions, by explicitly
encoding the energy values in locations at the expense of an exponential blowup. We thus
assign non-negative safety condition to the encoded location and reduce to Lemma 6.

» Lemma 9. Assume that A has no back-edge. The existence of a location-synchronizing
word from S C L, in A under general safety condition Safe is decidable in 3-EXPSPACE,
and it is EXPSPACE-hard.

» Theorem 10. The existence of a location-synchronizing word in a WA A with general
safety condition Safe is decidable in 3-EXPSPACE, and it is PSPACE-hard.

4  Synchronization in TAs

This section focuses on deciding the existence of a synchronizing and location-synchronizing
word for TAs, proving PSPACE-completeness of the problems for deterministic TAs (without
safety conditions, i.e., no invariants), and proving undecidability for non-deterministic TAs.

4.1 Synchronization in deterministic TAs

We consider synchronizing words in TAs to be timed words that are sequences w = agay - - - ay
with a; € X UR>g for all 0 <7 < n. For a timed word, the length is the number of letters



L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi

z>1l,a,x:=

r<l1l| a

a [¢ a a a

Figure 6 A TA and its region automaton (d is a special letter indicating delay transitions). The
region automaton is synchronized by the word a - a-d-d-d, but the TA cannot be synchronized
(because there is no way to reset the clock when starting from location q).

in Y it contains, and the granularity is infinite if the word involves non-rational delays, and
it is the largest denominator if the timed word only involves rational delays.

We assume that the reader is familiar with the classical notion of region equivalence: this
equivalence partitions the set of clock valuations into finitely many classes (called regions),
and two states in the same location and region are time-abstract bisimilar. The region
automaton is then a finite-state automaton obtained by quotienting the original TA with
the region equivalence. We refer to [1] for a detailed presentation of this concept. The TA
depicted in Fig. 6 exemplifies the fact that the region equivalence is not sound to find a
synchronizing word. This is because region equivalence abstracts away the exact value of the
clocks, while synchronizing needs to keep track of them.

To establish a PSPACE algorithm for deciding the existence of a synchronizing word for
deterministic TAs, we first prove the existence of a short witness (in the sequel, a timed word
is short when its length and granularity are in O(2/! x |L| x |R|)). The built short witness
starts with a finitely-synchronizing word, a word that brings the infinite set of states of the

automaton to a finite set, and continues by synchronizing the states of this finite set pairwise.

» Lemma 11. All synchronizing deterministic TAs have a short finitely-synchronizing word.

Proof. We fix a complete deterministic TA A = (L, C, E) with the maximal constant M.

We begin with two folklore remarks on TAs. For all locations ¢, we denote by L, = {(¢,v) |
v(xz) > M for all clocks 2 € C} the set of states with location ¢ and where all clocks are
unbounded; L; is one of the states in the region automata of A.

» Remark. For all locations ¢ and for all timed words w, the set loc(post(L,, w)) is a singleton
and post(Ly, w) is included in a single region.

Notice that above Remark is a special property of Ly, and in general: elapsing the

same delay from two region-equivalent valuations may lead to non-equivalent valuations.

The second remark is technical and provides the length and granularity of timed words that
are needed for solving reachability in TAs.

» Remark. For all locations ¢ and all region r’ such that (¢, r') is reachable from L, in the
region automaton of A, there exists a short timed word w of length at most |L| x |R| (where
R is the set of regions, whose size is exponential in the size of the automaton [1]) and two
valuations v € r and v’ € v’ such that post((¢,v), w) = {(¢,v")}.

Now, assuming that .4 has a synchronizing word, we build a short finitely-synchronizing w

word with a key property: for all clocks x € C, irrespective of the starting state, the run
over wy takes some transition resetting x. We first argue that for all clocks € C, from all
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states where v(z) # 0, there exists a reachable z-resetting transition. Towards contradiction,
assume that there exist some state (¢,v) and clock z such that = will never be reset along
any run from (¢,v). Runs starting from states with the same location £ but different clock
valuations, say (¢,v’) with v’(z) # v(x), over a synchronizing word w, may either (1) reset x,
and thus the final values of x on two runs from (¢,v) and (¢,v") are different, or (2) not
reset x, so that the difference between v(x) and v'(z) is preserved along the runs over w.
Both cases give contradiction, and thus for all clocks « € C, from all states with v(x) # 0,
there exists a reachable z-resetting transition.

Pick a valuation ¢ and a clock x. Applying the argument above to an arbitrary state
of Ly and clock z, we get a timed word wy . By first Remark, inputting the same timed
word from any state of L, always leads to the same transition resetting x. Moreover, all such
runs end up in the same region. Note that by second Remark, wy , can be chosen to have
length and granularity at most |L| x |R].

Below, we construct the short finitely synchronizing word wy for A where S is the infinite
set of states to be (finitely) synchronized (i.e., post(S,w;) must be a finite set). Repeat
the following procedure: pick a location ¢ such that there is an infinite set S, C S of states
with the location ¢ in S. For each clock z, iteratively, input a word that consists of a
(M + 1)-time-unit delay and the word wy,. The timed word of M + 1 delay brings the
infinite set Sy to the unbounded region L,. Next, following w¢, make the runs starting
from Sy end up in a single region where clock x has the same value for all runs (since it has
been reset). The word w; = (d(M + 1) - wy 5 )zec synchronizes the infinite set Sy to a single
state by resetting all clocks, one-by-one, and it also shrinks S. We repeat the procedure for
next location ¢ € loc(post(S,wy)) until S is synchronized to a finite set. Note that for all
locations ¢, the word w, has length at most |C| x |L| x (|R| + 1) and granularity at most
|L| x |R|. Thus the word wy, obtained by concatenating the successive words wy, has length
bounded by |C| x |L|*> x (|R| + 1) and granularity at most |L| x |R|, so that it is short.
By construction, it finitely-synchronizes A, which concludes our proof. |

From the proof of Lemma 11, we see that for all synchronizing TAs, there exists a
finitely-synchronizing word which, in a sense, synchronizes the clock valuations. Precisely:

» Corollary 12. For all synchronizing deterministic TAs, there exists a short finitely-
synchronizing word wy such that for all locations ¢, wy synchronizes the set {{} x (C' = R>o)
into a single state.

Lemma 13 uses Corollary 12 to construct a short synchronizing word for a synchroniz-
ing TA. A short synchronizing word consists of a finitely-synchronizing word followed by a
pairwise synchronizing word (i.e., a word that iteratively synchronizes pairs of states).

» Lemma 13. All synchronizing deterministic TAs have a short synchronizing word.

A naive algorithm for deciding the existence of a synchronizing word would consist in
non-deterministically picking a short timed word, and checking whether it is synchronizing.
However, the latter cannot be done easily, because we have infinitely many states to check,
and the region automaton is not sound for this.

» Theorem 14. Deciding the existence of a synchronizing word in a deterministic TA is
PSPACE-complete.

Proof. Given a complete deterministic TA A with the maximal constant M, we first consider
the set Sop = {(£,0) | ¢ € L} and compute the successors post(Sy, wy) reached from Sy by
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Figure 7 (Schematic) reduction from reachability to synchronizing word.

a finitely-synchronizing word wy (built in the proof of Lemma 11). This can be achieved
using polynomial space, since Sy contains polynomially many states and wy can be guessed
on-the-fly. Moreover, since wy begins with a delay of M + 1 time unit, the set post(Sy, wy)
is equal to the set post(Q,wy) where Q = L x RY,, is the state space of the semantic [A] of
the TA A. The set post(Sp,wy) contains at most |L| states, which can now be synchronized
pairwise. This phase can be achieved by computing the product automaton A% and solving
reachability problems in that automaton. This algorithm runs in polynomial space, and
successfully terminates if, and only if, A has a synchronizing word.

The PSPACE-hardness proof is by a reduction from reachability in TA. The encoding is
rather direct: given a deterministic TA A (w.l.o.g. we assume that A is complete) and two
locations ¢; and ¢, the existence of a run from (¢;,0) to some state (¢;,v) (with arbitrary v)
is encoded as follows (see Fig. 7):

add an extra letter « to the alphabet: ¥ U {a};

remove all outgoing edges from /¢, and add a self-loop which is always available and

resets all the clocks;

add a self-loop on ¢; for o, which is always available and resets all the clocks;

add a location ¢y, with a transition to ¢; which is always available and resets all clocks;

for each location ¢ (except €y, ¢; and ¢;), add a transition (¢, true, o, C, {p) to &p.

The resulting automaton A’ is deterministic and complete.

» Lemma 15. The automaton A’ has a synchronizing word if, and only if, there exists some
clock valuation v such that A has a run from (¢;,0) to ({f,v). <

Using similar arguments, we obtain the following result:
» Theorem 16. Deciding the ezistence of a location-synchronizing word in a TA is PSPACE-
complete.
4.2 Synchronization in non-deterministic TAs

We now show the undecidability of the synchronizing-word problem for non-deterministic TAs.
The proof is by a reduction from the non-universality problem of timed language for non-
deterministic TAs, which is known to be undecidable [1].

» Theorem 17. The existence of a (location-)synchronizing word in a non-deterministic TA
is undecidable.

Proof. Let A= (L,C, E) be a non-deterministic TA over 3, that we equip with an initial
location ¢; and a set F of accepting locations (w.l.0o.g. we assume that A is complete).
From A, we construct another TA A’ over ¥’ as follows (see Fig. 8):
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Figure 8 (Schematic) reduction from non-universality to synchronizing word (the newly added

transitions are dashed; they all reset all the clocks. In this example: {¢;,¢s} C F.)

the alphabet is augmented with two new letters # and *.

the set of locations of A’ is L U {d, s} (assuming d, s ¢ L). Location s is a sink location,
carrying a self-loop for all letters of the alphabet. Location d is a “departure” location:
it also carries a self-loop for all letters, except for x, which leads to £y;. Those transitions
all reset all the clocks.

from all locations in L, there is a x-transition to ¢; along which all the clocks are reset.
From the states not in F', there is a #-transition to s along which all clocks are reset.
From the states in F', the #-transition goes to d and reset all clocks.

» Lemma 18. The language of A is not universal if, and only if, A" has a (location-)
synchronizing word.

The same reduction is used to show undecidability of the location-synchronizing problem;

note that all transitions going to s (the only possible location to synchronize) always reset all

clocks. Therefore, A’ is synchronizing if, and only if, it is location synchronizing. By taking
true safety condition for all locations (i.e., all states are safe), these two results also imply

the undecidability of (location-)synchronizing problem with safety condition. <
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—— Abstract

Any weighted automaton (WA) defines a relation from finite words to values: given an input
word, its set of values is obtained as the set of values computed by each accepting run on that
word. A WA is k-valued if the relation it defines has degree at most k, i.e., every set of values
associated with an input word has cardinality at most k. We investigate the class of quantitative
languages defined by k-valued automata, for all parameters k. We consider several measures to
associate values with runs: sum, discounted-sum, and more generally values in groups.

We define a general procedure which decides, given a bound k& and a WA over a group,
whether this automaton is k-valued. We also show that any k-valued WA over a group, under
some general conditions, can be decomposed as a union of £ unambiguous WA. While inclusion
and equivalence are undecidable problems for arbitrary sum-automata, we show, based on this
decomposition, that they are decidable for k-valued sum-automata, and k-valued discounted sum-
automata over inverted integer discount factors. We finally show that the quantitative Church
problem is undecidable for k-valued sum-automata, even given as finite unions of deterministic
sum-automata.
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1 Introduction

Finite-state acceptor machines have found many applications in computer science. One of
the most famous and studied example is the class of finite-state automata, which enjoys
good algorithmic and closure properties. For instance, the decision problems of inclusion and
equivalence, are decidable for finite-state automata. Finite-state automata and some of their
variants have been successfully applied, for instance, to the theory of model-checking [6].
Their behaviour is however purely Boolean (either they accept their input or not). In many
applications, this abstraction is not sufficient to accurately model systems where quantitative
aspects are important. Weighted automata (WA) have been introduced to overcome this
modelling weakness, as they can define quantitative languages, i.e. functions from words to
values in some arbitrary set. WA have been studied for long [9] but recently, applications
in computer-aided verification have been considered and new theoretical questions have
been addressed [3]. In contrast with finite-state automata, the inclusion problem is however
undecidable for some classes of WA, such as automata over the tropical semiring. One of the
main goal of this paper is to recover decidability for some expressive classes of WA.
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Weighted automata (on finite words) extend finite-state automata with values which, in
general, are taken in a semiring (5, @, ®). In this paper however, we focus on sum (weighted
automata over the tropical semiring) and discounted sum automata, but generalise our results
whenever it can be done. The value of an accepting run of a sum (resp. discounted sum)
automaton A on a finite word is the (left-to-right) sum (resp. discounted sum for a discount
factor A €]0, 1[) of all the values occurring along that run. The value A(w) of a word w is
defined only if there exists an accepting run on w, as the maximum of all the values of the
accepting runs on w. As an example, consider the quantitative language L which associates
with each word w over the alphabet {a,b}, the value L(w) = maz(#q(w), #p(w)), where
#.(w) is the number of occurrences of = in w. This language L can be defined by a sum
automaton A defined as the union of two disjoint deterministic WA A, and A,: For all
x € {0,1}, A, has a single (accepting and initial) state with a 1-weighted loop on reading z,
and a 0-weighted loop on reading the other symbol.

The (quantitative) inclusion problem generalizes the classical inclusion problem for Boo-
lean languages. It is the problem of deciding, given two WA A and B, whether for all words
u, if u is accepted by A, then it is accepted by B and A(u) < B(u). Even for the class of
sum automata, this problem is know to be undecidable [15]. In [10], we have introduced the
class of functional WA, i.e. WA such that every accepting runs on the same input word have
same value. We have shown, for several measures (sum, discounted sum, and ratio), that
this class is decidable, and has decidable inclusion problem.

Contributions. In this paper, we generalise the class of functional WA to k-valued WA
i.e., WA such that, for all input words w, the set of values computed by all the accepting
runs on w has cardinality at most k. For instance, the WA A defining the language L is
k-valued for all k > 2. We show, for the measures sum and discounted sum (over inverted
integer discount factor 1/n), that they have decidable inclusion (and therefore decidable
equivalence). Given k € N and a sum-automaton (resp. a discounted-sum automaton) A, we
prove that checking whether A is k-valued is decidable. We also show that if A is k-valued,
then it can be decomposed as finite union of functional (i.e. 1-valued) sum-automata (resp.
discounted-sum automata).

The last two results are more generally shown for group automata (GA). Group automata
extend finite state automata with weights over an infinitary group, i.e. a group (G, ®) that
satisfies some condition called the infinitary condition. This condition implies that two
runs of a WA, on the same input, that synchronize on loop with different delays (i.e. the
difference between their output values before and after taking the loop are non equal), can
generate infinitely many different delays when iterating that loop. The semantics of a group
automaton is a function from finite words w to the set of values (in G) of all the accepting
runs on w. It is k-valued if any set of values associated with w has cardinality at most k. As
we show, sum- and discounted-sum automata can be treated as group automata, as far as the
max operation that combines the values of a word is not relevant. Real-time string-to-string
transducers are also group automata (over the free group generated by the output alphabet),
as they satisfy the infinitary condition. Therefore, our results (decidability of k-valuedness
and decomposition) do not only apply to sum- and discounted-sum automata, but more
generally to group automata, and as a particular case, we recover some results that were
already known for string transducers. We now detail our contributions:

k-valuedness problem. First, we show that given k € N and a GA A, checking whether A
is k-valued is decidable. The proof of decidable k-valuedness for GA relies on a pumping
argument that allows us to bound the size of non k-valuedness witnesses. Applied to our
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measures, this general procedure for testing k-valuedness is in PSpace for both sum and
discounted sum automata (seen as GA), when k is part of the input. The k-valuedness
problem is shown to be PSpace-hard for sum automata, when k is part of the input. When £ is
fixed, we also show that testing k-valuedness can be done in PTime for sum automata, based
on PTime complexity result for checking the existence of a zero-circuit in a multi-weighted
graph [17]. Still for a fixed parameter k, we give another general k-valuedness checking

procedure for GA which, applied to discounted sum, provides us with a PTime complexity.

Applied to sum, this also yields PTime complexity with a worst constant than the ad-hoc
PTime procedure. This general procedure extends to GA a procedure that was defined in
[18] to decide k-valuedness of string-to-string transducers. Besides generalizing the procedure
of [18], we show here how to simplify it and provide a simpler correctness proof based on the
small witness property for non k-valuedness.

Decomposition of k-valued group automata. We show that any k-valued GA is equivalent
to a union of k£ functional GA. Our decomposition technique non-trivially extends to GA a
procedure that has been introduced for string-to-string transducers [19].

Inclusion, equivalence, and synthesis problems. Based on the decomposition result, we

give a general scheme to decide inclusion of two k-valued sum (resp. discounted sum) WA.

This scheme reduces the inclusion problem to checking the existence of a path with strictly
positive sum (resp. discounted sum) on all dimensions of a multi-weighted graph. We show
that this latter problem is decidable for sum (in PTime), and discounted sum (in PSpace)
with inverted discount factors 1/n, n € N. Therefore, it yields decidable inclusion and
equivalence problems for these two classes of k-valued WA. If the two WA are given as unions
of deterministic automata and known to have included domains, this procedure is PTime
for sum automata, and PSpace for discounted sum automata. For general rational discount
factors, the problem is still open and related to other open problems identified in, e.g., [4]
and [2]. Finally, we consider the quantitative synthesis problem: the alphabet is partitioned
into two sets that are controlled respectively by two players. The winning objective of the
protagonist is given by a sum automaton A. The problem is to decide whether the protagonist
has a strategy to choose his letters such that whatever letters the opponent chooses, the
outcome of their interaction (which is a word) has strictly positive value by A. This problem
was shown to be undecidable for functional sum-automata and decidable for deterministic
sum-automata in [10]. Here, we show that it is undecidable for the union of p deterministic
sum-automata, for p > 4.

Related Works. Comparisons with [10, 18, 19] have already been mentioned before. The
notion of k-valuedness originates from the theory of string-to-string transducers. For general
(non-deterministic) transducers, inclusion and equivalence are undecidable [11], but decidable
for k-valued transducers [12, 21, 7]. This latter result has then been extended to tree
transducers [20]. The k-valuedness problem for string-to-string transducers has been shown
to be decidable in several papers [12, 18, 21, 8], in PTime when k is fixed. Any sum automaton
A can be transformed into a string-to-string transducer T4 over a unary output alphabet, by
adding m to all the weights of A (where m is the minimal weight occurring on the transitions
of A). Then A is k-valued iff T4 is. While this encoding allows us to reuse existing results
on string-to-string transducers, the complexity results are not optimal, because the weights
of A are encoded in binary, and their translation into strings is unary. Moreover, there is no
such encoding for discounted sum automata and therefore we rather give general procedures
at the level of infinitary groups.

Sum-automata over N (called distance automata) have been considered in several papers,
and known results on the distance problem (deciding whether there exists an upper bound on
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the value of every input word) are nicely summarised in [22]. In particular in [22], the class
of finite-valued distance automata is considered. Finite-valuedness (deciding whether there
exists k such that the distance automaton is k-valued) is shown to be decidable by a direct
reduction to the string transducer case, and therefore the complexity bound is not optimal
when the weights are encoded in binary. The finite-valuedness problem is not adressed in
this paper. We leave it however as future work and it seems, again, that the technique of
[19] would nicely generalise to infinitary groups.

Finitely ambiguous sum automata are sum automata such that there exists a bound b on
the number of accepting runs on the same input word. They are known to be equivalent
to union of unambiguous sum automata [13, 14, 19, 22]. The best bound on the size of the
union (which matches exactly the degree of ambiguity of the automaton) is obtained in [19].
Our decomposition of k-valued WA as unions of unambiguous automata directly uses these
results as an intermediate step. In [13], it is shown that the equivalence problem for finitely
ambiguous sum-automata is decidable. There is however no precise complexity result.

Finally, let us mention that for the strictly positive discounted sum problem on multi-
weighted graphs, if one requires the discounted sum to be greater than or equal to 0 on all
the dimensions, then it corresponds to an open problem, which is at least as difficult as the
exact value (open) problem in 1-dimensional graph (i.e. decide in a weighted graph, whether
there exists a path with discounted sum exactly 0), as shown in [4].

2 Weighted Automata

Let W be a set (called weight-set) and X be a finite alphabet. An automaton over ¥ and W
is a tuple A=(Q, qs, F,0,7) where @ is a finite set of states, F' is a set of final states, q; € Q
is the initial state, § C @xXx@Q is the transition relation, and v : § — W is an edge-labelling
function, mapping ¢ onto a weight-set W. A run p of A over a word w =0¢g...0, € X" is a
sequence p = qoooqi - - - 0ngn+1 such that ¢o = ¢y and for all ¢ € {0,...,n}, (¢;,04,¢i11) € 0.

We write p : qo i‘ﬂ Gn+1 to denote that p is a run on w starting at ¢p and ending in
Gn+1, where m = y(qo,00,q1) - ¥(q1,01,62) * .- - ¥(qn, Ons qnt1). We write |p| to denote
the length of p, where |p| = n + 1. The run p is accepting if ¢,+1 € F. A state ¢ in

A=(Q,qr, F,d,7) is said co-accessible (resp. accessible) by some word w € ¥* if there exists

some run p : q wl—m> gy for some gy € F (resp. some run p : qr w‘—m> q). If such a word

exists, we say that ¢ is co-accessible (resp. accessible). A is said to be trim if all its states
are both accessible and co-accessible. It is well-known that an automaton can be trimmed in
polynomial time [9].

A pair of states (q,q’) is co-accessible if there exists a word w such that ¢ and ¢’ are
co-accessible by w. The domain of A, denoted by dom(A), is defined as the set of words
w € X on which there exists some accepting run of A. Note that (Q, gz, F,0) is a classical
finite state automaton over 3. We say that A is deterministic if (Q,qr, F,0) is deterministic.
We say that A is unambiguous if (Q, qr, F, 0) admits at most one accepting run for each word.

Give a run p = qgog...0ngn+1 and 0 < £ < n + 1, we define p[l] = q, p[f] =
4000 - .- 0¢—1qe and pll:] = quoy ... qny1. Given a run p’ = qyog ... 0,q, 1 on the same input
as p, we define the synchronized product p ® p’ as the sequence (qo, q))00 - - Tn(Gni1,qni1)-
A pair (¢1,¢3) such that 0 < ¢; < ¢5 <n+ 1 is called a cycle (or loop) in p if p[t1] = p[ls].
The synchronized operator ® can be inductively extended to sequences of runs as follows:
MO Qpm= (1R ®Pm-1)® pm. A cycle ({1,03) in p1 @ -+ ® py, is sometimes called
a synchronizing cycle to emphasise that we consider product of runs.

If W is equipped with an operation -, we define the value V(p) of a run p=qgoq. . . Ongn+1
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in A=(Q, q1, F,9,7) as: V(p) = v(q0,00,q1) ¥(q1,01,q2) - -~ Y(qn, Ony qne1) if p is accepting
and V(p) = L, otherwise!. The relation Ry = {(w,V(p)) | w € XF,pis a run of A on w}
is called? the relation induced by A. For all k € N, R, is k-valued if for all words w € &1, we
have [{v | (w,v) € Ra,v # L}| < k. In this case we say that A is k-valued (and functional if
k=1).

In this paper we consider weight sets having the algebraic structure of a group (W, -, §).
Recall that a group is a structure (S, -, ), where S is a set, - : S x S — S is an associative
operation, ¥ € S is a two sided identity element for - over S, and each element s € S admits
an inverse s~! € S, such that s71 - s =s-s7! = F (the inverse is unique).

Functional automata over groups where studied in [10], where a polynomial functionality
test was given based on the notion of delay between two runs [5, 9] (cfr. Definition 1).
Moreover, [10] provided a determinization test for automata over infinitary groups, i.e.
groups satisfying the infinitary condition (c.f.r. Definition 2, below). Intuitively, the
infinitary condition ensures that iterating two runs on a parallel loop induces infinitely many
delays.

» Definition 1 (Delay). Let A = (Q,q1, F,d,v) be an automaton over a weight-set group
(W, -, )¥). Given two elements di,dy € W, the delay between d; and ds is defined by
delay(dy,ds) = dy* - do. Let p,q € Q. A value d € W is a delay for (p,q) if A admits two
runs p: qr — p, p' 1 qr — g on some w € X* s.t. delay(p, p')=qcrdelay(V(p),V(p')) = d.

» Definition 2 (Infinitary Condition). A group (W, ) is said infinitary if it satisfies the
infinitary condition stating that for all vy, wy,ve,we € W, if Ul_lwl =+ vz_lvflwlwg, then:

[{vy "oy wiwh [ > 0} = oo

A group automaton (GA) over X, is an automaton over ¥ and an infinitary group. A
weighted automaton (WA) over ¥ is an automaton over ¥ and a semiring (we refer the reader
to [9] for a definition of semiring). If A is a weighted automaton over ¥ and a semiring
(W, ®, ), the quantitative language L defined by A is a mapping L4 : ¥* — W U {L},
where L ¢ W, defined for all w € £* by La(w) = L if w ¢ dom(A), and La(w) = @ Ra(w)
otherwise. Note that any weighted automaton over a semiring (W, @, ) such that can be
seen as a group automaton, provided (W, -, ) is an infinitary group, where ¥ is the neutral
element for -.

Remarkable subclasses of WA, such as e.g. Sum- and Dsum-automata [3], can be seen as
group automata, as outlined in the following remark (cfr. also Proposition 1).

» Remark (Sum- and Dsum-automata). Sum- (resp. Dsum-) automata are usually defined
as WA A = (Q,qy1, F,d,7), where the weight set v : 6 — Z maps edges onto integers and
the value of a run p is simply the sum (resp. discounted sum) of the weights along its
edges. More precisely, given a run p = qoooqi - - . Opgnt1 in a Sum-automaton A, V(p) is
defined by V(p) = Ziig v(qi, 04, qix1) if p is accepting, and by V(p) =L otherwise. If A is a
Dsum-automaton with discount factor A €]0, 1], then V (p) is defined by S'=¢ Xev(g;, 04, Git1)
if p is accepting, and by L otherwise (we assume that L < m for all m € Z).

Clearly, Sum-automata can be seen as group automata over the group (Z, +,0). For Dsum-

automata, consider the group (W, -, ), where W = Q?, - is defined by (a, ) - (b,y) = (%a +

! Here L ¢ W is a fresh symbol used to represent the fact that the value of p undefined.

2 Asin [3], we do not consider the empty word as our weighted automata do not have initial and final
weight functions. This eases our presentation but all our results carry over to the more general setting
with initial and final weight function [9].

137

FSTTCS 2014



138

Finite-Valued Weighted Automata

b,zy), ¥ = (0,1), and given (a,z) € W, the inverse (a,z)~! is given by (a,z)~! = (—za,z71).
Given A € QNJ0,1[, a Dsum-automaton A on ¥ can be seen as a group automaton over
(W, -, J¥), by replacing each weight a in A with the pair (a,\),a € Z. Let w =wq ... w, € %,
and consider a Tun p : o — gn41 on w in A. Then, p is valued by the pair (a,2) =
(%n'y(qo,wo,ql) + o+ Y(qn, Wn, gna1), A1), Hence, (a,z) codes the value 4% = Dsum(p).
It can be shown that groups involved in the above definitions satisfy the infinitary condition.

» Proposition 1. Sum and Dsum automata can be coded as group automata (over an infinitary
group).

3 The k-Valuedness Problem

In this section, we consider the problem of determining whether a group automaton (for
fixed and unfixed k). As a first result, we provide a pumping argument that can be turned
into a simple k-valuedness test.

» Lemma 3 (Pumping). Let A = (Q,qy, F,d,7) be a group automaton over (W.- J¥). A is

. . . k(k—1
not k-valued iff there exists a word w € X* having length |w| < |Q[FT! + |Q[F+ - (%)2
such that A admits k 4+ 1 accepting runs with pairwise distinct values on w.

Lemma 3 yields immediately a decidability procedure for deciding if a given group automaton
is k-valued: It is sufficient to guess k + 1 runs of bounded length and check if they are
accepting and the outputs are pairwise distinct. Such a procedure turns out to be PSPACE
if the accumulated values along the guessed runs can be stored using polynomial space. In
particular, this is the case for the classes of Sum- and Dsum-automata. Therefore,

» Theorem 4. The k-valuedness problem is decidable for the class of group automata.
When k is part of the input, it is PSPACE-complete on the subclass of Sum-automata and
PSPACE-easy on the subclass of Dsum-automata.

» Remark. Lemma 3 can be put in parallel with Theorem 3 in [8], establishing that k-
valuedness for string to string transducers can be decided by analizing the image of a finite
set of words, namely those having length |Q[¥*1F(k), where F(k) in [8] is an exponential
function expressed in terms of a recurrence relation.

3.1 The k-Valuedness Problem when k is a Fixed Constant

In this subsection, we study the k-valuedness problem on group automata assuming k as
a fixed constant. This assumption does not lower the complexity of the pumping based
procedure of the latter section (for both measures), however in this section we give other,
new procedures which provide better upper bounds for a fixed k. These new procedures, for
a non-fixed k, have worse complexities than the pumping based procedure (Exptime).

The Case of Sum-Automata. Theorem 6 below shows that Sum-automata can be tested
for k-valuedness in PTIME for fixed k. The polynomial k-valuedness algorithm designed
within Theorem 6 relies onto a reduction to the problem of finding a strictly positive path
(from the initial state to a final state) in a multi-weighted graph.

A k-weighted graph G = (Q, g1, E, F,w) is simply a weighted graph, where @ is the set
states, gy is the inital state, F is the set of final states, £ C @ x @ is the edge relation and
w : B+ ZF assigns to each edge a vector of integers of dimension k. A path 7 = qq,...,qn
in G is strictly positive if and only if Zzlz_ol w(qi, git+1) > Ozx. Lemma 5 below shows that
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deciding whether a k-weighted graph G contains a strictly positive path to a final state can
be done in polynomial time.

» Lemma 5. Determining if a k-weighted graph contains a strictly positive path from the
inital state to a final state can be done in polynomial time.

Intuitively, the multi-weighted graph G built in Theorem 6 to decide if a given Sum-
automaton A is k-valued has dimension k. The vertices of G are (k + 1)-tuples of states of

A and G admits an edge e from (¢1,...,qx+1) to (p1,--.,pk+1) if and only if there exists

a € X such that forall 1 <i<k+1 g i‘ri% p; is an edge in A. Moreover the weight w(e) of

e is given by (ng — ni,n3 — na,...,ngt1 — ng). Therefore, A admits k + 1 accepting runs
w|v1 w\vk+1 * . . . P
qr —> P1y---,q1 — Prp+1 o0 w € X* with pairwise distinct values v1 < vo < -+ < V41

if and only if the associated multi-weighted graph G admits a strictly positive path to
(pla v 7pk+1)-

» Theorem 6. The k-valuedness problem on Sum-automata can be solved in polynomial time,
when k is a fized constant.

» Remark. Note that for string transducers the k-valuedness problem can be reduced in
polynomial time to the emptiness problem on one reversal nondeterministic multicounter
machines® [12]. Although a similar reduction could be easily designed for Sum-automata, the
overall procedure for testing k-valuedness would be only pseudopolynomial, as it turns out
that emptiness of multicounter one-reversal machines where counters can be incremented by
arbitrary constants is NP-complete.

The Case of Group Automata. In this subsection we show that the whole class of group
automata can be tested for k-valuedness in polynomial time, assuming that k is an input
fixed constant. The main ingredients of the polynomial test designed are the same as the
ones used for the k-valuedness test on string transducers in [18], generalized from strings to
groups. However, the pumping result stated in the previous section allows to significatively
simplify the overall procedure of [18]. The first ingredient that we will use is the notion of
pairwise delays, that is a natural extension of the concept of delay between two runs at the
core of the functionality tests in [18]

» Definition 7 (k-Pairwise Delay). Let (W, -, ) be an infinitary group, let & € N. A k-pairwise
delay on W is a function ¢ : {(i,5) |1 <i<j <k} - W.

We denote by Ag(G) the set of all k-pairwise delays on G = (W, - ) (omitting G and/or k
when the latter are clear from the context).

» Definition 8. A group automaton A = (Q, gz, F, d,v) on (W, -, ) admits a k-pairwise delay
§on (qu,...,qr) € Q" iff there exists w € X* such that for each pair (i,7),1 <i<j<k, A

admits two runs g w—‘”) Qiy q1 m g; such that n~t-m = §({i,j)). In this case, we say

that w witnesses § on (q1,...,qx).

Given A = (Q,q1, F,6,7) on G = (W, -, ), and k,i € N, we define the function D}, : Q*
281(9) where Di(qi,...,qx) is the set of k-pairwise delay on (qi,...,q,) witnessed by some
word w of length |w| < 4. Our pumping result ensures the existence of a bound b, polynomial
in |Q|, such that D% 41 retains enough information to decide whether A is k-valued:

3 The emptiness problem of reversal-bounded multicounter machines can be solved in polynomial time
[12].
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» Lemma 9. Let A= (Q,qr,F,d,7) be a group automaton over (W,-, W), let b = |Q|*+ +
|Q|F+! - (@)2 A is not k-valued iff it admits a tuple of final states (qi, ..., qpr1) € FFHL
such that DZH(ql, oy Qrt1) contains a (k + 1)-pairwise delay & satisfying the following
condition: for all 0 <i<j<k+1,d((i,7)) #W¥.

Unfortunately, given (q1,...,qx+1) € Q"™ D} 1 (q1,- .., qr+1) could contain exponen-
tially many delays w.r.t. b, since each word w admits O(2/*!) runs on it. However, such delays
can be properly abstracted using a generalization from strings to groups of the very powerful
and elegant notion of minimal traverse, introduced in [18] to give a compact representation
of the delays generated by a k-valued string transducer. Formally,

» Definition 10 (k-Pairwise Partial Delay). Let (W, -, ) be an infinitary group, let k € N. A
k-pairwise partial delay on W is a function § : {(i,7) |1 <i<j <k} - WU L.

We denote by Ajf(G) the set of all k-pairwise partial delays on G = (W, -, ). Given
7,7 € A (G), we say that 7 is smaller (i.e. “more abstract”) than 7/ (7 C /) if and only if
for all pairs 1 <i < j <k, if 7((i,7)) # L then 7({i,j)) = 7'((i,7)). Note that the lattice
defined by C on A (G) is not complete, namely 7,7’ admit a least upper bound if and only
if they are compatible on the defined components.

Definition 11, below, formally introduces the notion of minimal traverse for a set of
k-pairwise delays D. Intuitively, a minimal traverse 7 for a set of k-pairwise delays D is so
called for two reasons. First, it is a k-pairwise partial delay 7 that traverses i.e. intersects
each delay 6 € D on a pair of components (that is, 7((4, j)) = 6({3, j)) for some 1 < i < j < k).
Second, it is minimal w.r.t. C.

» Definition 11 (Minimal Traverse). Let D be a set of k-pairwise delays on (W, ). A
traverse for D is a k-pairwise partial delay 7 € A (G) such that:
for each 0 € D, there exists a pair (7,j),1 < i < j < k such that 6((z,5)) = 7((i, 7)) # L
for each pair (i,7),1 < i < j <k, if 7({i,j)) # L, then there exists 6 € D such that
5((i,5)) = 7((i, 5))-

A minimal traverse for D is a traverse for D minimal w.r.t. C.

The set of minimal traverses for (a set of delays) D can obviously be empty, but more
importantly its mazimum size depends only on k, as stated in Lemma 12 (i.e. it is a constant,
if k is assumed to be a constant). Given a set of delays D, we denote by a(D) the set of
minimal traverses for D.

» Lemma 12 ([18]). For each set of k-pairwise delays D on (W,- ), |a(D)| < 2k*,

We are now ready to present the announced abstraction for D}. Given Dj : QF — 228+(9)
we denote by a(D}) : QF — 285 (9) the function that associates with each tuple of states
(q1,---,qr) € QF, the set of minimal traverses a(D (g1, .., qx)) for Di(qi,...,qk)-

Lemma 13 below states that the abstraction « retains enough information to decide
whether A is k-valued by inspecting a(D}_,), where b = |Q[F+1 + |Q[FF1 . (@)2 is the
bound given by our pumping lemma.

» Lemma 13. Let A = (Q,qr, F,d,7) be a group automaton over (W, -, ), let b = |Q|*+! +
|Q|F+L - (@)2 A is not k-valued iff it admits a tuple of final states (qu,...,qk+1) €
F*+1 such that a(D,’;H)(ql7 ..y Qr+1) does not contain a minimal traverse T satisfying the
following condition: Tis equal to one on each pair of components on which it is not L, i.e.

7 C 1R+,

Lemma 14 states that a(Dj") can be computed from a(D3) (in PTIME).
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» Lemma 14. Let A = (Q,q1, F,6,7) be a group automaton. For alli > 0, (D) can be
computed in polynomial time wrt |Q| and the size of a(D,’;l).

We are finally ready to state our polynomial result for testing k-valuedness:

» Theorem 15. Let A be a group automaton over (W, - W). If the delays accumulated along
each polynomially bounded path of A can be computed in polynomial time, then k-valuedness
can be tested in polynomial time for A, when k is a fixed constant.

» Corollary 16. The k-valuedness problem on Dsum-automata can be solved in polynomial
time, when k is a fixed constant.

4 Decomposition of k-valued group automata

In this section, we show that any k-valued group automaton A (over an infinitary group)
is equivalent to a union of unambiguous group automata. Beside providing more insights
toward expressivity issues, the equivalence established throughout this section will be used
in Section 5 to provide positive results w.r.t. the decidability of the quantitative language
inclusion problem on k-valued WA. The proof of this equivalence goes in two steps. First, we
prove that A is equivalent to a k-ambiguous group automaton (for every input string, there
are at most k accepting runs). The construction generalizes to groups that of [19] established
for string-to-string transducers. Then, it is know that any k-ambiguous group automaton is
equivalent to a union of unambiguous ones. This result has been proved in [19] for string
transducers, based on a notion of lexicographic covering of k-ambiguous automata that can
be directly applied to group automata.

From k-valued to k-ambiguous group automata. We assume that G = (W, -, ) is a group
that satisfies the infinitary condition. Recall that delay(u,v) = u=! v for all u,v € W.
The construction we present in this section generalizes to groups the construction of [19],
proved for string-to-string transducers. In [19], the k-ambiguous equivalent transducer non-
deterministically guesses, when it reads an input string u, an output string v and a run p
that produces v such that all the runs on u that are strictly smaller than p (according to a
lexicographic order on runs) either (i) produce a different value, or (i7) have a delay that
exceeds some bound N on some prefix of u. For a sufficiently large N (that depends on the
transducer only), there are at most k such runs p if the transducer is k-valued.

In order to check properties (i) and (i), it suffices to store the delays between the current
chosen run p with all the smaller runs. This is done by keeping track of all the states ¢
the smaller runs can reach, together with all the possible delays associated with ¢. If some
delay exceeds the bound N, it can safely be replaced by the value oo, and therefore one
only needs to store delays of length N at most. The main difficulty, when generalising this
construction to groups, is that for groups, there is no notion of “long” delay since in general,
the group is not equipped with a metric. Instead, the bound N we consider is on the number
of different delays between the prefixes of the current chosen run p and the prefixes of the
smaller runs. Given two runs p, p’ on the same input word u € X*, we denote by lag(p, p’)
the set lag(p, p') = {delay(p[:i], p'[:¢]) | 0 < i < |u] + 1}. Our construction is based on the
following key lemma, that generalizes over group a similar lemma for strings proved in [19].

» Lemma 17. Let A be a trim group automaton over G with n states. If A is k-valued, then
for all tuples of runs (p1,...,pk+1) on the same input, there exists 1 <i < j < k+1 such
that:

1. p; and p; have the same output, i.e. V(p;) = V(p;).

2. |lag(pi, pj)| < n*th
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Based on Lemma 17, we show that any k-valued trim GA A = (Q, qr, F, A,v) over G is
equivalent to some k-ambiguous GA A’ = (Q', ¢}, F', A',~"). We let N = n**+1 where n is
the number of states of A. The idea is to order the transitions of A with a total order <4 and
to extend it to a lexicographic order over runs. Then, the construction non-deterministically
guesses a run p of A, and checks that all the runs that are smaller than p produce either a
different value than p, or have a lag with p whose size exceeds N. Lemma 17 will ensure
that there are at most k£ such runs p on the same input. In order to check these properties,
A’ guesses the transitions of p and for each state ¢ € @, it stores all the lags (which are sets
of delays) between the current prefix of p and the runs that end-up in ¢ and are smaller than
this prefix. If the size of a lag exceeds N, then A’ replaces this lag by the extra value co.
We will see that doing so, any lag that has to be stored by A’ is a lag that can be generated

2k+3 at most, and therefore the state space will be finite.

by two runs of length n

Given a lag between two runs p; and py and two transitions on the same symbol that
extend these two runs respectively, in order to compute the lag of the extended runs, A" also
needs to know the delay between p; and ps. Therefore, A’ also needs to store, for each lag,

the “current” delay contained in this lag.

Construction of A’. Let us now define formally the state set Q" of A’. We let D be the set
of all delays that can be generated by pairs of runs of length at most N?n* (we will show
later why we need to take such a value). Note that D is a finite set. Let also Py (D) be all
the subsets of D of cardinality at most N. Then, we let Q" = Q x (Q — 2(PN(P)xD)U{oc})
After reading an input string u € ¥*, A’ is in state (¢, £) € Q’ iff ¢ is the state of the current
guessed run p of A on u, and for all p € Q, (L, d) € £(p) iff there exists a run p’ on u ending
in p, smaller than p, and such that lag(p, p’) = L, |L| < N, and delay(p, p’) = d. Moreover,
o0 € {(p) iff there exists a run p’ on u ending in p, smaller than p, such that |lag(p, p')| > N.

We accept a run iff it ends in a state (g, £) such that ¢ is accepting in A (¢ € F), and there
is no state p € @ such that (L,}) € {(p) for some L (otherwise it would mean that there
exists a smaller run which gives the same output than the guessed run, on the same input).
So, F' ={(q,0) € Q' | Yp € Q,Y(L,d) € {(p), d # ¥}. The initial state of A" is ¢} = (¢1, o)
where ¢; is the initial state of A, and for all ¢ € Q, ¢y(q) = @ if ¢ # qr and {({¥}, )} if

|u

¢ = q;. The transitions in A’ are defined by: (p,€) — (p/,0') € A" iff p LN p' € A and for
all ¢ € Q, ¢'(¢') = prune(update(¢, p,p’, a,u,q’)) where update(?, p,p’, a,u,q’) is the union of

Ly {(Lu{u=t-d-v},u=t-d-v)|3q(L,d) € liq)Aq ﬂ> q},

Ly A ohu o) [ 35 ¢ <ap 2 ) and
Ls {00 | Fq.00 € £(q) AN Tq LN q € A}

and prune replaces each element (L, d) by oo if |L| > N, and prune(oco) = oo.

It is easy to show that A’ is well-defined, in the sense that the transition function is
defined over states of @’ only, i.e. all the delays computed by A’ can be generated by pairs
of runs of length at most N2n?.

» Lemma 18. A and A’ are equivalent. Moreover, A’ is k-ambiguous.

On the ground of the decomposition of k-valued GA as k-ambiguous GA, and the known
decomposition of k-ambiguous automata into union of unambiguous automata, one gets
finally the following equivalence theorem:

» Theorem 19. Any k-valued GA over G is equivalent to the union of k unambiguous GA
over G.



E. Filiot, R. Gentilini, and J.-F. Raskin

5 The Inclusion and Synthesis Problems for k-Valued WA

Inclusion problem. In this section we consider k-valued V-automata, V' € {Sum,Dsum}
and we provide positive decidability results w.r.t. their inclusion problem. Given two V-
automata on the alphabet ¥, the inclusion problem (A < B?) asks whether for all w € 31,
L,(w) < Lp(w). This problem is undecidable for general Sum-automata, open for general
Dsum-automata and PSPACE-c for functional Sum- and Dsum-automata [3, 10]. Relying on
the results in the previous sections, we provide an inclusion test applying to k-valued Sum
and to the class of Dsum-automata having a discount factor A that is an inverted integer,
i.e. we consider discount factors of the form %,n € N*. In more details, we show how to
encode the inclusion problem for Sum-automata (resp. Dsum-automata) into the problem of
determining a strictly positive path (resp. a path with strictly positive discounted sum) in a
multi-weighted graph.

Let A, B be two k-valued weighted V-automata, V € {Sum,Dsum}. The encoding
proceeds in three steps. First, we check whether dom(A) C dom(B). Then, by Theorem 19,
A and B can be effectively decomposed as unions of k& unambiguous V-automata Ule G; and
Ule H; respectively. We can assume that dom(G;) = dom(A) for all ¢ (resp. dom(H;) =
dom(B) for all i)*. Clearly, A £ B iff there exist w € ¥* and i € {1,...,k} such that
Gi(w) > B(w). For all : € {1,...,k}, we finally check whether G;(w) > B(w) for some
w (l.e. Gi(w) > Hj(w) for some w and all j) by a reduction to a multi-dimensional graph
problem, as follows.

Let ¢ € {1,...,k}, Q; be the set of states of G;, and P; the set of states of H; for all
je{l,...,k}. We construct a k-weighted graph ®; = (V;,¢?, F}, E;, w;) where the vertices
are V; = Q; x P, x --- x Py, the weight function has type w; : E; — Z*, and the weighted

(v1,...,08)

transitions are defined by (q,p1,...,pk) (¢,ph,...,p,) € E; iff ¢ olm, q is a

alvj+m

transition of G; and for all j € {1,...,k}, p;
(resp. the initial vertex) in ®; are those whose components are all final (resp. initial) states.

Then, the following holds: A £ B if and only if there exists ¢ € {1,...,k} and a path
7 to a final state in ®; with strictly positive sum (resp. stricly positive discounted sum)
on all components. By Lemma 5, it is possible to check in polynomial time whether a
multi-weighted graph of dimension k contains a strictly positive path to a target vertex.
Therefore, the inclusion problem is decidable for k-valued Sum-automata.

P} is a transition of H;. Final vertices

Lemma 20 below provides a PSPACE procedure to check whether a multi-weighted graph

has a path to a given target state with strictly positive discounted sum w.r.t. a discounted

factor A that is an inverted integer %7 n € N*. This leads to decidability of the inclusion also

for the class of Dsum-automata, when the discount factor A is an inverted integer®.

» Lemma 20. Let (V vy, E,w : E + Z*) be a multi-weighted graph of dimension k, t € V,
and consider \ = %,n € N*. The problem of deciding whether G admits a path from vg to t
with strictly positive discounted sum on all components w.r.t. X is in PSPACE.

» Theorem 21. The inclusion problem is decidable for k-valued Sum-automata and k-valued
Dsum-automata associated with a discount factor X such that A = + n € N*.

n’

4 Otherwise, we opportunely complete G;.

5 Note that inverted integer discounted factors where considered in [1] to provide a determinization
procedure applying to complete Dsum-automata (all states are accepting). However, for Dsum-automata
with final states no special form of discount factor can guarantee determinization [1].
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» Remark. If A and B are given in input as union of k; and ks unambiguous WA with the
same domain, then checking whether A < B can be done in polynomial time (resp. PSPACE)
for Sum-automata (resp. Dsum-automata w.r.t. inverted integer discount factors) in virtue of
Lemma 20, Lemma 5 and Theorem 21. Finally, note that the encoding into WA over groups
povided by Proposition 1 allows to associate a different discount factor with each edge of
the given automaton. The results in Theorem 21 can be further generalized in this sense:
In particular, Proposition 1 guarantees the correctness of the encoding into the problem of
determining a path with strictly positive discounted sum in a multi-weighted graph. The
proof of Lemma 20, solving the latter problem, can be easily generalized to deal with different
inverted integer discount factors.

Quantitative Synthesis. We consider quantitative realizability problem. The realizability
problem is better understood as a game between two players: "Player input" (the environment,
also called Player I) and "Player output" (the controller, also called Player O). Player I
(resp. Player O) controls the letters of a finite alphabet X (resp. o). We assume that
Yo NY¥; = @ and that Yo contains a special symbol # whose role is to stop the game. We
let 3 = ¥p UX;. Formally, the realizability game is a turn-based game played on an arena
defined by a weighted automaton A = (Q = Qo W Qr,qo, F,d = §; U do, ), whose set of
states is partitioned into two sets Qo and Qr, dop C Qo X Yo X Qr, §; C Qr X X1 X Qo, and
such that dom(A) C (X\{#})*#. Player O starts by giving an initial letter oy € X, Player
I responds providing a letter ig € X1, then Player O gives 0, and Player I responds ¢, and so
on. Player O has also the power to stop the game at any turn with the distinguishing symbol
#. In this case, the game results in a finite word (0gip)(01%1) . .. (0;i;)# € ¥*, otherwise the
outcome of the game is an infinite word (ogig)(011) - - - € 3¢.

The quantitative realizability problem asks whether Player O has the strategy Ao :
(X0X1)* — o such that for all Player I's strategies A\; : ¥o(X;X0)* — Xy, the outcome of
this two strategie, which is a finite word w, satisfies A(w) > 0, in which case we say that A
is realizable. We refer the reader to [10] for formal definitions of strategies and outcomes.
In [10], we have shown that the realizability problem is undecidable for functional Sum WA
(and for other measures), while a positive decidability results applies to deterministic Sum
WA (and for other measure). As a corollary, we know that the problem is undecidable for
k-valued Sum WA. We will strengthen this negative result here and show that even if the
problem is decidable for deterministic WA, it is undecidable for Sum WA defined as union of
k deterministic automata, for k& > 4. In particular, we show that the halting problem for
deterministic 2-counter Minsky machines [16] can be reduced to the quantitative language
realizability problem for the union of 4-deterministic Sum-automata.

» Theorem 22. The realizability problem for a 4-valued Sum-automata defined as a union
of 4 deterministic Sum-automata is undecidable.
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—— Abstract

The connection between languages defined by computational models and logic for languages is
well-studied. Monadic second-order logic and finite automata are shown to closely correspond to
each-other for the languages of strings, trees, and partial-orders. Similar connections are shown
for first-order logic and finite automata with certain aperiodicity restriction. Courcelle in 1994
proposed a way to use logic to define functions over structures where the output structure is
defined using logical formulas interpreted over the input structure. Engelfriet and Hoogeboom
discovered the corresponding “automata connection” by showing that two-way generalised se-

quential machines capture the class of monadic-second order definable transformations. Alur
and Cerny further refined the result by proposing a one-way deterministic transducer model with
string variables — called the streaming string transducers — to capture the same class of transform-
ations. In this paper we establish a transducer-logic correspondence for Courcelle’s first-order
definable string transformations. We propose a new notion of transition monoid for streaming
string transducers that involves structural properties of both underlying input automata and vari-
able dependencies. By putting an aperiodicity restriction on the transition monoids, we define
a class of streaming string transducers that captures exactly the class of first-order definable
transformations.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages
Keywords and phrases First-order logic, streaming string transducers

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2014.147

1 Introduction

The class of regular languages is among one of the most well-studied concept in the theory
of formal languages. Regular languages have been precisely characterized widely by differing
formalisms like monadic second-order logic (MSO), finite state automata, regular expressions,
and finite monoids. The connection [8] between finite state automata and monadic second-
order logic (MSO) is among the most celebrated results of formal language theory. Over the
years, there has been substantial research to establish similar connections for the languages
definable using first-order logic (FO) [11]. Aperiodic automata are restrictions of finite
automata with certain aperiodicity restrictions defined through aperiodicity of their transition
monoid. Recall that the transition monoid of an automaton A is the set of Boolean transition
matrices My, for all strings s, indexed by states of A: M;[p][q] = 1 if and only if there exists
a run from p to g on s. The set of matrices My is a finite monoid. It is aperiodic if there
exists m > 0 such that for all s € ¥* Mgm = Mym+1. Aperiodic automata define exactly
FO-definable languages [17, 11]. Other formalisms capturing FO-definable languages include
counter-free automata, star-free regular expressions, and very weak alternating automata.
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al X=X

—>.:> a| (X,Y) = (aY, X) _>

a|X:=aX
Figure 1 SSTs, 7o (shown left) and T (shown right), implement the transformation fhaive.

Beginning with the work of Courcelle [10], logic and automata connections have also
been explored in context of string transformations. The first result in this direction is by
Engelfriet and Hoogeboom [12], where MSO-definable transformations have been shown to
be equivalent to two-way finite transducers. This result has then been extended to trees and
macro-tree transducers [13]. Recently, Alur and Cerny [1, 2] introduced streaming string
transducers, a one-way finite transducer model extended with variables, and showed that
they precisely capture MSO-definable transformations not only in finite string-to-string case,
but also for infinite strings [6] and tree [3, 5] transformations.

Streaming string transducers (SSTs) manipulate a finite set of string variables to compute
their output as they read the input string in one left-to-right pass. Instead of appending
symbols to the output tape, SSTs concurrently update all string variables using a concatena-
tion of output symbols and string variables in a copyless fashion, i.e. no variable occurs more
than once in each concurrent variable update. The transformation of a string is then defined
using an output (partial) function F' that associates states with a copyless concatenation
of string variables. It has been shown that SSTs have good algorithmic properties (such as
decidable type-checking, equivalence) [1, 2] and naturally generalize to various settings like
trees and nested words [3, 5], infinite strings [6], and quantitative languages [4].

In this paper we study FO-definable string transformation and recover a logic and
transducer connection for such transformations. Such FO transformations, although weaker
than MSO transformations, still enjoy a lot of expressive power: for instance they can still
double, reverse, and swap strings, and are closed under FO look-ahead. We introduce a new
concept of transition monoid for SST, used to define the notion of aperiodic SST to capture
FO-definable transformations. To appreciate the challenges involved in finding the right
definition of aperiodicity for SSTs consider the transformation fy.ive defined as a™ — alz]
implemented by two SSTs shown in in Figure 1. Intuitively fhalve is not FO-definable since
it requires to distinguish based on the parity of the input. Consider, the SST 77 shown in
Figure 1 with 2 accepting states and 1 variable.

Readers familiar with aperiodic automata may notice that the automata corresponding
to 717 is not aperiodic, but indeed has period 2. It seems a valid conjecture that SSTs whose
transition monoid of underlying automaton is aperiodic characterize first-order definable
transformations. However, unfortunately this is not a sufficient condition as shown by
the SST Tp in Figure 1 which also implements fhave (its output is F(1) = X). In this
example, although the underlying automaton is aperiodic, variables contribute to certain
non aperiodicity.

We capture the notion of aperiodicity in SSTs by introducing the notion of variable flow.
We say that by reading letter a, variable X flows to Y (if the update of variable Y is based
on variable X'). The notion of transition monoid is extended to SSTs to take both state and
variable flow into account. We define transition matrices M; indexed by pairs (p, X) where
p is a state and X is a variable. Since in general, for copy-full SSTs, a variable X might
be copied in more than one variable, it could be that X flows into Y several times. Our
notion of transition monoid also takes into account, the number of times a variable flows into
another. In particular, M;[p, X|[q,Y] = i means that there exists a run from p to ¢ on s on
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which X flows to Y for ¢ number of times. Hence the transition monoid of an SST may not
be finite. A key contribution of this paper is that FO string transformations are exactly the
transformations definable by SSTs whose transition monoid is aperiodic with matrix values
ranging over {0,1} (called 1-bounded transition monoid). In contrast with [1] our proof is
not based on the intermediate model of two-way transducers and is more direct. We give a
logic-based proof that simplifies that of [5] by restricting it to string-to-string transformations.
We also show that checking aperiodicity of an SST is PSPACE-COMPLETE. Finally, simple
restrictions on SST transition monoids naturally capture restrictions on variable updates that
has been considered in other works. For instance, bounded copy of [6] correspond to finiteness
of the transition monoid, while restricted copy of [3] correspond to its 1-boundedness.

Related work. Diekert and Gastin [11] presented a detailed survey of several automata,
logical, and algebraic characterisations of first-order definable languages. As mentioned earlier
the connection between MSO and transducers have been investigated in [1, 12]. A connection
between two-way transducers and FO-transformations has been mentioned in [9] in an oral
communication, where authors left the SST connection as an open question. First-order
transformations are considered in [15], but not in the sense of [10]. In particular, they are
weaker, as they cannot double strings or mirror them, and are definable by one-way (variable-
free) finite state transducers. Finally, [7] considers first-order definable transformations with
origin information. The semantics is different from ours, because these transformations are
not just mapping from string to strings, but they also connect output symbols with input
symbols from where they originate. The first-order definability problem for regular languages
is known to be decidable. In particular, given a deterministic automaton A, deciding whether
A defines a first-order language can be decided in PSPACE. Although we make an important
and necessary step in answering this question in the context of regular string transformation,
the decidability remains an open problem.

For the lack of space proofs are either sketched or omitted; full proofs can be found
in [14].

2 Preliminaries

A string over a finite alphabet X is a finite sequence of letters from X. We write € for the
empty string and by X* for the set of strings over . A language over ¥ is a subset of ¥*. For
a string s € X* we write |s| for its length and dom(s) for the set {1,...,|s|} of its positions.
For all i € dom(s) we write s[i] for the i-th letter of the string s. For any j € dom(s), the
substring starting at position ¢ and ending at position j is defined as € if j < i and by the
sequence of letters s[i]s[¢ + 1] ... s[j] otherwise. We write s[i:j], s(i:5), s[i:j), and s(i:j], to
denote substrings of s respectively starting ¢ and ending at j, starting at i+1 and ending at
j—1, and so on.

We represent a string s € 3* by the relational structure Zs=(dom(s), <%, (L% )4ex), called
the string model of s, where <* is a binary relation over the positions in s characterizing the
natural order, i.e. (i,j) €=x®if i < j; L, for all a € ¥, are the unary predicates that hold
for the positions in s labeled with the alphabet a, i.e., L2 (i) iff s[i] = a, for all i € dom(s).
When it is clear form context we drop the superscript s from the relations <* and L;.

2.1 First-order logic for strings

Properties of strings over X can be formalized by first-order logic denoted by FO(X). Formulas
of FO(X) are built up from variables x,y, ... ranging over positions of string models along
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with atomic formulas of the form x=y, =y, and L,(z) for all a € ¥. Atomic formulas are
connected with propositional connectives —, A, V, —, and quantifiers V and 3 that range over
node variables. We say that a variable is free in a formula if it does not occur in the scope of
some quantifier. A sentence is a formula with no free variables. We write ¢(z1, 22, ..., zk)
to denote that at most the variables x1, ...,z occur free in ¢. For a string s € ¥* and for
positions ny,na, ..., n; € dom(s) we say that s with valuation v = (ny,na,...,n;) satisfies
the formula ¢(x1,za, ..., x) and we write (s,v) | ¢(x1,z2,...,2) or s = ¢(n1,na, ..., nk)
if formula ¢ with n; as the interpretations of z; satisfies in string model =;. The language
defined by an FO sentence ¢ is L(¢) = {s € ©* : E, = ¢}. We say that a language L is
FO-definable if there is an FO sentence ¢ such that L = L(¢).

2.2 Aperiodic Finite Automata

A finite automaton (FA)is a tuple A = (Q, qo, %, 6, F') where @ is a finite set of states, ¢o € @
is the initial state, X is an input alphabet, 0 : Q X ¥ — @ is a transition function, and F' C @
is the set of accepting states. (g, a,q’) denotes a transition of the automaton 4 from ¢ to ¢’
on a; this is written as ¢ — ¢’. We write o ~+% @n to denote a run from go to g, on string
s; (or go ~»* @y if the automaton is clear from the context) s is accepted if ¢, € F. The
language defined by a finite automaton A is L(A) = {s : go ~*® ¢, and ¢, € F}.

Recall that a monoid is an algebraic structure (M, -, e) with a non-empty set M, a binary
operation -, and an identity element e € M such that for all z,y, 2 € M we have that
(x-(y-2)=((x-y) 2),and x-e =e-z for all z € M. We say that a monoid (M, -, e) is finite
if the set M is finite. We say that a monoid (M, .,e) is aperiodic [17] if there exists n € N
such that for all z € M, 2" = 2"!. Note that for finite monoids, it is equivalent to require
that for all z € M, there exists n € N such that 2" = z"*!. The following monoids are of
special importance in this paper.

1. Free Monoid. The set of all strings over 3, denoted as (X*, ., ¢) and known as the free
monoid, has string concatenation as the operation and the empty string € as the identity.
2. Transition Monoid. The set of transition matrices of an automaton A = (Q, o, 2, 0, F')
forms a finite monoid with matrix multiplication as the operation and the unit matrix

1 as the identity element. This monoid is denoted as M 4 = (M4, x,1) and known as

transition monoid of A. Formally, the set M 4 is the set of |Q|-square Boolean matrices

My ={M, : s € £*} where for all strings s € £*, we have that M,[p][q] =1 iff p ~° q.

We say that a FA is aperiodic if its transition monoid is aperiodic. It is well-known [17]
that a language L C ¥* is FO-definable iff it is accepted by some aperiodic FA.

3 Aperiodic String Transducers

For sets A and B, we write [A — B| for the set of functions F': A — B, and [A — B] for the
set of partial functions F': A — B. A string-to-string transformation from an input alphabet
Y. to an output alphabet I" is a partial function in [X* — I'*]. We have seen some examples of
string-to-string transformations in the introduction. For the examples of first-order definable
transformations we use the following representative example.

» Example 1. Let ¥={a,b}. For all strings s € ¥*, we denote by § its mirror image, and for
all o € X, by s\o the string obtained by removing all symbols ¢ from s. The transformation
fi+ ¥* — X* maps any string s € X* to the output string (s\b)s(s\a). For example,
fi(abaa) = aaa.aaba.b.
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Positions 1 2 3 4 5 6 7 8 9
Input String: @ Q @ 0 o e Q Q 0
Copy#1 @ & () (0] 0
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Conyti2 @ ) o o o R o o

Copy#3 0 o o 0] 0]

Figure 2 First-Order Transduction w — (w\b)w(w\a).

3.1 First-order logic definable Transformations

Courcelle [10] initiated the study of structure transformations using monadic second-order
logic. In this paper, we restrict this logic-based transformation model to FO-definable string
transformations. The main idea of Courcelle’s transformations is to define a transformation
(w,w’) € R by defining the string model of w’ using a finite number of copies of positions of
the string model of w. The existence of positions, various edges, and position labels are then
given as FO(X) formulas.

An FO string transducer is a tuple T=(X,T", ¢dom, C, dpos, p<) where: ¥ and I are (finite)
input and output alphabets; ¢qom is a closed FO(X) formula characterizing the domain of
the transformation; C={1,2,...,n} is a finite index set; Ppos= {qﬁ%(m) :ceCandnye F} is
a finite set of FO(X) formulas with a free position variable z; ¢p<= {gbi’d(a:, y):e,de C} is
a finite set of FO(X) formulas with two free position variables x and y. The transformation
[T] defined by T is as follows. A string s with =5 = (dom(s), <, (L4 )eex) is in the domain of
[T] if 5 = ddom and the output is the relational structure M = (D, =M, (L,]Y\/I)’Ye]_“) such that
D = {v¢ : cedom(s),c € C and ¢¢(v)} is the set of positions where ¢¢(v) = Vyerds (v);
<M CDxD is the ordering relation between positions and it is such that for v,u € dom(s)
and ¢, d € C we have that v¢ <M u? if w |= qﬁd(v,u); and for all v¢ € D we have that
LM (v°) iff ¢¢ (v). Observe that the output is unique and therefore FO transducers implement
functions. However, note that the output structure may not always be a string. We say that
an FO transducer is a string-to-string transducer if its domain is restricted to string graphs
and the output is also a string graph.

We say that a string-to-string transformation is FO-definable if there exists an FO
string-to-string transducer implementing the transformation and write FOT for the set of
FO-definable string-to-string transformations. We define the quantifier rank qr(T) of an
FOT T as the maximal quantifier rank of any formula in 7', plus 1. We add 1 for technical
reasons, mainly because defining the successor relation requires one quantifier.

» Example 2. Consider the transformation f; of Example 1. It can be defined using an FO
transducer that uses three copies of the input domain as shown in Fig. 2.

The domain formula ¢qem, an FO formula, simply characterizes valid string models. The
first copy corresponds to (w\b), therefore the label formula Qﬁ,ly(x) is defined by false if vy = b
in order to filter out the input positions labelled b, and by true otherwise. The second copy
corresponds to w, hence all positions of the input are kept and their labels preserved, but the
edge direction is complemented; hence the label formula is (;5?{ (x) = L,(x). The third copy
corresponds to (w\a) and hence qbi(x) is true if v = b and false otherwise. The transitive

closure of the output successor relation is defined by qbi’l(x, y)=x <y, ¢i’2 (r,y) =y <z,

Bey) =z <y, qﬁgc/(m,y) = trueif ¢ < ¢, and d)icl(x,y) = false if ¢ < ¢. Note

that the transitive closure is not depicted on the ﬁgure,_but only the successor relation.
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Using first-order logic we define the position successor relation the following way: for
all copies ¢, d, the existence of a direct edge from a position z°¢ to a position y¢ of the

output, also called the successor relation S(z¢,y?), is defined by the formula ¢&2 (z,y) =

def

¢3d(x7y) A =3z, \/GGC d)ie(xaz) A ¢2d(27y) where ¢f<1702(x17x2) = ;1’02(1'171'2) A 1 7é )
for all ¢1,c0 € C.

3.2 Streaming String Transducers

Streaming string transducers [1, 2] are one-way finite-state transducers that manipulates a
finite set of string variables to compute its output. Instead of appending symbols to the
output tape, SSTs concurrently update all string variables using a concatenation of string
variables and output symbols. The transformation of a string is then defined using an output
(partial) function F' that associates states with a concatenation of string variables, s.t. if the
state ¢ is reached after reading the string and F'(q)=xy, then the output string is the final
valuation of x concatenated with that of y. In this section we formally introduce SSTs and
introduce restrictions on SSTs that capture FO-definable transformations.

Let X be a finite set of variables and I" be a finite alphabet. A substitution o is defined
as a mapping o : X — (T UX)*. A valuation is defined as a substitution o : X — IT'*.
Let Sxr be the set of all substitutions [¥ — (I' U X)*]. Any substitution o can be
extended to 6 : (TUX)* — (T UX)* in a straightforward manner. The composition o109
of two substitutions o; and o3 is defined as the standard function composition o9, i.e.
F109(X) = d1(02(X)) for all X € X. We now introduce streaming string transducers.

» Definition 3. A streaming string transducer is a tuple (X,T', Q, g0, Qy, 9, X, p, F') where:
(1) ¥ and T are (finite) input and output alphabets; (2) @ is a finite set of states with initial
state qo; (3) § : @ x X — @ is a transition function; (4) X is a finite set of variables; (5)
p:(Q x X) = Sy r is a variable update function; (6) @y is a subset of final states; and (7)
F:Qf — X* is an output function.

The concept of a run of an SST is defined in an analogous manner to that of a finite state
automaton. The sequence (0, ;)o<i<|r Of substitutions induced by a run r = qo N
@2 Gno1 ~ g, is defined inductively as the following: Ori=0ri—10(¢i—1,0;) for 1 < i < |r|
and 0,1 = p(qo,a1). We denote o,.|,| by o,. If the run r is final, i.e. ¢, € Qy, we can extend
the output function F' to the run r by F(r) = 0.0,F(¢n), where o, substitutes all variables
by their initial value e. For all strings s € ¥*, the output of s by T is defined only if there
exists an accepting run 7 of T' on s, and in that case the output is denoted by T'(s) = F(r).
The transformation [7] defined by an SST T is the function {(s,T(s)) : T(s) is defined}.

» Example 4. Let us consider the SST T with one state gy and three variables X, Y, and
Z, shown below implementing the transformation f; introduced in Example 1. The variable
update is shown in the figure and the output function is s.t. F(gy) = XY Z.

|

b|(X,Y,Z) = (X,bY, Zb) a| (X,Y,Z) = (Xa,aY,Z)

Let 7 be the run of 75 on s = abaa. We have 0,1 : (X,Y,Z) — (Xa,aY,Z), 0,2 : (X,Y,Z) —
or1(X,0Y, Zb) = (Xa,baY, Zb), 0r3 : (X,Y,Z) — 0,2(Xa,aY,Z) = (Xaa,abaY, Zb) and
ora: (X,Y,Z) = 0,3(Xa,aY, Z) = (Xaaa, aaba, Zb). Therefore we have that

T(s) =F(r) = 0c0r4F(q) = 0.0, 4(XY Z) = 0.(XaaaaabaY Zb) = aaaaabab.
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3.3 SSTs: Transition Monoid and Aperiodicity

We define the notion of aperiodic SSTs by introducing an appropriate notion of transition
monoid for transducers. The transition monoid of an SST T is based on the effect of a string
s on the states and variables. The effect on variables is characterized by, what we call, flow
information that is given as a relation that describes the number of copies of the content of
a given variable that contribute to another variable after reading a string s.

State and Variable Flow. Let T = (X,T,Q,qo,Qy,9, X, p, F) be an SST. Let s be a
string in ¥* and suppose that there exists a run 7 of T on s. Recall that this run induces a
substitution o, that maps each variable X € X to a string u € (I' U X)*. For string variables
XY € X, states p,q € Q, and n € N we say that n copies of Y flow to X from p to q if
there exists a run 7 on s from p to ¢, and Y occurs n times in 0,.(X). We denote the flow
with respect to a string s as (p,Y) ~2 (¢, X).

» Example 5. Consider the run 7 from gy to go over the string aaaa in the following SST. To
minimize clutter, while drawing SSTs we omit updates of variables that remain unchanged.

a| X :=aX
-@® ;

a|W:=YZ al|lY :=bX
alY =0bY,Z:=aX

On the run r on aaaa, 0, 4(W) = 0, 3[W =Y Z] = 0, 3(Y)0,3(Z). However, 0,3(Y) =
bo,2(Y) =b.b.o,1(X) and 0,3(Z) = a.0,2(X) = a.0,1(X), and 0,1(X) = a. Now for run
r we have (g, X) ~>%%* (qo, W).

In order to define the transition monoid of an SST T, we first extend N with an extra
element 1, and let N; = NU {L}. This new element behaves as 0, i.e. for all i € N,
i.l=14=1,i+ 1L =144 =1 Moreover, we assume that L. < n for all n € N. We
assume that pairs (p, X) € Q x X are totally ordered.

» Definition 6 (Transition Monoid of SSTs). The transition monoid of a streaming string
transducer 7T is the set of square matrices over N indexed (in order) by elements of @ x X,
defined by My = {M; | s € £*} where for all strings s € ¥*, M,[p,Y][¢, X] =n € N if and
only if (p,Y) ~2 (¢, X), and Ms[p,Y][g, X] = L if and only if there is no run from p to ¢ on
s. By definition, there is atmost one run r from (p,Y") to (¢, X) on any string s.

It is easy to see that (My, x,1) is a monoid, where x is defined as matrix multiplication
and the identity element is the unit matrix 1. The mapping M,, which maps any string s
to its transition matrix My, is a morphism from (X*, . €) to (Mp, x,1). We say that the
transition monoid M7 of an SST T is n-bounded if all the coefficients of the matrices of Mp
are bounded by n. Clearly, any n-bounded transition monoid is finite.

In the original definition [2] of SST, updates were copyless, i.e., the content of a variable
can never flow into two different variables, and cannot flow more than once into another
variable. In [3], this condition was slightly relaxed to the notion of restricted copy, where
a variable cannot flow more than once into another variable. This allows for a limited
form of copy: for instance, X can flow to Y and Z, but Y and Z cannot flow to the same
variable. Finally, bounded copy SSTs were introduced in [6] as a restriction on the variable
dependency graphs. This restriction requires that there exists a bound K such that any
variable flows at most K times in another variable. These three restrictions were shown
to be equivalent, in the sense that SSTs with copyless, restricted copy, and bounded copy
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updates have the same expressive power. Due to our definition of transition monoid, and the
results of [6], Theorem 7 is immediate by observing that bounded copy restriction of [6] for
SSTs corresponds to finiteness of transition monoid. Also, notice that since the bounded
copy assumption generalizes the copyless [2] and restricted copy [3] assumptions, previous
definitions in the literature of SSTs correspond to finite transition monoids.

» Theorem 7 ([6]). [MSO-definable string transformations] A string transformation is
MSO-definable iff it is definable by an SST with finite transition monoid.

The main goal of this paper is to present a similar result for FO-definable transformations.
For this reason we define aperiodic and 1-bounded SSTs.

» Definition 8 (Aperiodic and 1-bounded SSTs). An SST is aperiodic if its transition monoid
is aperiodic. An SST is 1-bounded if its transition monoid is 1-bounded, i.e. for all strings s,
and all pairs (p,Y), (¢,X), Ms[p,Y][q, X] € {L,0,1}. See [14] for an example.

It can be shown (see [14]) that the domain of an aperiodic SST is FO-definable. We show
that an SST is non-aperiodic iff its transition monoid contains a non-trivial cycle. Checking
the existence of a non-trivial cycle is in PSPACE for deterministic automata [16].

» Lemma 9. Checking aperiodicity and 1-boundedness for SSTs is PSPACE-COMPLETE.

Now we are in a position to present the main result of this paper. We prove the following
key theorem using Lemma 15 (Section 5) and Lemma 11 (Section 4).

» Theorem 10 (FO-definable string transformations). A string transformation is FO-definable
iff it is definable by an aperiodic, 1-bounded SST.

4 From aperiodic 1-bounded SST to FOT

» Lemma 11. A string transformation is FO-definable if it is definable by an aperiodic,1-
bounded SST.

The idea closely follows the SST-to-MSOT construction of [1, 6]. The main challenge here
is to show that aperiodicity and 1-boundedness on the SST implies FO-definability of the
output string structure (in particular the predicate <). We first show that the variable flow
of any aperiodic,1-bounded SST is FO-definable. This will be crucial to show that the output
predicate < is FO-definable.

Let X € X, s € dom(T), i € dom(s), and let n = |s|. We say that the pair (X, 1) is useful
if the content of variable X before reading s[i] will be part of the output after reading the
whole string s. Formally, if 7 = qo ... ¢,, is the accepting run of T" on s, then (X, 1) is useful
for s if (gi—1, X) Wi[i:n] (gn,Y) for some variable Y € F(g,). Thanks to the FO-definability
of variable flow this property is FO-definable.

Next, we define the SST-output structure given an input string structure. It is an
intermediate representation of the output, and the transformation of any input string into
its SST-output structure will be shown to be FO-definable. For any SST T and string
s € dom(T), the SST-output structure of s is a relational structure Gr(s) obtained by
taking, for each variable X € X, two copies of dom(s), respectively denoted by X** and
X°“t, For notational convenience we assume that these structures are labeled on the edges.
This structure satisfies the following invariants: for all i € dom(s), (1) the nodes (X, 1)
and (X°% ) exist only if (X,i) is useful, and (2) there is a directed path from (X" i) to
(X°¥t 4) whose sequence of labels is equal to the value of the variable X computed by T
after reading s[i]. The condition on usefulness of nodes implies that SST-output structures
consist of a single directed component, and therefore they are edge-labeled string structures.
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Figure 3 SST-output structure.

» Example 12. An example of SST-output structure in shown in Figure 3. Here we show
only the variable updates. Dashed arrows represent variable updates for useless variables,
and do not belong to SST-output structure; solid edges belong to the SST-output structure.
Initially the variable content of Z is €, this is represented by the e-edge from (Z",0) to
(Z°“*,0) in the first column. Then, variable Z is updated to Zc. Hence, the new content of Z
starts with e (represented by the e-edge from (Z", 1) to (Z*",0), which is concatenated with
the previous content of Z, and then concatenated with ¢ (it is represented by the c-edge from
(Z°",0) to (Z°4*,1)). The output is given by the path from (X, 5) to (X°%,5) and equals
ceaeaaa fbdcdef. Also note that some edges are labelled by strings with several letters, but
there are finitely many possible such strings. In particular, we denote by O the set of all
strings that appear in right-hand side of variable updates.

What remains for us, is to adapt from [1, 6], the MSO-definability of the transformation
that maps a string s to its SST-output structure : we show that it is FO-definable as long as
the SST is aperiodic. The main challenge is to define the transitive closure of the edge relation
in first-order. Let T be (Q,qo, X, T, X, 0, p,Qf). The SST-output structures of 7', as node-
labeled strings, can be seen as logical structures over the signature So, = {(Ey)ycor, =}
where the symbols £, are binary predicates interpreted as edges labeled by Or. We let E
denote the edge relation, disregarding the labels. To prove that transitive closure is FO[X]-
definable, we use the fact that variable flow is FO[X]-definable. The following property,
along with the FO-definability of variable flow, shows that transitive closure is FO-definable.

» Proposition 1. Let T be an aperiodic SST T. Let s € dom(T), Gr(s) its SST-output

structure and r = qq...q, the accepting run of T on s. For all variables XY € X, all

positions 4,5 € dom(s) U {0}, all d,d’ € {in, out}, there exists a path from node (X<,i) to

node (Y%, ) in Gp(s) iff (X,4) and (Y, j) are both useful and one of the following holds:

1. Y~ X and d = in,

2. X~y and d = out, or

3. there exists k > max(i, j) and two variables X', Y” such X ~"l:% X7V ~s7lk] Y7 and
X" and Y are concatenated in this order! by r when reading s[k + 1].

1 By “concatenated” we mean that there exists a variable update whose rhs is of the form ... X’...Y" ...
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Figure 4 Conditions of Proposition 1.

» Example 13. We illustrate proposition 1 using example of Fig.4. We have for instance
(q2,Y) Wi[3;2]=e (g2,Y), therefore by conditions (1) (and (2)) by taking X =Y and i = j = 2,
there exists a path from (Y 2) to (Y°%,2). Note that none of these conditions imply
the existence of an edge from (Y°%,2) to (Y",2), but self-loops on (Y",2) and (Y°%,2)
are implied by conditions (1) and (2) respectively. Now consider positions 0 and 1 and
variable Z. It is the case that (qo, Z) W‘;[M] (q1,2), therefore by condition (1) there is a
path from (Z™,1) to (Z,0) and to (Z°%,0). Similarly, by condition (2) there is a path
from (Z'™,0) to (Z°%,1) and from (Z°%,0) to (Z°*,1). For positions 3 and 5, note that
(g3,Y) ~3%) (g5, X), hence there is a path from (Y4, 3) to (X°,5) for all d € {in,out}.
By condition (2) one also gets edges from (X, 5) to (Y4, 3). Finally consider nodes (Z°"*, 2)
and (X, 3). There is no flow relation between variable Z at position 2 and variable X at
position 3. However, (g3, X) Wi[ZM] (q4,X) and (g2, Z) ~*B4 (g4,Y). Then X and Y gets
concatenated at position 4 to define X at position 5. Hence, there is a path from (X, 3) to
(Z°%t 2) (condition (3)).

» Lemma 14. For an aperiodic SST T, variables X,Y € X and all d,d’ € {in,out}, there
exists an FO[S]-formula pathy y 4 4 (7, y) with two free variables s.t. for all s € dom(T') and
i,j € dom(s), s |= pathy y 4 4(i,7) iff there exists a path from (X%,i) to (Y%, j) in Gr(s).

We now sketch the proof of Lemma 11. Let I" be the output alphabet. We adapt the
MSO-definability of strings to SST-output structures from [6, 1] and use the FO-definability of
transitive closure (Lemma 14) to show that strings to SST-output structure transformations
are FO-definable whenever the SST is aperiodic. Since the usefulness of nodes is FO-definable,
we filter out useless nodes in the first FO-transformation, unlike [6, 1], where useless nodes
in the SST-output structures are later removed by composing with another MSO-definable
transformation. We can transform the SST-output structures which are edge-labeled strings
over Op C I'* to a node-labeled string over I'. This transformation is again FO-definable by
taking a suitable number of copies of the input domain (max{|s| | s € Or}). Now Lemma 11
follows from the closure of FO-transformations under composition [10].
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5 From FOT to aperiodic 1-bounded SST

The goal of this section is to prove the following lemma by showing a reduction from FO-
definable transformations to aperiodic, 1-bounded SSTs. Due to space limitations, we only
sketch the main ideas of the proof of this result.

» Lemma 15. A string transformation is FO-definable only if it is definable by an aperiodic,
1-bounded SST.

FO-types, heads and tails. The FO-K-type (K-type for short) of a string s is the set of
FO sentences of quantifier rank at most K that are true in s. The set of K-types is finite
(up to logical equivalence) [17]. We start with a key observation. Given an FO-transducer,
an input string s and a position ¢ in s, all the maximal paths of the output structure induced
by nodes of the form j¢, for all copies ¢ and input positions j < ¢ define substrings of the
output of s. The starting (resp. ending) nodes of these substrings are respectively called
i-head and i-tails. Consider the FO-transduction shown in Figure 2 till position 3. Suppose
that we omit the positions and edges of the output graph post position 3. Upto position
3, the output graph consists of two strings: the first string is between the 3-head 1' and
the 3-tail 3! and stores aa, while the second string is between the 3-head 3% and the 3-tail
23 and stores the string abab. The key observation of [5] is that any i-head j¢ (resp. i-tail)
is uniquely identified by the K-type 7 of the string s[1:5), the label a of input position j,
the copy ¢, and the K-type 15 of the string s(j:i], for a bound K that depends only on the
FO-transducer.

SST construction. The main lines of the SST construction of [5] is to use as many SST
variables X, as tuples a = (71, a, ¢, 72). Since the sets of K-types, labels and copies are finite,
then so is the set of variables. At each position i in the input s, the content of X, computed
by the SST is exactly the substring in between the i-head and i-tail identified by the tuple a.
To define the variable update when incrementing position ¢, if the SST knows the K-types
of the current prefix and suffix respectively, it can determine how the (i + 1)-heads and
(i + 1)-tails are connected to the i-heads and i-tails, based on the FO-formulas that define
the output edge relation. Let us now explain how the SST can compute the K-types of
the prefix up to 7 and of the suffix from position 4. It is known that the K-type of a string
s182 only depends on the K-types of s; and s respectively [17]. Therefore, to compute the
K-type of the prefix up to 7 + 1, the SST only needs to know the K-type of the prefix up to
7 and the input label at position i + 1. Therefore, the states of the SST are K-types. To
compute the K-type of the suffix, we equip our SST with look-aheads, defined by aperiodic
finite state automata. We naturally extend the notion of aperiodic SST to aperiodic SST
with look-aheads, and, as an intermediate result, show that removing look-aheads can be
done while preserving aperiodicity (as well as 1-boundedness). From an FO-transducer, the
construction therefore produces an SST T, with look-ahead. The main difficulty is to show
that T3, is aperiodic and 1-bounded.

Aperiodicity and 1-boundedness of 7j,. One of the technical difficulties in showing that
T, is aperiodic is to show that it computes the type informations and update the variables
in an aperiodic manner. A well-known property [17] we exploit is that for m > 2% for any
string s, the strings s™ and s™*! are indistinguishable by FO-sentences of rank at most K.

For the sake of understanding of this sketch and, in order to focus only on aperiodicity of
variable updates, we rather assume, in this sketch, that the positions 7 of the input strings
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Figure 5 Variable flow is FO-definable.

s have been initially extended with type informations (71,72) where 71 is the K-type of
s[1:] and 15 is the K-type of s(i:|s|]. Therefore, we can transform Tj, into a one-state SST
T (without look-ahead), assuming it gets as input only strings extended with valid type
information. The 1-boundedness of T is a simple consequence of the construction (and was
already shown in [5] through the notion of restricted copy). Let us now briefly explain why
T is aperiodic, or equivalently, that its variable flow is aperiodic. It is sufficient to show that
the variable flow is FO-definable. Given s € ¥* a position 7 in s, and a tuple o = (11, a, ¢, T2)
as defined before, we denote by HD(s, i, «) the i-head (resp. TL(s, i, a) the i-tail) defined by
« in s. Given another tuple o’ and a position ¢/ > 7 in s, we relate the flow between variable
X, at position i to variable X, at position i’ to the existence of a path from HD(s,i’, ') to
HD(s, 4, ) that do not go beyond position ¢’ in the output graph of s.

» Example 16. Consider the FO-transformation of Fig. 5. As a consequence of the invariant
of our construction, the substring s; that starts in position HD(s, i, &) and ends in TL(s, i, @),
at position i, is stored in variable X,. The substring s, from HD(s,#',a’) to TL(s,4, a’) is
stored, at position ¢, in variable X,/. Since s; is a substring of s3, the content of variable
X, at position i (i.e. s1) flows into the content of variable X, at position i’ (i.e. s2). Based
on the fact that the output transition closure of the edge relation is defined in FO, and the
fact that types are also FO-definable, we show that the existence of a path from HD(s, i, o)
to HD(s, i, ) that do not cross position ¢ is FO-definable, and so is the variable flow.

As mentioned earlier, the complete proof starts directly with an SST with look-ahead
that computes the type information, therefore one has to study both state flow and variable
flow. An alternative proof could have been to compose two aperiodic SSTs (w/o lookaheads):
the first one annotates the string with type information, and the second one is the one-state
SST T'. Then, it would remain to prove that aperiodic SSTs are closed under composition
(which is a consequence of our result and the fact that FO-transducers are closed under
composition). However, it is not clear that directly proving that aperiodic SSTs are closed
under composition would have been simpler than our proof based on SSTs with look-aheads.
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—— Abstract
The size of deterministic automata required for recognizing regular and w-regular languages is a
well-studied measure for the complexity of languages. We introduce and study a new complexity
measure, based on the sensing required for recognizing the language. Intuitively, the sensing
cost quantifies the detail in which a random input word has to be read in order to decide its
membership in the language. We show that for finite words, size and sensing are related, and
minimal sensing is attained by minimal automata. Thus, a unique minimal-sensing deterministic
automaton exists, and is based on the language’s right-congruence relation. For infinite words,
the minimal sensing may be attained only by an infinite sequence of automata. We show that
the optimal limit cost of such sequences can be characterized by the language’s right-congruence
relation, which enables us to find the sensing cost of w-regular languages in polynomial time.

1998 ACM Subject Classification F.4.3 Formal Languages, B.8.2 Performance Analysis and
Design Aids, F.1.1 Models of Computation

Keywords and phrases Automata, regular languages, w-regular languages, complexity, sensing,
minimization

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2014.161

1 Introduction

Studying the complexity of a formal language, there are several complexity measures to
consider. When the language is given by means of a Turing Machine, the traditional measures
are time and space demands. Theoretical interest as well as practical considerations have
motivated additional measures, such as randomness (the number of random bits required for
the execution) [9] or communication complexity (number and length of messages required) [8].
For regular and w-regular languages, given by means of finite-state automata, the classical
complexity measure is the size of a minimal deterministic automaton that recognizes the
language.

We introduce and study a new complexity measure, namely the sensing cost of the
language. Intuitively, the sensing cost of a language measures the detail with which a random
input word needs to be read in order to decide membership in the language. Sensing has
been studied in several other CS contexts. In theoretical CS, in methodologies such as
PCP and property testing, we are allowed to sample or query only part of the input [6]. In
more practical applications, mathematical tools in signal processing are used to reconstruct
information based on compressed sensing [4], and in the context of data streaming, one
cannot store in memory the entire input, and therefore has to approximate its properties
according to partial “sketches” [10].

Our interest in regular sensing is motivated by the use of finite-state automata (as well
as monitors, controllers, and transducers) in reasoning about on-going behaviors of reactive
systems. In particular, a big challenge in the design of monitors is an optimization of the
sensing needed for deciding the correctness of observed behaviors. Our goal is to formalize
? Shaull Almagor, D.enis Kuperberg,. and Orna Kupferman;
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regular sensing in the finite-state setting and to study the sensing complexity measure for
regular and w-regular languages.

A natural setting in which sensing arises is synthesis: given a specification over sets I
and O of input and output signals, the goal is to construct a finite-state system that, given a
sequence of input signals, generates a computation that satisfies the specification. In each
moment in time, the system reads an assignment to the input signals, namely a letter in 27,
which requires the activation of |I| Boolean sensors. A well-studied special case of limited
sensing is synthesis with incomplete information. There, the system can read only a subset
of the signals in I, and should still generate only computations that satisfy the specification
[7, 2]. A more sophisticated case of sensing in the context of synthesis is studied in [3], where
the system can read some of the input signals some of the time. In more detail, sensing the
truth value of an input signal has a cost, the system has a budget for sensing, and it tries to
realize the specification while minimizing the required sensing budget.

We study the fundamental questions on regular sensing. We consider languages over
alphabets of the form 2%, for a finite set P of signals. Consider a deterministic automaton
A over an alphabet 2°. For a state ¢ of A, we say that a signal p € P is sensed in q if at
least one transition taken from ¢ depends on the truth value of p. The sensing cost of q is
the number of signals it senses, and the sensing cost of a run is the average sensing cost of
states visited along the run. We extend the definition to automata by assuming a uniform
distribution of the inputs.! Thus, the sensing cost of A is the limit of the expected sensing of
runs over words of increasing length.?2 We show that this definition coincides with one that
is based on the stationary distribution of the Markov chain induced by A, which enables
us to calculate the sensing cost of an automaton in polynomial time. The sensing cost of
a language L, of either finite or infinite words, is then the infimum of the sensing costs of
deterministic automata for L. In the case of infinite words, one can study different classes
of automata, yet we show that the sensing cost is independent of the acceptance condition
being used.

We start by studying the sensing cost of regular languages of finite words. For the
complexity measure of size, the picture in the setting of finite words is very clean: each
language L has a unique minimal deterministic automaton (DFA), namely the residual
automaton Ry whose states correspond to the equivalence classes of the Myhill-Nerode
right-congruence relation for L. We show that minimizing the state space of a DFA can only
reduce its sensing cost. Hence, the clean picture of the size measure is carried over to the
sensing measure: the sensing cost of a language L is attained in the DFA R . In particular,
since DFAs can be minimized in polynomial time, we can construct in polynomial time a
minimally-sensing DFA, and can compute in polynomial time the sensing cost of languages
given by DFAs.

We then study the sensing cost of w-regular languages, given by means of deterministic
parity automata (DPAs). Recall the size complexity measure. There, the picture for languages
of infinite words is not clean: A language needs not have a unique minimal DPA, and the

L QOur study and results apply also to a non-uniform distribution on the letters, given by a Markov chain
(see Remark 19).

2 Alternatively, one could define the sensing cost of A as the cost of its “most sensing” run. Such a
worst-case approach is taken in [3], where the sensing cost needs to be kept under a certain budget in
all computations, rather than in expectation. We find the average-case approach we follow appropriate
for sensing, as the cost of operating sensors may well be amortized over different runs of the system,
and requiring the budget to be kept under a threshold in every run may be too restrictive. Thus, the
automaton must answer correctly for every word, but the sensing should be low only on average, and it
is allowed to operate an expensive sensor now and then.
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problem of finding one is NP-complete [12]. It turns out that the situation is challenging
also in the sensing measure. First, we show that different minimal DPAs for a language may
have different sensing costs. In fact, bigger DPAs may have smaller sensing costs.

Before describing our results, let us describe a motivating example that demonstrates the
intricacy in the case of w-regular languages. Consider a component in a vacuum-cleaning
robot that monitors the dust collector and checks that it is empty infinitely often. The
proposition empty indicates whether the collector is empty and a sensor needs to be activated
in order to know its truth value. One implementation of the component would sense empty
throughout the computation. This corresponds to the classical two-state DPA for “infinitely
often empty”. A different implementation can give up the sensing of empty for some fixed
number k of states, then wait for empty to hold, and so forth. The bigger k is, the lazier is
the sensing and the smaller the sensing cost is. As the example demonstrates, there may be
a trade-off between the sensing cost of an implementation and its size. Other considerations,
like a preference to have eventualities satisfied as soon as possible, enter the picture too.

Our main result is that despite the above intricacy, the sensing cost of an w-regular
language L is the sensing cost of the residual automaton Ry, for L. It follows that the sensing
cost of an w-regular language can be computed in polynomial time. Unlike the case of finite
words, it may not be possible to define L on top of Rp. Interestingly, however, R does
capture exactly the sensing required for recognizing L. The proof of this property of Ry, is
the main technical challenge of our contribution. The proof goes via a sequence (5,,)5; of
DPAs whose sensing costs converge to that of L. The DPA B, is obtained from a DPA A
for L by a lazy sensing strategy that spends time in n copies of Ry, between visits to A, but
spends enough time in A to ensure that the language is L. It is worth noting that this result
is far from being intuitive. Indeed, first, as mentioned above, the extra expressive power that
is added to the setting by the acceptance condition of DPAs makes the residual automaton
irrelevant in the context of size minimization. Moreover, in the context of sensing, there
need not be a single DPA that attains the minimal sensing cost. It is thus surprising that
R, which has no acceptance condition, captures the sensing cost of all DPAs. We believe
that this reflects a general property of deterministic parity automata that could be useful
outside of the scope of sensing. Intuitively, it means that we can “lose track” of the run of a
deterministic automaton for arbitrary long periods, just keeping the residual in memory, and
still be able to recognize the wanted language.

Due to lack of space, some of the proofs are omitted and can be found in the full version,
in the authors’ home pages.

2 Preliminaries

Automata

A deterministic automaton on finite words (DFA, for short) is A = (X, Q, qo, d, @), where Q
is a finite set of states, go € @ is an initial state, d : Q X X — () is a total transition function,
and a C @ is a set of accepting states. We sometimes refer to J as a relation A C Q x ¥ X @,
with (q,0,¢') € A iff §(¢,0) = ¢’. The run of A on a word w = 01 - 090, € L* i
the sequence of states qo,q1,. .., qm such that ¢;y1 = 0(¢;,0:41) for all ¢ > 0. The run is
accepting if ¢, € a. A word w € ¥* is accepted by A if the run of A on w is accepting. The
language of A, denoted L(.A), is the set of words that A accepts. For a state ¢ € Q, we use
A? to denote A with initial state g. We sometimes refer also to nondeterministic automata
(NFAs), where 0 : Q x ¥ — 2% suggests several possible successor states. Thus, an NFA may

have several runs on an input word w, and it accepts w if at least one of them is accepting.
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Consider a language L C ¥*. For two finite words u; and wug, we say that u; and uo are
right L-indistinguishable, denoted u; ~p, us, if for every z € ¥*  we have that u; - z € L iff
ug - z € L. Thus, ~, is the Myhill-Nerode right congruence used for minimizing automata.
For uw € ¥*, let [u] denote the equivalence class of w in ~j and let (L) denote the set
of all equivalence classes. Each class [u] € (L) is associated with the residual language
w 'L = {w:uw € L}. When L is regular, the set (L) is finite, and induces the residual
automaton of L, defined by R, = (X, (L), AL, [€], &), with ([u], a, [u-a]) € A, for all [u] € (L)
and a € 3. Also, « contains all classes [u] with u € L. The DFA R, is well defined and is
the unique minimal DFA for L.

A deterministic automaton on infinite words is A = (X, Q, qo, 9, ), where Q, qo, and §
are as in DFA, and « is an acceptance condition. The run of A on an infinite input word
w=o01-09--- € XY is defined as for automata on finite words, except that the sequence of
visited states is now infinite. For a run r = qo, q1, . .., let inf(r) denote the set of states that
r visits infinitely often. Formally, inf(r) = {q : ¢ = ¢; for infinitely many ’s}. We consider
the following acceptance conditions. In a Biichi automaton, the acceptance condition is a set
a C @ and a run r is accepting iff inf(r) N« # (). Dually, in a co-Biichi, again o C Q, but r
is accepting iff inf(r) N« = (. Finally, parity condition is a mapping a: Q@ — [i, ..., j], for
integers ¢ < j, and a run r is accepting iff maxge sy {a(q)} is even.

We extend the right congruence ~, as well as the definition of the residual automaton
R to languages L C ¥“. Here, however, R}, need not accept the language of L, and we
ignore its acceptance condition.

Sensing

We study languages over an alphabet 3 = 2F, for a finite set P of signals. A letter o € X
corresponds to a truth assignment to the signals. When we define languages over X, we use
predicates on P in order to denote sets of letters. For example, if P = {a,b, c}, then the
expression (True)* -a - b- (True)* describes all words over 2 that contain a subword o, - oy,
with o, € {{a}, {a,b},{a,c}, {a,b,c}} and o, € {{b},{a,b},{b,c},{a,b,c}}.

Consider an automaton A = (27, Q, qo,d, o). For a state ¢ € Q and a signal p € P, we
say that p is sensed in q if there exists a set S C P such that d(q, S\ {p}) # d(q, S U {p}).
Intuitively, a signal is sensed in ¢ if knowing its value may affect the destination of at least
one transition from q. We use sensed(q) to denote the set of signals sensed in g. The sensing
cost of a state ¢ € Q is scost(q) = |sensed(q)|. *

Consider a deterministic automaton A over ¥ = 2F (and over finite or infinite words).
For a finite run r = ¢1,..., ¢y of A, we define the sensing cost of r, denoted scost(r), as
LS scost(g;). That is, scost(r) is the average number of sensors that A uses during r.
Now, for a finite word w, we define the sensing cost of w in A4, denoted scost4(w), as the
sensing cost of the run of A on w. Finally, the sensing cost of A is the expected sensing cost
of words of length that tends to infinity, where we assume that the letters in ¥ are uniformly
distributed. Thus, scost(A) = limp— oo [S|7™ 32, wj=m Scosta(w). Note that the definition
applies to automata on both finite and infinite words.

Two DFAs may recognize the same language and have different sensing costs. In fact,
as we demonstrate in Example 1 below, in the case of infinite words two different minimal
automata for the same language may have different sensing costs.

|sensed(q)|

Pr
Then, for all states g, we have that slevel(q) € [0,1]. All our results hold also for this definition, simply
by dividing the sensing cost by |P]|.

3 We note that, alternatively, one could define the sensing level of states, with slevel(q) =
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For a language L of finite or infinite words, the sensing cost of L, denoted scost(L) is
the minimal sensing cost required for recognizing L by a deterministic automaton. Thus,
scost(L) = inf 4.1 4)=r, scost(A). For the case of infinite words, we allow A to be a determ-
inistic automaton of any type. In fact, as we shall see, unlike the case of succinctness, the
sensing cost is independent of the acceptance condition used.

» Example 1. Let P = {a}. Consider the language L C (2{%})% of all words with infinitely
many a and infinitely many —a. In the following figure we present two minimal DBAs
(deterministic Biichi automata) for L with different sensing costs.

—Q a
a a
(s _T6DL_Ts2)
—Qa —Q

While all the states of the second automaton sense a, thus its sensing cost is 1, the signal
a is not sensed in all the states of the first automaton, thus its sensing cost is strictly smaller
than 1 (to be precise, it is %, as we shall see in Example 7).

» Remark 2. Our study of sensing considers deterministic automata. The notion of sensing
is less natural in the nondeterministic setting. From a conceptual point of view, we want
to capture the number of sensors required for an actual implementation for recognizing the
language. Technically, guesses can reduce the number of required sensors. To see this, take
P = {a} and consider the language L = True* - a. A DFA for L needs two states, both
sensing a. An NFA for L can guess the position of the letter before the last one, where
it moves to the only state that senses a. The sensing cost of such an NFA is 0 (for any
reasonable extension of the definition of cost on NFAs). <

Probability

Consider a directed graph G = (V, E). A strongly connected component (SCC) of G is a
maximal (with respect to containment) set C' C V such that for all z,y € C, there is a
path from z to y. An SCC (or state) is ergodic if no other SCC is reachable from it, and is
transient otherwise.

An automaton A = (2,Q, qo, 0, ) induces a directed graph G4 = (Q, F) in which
(q,q") € E iff there is a letter o such that ¢’ € 6(¢g,0). When we talk about the SCCs of A,
we refer to those of G 4. Recall that we assume that the letters in ¥ are uniformly distributed,
thus A also corresponds to a Markov chain M 4 in which the probability of a transition from
state ¢ to state ¢’ is pg ¢ = \%I'{O € X :0(q,0) = ¢'}|. Let C be the set of A’s SCC, and
Ce C C be the set of its ergodic SCC’s.

Consider an ergodic SCC C € C.. Let Pg be the matrix describing the probability of
transitions in C. Thus, the rows and columns of Px are associated with states, and the value
in coordinate ¢, q’ is py 4. By [5], there is a unique probability vector 7 € [0,1]¢ such that

o Po = we. This vector describes the stationary distribution of C: for all ¢ € C it holds

that m¢(q) = limy, oo E%ﬁ(q)

of M4 of length m that starts anywhere in C' [5]. Thus, intuitively, 7 (q) is the probability
that a long run that starts in C' ends in ¢. In order to extend the distribution to the entire

, where ES (q) is the average number of occurrences of ¢ in a run

Markov chain of A, we have to take into account the probability of reaching each of the
ergodic components. The SCC-reachability distribution of A is the function p : C — [0, 1] that
maps each ergodic SCC C of A to the probability that M4 eventually reaches C, starting
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from the initial state. We can now define the limiting distribution 7 : Q — [0, 1], as

{ 0 if ¢ is transient,

m(q) = 7o(q)p(C)  if q is in some C € C,.

Note that »_ ., 7(g) =1, and that if P is the matrix describing the transitions of M4 and
7 is viewed as a vector in [0,1]9, then mP = 7. Intuitively, the limiting distribution of state
q describes the probability of a run on a random and long input word to end in ¢. Formally,
we have the following lemma, whose proof appears in the full version.

» Lemma 3. Let E,,(q) be the expected number of occurrences of a state q in a run of length

m of M, that starts in qo. Then, 7(q) = lim,,— 00 Em(a)

m

Computing The Sensing Cost of an Automaton

Consider a deterministic automaton A = (27,Q, 4, qo, ). The definition of scost(.A) by
means of the expected sensing cost of words of length that tends to infinity does not suggest
an algorithm for computing it. In this section we show that the definition coincides with
a definition that sums the costs of the states in A, weighted according to the limiting
distribution, and show that this implies a polynomial-time algorithm for computing scost(.A).
This also shows that the cost is well-defined for all automata.

» Theorem 4. For all automata A, we have scost(A) = o m(q) - scost(q), where T is the
limiting distribution of A.

» Remark 5. It is not hard to see that if A is strongly connected, then 7 is the unique
stationary distribution of M4 and is independent of the initial state of A. Accordingly,
scost(A) is also independent of A’s initial state in this special case. <

» Theorem 6. Given an automaton A, the sensing cost scost(A) can be calculated in
polynomial time.

Proof. By Theorem 4, we have that scost(A) =3 ., 7(q) - scost(q), where 7 is the limiting
distribution of A. By the definition of 7, we have that 7(q) = 7c(q)p(C), if ¢ is in some
C € C.. Otherwise, m(q) = 0. Hence, the computational bottleneck is the calculation of the
SCC-reachability distribution p : C' — [0, 1] and the stationary distributions ¢ for every
C € C.. It is well known that both can be computed in polynomial time via classic algorithms
on matrices. For completeness, we give the details in the full version. |

» Example 7. Recall the first DBA described in Example 1. Its limiting distribution is
7(q0) = 7(q1) = %, m(ge) = % Accordingly, its cost is 1 - % +1- % +0-+= %.

5

Additional examples can be found in the full version.

3 The Sensing Cost of Regular Languages of Finite Words

In this section we study the setting of finite words. We show that there, sensing minimization
goes with size minimization, which makes things clean and simple, as size minimization for
DFAs is a feasible and well-studied problem. We also study theoretical properties of sensing.
We show that, surprisingly, abstraction of signals may actually increase the sensing cost of
a language, and we study the effect of classical operations on regular languages on their
sensing cost. These last two contributions can be found in the full version.



S. Almagor, D. Kuperberg, and O. Kupferman

Consider a regular language L C ¥*, with ¥ = 2F. Recall that the residual automaton
R = (%,(L),Apr,[€], ) is the minimal-size DFA that recognizes L. We claim that R, also
minimizes the sensing cost of L.

» Lemma 8. Consider a regular language L C ¥*. For every DFA A with L(A) = L, we
have that scost(A) > scost(Rr).

Proof. Consider a word u € ¥*. After reading u, the DFA R, reaches the state [u] and the
DFA A reaches a state ¢ with L(AY) = «~'L. Indeed, otherwise we can point to a word
with prefix u that is accepted only in one of the DFAs. We claim that for every state ¢ € @
such that L(A%) = u~!L, it holds that sensed([u]) C sensed(q). To see this, consider a signal
p € sensed([u]). By definition, there exists a set S C P and words u; and ug such that
([u], S\ {p}, [wa]) € AL, ([u], SU{p}, [u2]) € AL, yet [u1] # [uz]. By the definition of Ry,
there exists z € (27)* such that, w.l.o.g, 2 € u7 'L \ uy ' L. Hence, as L(A%) = u~'L, we
have that A? accepts (S'\ {p}) - z and rejects (SU{p}) - z. Let 4 be the transition function
of A. By the above, 64(q, 5\ {p}) # da(q,SU{p}). Therefore, p € sensed(q), and we are
done. Now, sensed([u]) C sensed(q) implies that scost(q) > scost([u]).

Consider a word wy ---w,, € ¥*. Let v = ro,...,rn and [ug],..., [uy] be the runs

of A and Ry on w, respectively. Note that for all i > 0, we have u; = wy - wa - - w;.
For all ¢ > 0, we have that L(A™) = ul-_lL, implying that then scost(r;) > scost([u;]).

Hence, scosta(w) > scostgr, (w). Since this holds for every word in X*, it follows that
scost(A) > scost(Rr). <

Since L(R L) = L, then scost(L) < scost(Rr). This, together with Lemma 8, enables us
to conclude the following.

» Theorem 9. For every regular language L C 3*, we have scost(L) = scost(Rpr).

Finally, since DFAs can be size-minimized in polynomial time, Theorems 6 and 9 imply
we can efficiently minimize also the sensing cost of a DFA and calculate the sensing cost of
its language:

» Theorem 10. Given a DFA A, the problem of computing scost(L(.A)) can be solved in
polynomial time.

4 The Sensing Cost of w-Regular Languages

For the case of finite words, we have a very clean picture: minimizing the state space of
a DFA also minimizes its sensing cost. In this section we study the case of infinite words.
There, the picture is much more complicated. In Example 1 we saw that different minimal
DBAs may have a different sensing cost. We start this section by showing that even for
languages that have a single minimal DBA, the sensing cost may not be attained by this
minimal DBA, and in fact it may be attained only as a limit of a sequence of DBAs.

» Example 11. Let P = {p}, and consider the language L of all words w; - wy--- such
that w; = {p} for infinitely many i’s. Thus, L = (True* - p)*. A minimal DBA for L
has two states. The minimal sensing cost for a two-state DBA for L is 2 (the classical
two-state DBA for L senses p in both states and thus has sensing cost 1. By taking .4;
in the sequence we shall soon define we can recognize L by a two-state DBA with sensing
cost %) Consider the sequence of DBAs A,, appearing in the figure below. The DBA A,,
recognizes (True=™ -p)*, which is equivalent to L, yet enables a “lazy" sensing of p. Formally,

1

the stationary distribution 7 for A,, is such that m(¢;) = 5 for 0 <i <m—1and
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T(Gm) = miﬁ In the states qo, ..., gn_1 the sensing cost is 0 and in ¢, it is 1. Accordingly,

scost(Ap,) = miﬁ, which tends to 0 as m tends to infinity.

4.1 Characterizing scost(L) by the residual automaton for L

In this section we state and prove our main result, which characterizes the sensing cost of an
w-regular language by means of the residual automaton for the language:

» Theorem 12. For every w-regular language L C X%, we have scost(L) = scost(Rpr).

The proof is described over the following section. The first direction, showing that
scost(L) > scost(Rp), is proved by similar considerations to those used in the proof of
Lemma 8 for the setting of finite words, and can be found in the full version.

Our main effort is to prove that scost(L) < scost(Rr). To show this, we construct, given
a DPA A such that L(A) = L, a sequence (B,,)n>1 of DPAs such that L(B,,) = L for every
n > 1, and lim, o scost(B,) = scost(Ry). We note that since the DPAs B,, have the
same acceptance condition as A, there is no trade-off between sensing cost and acceptance
condition. More precisely, if L can be recognized by a DPA with parity ranks [¢,j] (in
particular, if L is DBA-recognizable), then the sensing cost for L(A) can be obtained by a
DPA with parity ranks [i, j].

We first assume that A is strongly connected. We will later show how to drop this
assumption.

Let A = (%,Q,q0,A,a4) be a strongly connected DPA for L. We assume that A is
minimally ranked. Thus, if A has parity ranks {0, 1,...,k}, then there is no DPA for L with
ranks {0,1,...,k — 1} or {1,2,...,k}. Also, if A has ranks {1,2,...,k}, we consider the
complement DPA, which is A with ranks {0,1,...,k —1}. Since DPAs can be complemented
by dualizing the acceptance condition, their sensing cost is preserved under complementation,
so reasoning about the complemented DPA is sound. For 0 < ¢ < k, a cycle in A is called an
i-loop if the maximal rank along the cycle is i. For 0 < i < j <k, an [i, j]-flower is a state
g% € @ such that for every i < r < j, there is an r-loop that goes through g¢g.

The following is an adaptation of a result from [11] to strongly connected DPAs:

» Lemma 13. Consider a strongly-connected minimally-ranked DPA A = (¥, Q, qo, A, aa)
with ranks {0, ..., k}. Then, there is a DPA D = (X, Q, qo, A, ap) such that all the following
hold.

1. For every state s € Q, we have L(A®*) = L(D?). In particular, A and D are equivalent.

2. There exists m € N such that D has ranks {0, ...,2m + k} and has a [2m,2m + k| flower.

Proof. We start with the following claim, whose proof appears in the full version.
» Claim 14. A does not have an equivalent DPA with ranks {1,...,k+ 1}.

Now, [11] proves the lemma for A that needs not be strongly connected and has no
equivalent DPA with ranks {1,...,k+1}. There, the DPA D has ranks in {0, ..., 2m + k + 1},
and has a [2m, 2m + k]-flower ¢g. We argue that since A is strongly connected, D has only
ranks in {0, ..., 2m + k}.

By [11], if there exists m € N and a DPA D that recognizes L(A) and has a [2m, 2m+k+1]-
flower, then L(A) cannot be recognized by a DPA with ranks {1,...,k + 2}. Observe that in
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this case, L(A) cannot be recognized by a DPA with ranks {0, ..., k} as well, as by increasing
the ranks by 2 we get a DPA with ranks {2, ...,k + 2}, contradicting the fact L(.A) cannot
be recognized by a DPA with ranks in {1,...,k + 2}. Hence, as A with ranks {0, ..., k} does
exist, the DPA D cannot have a [2m,2m + k + 1]-flower.

Now, in our case, the DPA A, and therefore also D, is strongly-connected. Thus, if D
has a state with rank 2m + k + 1, then the state gg is in the same component with this
state, and is therefore a [2m,2m + k 4 1] flower. By the above, however, D cannot have a
[2m, 2m + k + 1] flower, implying that D has ranks in {0, ...,2m + k}. <

Let A and D be as in Lemma 13, and gg be the [2m,2m + k]-flower in D. Note
that A and D have the same structure and differ only in their acceptance condition. Let
Q=H{0,...,2m + k}. For a word w € ¥*, let p = $1, 89, ..., 85, be the run of D on w. If p ends
in qg, we define the gg-loop-abstraction of w to be the rank-word abs(w) € Q* of maximal
ranks between successive visits to gg. Formally, let w =y - y1 - - - y; be a partition of w such
that D visits the state g& after reading the prefix yq---y;, for all 0 < j < ¢, and does not
visit g% in other positions. Then, abs(y;), for 0 < i < ¢, is the maximal rank read along y;,
and abs(w) = abs(yo) - abs(y1) - - - abs(yt). Recall that Ry, = (X, (L), A, [¢], @), where (L)
are the equivalence classes of the right-congruence relation on L, thus each state [u] € (L)
is associated with the language u~'L of words w such that vw € L. We define a function
¢ : Q — (L) that maps states of A to languages in (L) by ¢(q) = L(A?). Observe that ¢
is onto. We define a function ~ : (L) — @ that maps languages in (L) to states of A by
arbitrarily choosing for every language u=!L € (L) a state in o~ (u~1L).

We define a sequence of words ugm,, - . ., Usm+r € 2° as follows. The definition proceeds
by an induction. Let M = |Q|+ 1. First, ug,, = (2m)™. Then, for 2m < i < 2m+k, we have
w; = (i-u;_1)M~1 . i. For example, if m = 2 and |Q| = 2, then uy = 444, us = 544454445,
ug = 654445444565444544456, and so on. Let P be a DFA that accepts a (finite) word
w € ¥* iff the run of D on w ends in gg and ugy,4k is a suffix of abs(w), for the word
Uomar € 2° defined above. In the full version we describe how to construct P, essentially by
combining a DFA over that alphabet €2 that recognizes Q* - ug,, 41 with a DFA with state
space @ X ) that records the highest rank visited between successive visits to gg and thus
abstracts words in X*.

We can now turn to the construction of the DPAs B,,. Recall that A = (3, Q, g0, A, aa),
and let P = (3, Qp,to, Ap, {tacct). For n > 1, we define B, = (3, Qn, (o, to), An, ) as
follows. The states of B, are Q, = ((L) x {1,...,n}) U (Q x (Qp \ {tacc})), where t,e
is the unique accepting state of P. We refer to the two components in the union as the
R -component and the D-component, respectively. The transitions of B, are defined as
follows.

Inside the Rp-component: for every transition ([ul,a, [u]) € A and i € {1,...,n — 1},

there is a transition (([u],%),a, ([u'],7 + 1)) € A,,.

From the Rp-component to the D-component: for every transition ([u],a,[u']) € Ap,

there is a transition (([u],n),a, (v([v']),t0)) € Ap.

Inside the D-component: for every transitions (q,a,q’) € A and (t,a,t') € Ap with

t' % tqce, there is a transition ((¢,t),a, (¢, ")) € A,,.

From the D-component to the Rp-component: for every transitions (g, a,q’) € A and

(t,a,tacc) € Ap, there is a transition ((g,t),a, (¢(¢’),1)) € A,.

The acceptance condition of B, is induced by that of A. Formally «,(q,t) = a(q), for
states (¢,t) € Q x Qp, and a,([u],3) = 0 for states ([u],i) € (L) x {1,...,n}.
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Figure 1 The DPA B,,.

The idea behind the construction of 5,, is as follows. The automaton B,, stays in R, for
n steps, then proceeds to a state in D with the correct residual language, and simulates D
until the ranks corresponding to the word ws,, 1+ have been seen. It then goes back to Ry,
by projecting the current state of D onto its residual in (L). The bigger n is, the more time
a run spends in the Rp-component, making R the more dominant factor in the sensing
cost of B,,. As n tends to infinity, the sensing cost of B,, tends to that of Ry. The technical
challenge is to define P in such a way that even though the run spends less time in the D
component, we can count on the ranks visited during this short time in order to determine
whether the run is accepting. We are now going to formalize this intuition, and we start with
the most challenging part of the proof, namely the equivalence of B, and A. The proof is
decomposed into the three Lemmas 15, 16, and 17.

» Lemma 15. Consider a word u € ¥* such that the run of B,, on u reaches the D-component
in state {q,t). Then, L(D?) = L(AY) = u~'L.

Proof. We prove a stronger claim, namely that if the run of B, on u ends in the Rp-
component in a state (s,4), then s = [u], and if the run ends in the D-component in a state
{q,t), then L(A?) = u~!1L. The proof proceeds by induction on |u| and is detailed in the full
version. By Lemma 13, for every ¢ € Q, we have L(A?) = L(D1?), so the claim follows. <

» Lemma 16. If the run of B, on a word w € %% wvisits the R -component finitely many
times, then w € L iff w € L(B,,).

Proof. Let u € ¥* be a prefix of w such that the run of B,, on w stays forever in the
D-component after reading u. Let (¢,t) € @, be the state reached by B, after reading
u. By Lemma 15, we have L(A?) = u~'L. Since the run of B,, from (g,t) stays in the
D-components where it simulates the run of A from ¢, then A7 accepts the suffix w!*l iff
B accepts w!ul. Tt follows that w € L iff w € L(B,). <

The complicated case is when the run of B,, on w does visit the R -component infinitely
many times. This is where the special structure of P guarantees that the sparse visits in the
D-component are sufficient for determining acceptance.

» Lemma 17. If the run of B,, on a word w € X¥ wvisits the R -component infinitely many
times, then w € L iff w € L(B,,).

Proof. Let 7 = s1, 89, 83,... be the run of B, on w and let p = ¢g1,¢2,q3 ... be the run of A
on w. We denote by 7, j] the infix s;,...,s; of 7. We also extend ap to (infixes of) runs by
defining ap(7[i, j]) = ap(si), ...,ap(s;). For a rank-word v € Q*, we say that an infix 7[i, j]
is a u-infix if ap(7[i,j]) = u.

If v = 74, j], for some 0 <4 < j, is a part of a run of D that consists of loops around g,
we define the loop type of v to be the word in 2* that describes the highest rank of each
simple loop around ¢g in v. An infix of 7 whose loop type is u; for some 2m < i <2m+k is
called a w;-loop-infix.

By our assumption, 7 contains infinitely many wo,,+,-infixes. Indeed, by the definition of
P, otherwise 7 get trapped in the D-component. We proceed by establishing a connection
between u;-loop-infixes of 7 and the corresponding infixes of p, for all 2m <1 < 2m + k.
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Let ¢ € {2m,...,2m + k}, and consider a u;-loop-infix. By the definition of u;, such a
u;-loop-infix consists of a sequence of M = |@Q| + 1 i-loops in 7, with loops of lower ranks
between them. We can write w = zvw’, where v = w[e, d] is the sub word that corresponds

to the u;-loop-infix. Let u; = awa(p[c, d]) be the ranks of p in its part that corresponds to v.

By our choice of M, we can find two indices ¢ < j < 1 < d such that the pairs ((g;,1), q;)
and ((g,t'), q)) reached by (7, p) in indices j and I, respectively, satisfy ¢; = ¢, = ¢ and
¢; = q;- Additionally, being a part of the run on a u;-loop-infix, the highest rank seen
between ¢; and ¢ in 7 is i. We write v = vyvus, where v1 = v[1, j], v2 = v[j + 1,1], and
v3 = v[l + 1, [v|]. Thus, the loop type of vg is in (iu;—1)"4, with the convention wug, 1 = €.

Consider the runs g and 7 of D% and of A% on vy, respectively. These runs are loops
labeled by vy, where the highest rank in y is i. By Lemma 15, L(D%) = L(D%) = L(A%),
so the highest rank in  must have same parity (odd or even) as i.

Thus, we showed that for every i € {2m,...,2m + k}, and for every u;-loop-infix v of 7,
there is an infix of v with loop-type in (iu;_1)%4, such that the infix of p corresponding to v
has highest rank of same parity as 3.

We want to show that rank k is witnessed on p during every ug,,+,-infix of 7. Assume
by way of contradiction that this is not the case. This means that there is some gy, x-infix
v’ in 7 such that all ranks visited in p along v’ are at most & — 2. Indeed, since the highest
rank has to be of the same parity as 2m + k, which has the same parity as k, it cannot
be k — 1. By the same argument, within v’ there is an infix v" of ugy,r—1 of the form
((2m +k — 1) (uzmik—2))T(2m + k — 1) in which the highest rank in p is of the same parity
as k — 1. As v” is also an infix of v/, the highest rank in p along v is at most k — 2. Thus,
the highest rank along v’ is at most k — 3. By continuing this argument by induction down

to 0, we reach a contradiction (in fact it is reached at level 1), as no rank below 0 is available.

We conclude that the run p witnesses a rank k£ in any wug-infix of 7. Since 7 contains
infinitely many ug-infixes, then p contains infinitely many ranks k, and, depending on the
parity of k, either both p and 7 are rejecting or both are accepting.

This concludes the proof that w € L iff w € L(B,,). <

We proceed to show that the sensing cost of the sequence of DPAs B,, indeed converges
to that of Rp.

» Lemma 18. lim,, o scost(B,,) = scost(Rr).

Proof. Since D is strongly connected, then qg is reachable from every state in D. Also, since
gs is a [2m, 2m + k]-flower, we can construct a sequence of loops around gg whose ranks
correspond to the word o, tr. Thus, ¢4 is reachable from every state in the D-component.
This implies that B,, is strongly connected, and therefore, a run of B,, is expected to traverse
both components infinitely often, making the Rp-component more dominant as n grows,
implying that lim,,_,, scost(B,,) = scost(Rp). Formalizing this intuition involves a careful
analysis of B,,’s Markov chain, as detailed in the full version. |

Lemmas 16, and 17 put together ensure that for strongly connected automata, we have
that L(B,) = L, so with Lemma 18, we get scost(L) = scost(Rpr).

It is left to remove the assumption about A being strongly connected. The proof is
detailed in the full version, and uses the above result on each ergodic component of A.

» Remark 19. All our results can be easily extended to a setting with a non-uniform
distribution on the letters given by any Markov chain, or with a different cost for each input
in each state. We can also use a decision tree to read the inputs instead of reading them
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simulatenously, defining for instance a cost of 1.5 if the state starts by reading a, then if a is
true it also reads b. <

5 Directions for Future Research

Regular sensing is a basic notion, which we introduced and studied for languages of finite and
infinite words. In this section we discuss possible extensions and variants of our definition
and contribution.

Open systems: Our setting assumes that all the signals in P are generated by the environ-
ment and read by the automaton. In the setting of open systems, we partition P into a set [
of input signals, generated by the environment, and a set O of output signals, generated by
the system. Then, we define the sensing cost of a specification as the minimal sensing cost
required for a transducer that realizes it, where here, sensing is measured only with respect to
the signals in I. Also, the transducer does not have to generate all the words in the language
— it only has to associate a computation in the language with each input sequence. These two
differences may lead to significantly different results than those presented in the paper.

Trade-off between sensing and quality: The key idea in the proof of Theorem 12 is that
when we reason about languages of infinite words, it is sometimes possible to delay the
sensing and only sense in “sparse” intervals. In practice, however, it is often desirable to
satisfy eventualities quickly. This is formalized in multi-valued formalisms such as LTL
with future discounting [1], where formulas assign higher satisfaction values to computations
that satisfy eventualities fast. Our study here suggests that lower sensing leads to lower
satisfaction values. An interesting problem is to study and formalize this intuitive trade-off
between sensing and quality.

Transient cost: In our definition of sensing, transient states are of no importance. Con-
sequently, for example, all safety languages have sensing cost 0, as the probability of a safety
property not being violated is 0, and once it is violated, no sensing is required. An alternative
definition of sensing cost may take transient states into an account. One way to do it is to
define the sensing cost of a run as the discounted sum Y .., 27" - sensed(|¢;]) of the sensing
costs of the states qg, q1, ... it visits. -

Beyond regular: Our definition of sensing cost can be adapted to more complex models,
such as pushdown automata or Turing machines. It would be interesting to see the trade-off
between sensing and classical complexity measures in such models.
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—— Abstract

This paper presents a new algorithm for the containment problem for eztended reqular expressions
that contain intersection and complement operators and that range over infinite alphabets. The
algorithm solves extended regular expressions inequalities symbolically by term rewriting and
thus avoids the translation to an expression-equivalent automaton.

Our algorithm is based on Brzozowski’s regular expression derivatives and on Antimirov’s
term-rewriting approach to check containment. To deal with large or infinite alphabets effec-
tively, we generalize Brzozowski’s derivative operator to work with respect to (potentially infinite)
representable character sets.
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1 Introduction

Regular expressions have many applications in the context of software development and
information technology: text processing, program analysis, compiler construction, query
processing, and so on. Modern programming languages either come with standard libraries
for regular expression processing or they provide built-in facilities to this end (e.g., Perl,
Ruby, and JavaScript). Many of these implementations augment the basic regular operations
+, -, and * (union, concatenation, and Kleene star) with enhancements like character classes
and wildcard literals, cardinalities, sub-matching, intersection, complement, and so on.

Regular expressions (RE) are advantageous in these domains because they provide a
concise means to encode many interesting problems. REs are well suited for verification
applications, because there are decision procedures for many problems involving them: the
word problem (w € [r]), emptiness ([r] = (), finiteness, containment ([r] C [s]), and
equivalence ([r] = [s]). Here we let r and s range over RE and write [-] for the function that
maps a regular expression to the regular language that it denotes. There are also effective
constructions for operations like union, intersection, complement, prefixes, suffixes, etc on
regular languages.

Recent applications impose new demands on operations involving regular expressions. The
Unicode character set with its more than 1.1 million code points requires the ability to deal
effectively with very large character sets and hence character classes. Similarly, formalizing
access contracts for objects in scripting languages even requires regular expressions over an
infinite alphabet: in this application, the alphabet itself is an infinite formal language (the
? Matthias Keil and .Peter Thiemanr.l;
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language of field names) and a “character class” (i.e., a set of field names) is itself described
by a regular expression [12, 8]. Hence, a “character class” may have infinitely many elements.

To enable such applications, we study the containment problem for regular expressions
with two enhancements. First, we consider extended regular expressions (ERE) that contain
intersection and complement operators beyond the standard regular operators of union,
concatenation, and Kleene star. An ERE also denotes a regular language but it can be
much more concise than a standard RE. Second, we consider EREs on any alphabet that
is presented as an effective boolean algebra. This extension encompasses some practically
useful instances of infinite alphabets like the set of all field names in a scripting language.

The first enhancement is known to be decidable, but we give a new symbolic decision
procedure based on Brzozowski’s regular expression derivatives [4] and Antimirov’s rewriting
approach to check containment [1]. The second enhancement has been studied previously
[21, 19, 20], but in the context of automata and finite state transducers. It has not been
investigated at the level of regular expressions and in particular not in the context of
Brzozowski’s and Antimirov’s work. We give sufficient conditions to ensure applicability
of our modification of Brzozowski’s and Antimirov’s approach to the containment problem
while retaining decidability.

1.1 Related Work

The practical motivation for considering this extension is drawn from the authors’ previous
work on checking access contracts for objects in a scripting language at run time [12]. In
that work, an access contract specifies a set of access paths that start from a specific anchor
object. An access path is a word over the field names of the objects traversed by the path
and we specify such a set of paths by a regular expression on the field names. We claim
that such a regular expression draws from an infinite alphabet because a field name in a
scripting language is an arbitrary string (of characters). For succinctness, we specify sets of
field names using a second level of regular expressions on characters.

In our implementation, checking containment is required to reduce memory consumption.
If the same object is restricted by more than one contract, then we apply containment
checking to remove redundant contracts. In our previous work, contracts were limited to
basic regular expressions and the field-level expressions were limited to disjunctions of literals.
Applying the results of the present paper enables us to lift both restrictions.

The textbook approach to checking regular expression containment is via translation
to finite automata, which may involve an exponential blowup, and then by constructing
a simulation (or a bisimulation for equivalence) [9]. A related approach based on non-
deterministic automata is presented by Bonchi and Pous [3].

The exponential blowup is due to the construction of a deterministic automaton from
the regular expression. Thompson’s construction [18], creates a non-deterministic finite
automaton with e-transitions where the number of states and transitions is linear to the length
of the (standard) regular expression. Glushkov’s [7] and McNaughton and Yamada’s [14]
position automaton computes an n + l-state non-deterministic automaton with up to n?
transitions from an n-symbol expression. They are the first to use the notion of a first
symbol. Brzozowski’s regular expression derivatives [4] directly calculate a deterministic
automaton from an ERE. Antimirov’s partial derivative approach [2] computes a n + 1-state
non-deterministic automation, but his work does not consider intersection and complement.
We are not aware of an extension of Glushkov’s algorithm to extended regular expressions.

Owens and other have implemented an extension of Brzozowski’s approach with character
classes and wildcards [16].
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Antimirov [1] also proposes a symbolic method for solving regular expression inequalities,
based on partial derivatives, with exponential worst-case run time. His containment calculus
is closely related to the simulation technique used by Hopcroft and Karp [9] for proving
equivalence of automata. In fact, a decision procedure for containment of regular expressions
leads to one for equivalence and vice versa. Ginzburg [6] gives an equivalence procedure
based on Brzozowski derivatives. Antimirov’s original work does not consider intersection
and complement. Caron and coworkers [5] extend Antimirov’s work to ERE using antichains,
but the resulting procedure is very complex compared to ours.

A shortcoming of all existing approaches is their restriction to finite alphabets. Supporting
both makes a significant difference in practice: an iteration over the alphabet X is feasible for
small alphabets, but it is impractical for very large alphabets (e.g., Unicode) or infinite ones
(e.g., another level of regular languages as for our contracts). Furthermore, most regular
expressions used in practice contain character sets. We apply techniques developed for
symbolic finite automata to address these issues [20].

1.2 Overview

This paper is organized as follows. In Section 2, we recall notations and concepts. Section 3

introduces the notion of an effective boolean algebra for representing sets of symbols abstractly.

Section 4 explains Antimirov’s algorithm for checking containment, which is the starting
point of our work. Next, Section 5 defines two notions of derivatives on regular expressions
with respect to symbol sets. It continues to introduce the key notion of next literals, which
ensures finiteness of our extension to Antimirov’s algorithm. Section 6 contains the heart
of our extended algorithm, a deduction system that determines containment of extended
regular expressions along with a soundness proof.

A technical report [13] extends this paper by an appendix with further technical details,
examples, and proofs of theorems.

2 Regular Expressions

An alphabet ¥ is a denumerable, potentially infinite set of symbols. ¥* is the set of all finite
words over symbols from ¥ with € denoting the empty word. Let a,b,c € ¥ range over
symbols; u, v, w € ¥* over words; and A, B,C C X over sets of symbols.

Let £,£' C ¥* be languages. The left quotient of £ by a word u, written u =1L, is the
language {v | uv € £}. It is immediate from the definition that (au)™*£ =u"*(a"'L) and
that u € £ iff e € u=1L. Furthermore, £ C £’ iff u=1£ C =1L’ for all words v € £*. The
left quotient of one language by another is defined by £L71L" = {v | uv € £L',u € L}. We
write £-L for the concatenation of languages {uv | u € £,v € L'} and L* for the Kleene
closure {v; ...v, | n € N,v; € L}. We sometimes write £ for the complement ¥* \ £ and A
for ¥\ A.

An extended reqular expression (ERE) on an alphabet ¥ is a syntactic phrase derivable
from non-terminals 7, s,¢t. It comprises the the empty word, literals, union, concatenation,
Kleene star, as well as intersection and negation operators.

rs,t = €| A|lr+s|rs|r|r&ks]|Ir

Compared to standard definitions, a literal is a set A of symbols, which stands for an abstract,
possibly empty, character class. We write a instead of {a} for the frequent case of a single
letter literal. We consider regular expressions up to similarity [4], that is, up to associativity
and commutativity of the union operator with the empty set as identity.
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The language [r] C X* of a regular expression r is defined inductively by:

[e] = {e} [r+s] =[]V [s] [ré&es] = [r] N [s]
[A] = {a]ac A} %r-?}]] = H-[[S]] I ]

For finite alphabets, [r] is a regular language. For arbitrary alphabets, we define a language
to be regular, if it is equal to [r], for some ERE r.

We write r C s (r is contained in s) to express that [r] C [s].

The nullable predicate v(r) indicates whether [r] contains the empty word, that is, v(r)
iff € € [r]). Tt is defined inductively by:

v(e) = true v(r+s) = v(r)Vu(s) v(r&s) = v(r)Av(s)
v(A) = false Vgr-s)) = v(r)Av(s) v(lr) = —w(r)
v(r* = true

The Brzozowski derivative 0,(r) of an ERE r w.r.t. a symbol a computes a regular expression
for the left quotient a=1[r] (see [4]). It is defined inductively as follows:

8a 6 - (Z) aa(’r) S+aa(8)a I/(’f‘)
Oy(r-s) =
_ {e, a€A (r-s) {aa(r).s’ —w(r)
0, a ¢ A Oa(r*) = Ou(r)r*
o (r+58) = 0u(r)+ 04 (r&s) = 04 (1)&04(s)

The case for the set literal A generalizes Brzozowski’s definition. The definition is extended
to words by Ogy(r) = 9,(0,(r)) and J.(r) = r. It is easy to see that u € [r] iff € € [9,(r)].

3 Representing Sets of Symbols

The definition of an ERE in Section 2 just states that a literal is a set of symbols A C .
However, to define tractable algorithms, we require that A is an element of an effective
boolean algebra [20] (U,U,,~, L, T) where U C p(X) is closed under the boolean operations.
Here LI and M denote union and intersection of symbol sets, * the complement, and 1. and T
the empty set and the full set 3, respectively. In this algebra, we need to be able to decide
equality of sets (hence the term effective) and to represent singleton symbols.
For finite (small) alphabets, we may just take U = p(X). A set of symbols may be
enumerated and ranges of symbols may be represented by character classes, as customarily
supported in regular expression implementations. Alternatively, a bitvector representation
may be used.
If the alphabet is infinite (or just too large), then the boolean algebra of finite and
cofinite sets of symbols is the basis for a suitable representation. That is, the set
U={A¢cp)|A finite V A finite} is effectively closed under the boolean operations.
In our application to checking access contracts in scripting languages [12], the alphabet
itself is a set of words (the field names of objects) composed from another set I' of symbols:
¥ C p(I'*). To obtain an effective boolean algebra, we choose the set U = {A C p(T'™*) |
A is regular}, which is effectively closed under the boolean operations.
Sets of symbols may also be represented by formulas drawn from a decidable first-order
theory over a (finite or infinite) alphabet. For example, the character range [a-z] would
be represented by the formula z > ’a’ Az < ’z’. In this case, the boolean operations get



M. Keil and P. Thiemann

mapped to the disjunction, conjunction, or negation of predicates; bottom and top are
false and true, respectively. An SMT solver can decide equality and subset constraints.
This approach has been demonstrated to be effective for very large character sets in the
work on symbolic finite automata [20].

The rest of this paper is generic with respect to the choice of an effective boolean algebra.

4 Antimirov’s Algorithm for Checking Containment

Given two regular expressions r, s, the containment problem asks whether r C s. This problem
is decidable using standard techniques from automata theory: construct a deterministic
finite automaton for r&!s and check it for emptiness. The drawback of this approach is the
expensive construction of the automaton. In general, this expense cannot be avoided because
problem is PSPACE-complete [10, 11, 15].

Antimirov [1] proposed an algorithm for deciding containment of standard regular ex-
pressions (without intersection and negation) that is based on rewriting of inequalities. His
algorithm has the same asymptotic complexity as the automaton construction, but it can
fail early and is therefore better behaved in practice. We phrase the algorithm in terms of
Brzozowski derivatives to avoid introducing Antimirov’s notion of partial derivatives.

» Theorem 1 (Containment [1, Proposition 7(2)]). For regular expressions r and s,
rCs< (Vu e X*) 9,(r) C u(s).

Antimirov’s algorithm applies this theorem exhaustively to an inequality r C s (i.e., a
proposed containment) to generate all pairs 9, () C 9,,(s) of iterated derivatives until it finds
a contradiction or saturation. More precisely, Antimirov defines a containment calculus CC
which works on sets S of atoms, where an atom is either an inequality = C s or a boolean
constant true or false. It consists of the rule CC-DisproVE which infers false from a trivially
inconsistent inequality and the rule CC-UnFoLD that applies Theorem 1 to generate new

inequalities.
CC-DISPROVE CC-UNFOLD
v(r) A —w(s) v(r) = v(s)
rC s bee false rCstee {0a(r) E8a(s) | a € T}

An inference in the calculus for checking whether r¢ C sq is a sequence Sy Fee S1 Fee S2 Fee

. where Sy = {rg C So} and S;41 is an extension of S; by selecting an inequality in S; and
adding the consequences of applying one of the CC rules to it. That is, if r C s € S; and
rCskee S, then Siy1=95;US.

Antimirov argues [1, Theorem 8] that this algorithm is sound and complete by proving
(using Theorem 1) that r C s does not hold if and only if a set of atoms containing false is
derivable from r C s. The algorithm terminates because there are only finitely many different
inequalities derivable from r C s using rule CC-UNFOLD.

The containment calculus CC has two drawbacks. First, the choice of an inequality for the
next inference step is nondeterministic. Second, an adaptation to a setting with an infinite
alphabet seems doomed because rule CC-UNFOLD requires us to compute the derivative for
infinitely many a € ¥ at each application. We address the second drawback next.
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5 Derivatives on Literals

In this section, we develop a variant of Theorem 1 that enables us to define a variant of
the CC-UnrorD rule that is guaranteed to add finitely many atoms, even if the alphabet is
infinite. First, we observe that we may restrict the symbols considered in rule CC-UNFOLD
to initial symbols of the left hand side of an inequality.

» Definition 2 (First). Let first(r) := {a | aw € [r]} be the set of initial symbols derivable
from regular expression 7.

Clearly, (Va € %) 0,(r) E 9,(s) iff (Vb € first(r)) 9y(r) E Oy(s) because 9y(r) = 0 for
all b ¢ first(r). Thus, CC-UnroLD does not have to consider the entire alphabet, but
unfortunately first(r) may still be an infinite set of symbols. For that reason, we propose
to compute derivatives with respect to literals (i.e., non-empty sets of symbols) instead of
single symbols. However, generalizing derivatives to literals has some subtle problems.

To illustrate these problems, let us recall the specification of the Brzozowski derivative:

[0a(r)] = a™*[r]

We might be tempted to consider the following naive extension of the derivative to a set of
symbols A.

[0a(r)] = A7'[r] = U a 'r] = Uﬂaa(r)ﬂ (wrong)

a€A a€A

However, this attempt at a specification yields inconsistent results. To see why, consider the
case where r = ls. Generalizing from 0,(!s) = 10,(s), we might try to define d4(!s) :=104(s).
If this definition was sensible, then (1) and (2) should yield the same results:

[0 2 | 10.0)] “L* | (5] (1)

acA ac€A
[oas)] L a0 "2 U 0a(s)] "5 N [a(o)] 2)
a€A acA

However, we obtain a contradiction: with A = {a,b} and s = a-a+bb, (1) yields X*
whereas (2) yields {a, b}, which is clearly different.

5.1 Positive and Negative Derivatives

To address this problem, we introduce two types of derivative operators with respect to
symbol sets. The positive derivative A 4(r) computes an expression that contains the union
of all 0,(r) with a € A, whereas the negative derivative V 4(r) computes an expression
contained in the intersection of all d,(r) with a € A.

The positive and negative derivative operators are defined by mutual induction and flip
at the complement operator. Most cases of their definition are identical to the Brzozowski
derivative (cf. Section 2), thus we only show the cases that are different. For all literals A

with [A] # 0:

e, ANB#L1 e, ANB=_1
7 Vi (4) {

Ap(A) = { , ,
0, otherwise 0, otherwise
AB(!T‘) = 'VB(T') VB('T') = 'AB(T)
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For single symbol literals of the form B = {a}, it holds that A,(r) = V,(r) = 9u(r).
Derivatives with respect to the empty set are defined as Ag(r) = @ and Vy(r) = I*.

The following lemma states the connection between the derivative by a literal and the
derivative by a symbol.

» Lemma 3 (Positive and negative derivatives). For any r and B, it holds that:

[A5()] 2 | [0a(r)] V()] S () 10a(r)]

a€EB aceB

Proof of Lemma 3. Both inclusions are proved simultaneously by induction on 7. |
The following examples illustrate the properties of the derivatives.

» Example 4 (Positive derivative). Let 7 be (a - ¢)&(b - ¢) and let the literal A = {a, b}.
Aa(r) =Ax(a-c)&A4(b-c) = c&e T 0y (r)+0p(r) = 0+0

» Example 5 (Negative derivative). Let r be (a - ¢)+(b- ¢) and let the literal A = {a,b}.
Va(r)=Vala-c)+Va(b-c) =0+0 C 0,(r)&dy(r) = c&ec

Positive (negative) derivatives yield an upper (lower) approximation to the information
expected from a derivative. This approximation arises because we tried to define the
derivative with respect to an arbitrary literal A. To obtain the precise information, we need
to restrict these literals suitably to next literals.

5.2 Next Literals

An occurrence of a literal A in a regular expression r is initial if there is some a € X such that
04(r) reduces this occurrence. That is, the computation of 9,(r) involves 0,(A). Intuitively,
A helps determine the first symbol of an element of [r].

» Example 6 (Initial Literals).
1. Let r; = {a,b}.a*. Then {a,b} is an initial literal.
2. Let ro = {a,b}.a* + {b,c}.c*. Then {a,b} and {b,c} are initial.

Generalizing from the first example, we might be tempted to conjecture that if A is initial in
r, then (Va,b € A) 9,(r) = 0p(r). However, the second example shows that this conjecture is
wrong: {a,b} is initial in 7o, but 9,(r2) = a* and Jp(r2) = a* + ¢*.

The problem with the second example is that {a,b} N {b,c} # 0. Hence, instead of
identifying initial literals of an ERE r, we define a set next(r) of next literals which are
mutually disjoint, whose union contains first(r), and where the symbols in each literal yield
the same derivative. In the second example, it must be that next(rs) = {{a}, {b}, {c}}.

It turns out that this problem arises in a number of cases when defining next(r) inductively.
Hence, we define an operation X that builds a set of mutually disjoint literals that cover the
union of two sets of mutually disjoint literals.

» Definition 7 (Join). Let £; and £5 be two sets of mutually disjoint literals.

L1 w Lo ={(A1MA), (A1 1| |L2),(| |11 A2) | A € €1, 45 € &5}

The following lemma states the properties of the join operation.
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next(e) = {0} next(r+s) = next(r) X next(s)
next(4) = {A} next(rs) = {next(r) X next(s), v(r)
next(r), —w(r)
next(r*) = next(r)
next(r&s) = next(r) Mnext(s)
next(!r) = next(r) U{[{A | A € next(r)}}

Figure 1 Computing next literals.

» Lemma 8 (Properties of Join). Let £1 and £9 be non-empty sets of mutually disjoint
literals.

1. UJg x L) =JLrul L.

2. (VA#£A €8xy ANNA =0.

3. (VA€ Ly m L) (VA € &) ANA; #D= AL A;.

Proof of Lemma 8. Immediate from the definition. <

Figure 1 contains the definition of next(r). For € the set of next literals consists of the empty
set. The next literal of a literal A is A. The next literals of a union r+s are computed as
the join of the next literals of r and s as explained in Example 6. The next literals of a
concatenation r-s are the next literals of r if r is not nullable. Otherwise, they are the join
of the next literals of both operands. The next literals of a Kleene star expression r* are the
next literals of 7. For an intersection r&s, the set of next literals is the set of all intersections
AT A" of the next literals of both operands. In this case, the join operation ™ is not needed
because symbols that only appear in literals from one operand can be elided. To see this,
consider next(a&ed) = {{a} M {b}} = {0} whereas {{a}} x {{b}} = {0, {a}, {b}}.

The set of next literals of |7 comprises the next literals of r and a new literal, which is the
intersection of the complements of all literals in next(r). We might contemplate to exclude
literals that contain symbols a such that 9,(r) is equivalent to X*, but we refrain from doing
so because this equivalence cannot be decided with a finite set of rewrite rules [17].

The function next(r) \ {#} computes the equivalence classes of a partial equivalence
relation ~ on ¥ such that equivalent symbols yield the same derivative on r. The relation is
defined by a ~ b if there exists A € next(r) such that ¢ € A and b € A. Furthermore, the
derivative by a symbol that is not part of the relation yields the empty set.

» Lemma 9 (Partial Equivalence). Let £ = next(r).
1. (VA€ £) (Va,b e A) 0y(r) = (1)
2. Va¢ L) 9,(r)=10

Proof of Lemma 9. Both proofs are by induction on r. |
It remains to show that next(r) covers all symbols in first(r).

» Lemma 10 (First). For all r, | next(r) D first(r).

Proof of Lemma 10. The proof is by induction on 7. <
Moreover, there are only finitely many different next literals for each regular expression.

» Lemma 11 (Finiteness). For all r, |next(r)| is finite.
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Proof of Lemma 11. By induction on r. The base cases construct finite sets and the

inductive cases build a finite number of combinations of the results from the subexpressions.

<

Now, we put next literals to work. If we only take positive or negative derivatives with
respect to next literals, then the inclusions in Lemma 3 turn into equalities. The result is
that both the positive and the negative derivative, when applied to a next literal A, calculate
a regular expression for the left quotient A=1[r].

» Theorem 12 (Left Quotient). For all r, A € next(r) \ {0}, and a € [A]:
[Aa(r)] = [Va(r)] = [0a(r)]
Proof of Lemma 12. By induction on r. <

Motivated by this result, we define the Brzozowski derivative for a non-empty subset A of a
literal in next(r). This definition involves an arbitrary choice of a € A, but this choice does
not influence the calculated derivative according to Lemma 9, part 1.

» Definition 13. Let A’ € next(r). For cach ) # A C A" define 9a(r) := 0,(r), where a € A.

» Lemma 14 (Coverage). For all a, u, and r it holds that:
w€ [0a(r)] & FA€next(r):a€ ANu€e[Aa(r)]Aue[Va(r)]
Proof of Lemma 14. This result follows from Theorem 12 and Lemma 10. |

We conclude that to determine a finite set of representatives for all derivatives of a regular
expression r it is sufficient to select one symbol a from each equivalence class A € next(r)\ {0}

and calculate 9, (r). Alternatively, we may calculate A 4(r) or V 4(r) according to Theorem 12.

It remains to lift this result to solving inequalities.

6 Solving Inequalities

Theorem 1 is the foundation of Antimirov’s algorithm. It turns out that we can prove a
stronger version of this theorem, which makes the rules CC-DisprovE and CC-UNFOLD sound
and complete and which also encompasses the soundness of the restriction to first sets.

» Theorem 15 (Containment).
rCs < (v(r)=v(s)) A (Va € first(r)) 0q(r) C 9a(s)

Proof of Theorem 15. r C s iff [r] C [s] iff (Vw) w € [r] = w € [3].
Induction on w. If w = ¢, then € € [r] = € € [s] iff v(r) = v(s). If w = aw’, then
a € first(r) C first(s), w’ € a=![r] C a=![s], which is equivalent to 9,(r) C 9,(s). <

As we remarked before, it may be very expensive (or even impossible) to construct all
derivatives with respect to the first symbols, particularly for negated expressions and for
large or infinite alphabets. To obtain a decision procedure for containment, we need a finite
set of derivatives. Therefore, we use next literals as representatives of the first symbols and
use Brzozowski derivatives on literals (Definition 13) on both sides.

To define the next literals of an inequality = C s, it would be sound to use the join

of the next literals of both sides: next(r) x next(s). However, we can do slightly better.

Theorem 15 proves that the first symbols of r are sufficient to prove containment. Using the
full join operation, however, would cover first(r) U first(s) (by Lemma 10). Hence, we define
a left-biased version of the join operator that only covers the symbols of its left operand.

183

FSTTCS 2014



184

Symbolic Solving of Extended Regular Expression Inequalities

» Definition 16 (Left Join). Let £; and £2 be two sets of mutually disjoint literals.

L1 x Lo ={(A1 N A), (A1 1| | €2) | A1 € £1, A3 € £}
The following lemma states the properties of the left join operation.

» Lemma 17 (Properties of Left Join). Let £1 and £9 be non-empty sets of mutually disjoint
literals.

1. U(Sl X ,82) = U£1

2. (VA#£A € L1 x L) ANNA =10.

3. (VAEQ@ D<£2) (VAI S Sl) ANA; 7é®:>A C A,

Proof of Lemma 17. Immediate from the definition. <
» Definition 18 (Next Literals of an Inequality). Let r C s be an inequality.
next(r C s) := next(r) x next(s)

Finally, we can state a generalization of Antimirov’s containment theorem for EREs, where
each unfolding step generates only finitely many derivatives.

» Theorem 19 (Containment). For all reqular expressions r and s,
rCs < (v(r) = v(s)) A (VA€ next(r Cs)) da(r) C da(s).

Proof of Theorem 19. The proof is by contraposition. If r Z s then 3A € next(r C s) :
0a(r) £ 0a(s) or =(v(r) = v(s)). <

For A € next(r C s) define VA(r C s) := (Va(r) C Aa(s)) = (0a(r) T 9a(s)).

» Theorem 20 (Finiteness). Let R be a finite set of regular inequalities. Define
F(R)=RU{V4(rCs)|rCscR,Ac next(rCs)}

For each r and s, the set |,y FO{r C s}) is finite.

Proof of Theorem 20. As we consider regular expressions up to similarity (cf. [4]) and
Va(rCs) = 0a(r) C da(s) is essentially applying the Brzozowski derivative to a pair of
(extended) regular expressions, the set of these pairs is finite (because there are only finitely
many dissimilar iterated Brzozowski derivatives for a regular expression [4]). |

These results are the basis for a complete decision procedure for solving inequalities
on extended regular expressions where literals are defined via an effective boolean algebra.
Figure 2 defines this procedure as a judgment of the form I' - C s : b, where I is a set
of previous visited inequalities 7 C s with v(r) = v(s) that are assumed to be true and
b € {true, false}. The effective boolean algebra comes into play in the computation of the
next literals and in the computation of the derivatives.

Rule (DISPROVE) detects contradictory inequalities in the same way as Antimirov’s rule
CC-DisprovE. Rule (CYCLE) detects circular reasoning: Under the assumption that r Cs
holds we were not (yet) able to derive a contradiction and thus conclude that  C s holds.
This rule guarantees termination because of the finiteness result (Theorem 20). The rules
(UNFOLD-TRUE) and (UNFOLD-FALSE) apply only if r C s is neither contradictory nor in
the context. A deterministic implementation would generate the literals A € next(r C s) and
recursively check V 4(r C s). If any of these checks returns false, then (UNFOLD-FALSE) fires.
Otherwise (UNFOLD-TRUE) signals a successful containment proof. Theorem 19 is the basis
for soundness and completeness of the unfolding rules.
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(DISPROVE) (CYCLE)
v(r) —w(s) rCsel
Fl—rzs:false Ik rCs : true

(UNFOLD-TRUE)
rCs¢l v(r) = v(s) VA cnext(rCs): TU{rCs} F 9a(r)C0a(s) : true
' rCs : true

(UNFOLD-FALSE)
rCs¢gT v(r) = v(s) JAcnext(rCs): TU{rCs} F da(r)C0a(s) : false
T rCs : false

Figure 2 Decision procedure for containment.

(PROVE-NULLABLE) (DISPROVE-EMPTY)
(PROVE-IDENTITY) (PROVE-EMPTY) u(s) 3A € next(r): A0
' W rCr : true ' 0Cs : true

T'F eCs : true - 7rE0 : false

Figure 3 Prove and disprove axioms.

» Theorem 21 (Soundness). For all regular expression r and s:
0 FrCs: T < rCs

Proof of Theorem 21. We prove that T'Fr C s : false iff r £ s, for all contexts I' where
r C s ¢ T. This is sufficient because each regular inequality gives rise to a finite derivation
by Theorem 20. <

In addition to the rules from Figure 2, we may add auxiliary rules to detect trivially
consistent or inconsistent inequalities early (Figure 3 contains some examples). Such rules
may be used to improve efficiency. They decide containment directly instead of unfolding
repeatedly.

7 Conclusion

Antimirov’s algorithm is a viable tool for proving containment of regular expressions to
extended regular expressions on potentially infinite alphabets. To work effectively with such
alphabets, we require that literals in regular expressions are drawn from an effective boolean
algebra. As a slight difference, we work with Brzozowski derivatives instead of Antimirov’s
notion of partial derivative.

The main effort in lifting Antimirov’s algorithm is to identify, for each regular inequality
r C s, a finite set of symbols such that calculating the derivation with respect to these
symbols covers all possible derivations with all symbols. We regard the construction of the
set of suitable representatives in an effective boolean algebra, embodied in the notion of next
literals next(r C s), as a key contribution of this work.
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—— Abstract

The classic stable set problem asks to find a maximum cardinality set of pairwise non-adjacent
vertices in an undirected graph G. This problem is NP-hard to approximate with factor n'—¢
for any constant ¢ > 0 [10, 24], where n is the number of vertices, and therefore there is no hope
for good approximations in the general case. We study the stable set problem when restricted to
graphs with bounded odd cycle packing number ocp(G), possibly by a function of n. This is the
largest number of vertex-disjoint odd cycles in G. Equivalently, it is the logarithm of the largest
absolute value of a sub-determinant of the edge-node incidence matrix Ag of G. Hence, if Ag is
totally unimodular, then ocp(G) = 0. Therefore, ocp(G) is a natural distance measure of Ag to
the set of totally unimodular matrices on a scale from 1 to n/3.

When ocp(G) = 0, the graph is bipartite and it is well known that stable set can be solved in
polynomial time. Our results imply that the odd cycle packing number indeed strongly influences
the approximability of stable set. More precisely, we obtain a polynomial-time approximation
scheme for graphs with ocp(G) = o(n/logn), and an a-approximation algorithm for any graph
where o smoothly increases from a constant to n as ocp(G) grows from O(n/logn) to n/3. On
the hardness side, we show that, assuming the exponential-time hypothesis, stable set cannot
be solved in polynomial time if ocp(G) = Q(log' ™ n) for some ¢ > 0. Finally, we generalize a
theorem by Gyori et al. [9] 